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1 | INTRODUCTION

| Junjun Liu®

Abstract

Main path analysis is a popular method for extracting the scientific backbone
from the citation network of a research domain. Existing approaches ignored
the semantic relationships between the citing and cited publications, resulting
in several adverse issues, in terms of coherence of main paths and coverage of
significant studies. This paper advocated the semantic main path network
analysis approach to alleviate these issues based on citation function analysis.
A wide variety of SciBERT-based deep learning models were designed for iden-
tifying citation functions. Semantic citation networks were built by either
including important citations, for example, extension, motivation, usage and
similarity, or excluding incidental citations like background and future work.
Semantic main path network was built by merging the top-K main paths
extracted from various time slices of semantic citation network. In addition, a
three-way framework was proposed for the quantitative evaluation of main
path analysis results. Both qualitative and quantitative analysis on three
research areas of computational linguistics demonstrated that, compared to
semantics-agnostic counterparts, different types of semantic main path net-
works provide complementary views of scientific knowledge flows. Combining
them together, we obtained a more precise and comprehensive picture of
domain evolution and uncover more coherent development pathways between
scientific ideas.

knowledge diffusion paths among the main ideas advanc-
ing an analyzed scientific domain, since Batagelj (2003)

There were many methods to extract the evolutionary
pathways between scientific ideas based on citation net-
work analysis, such as algorithmic historiography
(Garfield et al., 2003) and scientific historiograms (Lucio-
Arias & Leydesdorff, 2008). Recently, main path analysis
(MPA), originally proposed in Hummon and Doreian
(1989), has become popular for extracting the major

proposed the efficient search path counting algorithms to
weight citation edges and Verspagen (2007) laid out the
algorithmic foundations for main path extraction.

Most MPA methods were citation semantics-agnostic,
that is, ignoring the semantic relationships between publi-
cations. A direct consequence is semantically incoherent
main path. Figure 1 illustrates a potential cause of this
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problem—inappropriate search path counts (SPC). In the
top-right schematic image, the citation edges (A, B) and
(B, C) are both background citations (“Neutral”) while the
citation edge (A, C) is an extension citation (“Extends”).
Ignoring citation function, we have SPC(A, B) > SPC(A,
C) because the former is the sum of the number of paths
through A — B — C, which is equal to SPC(A, C), and the
number of paths through A — B — X(#C). So traditional
MPA approaches will select (A, B), but it is more reason-
able to include the extension citation (A, C). Some studies
adjusted citation weight by, for example, considering cita-
tion preferences according to discipline and publication
time (Yu & Pan, 2021) or scaling search path count using
citing publication's prestige (Yu & Sheng, 2021). However,
the problem was not solved. For example, if B is highly
cited, then Yu and Pan’s approach will still choose (A, B) in
main path exploration. Some weighing schemes used mea-
sures of similarity between the abstracts of citing and cited
publications (Chen et al., 2022; Huang et al., 2022; Liu
et al., 2014). However, such (indirectly inferred) similarity
measures shall be less precise than authors' own (directly
stated) rationales to cite, aka citation function (Igbal
et al,, 2021; Kunnath et al., 2022; Lyu et al., 2021).

Theoretically, traditional MPA approaches also tend
to prefer long local paths.' Figure 1 illustrates this case.
The left-most image shows a vanilla (semantics-agnostic)
main path network (MPN). The longest local path from
A00-2018 to DO07-1096 is very stretched: distance
(A00-2018, D07-1096) = 16. It is questionable whether
knowledge indeed flows along such long paths with
many unimportant citations such as “Neutral.” The mid-
dle image shows a snapshot of the semantic main path
network (semantic MPN) extracted by considering exten-
sion (“Ext”) and motivation (“Mot”) citations. The path
becomes more compact: distance (A00-2018, D07-1096) is
decreased to 5. For another example, by further consider-
ing usage (“Use”) and similarity (“Sim”) citations, the
longest distance from W96-0213 to W05-0516 is reduced
from 17 to 5.
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Motivations for semantic main path network analysis.
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To the best of our knowledge, this is the first paper
which marries citation function classification to MPA. We
proposed a systematic approach to semantic main path net-
work analysis (Section 4) based on citation function classifi-
cation (Section 3), which solves both issues raised above.
Multiple semantic citation networks were built using differ-
ent citation functions, for which multiple semantic main
path networks were extracted, assuming that different
semantic networks capture different types of knowledge
flows between different knowledge entities, such as idea-
tional basis, methodological extension, tool usage, and simi-
larity in problem or methodology, and so on. We conjecture
that different semantic main path networks will collectively
provide a more comprehensive representation of an ana-
lyzed domain. Note that, there were also some recent studies
relying on citation importance classification (Ghosal
et al, 2022; Hassan et al, 2018). Essentially, these
approaches weighted citation edges by 1 (important) or
0 (incidental), screened out unimportant citations, did not
further processing for knowledge flow analysis. The current
paper is methodologically different. Citation function classi-
fication provides us with more flexible ways to perform
MPA. The superiority of the proposed approach was qualita-
tively justified using two case studies (Section 5). In Section 6,
this paper proposed a three-way quantitative evaluation
framework. To the best of our knowledge, this is the first
study about quantitative evaluation of MPa results. Experi-
ments proved that extracting and merging multiple semantic
main path networks achieved better (topical) coverage, (topi-
cal) coherence and (ranking) pertinence (Section 6).

2 | RELATED WORK

2.1 | Topological approaches of main
path analysis

According to Verspagen (2007), MPA has two steps: cita-
tion weighting and main path extraction. Refer to Liu

rui-juors
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TABLE 1 Search path counting methods for main path analysis.
Method Origins Targets
NPPC All nodes All
SPLC All Sinks (zero-outdegree)
SPNP All All
SPC Sources (zero-indegree) Sinks

et al. (2019, 2020) for the discussions of best practices of
each step. Citation weighting is traditionally based on each
edge's traversal count in the search paths between a set of
origin nodes and target nodes in a (usually reversed) cita-
tion network. We call them topological approaches. The
ground-breaking work of Hummon and Doreian (1989)
defined three measures: Node Pair Project Count (NPPC),
Search Path Link Count (SPLC), and Search Path Node
Pair (SPNP). SLPC is predominantly used today. Batagelj
(2003) proposed an efficient unified algorithm based on
“standardizing” citation networks (summarized in Table 1),
and proposed the fourth measure Search Path Count (SPC).
For each citation edge (u, v) in a standardized citation net-
work, the citation weight is equal to the number of paths
from pseudo-source to u multiplied by the number of paths
from v to pseudo-sink. As citation networks are mostly acy-
clic, the calculation is done iteratively based on topological
sort. Kuan (2020) empirically discussed the choices of these
weighting variants. Several adjustments exist. Liu and Kuan
(2016) proposed to decay search path by length with the
belief that knowledge diffusion has higher information loss
along long paths, while Yu and Sheng (2021) used citing
papers' citation influence for adjustment.

