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Supplement for

Controls on uranium isotope fractionation in the Late Paleoproterozoic ocean

Animikie Basin Tectonic Setting

Early studies interpreted the Animikie Basin as a foreland assemblage with load-driven

subsidence resulting from Penokean Orogeny thrusting in the south (Barovich et al., 1989;

Hoffman, 1987; Klasner et al., 1991; Morey and Southwick, 1995; Ojakangas et al., 2001;

Southwick and Morey, 1991) . However, studies of Nd and common Pb (Hemming et al., 1995) ,

Sm–Nd and U–Pb (Van Wyck and Johnson, 1997) and U–Pb geochronology (Fralick et al.,

2002) have indicated that the foreland model is not applicable to the basin where the Gunflint

and Biwabik iron formations were deposited. Additionally, the Gunflint and Biwabik iron

formations are at least ~10 million years older than commencement of Penokean deformation

(Fralick et al., 2002) , and they contain very little siliciclastic sediment (Larson, 2013) ,

incompatible with a mountainous terrain to the immediate south. Large areas of Penokean

deformation have been reinterpreted as Yavapai (Holm et al., 2018, 2005) , and geochronology of

the area fringing the Superior Craton indicates an extensional regime at 1.88 Ga (Bleeker et al.,

2019) . The siliciclastics of the Rove and Virginia formations appear to have been deposited in a

peripheral foreland setting on the edge of the craton, but with subsidence due to tectonic loading

during the 1.83 Ga Trans-Hudson Orogeny. This is indicated by pro-delta outbuilding from the

direction of the Trans-Hudson Orogenic zone to the northwest (Johnston et al., 2006; Maric and

Fralick, 2005) and paleocurrents indicating sediment delivery from that direction (Morey, 1969,

1967) .

GF-3 Additional Digestion
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The GF-3 core samples were not fully dissolved following the total digestion procedure

outlined in the main text. The following additional steps were taken to dissolve these samples.

and HCl digestions were repeated, followed by 9 mL inverse (2:1

HNO

3

/HCl) at 150°C for 48 hours. These samples still featured residual and supernatant phases,

so the supernatant was pipetted and both phases were further digested by inverse and

concentrated HCl. Three types of visible solids were still present: a greasy film (surface), clumped

particles that dissolved when slurried, and disseminated fine-grained particles. A final attempt to

dissolve these residues in 1:1 HNO

3

and 30% hydrogen peroxide (H

2

O

2

) resulted in all residues

becoming disseminated or fully dissolved. Supernatant and residual phases were dried and

redissolved in 6 M HCl, then reintegrated. Procedural blanks produced with these samples were

comparable to other batches.

Macroscopic Pyrite in Core 89-MC-1

Macroscopic (up to 1 mm) pyrite layers and disseminated clusters (Figure S1) occur in the

‘dynamic interval’ of core 89-MC-1 (86.000–86.303 m above Gunflint Fm.). The laminated

morphology and occurrence during the transition from a ferruginous to euxinic water column

suggests intense sulfide production at the sediment water interface, likely with sulfide diffusing

into the water column, thereby resulting in large scale drawdown of Fe

2+

from the water column.

This is also supported by a relatively homogeneous pyrite sulfur isotope composition for this

interval (34S = 9.99–12.45‰), suggesting a constant, well-mixed sulfate/sulfide source, most

likely of water-column origin (Poulton et al., 2004) .
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Modified Proterozoic Two-sink δ

238

UMass Balance

Application of a modified two-sink steady state mass balance (Eq. S1; after Gilleaudeau et

al., 2019; Wang et al., 2016; Yang et al., 2017) shows how modern-like δ

238

U

sw

can occur in an

anoxic Proterozoic ocean, and how lower δ

238

U

sw

(–0.73‰) can be achieved with increased

primary productivity on continental margins:

(S1) δ238Usw = δ238Uriv − ∑𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖Δ238U𝑖𝑖 − sw∑𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
where is a given U sediment sink, is an areal burial rate factor for a sink, and is the seafloor

area of a sink. The δ

238

U

riv

value is set to the modern value (–0.29‰). Using the Animikie Basin

data, we define two sinks where (1) large isotopic fractionations from 0.4‰ to 1.2‰ are observed

in environments with higher primary productivity associated with the euxinic wedge and adjacent

locations (TOC = 2.3 ± 0.9 wt%, signified with a subscript for higher TOC), and (2) smaller

isotopic fractionations from –0.1‰ to 0.4‰ in areas with lower primary productivity associated

with low-oxygen or deep ferruginous settings (TOC = 0.8 ± 0.7 wt%, signified with a subscript for

lower TOC). Equation 1 is rearranged assuming = 1– to solve for (Eq. S2):

(S2)

𝐴𝐴ℎ
= 𝑘𝑘𝑙𝑙 Δ238U𝑙𝑙 − sw − δ238Uriv +δ238Usw𝑘𝑘ℎ δ238Uriv − δ238Usw − Δ238Uℎ− sw + 𝑘𝑘𝑙𝑙 Δ238U𝑙𝑙 − sw − δ238Uriv + δ238Usw

Scaling factors ( ) are based on modern burial rate data, where is 0.048 dm yr

-1

,

is 0.469 dm yr

-1

, and is 2.534 dm yr

-1

(Gilleaudeau et al., 2019; Wang et al., 2016; Yang et

al., 2017). In our model, it is unlikely that is representative of burial rates in the low TOC sink

as U enrichment (U

EF

> 1) is still recorded and has been shown to scale with U accumulation rate

(Clarkson et al., 2023), although sedimentary U burial rates likely decreased with distance from
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the paleoshoreline. Therefore, we apply a range between and of 0.048–0.469 dm yr

-1

for , and a range from to of 0.469–2.534 dm yr

-1

for . The model was built in

Python (v3.9) and varied each parameter from minimum to maximum values in 10 steps (Table

2). Modelling results are presented in Table S1 and outputs are shown in Figs. S2, S3 and S4.