Typically, main path extraction starts from certain cho-
sen startpoints and greedily searches the highest weighted
citation edges to follow. Verspagen (2007) enumerated paths
from the source(s) with the maximal out-going edge weight
as startpoint(s) so the main paths were called forward local
main paths (Liu & Lu, 2012). Batagelj (2003) also tried the
longest path as the global main path (Batagelj, 2003). Liu
and Lu (2012) defined two new types of local main paths.
Backward local main path starts from sinks and represents
the significant knowledge flow from past to the most recent
studies. They also found that these methods often miss the
most significant citation edges, called key-routes, they pro-
posed the fourth alternative called key-route main path
which searches forward and backward simultaneously from
key-routes. To increase the comprehensiveness of the
extracted main paths, Liu and Lu (2012) heuristically
selected the top-K startpoints or key-routes and merged the
main paths extracted from them. Recently, Chen et al.
(2022) proposed a more efficient dynamic programming
algorithm for exhaustive main path extraction.

Citation network standardization
N/A N/A

Connect s (resp. t') to all nodes

) (resp. sinks)
Add a pseudo-source s

and a pseudo-sink ¢ Connect s” and ¢" to all nodes

Connect s’ (resp. t') to all origins
(resp. sinks)

2.2 | Semantic approaches in main path
analysis

Liu et al. (2014) pioneered to use (expert-assigned)
citation relevancy to adjust traversal count-based citation
weighting. Of course, it be replaced by any semantic
relatedness measure. For instance, Huang et al. (2022)
claimed that using the weighted sum of the textual and
structural similarities between cited and citing publica-
tions lead to better convergence, that is, different slices of
main path correspond well to different phases of domain
development. Topic modeling is another popular seman-
tic approach. Kim et al. (2022) used Latent Dirichlet Allo-
cation (LDA) to analyze topic diffusion along main paths.
Kim et al. (2018) used the Citation Influence Model, an
extended LDA model which also models the generation
process of each citing publication’s citation mixture
(Dietz et al., 2007), to measure citation weights by topic
similarity. Chen et al. (2022) calculated the Cosine simi-
larity between citing and cited articles' topic distribution
obtained by Latent Semantic Indexing (Deerwester
et al., 1990). Notably, the citation relevancy of (u, v) is the
sum of the pair-wise similarities between v and all other
nodes ' on the current path toward v. While this treat-
ment theoretically ensured the topical coherence of main
path, it looks more straightforward to extract main paths
from topic subnetworks and merge them. Community
detection could be seen as an alternative way of finding
topic subnetworks (Kim & Shin, 2018; Yu & Pan, 2021).
To the best of our knowledge, citation function classifica-
tion (Kunnath et al., 2022; Lyu et al., 2021) has never
been applied to main path analysis before.

3 | CITATION FUNCTION
CLASSIFICATION

3.1 | Dataset and annotation schemes
We created a large citation function dataset by merging
and reannotating six existing datasets in the computa-

tional linguistics domain: Teufel2010 (Teufel, 2010; Teufel
et al., 2006a), Dong2011 (Dong & Schifer, 2011), Jha2016
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(Abu-Jbara et al.,, 2013; Jha et al., 2017), Alvarez2017
(Hernandez-Alvarez et al., 2017), Jurgens2018 (Jurgens
et al., 2018), and Su2019 (Su et al.,, 2019). The source
papers were crawled from ACL anthology.” Different
annotation guidelines were adopted so all citation contexts
were-reannotated according to Teufel et al's 12-class
annotation scheme (Teufel et al., 2006b) plus a “Future”
class about future work. Reannotation is detailed in
Supplementary Section B.1.> Some minority classes were
still small, so we merged “PModi” with “PBas” into
“Basis,” and reannotated “CoCo-" into “CoCoGM” or
“CoCoRes.” This resulted in our own 11-class annotation
scheme, which was also mapped to 7-class and 6-class
schemes by category merging. Table 2 shows the statistics
of our dataset Jiang2022.

3.2 | Citation function classification

models

For the purpose of recognizing citation functions more
correctly, a series of deep learning models were devel-
oped. SciBERT (Beltagy et al., 2019) was used to encode
citation context, currently fixed to 2 and 3 sentences to
each side of the citation sentence (citance). Three types of
features were generated from the SciBERT-encoded con-
text: (a) the citation representation h, from the citation
segment (represented by a pseudo-word “CITSEG”),
(b) the citance representation® s, pooled by citance
encoder from the citation sentence, and (c) the context
representation c, pooled by context encoder from the
whole context. The final feature vector f was the concate-
nation of the three: f = [h; s; c]. Citation representation
is mandatory because different citations in the same
citance should have different feature representations, but
citance and context representations were optional.

We tested two types of citation contexts. In a sequen-
tial context, no “[SEP]” (sequence separator) was inserted
to separate context sentences. In this case, citance and
context representations were directly pooled from citance
tokens and context tokens respectively. Two options of
citance encoder were tested: max-pooling and self-
attention (Munkhdalai et al., 2016). In a hierarchical con-
text, “[SEP]” symbols were inserted after each context
sentence. Sentence representations were pooled using
sentence pooler, for which “[SEP]” was used as the third
option in addition to max-pooling and self-attention, and
context representation was pooled indirectly from the
representations of all context sentences. There were in
total 34 model variants.” Due to the large GPU time
required for training, we cherry-picked a subset of 11 rela-
tively promising variants, shown in Table 3, based on ini-
tial experiments of all model variants with the 11-class

| JASIST BUIRE

scheme. Section 4.1 will discuss how to pick the appropri-
ate models to perform semantic MPA based on per-class
performance analysis of different models.

4 | SEMANTIC MAIN PATH
NETWORK ANALYSIS

4.1 | Model selection: Precision or recall
Per-class performance analysis showed that no single best
model could beat others on all citation functions or on
all annotation schemes (Tables S1-S3). Therefore, we
needed to choose the most appropriate model as a binary
classifier for each specific citation function. The most per-
tinent citation function for MPA should be extension
(“Basis”/“Extends”) of cited work, and motivation (‘“Moti-
vation”) by previous studies. Figures 2 and 3 show the per-
formances of these two classes' top models. The darker the
color, the higher the performance. Although the best
extension model was model 4 (seed = 5,171, “seed ="
omitted hereafter) with the 6-class scheme, its recall was
less competitive. Considering the small size of the exten-
sion class, for example, only 4.33% in our dataset, we
decided to slightly weigh recall over precision (recall-ori-
ented) and F1. The final choice had a good F1 and the
highest recall, that is, model 11 (47,353, in solid red rect-
angle) trained with the 6-class scheme. Taking a similar
recall-oriented approach, we chose model 7 (32,491)
trained with the 6-class scheme as the “best” motivation
model.

We hoped that semantic citation networks could cap-
ture as many important citations as possible such as
usage according to Valenzuela et al. (2015) and similarity
according to Lu et al. (2014). For usage citations, we also
took a recall-oriented approach. According to Figure 4,
we opted for model 7 (13,249) trained with the 11-class
scheme which achieved the highest F1, because the recall
of the chosen model was already high enough and its pre-
cision was much higher than other candidates. To further
enrich the semantic citation network, we decided to add
similarity citations because Teufel's annotation guidelines
say similarity is between problems and solutions rather
than results (Teufel, 2010). According to Figure 5, the
selected model was model 11 (25,603) trained with the
11-class scheme.

The other way is to delete unimportant citations, for
example, neutral citations (“Neutral”/“Background”) or
future work citations (“Future”) in our case. Due to the
dominant size of neutral citations and high performance
on this class (Figure 6), we decided to trade recall for pre-
cision (precision-oriented) for neutral (‘“Neutral”/“Back-
ground”), so model 2 (5,171) with the 7-class scheme was
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TABLE 2

Original reannotations (1241 class)

Statistics of the reannotated dataset Jiang2022 and citation function scheme mapping.

Our 11-class scheme®

Mapped to 7-class scheme®

Mapped to 6-class scheme

0SS

"LSISvr ERTN

Size . ) ) .
Ratio Size Size Size
Label citstr citseg® citseg Label citseg Ratio Label citseg Ratio Label citseg Ratio
Future 97 85 2.21% Future 85 2.21% Future 85 2.21% Future 85 2.21%
CoCoXY 200 152 3.94% CoCoXY 152 3.94%
Background 1,773 46.00% Background 1,615 41.90%

Neut 1,924 1,463 37.96% Neutral 1,463 37.96%
Weak 223 158 4.10% Weakness 158 4.10%
CoCoGM 390 299 7.76%

CoCoGM 328 8.51%
CoCo-4 108 80 2.08% ComOrCon 479 12.43%

CoCoRes 151 3.92% ComOrCon 944 24.49%
CoCoRO 107 100 2.59%
PSup 123 100 2.59% Support 100 2.59%

Similar 307 7.97%

PSim 247 207 5.37% Similar 207 5.37%
PMot 365 288 7.47% Motivation 288 7.47% Motivation 288 7.47% Motivation 288 7.47%
PUse 794 755 19.59% Usage 755 19.59% Uses 755 19.59% Uses 755 19.59%
PModi 72 65 1.69%

Basis 167 4.33% Extends 167 4.33% Extends 167 4.33%
PBas 134 102 2.65%
Total 4,784 3,854 3,854 3,854 3,854

4CoCoXY is the Contrast/Comparison between two cited publications; CoCoGM/Res is the Comparison/Contrast between cited and citing publications Goals or Methods/Results; Basis is the Cited publication is

ideationally based on; Support is the Cited and citing publications support each other’s claims or can be computationally plugged into each other.
®ComOrCon is the Comparison/Contrast between citing and cited publications.
CA citseg (citation segment) is a number of consecutive citstrs (citation string) cited in the same place. Citation function classification is done for each citseg.

4“CoCo-" samples were re-annotated into either CoCoGM or CoCoRes based on what is compared.
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TABLE 3 Selected citation function classification models.

| JASIST BUIREE

ID citation_encoder (h) context_type sentence_pooler citance encoder (s) context_encoder (c)
1 O (used) Sequential N/A max_pool max_pool
2-3 (¢} Sequential N/A X (not used) max_pool (2); self_attend (3)
4-6 0] Sequential N/A max_pool (4); self_attend X
(5); X (6)
7-8 (0} Hierarchical max_pool X max_pool (7); self_attend (8)
9-11 (0] Hierarchical N/A max_pool (9); self_attend X
(10); X (11)
Extends Jiang2021 (11-class) Jiang2021 (7-class) Jurgens2018 (6-class)

ID metric 5171 13249 25603 32491 47353 5171 13249 25603 32491 47353 5171 13249 25603 32491 47353

fl score | 62.30 60.32 59.38 60.61

4 precision | 70.37 65.52 63.33 62.50 74.07 [ 65.52 76.00 63. 64' 70. 97' 64.71 | 80.77i 56.76 52.94 62.50 68.97
recall 55.88 55.88 55.88 58.82 58. 82 55.88 55 88 41.18 ' 64.71 | ' 64.71 ! 61.76 | 61.76 52.94 58.82 58 82

64.71 | 59.15 52.94

fl score | 58.62 42.42 | 5846 61.82 54.55| 61.11

FIGURE 2 Performances of selected models for extension citations.

8 precision [ 70.82 43.75 61.29 | 80.95 71 43 57. 89|75001 75.00 75. 50 63.33 | 50.00 61.29 62.96 75.00 60.00
recall 50.00 41.18 55.88 50.00 44.12 64.71 1 61 7615294 61.76 55.88 [ 58.82 55.88 50.00 44.12 52.94

11 precision | 53.85 61.29 70.83 55.88 63.33|72.00 64.71 61.09 57.58 57.89| 65.52 50.00 | 72.00 53.85 | 67.65
recall 61.76 55.88 50.00 55.88 55.88( 52.94 64.71 55.88 55.88 64.71 | 55.88 41.18 52.94 61.76 | 67.65
fl score | 57.53 5846 58.62 55.88 59.38 [ 61.02 64.71 5846 56.72 61.11) 60.32 45.16 | 61.02 57.53

62.07 [ 67.74| 59.38 | 54.05 58.46 55.74 55.56 56.25

Motivation Jiang2022 (11-class)

Jiang2022 (7-class)

Jurgens2018 (6-class)

ID metric 5171 13249 25603 32491 47353 5171 13249 25603 32491 47353 5171 13249 25603 32491 47353

6 precision | 57.14 60.27 63.79 56.72 60.66 | 59.32 | 67.21 | 62.90 | 71.15 | 56.06 | 62.96 58.33 60.94 55.07 53.52
recall 68.97 7586 63.79 65.52 63.79 | 60.34 | 70.69 | 67.24 63.79 63.79 | 56.82 60.34 67.24 65.52 65.52

fl score | 62.50 | 67.18 63.79 60.80 62.18 | 59.83 | 68.91 | 65.00 67.27 59.68 | 60.71 59.32 63.93 59.84 5891

7 precision | 60.27 60.00 55.56 59.68 58.73 | 64.71 66.67 62.96 62.50 55.74| 56.42 54.22 57.35 | 68.25 | 60.78
recall 7586 62.07 60.34 63.79 63.79 | 56.90 65.52 58.62 68.97 59.62 | 67.24 77.59 67.24 | 74.14 | 53.45
fl score | 67.18 61.02 57.85 61.67 61.16 | 60.55 66.09 60.71 ' 65.57 57.14]| 61.42 63.83 61.90 56.88

fl score | 65.00 61.02 | 67.80

11 precision | 62.90 60.00 66.67 | 68.85 | 54.41 | 66.67 67.27 58.57 57.14 5890 | 5441 66.13 69.84 61.29 ! 74.55
recall 6724 62.07 68.971 72411 63.79 [ 68.97 63.79 70.69 68.97 |74.14| 63.79 70.69 75.86 65.52 1 70.69
5¢ 67.80 65.49 64.06 62.50 65.65 | 58.73 | 68.33 63.33

FIGURE 3 Performances of selected models for motivation citations.

selected. Because both precision and recall were high for
future work citations (Figure 7), it was OK to adhere to
the precision-oriented approach and select model
8 (32,941) with the 11-class scheme because it achieved
high enough precision and the best F1.