Parameter Unit Minimum Maximum Step Size

dmyr

-1

0.048 0.469 0.0421

0.469 2.534 0.2065

δ

238

U

sw

*

‰

–0.73 –0.29 0.044

δ

238

U

riv

–0.29 (constant)

Δ

238

U

l-sw

–0.1 0.4 0.05

Δ

238

U

h-sw

0.4 1.2 0.08

* Caseswith δ

238

U

sw

set to mid-Proterozoic mean, –0.40‰, and minimum, –0.73‰, were alsomodelled.

Scenario Median (%

total seafloor

) 1

st

Quartile 3

rd

Quartile

Total model parameter ranges 5.0 1.8 12.4

δ

238

U

sw

set to –0.40‰ 2.1 0.7 4.7

δ

238

U

sw

set to –0.73‰ 10.3 4.3 22.5
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These results align with a previous δ

238

U model suggesting limited areas of euxinia in the

Proterozoic ocean (likely < ~10% total seafloor; Gilleaudeau et al., 2019). However, unlike the

previous estimate, we do not limit large U isotope fractionations to the euxinic seafloor. Areas

with a large sinking TOC flux are prone to development of euxinia, but euxinia is not a prerequisite.

This contrasts with the sediment sink receiving limited TOC, which in the shallower settings

results in low-oxygen conditions where U may have been only mildly reduced, deeper-water

locations where an abundance of Fe

2+

could have rapidly reduced U, or in either location where U

may have adsorbed to solid Fe/Mn species. These scenarios impart minimal or potentially small

negative isotopic fractionations, thus producing the isotopically light δ

238

U

sw

in such samples.

Together, these settings make up the remainder of the seafloor beyond ( = 90.1–98.1% of the

total Proterozoic seafloor given δ

238

U

sw

from modern-like to minimum Proterozoic estimates).

Model Code
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The code for the mass balancemodel (Equation 2) was built in Python v3.9 and is pasted in

the section below. The first block can be used to estimate the global area of high productivity ( )

for a specific δ

238

U

sw

(set to –0.73‰ below). Results depicted in main text Figure 8 (modern

seawater) and Figure S2 (minimumProterozoic estimate).

importmatplotlibasplt

importnumpyasnp

#ArticleEquation5

defA_high(k_low,k_high,D_low,D_high,d_sw):

d_riv=-0.29

num=k_low*(D_low-d_riv+d_sw)

denom=k_high*(d_riv-d_sw-D_high)+num

returnnum/denom*100

#SeawaterEstimate(permil)

d_sw=-0.73

#ProduceA_highhistogramforselectedseawaterestimate(d_sw)

Areas=[]

fork_l innp.arange(0.048,0.5111,0.0421):

fork_hinnp.arange(0.469,2.7405,0.2065):

forD_l innp.arange(-0.1,0.45,0.05):

forD_hinnp.arange(0.4,1.28,0.08):

A=A_high(k_l,k_h,D_l,D_h,d_sw)

if0<=A<=100:

Areas.append(A)

plt.pyplot.hist(Areas,100,None,True)

print(np.percentile(Areas,(25,50,75)),len(Areas))
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Gilleaudeau et al., 2019)

The model depicted in the block below can be used to estimate through a range of

δ

238

U

sw

as shown in the main text (i.e., from –0.73‰ to –0.29‰) with results in Figure S3.

importmatplotlibasplt

importnumpyasnp

#Seawaterrange

d_sw_min=-0.73

d_sw_max=-0.29

d_sw_step=(d_sw_max-d_sw_min)/10

#ProduceA_highhistogramforselectedseawaterestimaterange

Areas=[]

fork_l innp.arange(0.048,0.5111,0.0421):

fork_hinnp.arange(0.469,2.7405,0.2065):

forD_l innp.arange(-0.1,0.45,0.05):

forD_hinnp.arange(0.4,1.28,0.08):

ford_swinnp.arange(d_sw_min,d_sw_max+d_sw_step,d_sw_step):
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A=A_high(k_l,k_h,D_l,D_h,d_sw)

if0<=A<=100:

Areas.append(A)

plt.pyplot.hist(Areas,100,None,True)

print(np.percentile(Areas,(25,50,75)),len(Areas))

Figure S5. Results of U isotopemass balancemodel application (main text Equation 5) with

variable δ

238

U

sw

from the estimated minimum Proterozoic seawater value (–0.73‰) to the

modern δ

238

U

riv

(–0.29‰).
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