4.2 | Semantic main path network
extraction
421 | Citation network building

Starting from an empty citation network, a citation edge
was added between a pair of publications if there existed

at least one in-text citation about extension or motivation
(add_Ext_Mot) using the “best” extension or motivation
models selected in the recall-oriented approach in
Section 3.1. Taking the same recall-oriented approach,
more citation edges were added if there existed at least
one usage citation (plus_add_Use), and the semantic cita-
tion network was further expanded with similarity cita-
tions (plus_add_Sim). On the other hand, we also built
the fourth semantic citation network by deleting unim-
portant in-text citations from the original citation net-
work. For each pair of publications, if all in-text citations
between them were neutral or future work citations, the
citation edge was removed from the citation network
(del_Bkg_Fut).
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| JASIST BUIRE

Future Jiang2022 (11-class)

Jiang2022 (7-class)

Jurgens2018 (6-class)

ID metric 5171 13249 25603 32491 47353 5171 13249 25603 32491 47353 5171 13249 25603 32491 47353

2 precision | 87.50 84.62 66.67 76.47 72.22|75.00 70.59 (9231 72.22 76.47| 75.00 [100.00 87.50 81.25 76.47
recall 82.35 64.71 [ 94.12° 76.47 76.47 ( 70.59 70.59 70.59 7647 76.47|70.59 64.71 82.35 76.47 76.47
fl score | 84.85 73.33 78.05 76.47 74.29 | 72.73 70.59 80.00 74.29 76.47 | 72.73 78.57 84.85 78.79 76.47

f1 score | 82.35

5 precision | 82.35 88.24 68.42 73.68 81.25( 86.67 83.33 7222  92.86 86.67 |92.31 7222 81.25 85.71 |100.00
recall 82.35 8824 7647 8235 7647|7647 5882 7647 7647 7647 |70.59 7647 76.47 70.59 | 8235 |
8824 | 72.22 77.78 78.79 | 81.25 68.97 74.29 83.87 81.25] 80.00 7429 78.79 77.42

{ |

7 precision | 76.47 65.00 | 92.86 72.22 85.71 | 76.47 80.00 68.75 77.78 73.33 | 6842 68.42 68.42 86.67 1100.00,
recall 76.47 7647 7647 76.47 70.59 | 76.47 70.59 64.71 8235 64.71|76.47 76.47 76.47 76.47 i
fl score | 76.47 70.27 | 83.87  74.29 77.42| 76.47 75.00 66.67 80.00 68.75|72.22 7222 72.22 81251

8 precision | 92.86 81.25 80.00 | 93.75 | 92.86 | 80.00 66.67 76.47 66.67 82.35| 86.67 81.25 76.47 65.00 ‘ .5
recall 76.47 76.47 70.59 | 88.24 | 76.47 | 70.59 82.35 76.47 82.35 8235|7647 7647 7647 7647 7647
fl score | 83.87 78.79 75.00 83.87 | 75.00 73.68 76.47 73.68 82.35| 81.25 7879 76.47 70.27 78.79

FIGURE 7

4.2.2 | Main path network extraction

The semantic citation networks we analyzed have
many small strongly connected components (SCC), so
we applied the Simple Search Path Count approach
(Jiang et al., 2020), an extension of SPC to deal with
cyclic citation networks, for MPN extraction. Their
JMPA package® (Java package for MPA) was used for
implementation. Following Jiang et al. (2020), we seg-
mented the network under analysis to several time
slices, extracted top-K (K = 10) key-route main paths
(Liu et al.,, 2014) from each slice, and merged them
into an MPN. More details are given in Supplementary
Section B.2.

5 | QUALITATIVE ANALYSIS

For experimental analysis, citation data came from the
2015 version of ACL anthology network (AAN; Radev
et al, 2013) about computational linguistics/natural
language. Three areas were selected: natural language
parsing’ (AANPar), automatic document summariza-
tion (AANSum), and machine translation (AANMT).
Due to space limit, this section showcases on AANPar
and AANSum to demonstrate the superiority of seman-
tic MPA. Table S4 summarizes the statistics of the
(semantic) citation networks and their time slices. The
experimental setup is detailed in Supplementary -
Section B. Key-route MPA was used for main path
extraction. It was valid to follow the common practice
in MPA to extract semantic MPNs from the largest
connected component (CC). This is because all other
CCs are all small islands smaller than 2 in the citation
network: 91, 191, and 207 in AANSum, AANPar, and
AANMT respectively.

Performances of best models for future work citations.

51 | Case Study 1: Natural language
parsing
51.1 | Main path network

For comparison purpose, Figure 8 presents the MPN
extracted from the original citation network AANPar.
Topic branches are numbered. Seminal papers (verified
according to the authors' knowledge about the domain)
are in red rectangles, while survey-style papers are in
ovals, such as special issue or shared task introduction
papers. Table 4 shows a subset of representative main
path papers on each topic branch and Table S5 presents
the complete list. Topic keywords and short excerpts for
certain papers are to assist understanding. Branch
1 describes the early studies about various grammatical
formalisms,® such as categorical grammar, unification
grammar, categorical unification grammar, and Lambek
calculus. However, since late 1980s, the domain started to
have a sense of probabilistic thinking (Branch 2). Branch
3 shows the important development where Penn Tree-
Bank (J93-2004 and H94-1020) appeared as the most
important linguistic resource that most future papers
used for developing and evaluating parsing techniques.
Branch 4 represents the mainstream of statistical pars-
ing in the 1990s and 2000s, such as maximum entropy
modeling (W96-0213, A00-2018) or in another name log-
linear model (P04-1014), conditional random fields
(N03-1028), and max-margin parsing (W04-3201, P05-1012).
Note that, C00-1011 and P00-1009 were two papers on
data-oriented parsing (DOP) promoted by Rens Bod, which
however ceased in the wave of statistical parsing dominated
by other proposals presented above. Early studies about
dependency analysis blossomed into the huge Branch 5 and
became the dominant trend since around 2005, further
expediated by two important shared tasks W06-2920 and
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LA JASIST

(3] E8\5—1024: A Probabilistic Parser = Mainstream of statistical parsing

@ Dependency parsing from W04-0307

P89-1010  \E85-1024 H94:1052  C02:1126 W05:1516 H05:1100  \ P02:1039 P051012  N062033  C10-1045 W14:1614
\ \ / >
J90-3003 | Usé N04:1013 \ MIT Branch _ Mot W144613/ _ -~
J94:2001 W00:1201 J054{003 A b fhedd nioooe | -/ Wisa202
d J04:4004 / Stochastic P01:1067 i ?
A88-3019 l W96-0213 4 tal i W02:1031 H05-1066 Cros§ Ilngual, transfer
P93-1024 Use Use e Use s P034011 D07£1012 7 D12-1001
'\ 4932004 _ _ 5onioss Wo4s3223_ < Self-fraining
A —= 3 WO051515 _ — -~ \P001009 091087
J93:1007 * < Pgio%l;g/_ S 1958004 7° P014010 q‘ 7 @ |\ Suos2
J93-1005 P ¢ 1 W04-0307 Semi-supervised
ﬂsz- 18] wer0302 /9—0 P90:4031 ko o woe2032 | ““"boglioes
H91-4046 P91:1030 W99:0621 . 1 P03:1055 y
Saigbi Shatlow parsing! DQPby Rens Bod P0451040 D07+1096
881012 / __ESEA010 1A9751081 " \Viot (2) WO05:0624
J90-1003 W95:0107 . €031005
J93:1002 J93:2005 A ‘
\
J87-1004 P90-1034 H93:4047 H89:2014_ ~ “W950101 AO00%033 WO03:1005 W04:0814 W05:0620)D07-1101

o Corpus-based statistical parsing: probabilistic, stochastic, distributional, Mi

@ semantic Role Labelling

Statistical parsing techniques evolved from multiple intelligent sources

[ 1985-1995 [@ 1985-2000 [ 1985-2005 [] 1985-2010 [ 1985-2015

FIGURE 8 Main path network extracted from AANPar.

D07-1096, which then diverted into Branch 6 about depen-
dency parsing of morphologically rich languages and Branch
7 about cross-lingual dependency parsing. An issue was that
many main path papers were connected by incidental cita-
tions. For instance, the citation from AO00-2018 said that
C00-1011 “stays behind the scores of” the former, a weak
citation about performance comparison. For another
instance, H91-1037 received only 10 citations in our dataset.
SPC (H91-1037, J93-2004) was high only because of high-
impact citing citing paper J93-2004 (1,006 citations),
although the citation was incidental.

5.1.2 | Semantic main path network: Add
extension and motivation citations

The above observations motived us to exploit the seman-
tic relationships between papers in MPA. Figures 9-12
show the semantic MPNs extracted from the four seman-
tic citation networks induced from AANPar, namely
AANPar_add_Ext_Mot, AANPar_plus_add_Use, AAN-
Par_plus_add_Sim, and AANPar_del_Bkg_Fut. Interest-
ing chemical reactions occurred when MPA met citation
function classification. Each semantic MPN revealed
some novel branches or new papers. They collectively
drew a more comprehensive picture of domain develop-
ment. Supplementary Section D presents selected citation
context excerpts to help readers understand the citation
functions marked on certain edges.

On AANPar_add_Ext Mot (Figure 9 and Tables 5
and S6 for a complete list of main path papers), the early
development of parsing technology was tested. Branch
2 is a new branch about old parsers such as shift-reduce

parsing, left-corner parsing, tabular parsing, and left-to-
right (LR) parsing and so on. Similarly, we saw another
(isolated) early development of probabilistic approaches
(Branch 3; details in Table S6). In addition to A00-2018
as the source of the statistical parsing mainstream, a third
source started from E85-1024 (“A probabilistic parser”) to
J94-2001 (“Tagging English Text with a Probabilistic
Model”) and W96-0213, then through P02-1034 into the
new Branch 4 about multiple parse ranking and re-rank-
ing. Note that Branch 5 started went into a “dead” end
about “Chinese TreeBank” (W00-1201).

From the right part of Figure 9, we saw a branch of
DOP papers published by Rens Bod until P01-1010. Simi-
lar to the evolution pathway in Figure 8, it was gradually
merged into the dominant dependency parsing branch.
D08-1059 (“A Tale of Two Parsers: Investigating and
Combining Graph-based and Transition-based Depen-
dency Parsing”) was motivated (denoted by “Mot” on the
edge) by two papers P07-1050 (“K-best Spanning Tree
Parsing”) and D07-1013 (“Characterizing the Errors of
Data-Driven Dependency Parsing Models™).

Note that, there was a potentially problematic Branch
8 about machine translation (MT) using dependency
parsing. Concerning (P05-1012, H05-1066), the citation
context excerpt below reveals that although “improving
upon” may indicate an extension, the whole context may
be recognized as “Similar” or “CoCoGM.” This shows
that multilabel classification might be a promising future
direction to explore (Lauscher et al., 2022).

“We mentioned above that our approach
appears to be similar to that of reranking for
statistical parsing (Collins, 2000; Charniak
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TABLE 4 Representative main path papers extracted from AANPar.

| JASIST BUIRE

ACLID Title
Branch 1
C86-1045  Categorial Unification Grammars
P87-1012 A Lazy Way To Chart-Parse With Categorial Grammars
C90-2030  Normal Form Theorem Proving For The Lambek Calculus
Branch 2
H92-1026  Towards History-Based Grammars: Using Richer Models For Probabilistic Parsing
E93-1040  Parsing The Wall Street Journal With The Inside-Outside Algorithm
Excerpt: We report grammar inference experiments on partially parsed sentences taken from the Wall Street Journal
corpus using the inside-outside algorithm for stochastic context-free grammars.
Branch 3
J93-2004 Building A Large Annotated Corpus Of English: The Penn Treebank
H94-1020  The Penn Treebank: Annotating Predicate Argument Structure
Branch 4
A00-2018 A Maximum-Entropy-Inspired Parser
C00-1011  Parsing With The Shortest Derivation (about DOP by Rens Bod)
P00-1009  An Improved Parser For Data-Oriented Lexical-Functional Analysis (about DOP by Rens Bod)
N03-1028  Shallow Parsing With Conditional Random Fields
P04-1014  Parsing The WSJ Using CCG And Log-Linear Models
‘W04-3201 Max-Margin Parsing
Branch 5
W06-2920  CoNLL-X Shared Task On Multilingual Dependency Parsing
DO07-1096  The CoNLL 2007 Shared Task on Dependency Parsing
D07-1014  Probabilistic Models of Nonprojective Dependency Trees
Branch 6
W10-1401  Statistical Parsing of Morphologically Rich Languages (SPMRL) What How and Whither
W10-1410 Lemmatization and Lexicalized Statistical Parsing of Morphologically-Rich Languages: the Case of French
Branch 7
N12-1052  Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure
N13-1126 ~ Target Language Adaptation of Discriminative Transfer Parsers

and Johnson, 2005). While it is true that we
are improving upon the output of the auto-
matic parser, we are not considering multiple
alternate parses.”

Vague cases exist, such as (W00-1201, C02-1126), a
self-citation by D. M. Bikel and D. Chiang. From the cita-
tion context excerpt below, expressions like “starting
from” and “we have modified” might have been selected
as strong signals for extension class (“Ext”).

“The third experiment was on the Chinese
Treebank, starting with the same head rules
used in (Bikel and Chiang, 2000). These rules
were originally ..., and although we have
modified them for parsing, ...”

5.1.3 | Semantic main path network: Further
add usage and similarity citations

By further adding usage citations, that is, on AANPar_plu-
s_add_Use, we saw drastically richer diversity in the develop-
ment branches (Figure 10, Tables 6 and S7). Again, statistical
parsing techniques evolved from multiple intelligent sources
(Branches 1-3). A clear notion of “corpus-based” parsing
emerged (Branch 1). Branch 2 was motivated by H93-1047
(“Automatic Grammar Induction And Parsing Free Text: A
Transformation-Based Approach,” a duplicate of P93-1035)
and developed into “shallow parsing” of words into “fext
chunks.”® This time, the seminal paper J93-2004 about the
Penn Treebank project emerged in Branch 3 and developed
through W96-0213 to J04-4004. Most subsequent papers used
Peen Treebank for development and evaluation. We also saw
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FIGURE 9 Main path network extracted from AANPar_Ext_Mot.
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FIGURE 10 Main path network extracted from AANPar_plus_add_Use.

a similar evolution into the start of the wrong MT branch The DOP branch lead by Rens Bod “developed”
P01-1067, a paper on syntax-based statistical translation. The through C00-1011 into Branch 4 and found the important
citation context excerpt below shows that P01-1067 used shared task W05-0620 on semantic role labeling (SRL) of

J95-4004. predicate arguments, and “vanished.” This is understand-
“Brill's part-of-speech (POS) tagger (Brill, able because SRL became a rather standalone area since
1995) and Collins' parser (Collins, 1999) were then'” and began to cite less and be less cited by parsing
used to obtain parse trees for the English side papers. In addition, the branch about cross-lingual depen-

of the corpus.” dency parsing embraced a more diverse set of papers.
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WO08-2121: The CoNLL 2008 Shared Task on Joint Parsing of Syntactic and Semantic Dependencies exists, which is well embraced
W09-1201: The CoNLL-2009 Shared Task: Syntactic and Semantic Dependencies in Multiple Languages by multilingual dependency

W09-1208: Multilingual Dependency Learning: A Huge Feature Engineering Method to Semantic Dependency Parsing parsing (W09-1208)
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FIGURE 11 Main Path Network Extracted from AANPar_plus_add_Sim.
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FIGURE 12 Main path network extracted from AANPar_del Bkg Fut.

By further adding similarity citations, that is, on = and W97-0301 based on usage citations respectively into
AANPar_plus_add_Sim, the semantic MPN bore high Branch 1 about rhetorical parsing and Branch 2 about
similarity (Figure 11, Tables 7 and S8). However, we  probabilistic parsing with CCG (Combinatory Categorial
observed that quite a few interesting new branches  Grammar). Through similarity citations, we found some
emerged. Starting from the seminal Penn Treebank paper new main path papers, such as J96-1002 (“A Maximum
J93-2004, two new branches developed from P97-1062 Entropy Approach to Natural Language Processing”)
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TABLE 5

JIANG and LIU

Representative main path papers extracted from

AANPar_add_Ext_Mot.

ACLID Title
Branch 2
P91-1014  Polynomial Time And Space Shift-Reduce
Parsing Of Arbitrary Context-Free Grammars
E93-1036  Generalized Left-Corner Parsing
P94-1017  An Optimal Tabular Parsing Algorithm
Branch 4
W97-0302  Global Thresholding and Multiple-Pass Parsing
P02-1034  New Ranking Algorithms For Parsing And
Tagging: Kernels Over Discrete Structures
And The Voted Perceptron
P05-1022  Coarse-To-Fine N-Best Parsing And MaxEnt
Discriminative Reranking
Branch 5
C92-2065  Probabilistic Tree-Adjoining Grammar As A
Framework For Statistical Natural Language
Processing
C92-2066  Stochastic Lexicalized Tree-Adjoining Grammars
W00-1201  Two Statistical Parsing Models Applied To The
Chinese Treebank
Branch 6 (a dead branch)
C92-3126 A Computational Model Of Language
Performance: Data Oriented Parsing
P97-1021 A DOP Model For Semantic Interpretation
Branch 8 (A “wrong” branch)
P01-1067 A Syntax-Based Statistical Translation Model
P03-1011  Loosely Tree-Based Alignment For Machine
Translation
P05-1067  Machine Translation Using Probabilistic

Synchronous Dependency Insertion
Grammars

which was heavily cited (387 times). The following cita-
tion context excerpt proved that similarity citation is
indeed relevant to knowledge flow of scientific ideas.

“The maximum entropy models used here
are similar in form to those in (Ratnaparkhi,
1996; Berger, Della Pietra, and Della Pietra,
1996; Lau, Rosenfeld, and Roukos, 1993).”

The domain then evolved to the dominant depen-
dency parsing branch (Branch 3), where we were
excited to see two new shared tasks about joint syn-
tactic and semantic dependency parsing (W08-2121,
W09-1201), and then to Branch 4 of subsequent

TABLE 6 Representative Main Path Papers Extracted from
AANPar_plus_add_Use.
ACLID Title
Branch 1
J93-1002  Generalized Probabilistic LR Parsing Of Natural
Language (Corpora) With Unification-Based
Grammars
J93-1001 Introduction To The Special Issue On
Computational Linguistics Using Large Corpora
P90-1031 Parsing The LOB Corpus
Branch 2
W95-0107 Text Chunking using Transformation-Based
Learning
W00-0721 Shallow Parsing by Inferencing with Classifiers
Branch 3
J93-2004  Building A Large Annotated Corpus Of English:
The Penn Treebank
WO00-1201 Two Statistical Parsing Models Applied To The
Chinese Treebank
P01-1067 A Syntax-Based Statistical Translation Model
Branch 4
W05-0620 Introduction To The CoONLL-2005 Shared Task:
Semantic Role Labeling
Branch 6 (Extended branch about cross-lingual dependency
parsing)
P08-1068 Simple Semi-supervised Dependency Parsing
D09-1087 Self-Training PCFG Grammars with Latent
Annotations Across Languages
W14-1613 Distributed Word Representation Learning for
Cross-Lingual Dependency Parsing
studies on semantic dependency parsing (W09-1208,
D09-1004).
51.4 | Semantic main path network: Delete

neutral and future work citations

Finally, on AANPar_del Bkg Fut (Figure 12, Tables 8
and S9), we observed some interesting branches or
papers. Since P08-1068, the domain diverted into a new
branch about optimization techniques used in parsing
algorithms, such as dynamic programming, integer linear
programming and dual decomposition (Branch 2). Branch
3 was a similar cross-lingual dependency parsing branch,
but it evolved into Branch 4 about parsing morphologi-
cally rich languages through a new shared task
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TABLE 7 Representative main path papers extracted from
AANPar_plus_add_Sim.

ACLID Title
Branch 1
P99-1047 A Decision-Based Approach To Rhetorical
Parsing
J00-3005 The Rhetorical Parsing Of Unrestricted Texts: A
Surface-Based Approach
Branch 2
P02-1042  Generative Models For Statistical Parsing With
Combinatory Categorial Grammar
P04-1014  Parsing The WSJ Using CCG And Log-Linear
Models
C04-1180  Wide-Coverage Semantic Representations From
A CCG Parser
Branch 3 (extended branch of dependency parsing)
W08-2121  The CoNLL 2008 Shared Task on Joint Parsing
of Syntactic and Semantic Dependencies
W09-1201  The CoNLL-2009 Shared Task: Syntactic and
Semantic Dependencies in Multiple Languages
Branch 4 (extended to semantic dependency parsing)
W09-1208  Multilingual Dependency Learning: A Huge
Feature Engineering Method to Semantic
Dependency Parsing
D09-1004  Semantic Dependency Parsing of NomBank and

PropBank: An Efficient Integrated Approach
via a Large-scale Feature Selection

(W13-4917), thus provided a complementary view to
Branch 6 in Figure 8. We postulate the result is meaning-
ful since dependency parsing was directed by important
shared tasks. Note that, deleting neutral and future work
citations might result in weaker semantic coherence than
by adding more significant citations like extension and
similarity (quantified in Section 6.3). For example,
NO07-1069 only made a result comparison with W06-2928,
therefore it is less confident to say scientific ideas flew
through this path.

“Here we can compare directly with the best
systems for this dataset in CoNLL-X.
The best system (Corston-Oliver & Aue,

In summary, we conjecture that multiple semantic
MPNs extracted from different types of semantic citation
networks reveal complimentary views and novel knowledge
flows, thus should be merged into a more comprehensive
representation of scientific domain's topic evolution.

| JASIST BUIRE

TABLE 8 Representative main path papers Extracted from
AANPar_del_Bkg Fut.

ACLID Title
Branch 2
W08-2102  TAG, Dynamic Programming, and the

Perceptron for Efficient, Feature-Rich Parsing

P09-1039 Concise Integer Linear Programming
Formulations for Dependency Parsing
D10-1001  On Dual Decomposition and Linear
Programming Relaxations for Natural
Language Processing
Branch 3
W06-2928 Dependency Parsing With Reference To Slovene
Spanish And Swedish
D07-1119  Multilingual Dependency Parsing and Domain
Adaptation using DeSR
P13-2017  Universal Dependency Annotation for
Multilingual Parsing
Branch 4
W13-4917  Overview of the SPMRL 2013 Shared Task:
A Cross-Framework Evaluation of Parsing
Morphologically Rich Languages
W13-4905, W13-4906 and W13-4910 are all
SPMRL 2013 Shared Task papers
5.2 | Case Study 2: Automatic document

summarization

Due to space limit, an informative summary is presented
here (Figure 13-17). See Tables S10-S14 in
Supplementary Section E for the details of main path
papers and Supplementary Section F for citation context
excerpts. The MPN extracted from AANSum (Figure 13)
covered a few early summarization studies centering
around the usage of semantic coherence devices (Branch
1), such as discourse structure, rhetorical relations, and
lexical chains (W97-0703: Using Lexical Chains For Text
Summarization), and so on. Then the main body of litera-
ture focused on multidocument summarization (Branch
2) pioneered by the seminal journal article J98-3005
(“Generating Natural Language Summaries From Multi-
ple On-Line Sources”). The subsequent studies in this
topic eventually gave birth to an important Special Issue
on Summarization (J02-4001). Since the advent of PageR-
ank in 1998, the graph-based ranking idea was introduced
to the summarization domain for sentence ranking for
extractive summarization (Branch 3). Seminal works
included P04-3020 (“Graph-Based Ranking Algorithms
For Sentence Extraction Applied To Text Summariza-
tion”), W04-3252 (“TextRank: Bringing Order Into Texts”),
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the subsequent demonstration paper of TextRank
(P05-3013), and its extension to multidocument summari-
zation (I05-2004). More recently, a large body of the litera-
ture were about some interleaved topics: optimization
techniques such as submodular optimization (E12-1023),
integer linear programming (D12-1022), and dual decompo-
sition (P13-1020); compressive summarization (P10-1058,
P11-1049, D13-1047); and compressive summarization
based on dependency tree (P14-2052, D14-196). Notably,
comparison (sometimes weakness) function was the domi-
nating citation function in Branch 4 in Figure 13. In addi-
tion, the only papers about summarization evaluation

were N03-1020 about ROUGE (“Automatic Evaluation Of
Summaries Using N-Gram Co-Occurrence Statistics”).
These two drawbacks motivated us to explore novel
branches of summarization using semantic MPNss.

By adding extension and motivation citations
(Figure 14), we could see a larger early branch about the
usage of rhetorical structure and found a seminal applica-
tion in scientific summarization (J02-4002), which was
extended by subsequent studies in other areas, like
W03-0505 (“Summarising Legal Texts: Sentential Tense
And Argumentative Roles”), evidenced by the citation
context excerpt below.
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FIGURE 15 Main path
network extracted from
AANSum_plus_add_Use.

FIGURE 16 Main path
network extracted from
AANSum_plus_add_Sim.
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“Our methodology builds and extends the In addition to the common topics like multidocu-
Teufel and Moens (Teufel and Moens, 2002) ment summarization (Branch 2) and graph-based rank-
approach to automatic summarization.” ing algorithms (Branch 5), we were also excited to see
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FIGURE 17 Main path network extracted from AANSum_del_Bkg Fut.

Branch 3 about automatic evaluation and related stud-
ies. Heavily cited ones included NO03-1020 and
W04-1013 about the ROUGE package. We also saw
more studies about sentence reduction, compression and
fusion for summarization. Both Branch 4-1 and 4-2
were pioneered by K. R. McKewon in A00-1043 (“Sen-
tence Reduction For Automatic Text Summarization”),
A00-2024 (“Cut and Paste Based Text Summarization”),
and J05-3002 (“Sentence Fusion For Multidocument
News Summarization”).

By further adding usage citations (Figure 15),
although we lost the graph-based ranking branch (despite
that we got a new paper W04-3247 about LexPageRank),
we could uncover more novel topics and branches.
Branch 2 about automatic evaluation included more
important papers such as N04-1019 about the Pyramid
method (“Evaluating Content Selection In Summariza-
tion: The Pyramid Method”). A significant new branch
was Branch 3 about scientific summarization at right bot-
tom, starting from the seminal paper J02-4002 to citation
function classification (W06-1613, N07-1040) and citation-
based summarization (C08-1087, N09-1066, P10-1057,
and C10-1101). By further adding similarity citations
(Figure 16), we could see one obvious expansion of
Branch 1 about evaluation, starting from factoid analysis
(W04-3254) to summarization evaluation without human
models, including D09-1032 (“Automatically Evaluating
Content Selection in Summarization without Human
Models”) and C10-2022 (“Multilingual Summarization
Evaluation without Human Models”), both written by

famous researchers in this domain (A. Nenkova and
H. Saggion respectively).

Finally, the MPN extracted from AANSum_del_Bkg -
Fut (Figure 17) recovered the vanished or shrunk
branches about multidocument summarization (Branch 1)
and graph-based ranking (Branch 2), and at the same
time introduced some new papers, such as C04-1129 for
Branch 1 (“Syntactic Simplification For Improving Con-
tent Selection In Multi-Document Summarization”),
P08-1048 for Branch 2 (“Summarizing Emails with Con-
versational Cohesion and Subjectivity,” whose abstract
says “Second, we use two graph-based summarization
approaches, .., to extract sentences as summaries.”),
and WO09-1802 (“A Scalable Global Model for
Summarization,” whose abstract says “We present an
Integer Linear Program for ... for automatic summariza-
tion.”) and C10-2105 (“Opinion Summarization with Inte-
ger Linear Programming Formulation for Sentence
Extraction and Ordering”) for Branch 3 about optimiza-
tion methods for summarization.

Again, by gradually adding more citation semantics,
the semantic MPNs together proved to be more expres-
sive than the semantics-agnostic counterpart.

6 | QUANTITATIVE ANALYSIS

Few studies touched quantitative MPA evaluation. Filip-
pin (2021) claimed that it is questionable if a main path is
representative of the real technological trajectory because,
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based on domain experts' opinions, main path may be
“limited to a much narrower neighborhood of the technol-
ogy space than it really is” and may miss many crucial
studies and big players of the analyzed field. Huang et al.
(2022) claimed to have achieved better convergence,
which was only qualitatively justified. The current situa-
tion called us to propose a three-way framework for quan-
titative MPA evaluation. The first drawback pointed out
by Filippin implies that a good main path should have a
good coverage of the scientific topics of an analyzed
domain. It should also include as many critical studies as
possible. We name this aspect the pertinence of main path.
Furthermore, according to Huang et al., nearby main path
nodes should exhibit a certain level of local clustering and
show higher topical coherence. Our framework evaluated
all these three aspects.

6.1 | Topic modeling

Coverage and coherence were both defined based on
topic modeling, here LDA (Blei et al., 2003) trained using
the Gensim package.'’ Each article u in the citation net-
work, denoted as CN, was represented by its topic distri-
bution u = [uy, ..., Us..., ur], where T is topic number, u,
is the probability of article u belonging to topic ¢, and
S u=1. Two issues arose: the right value of T and
the right number of training epochs P (to avoid overfit-
ting LDA training). Supplementary Section G details how
to decide these values. In summary, we trained several
LDA models with a range of values of T for evaluation
and reported the average. For AANPar, T values fell in
{10, 11, ..., 20, 22, 24, 26}. For AANSum, and AANMT,
the maximum value of T was set to 20. The right value of
P was set to 50, 40, and 50 for AANPar, AANSum, and
AANMT respectively.

6.2 | Topical coverage

Let MN denote an extracted MPN. Topical coverage mea-
sures how well MN covers the topics of the analyzed
domain. It is approximated by the closeness between the
topic distribution of MN, denoted as dist;, (MN), and the
topic distribution of CN, denoted as dist,(CN), both of
which are averaged over the enclosed publications. In
evaluation, we used Hellinger distance to measure topical
coverage, defined below:

oV (MN, CN) = Dyeitinger (distipi (MN), distyc (CN)), (1)

where the Hellinger distance between two vectors u and
v is defined as

DHellinger(uaV) = LZ Zi (\/il - \/‘71>2 (2)

The smaller the Hellinger distance is, the better topical
coverage is in our sense. Table 9 shows the results. Each
“A%” column shows the difference of the corresponding
semantic MPN from the vanilla MPN in percentage for-
mat. Thus, a positive percentage means a decrease in
topical coverage and a negative percentage means
increase. The upward and downward arrows signify a
further increase and decrease from the semantic MPN
in the column to the left. On all three datasets, com-
pared to the semantics agnostic counterpart (the
“MPN” column), topical coverage decreased (signified
by upward arrows) by adding extension and motivation
citations (the “add_Ext_Mot” column), but adding
usage relations lead to improved topical coverage (sig-
nified by downward arrows in the “plus_add_Use” col-
umn). This is meaningful because publications linked
with extension and motivation citations are technically
closer. On the contrary, usage can be about a variety of
different things, from algorithm and method to data
and definition, and so on, and thus results in main
paths that are topically more diverse. Two composite
semantic MPNs were extracted: “add_Combined” corre-
sponds to the composite semantic MPN which merged
three semantic MPNs corresponding to “add_Ext_Mot,”
“plus_add_Use” and “plus_add_Sim”; “del_Combined”
corresponds to the composite semantic MPN which fur-
ther merged the semantic MPN corresponding to
“del_Bkg_Fut.” The results proved that different types
of semantic MPNs complemented each other and col-
lectively worked better, that is, covering and approxi-
mating the topic distribution of the underlying domain
much better. Meanwhile, we also confess that better
coverage was partially because composite semantic
MPNs were larger in size (also see Table 11).

6.3 | Topical coherence

A perfect definition of coherence does not exist. We tried
to analyze coherence by adapting the coherence defini-
tion originally proposed to evaluate topic model quality
(Newman et al., 2010, p. 102). Given a main path net-
work MN, we defined topical coherence as the mean of
distances between all pairs of main path nodes:

cohypi(MN) = mean{D(u,v),V(u,v) € MN}, (3)
where D(u, v) is the distance between the topic distribu-

tions of u and v. Again, Hellinger distance defined in
Eq. (2) was used.
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TABLE 9 Topical coverage of main path networks.

"LSISvr ERTN

MEN add_Ext_Mot plus_add_Use plus_add_Sim add_Combined del_Bkg_Fut del_Combined

COVypic COVypic A% COVypic A% COVypic A% COVypic A% COVypic A% COVypic A%
AANSum 0.0611 0.0647 +6.79% 1 0.0591 —-0.87% | 0.0679 +13.92% 1 0.0509 —15.20% | 0.0630 +5.25% 0.0441 —26.53% |
AANPar 0.0582 0.0700 +25.13% 1 0.0496 —8.40% | 0.0420 —24.34% | 0.0387 —29.62% | 0.0694 +21.57% 0.0380 —32.43% |
AANMT 0.0696 0.0794 +24.78% 1 0.0617 —2.34% | 0.0697 +9.34% T 0.0621 —2.08% | 0.0619 —3.93% 0.0497 —20.18% |

TABLE 10 Topical coherence of main path networks.

MPN add_Ext_Mot plus_add_Use plus_add_Sim add_Combined del_Bkg Fut del_Combined
cohgpr  cohg A% cohgp A% cohgpr A% cohgp A% cohy A% cohgp A%
Evaluate on MN AANSum 0.5518 0.5350 -3.18% 0.5456 -1.30% 1 0.5428 -1.70% | 0.5423 -1.84% | 0.5505 -0.26% 0.5484 -0.67% |
AANPar 0.4504 0.4448 -1.34% 0.4600 +2.14% 1 0.4504 -0.05% | 0.4488 -0.40% | 0.4472 -0.71% 0.4484 -0.48% |

AANMT 0.4327 0.4261 -1.41% 0.4394 +1.61% T 0.4138 -4.43% | 0.4246 -1.77% 1 0.4299 -0.70% 0.4266 -1.38% |
Evaluate on CN[MN] AANSum 0.5709 0.5736 +0.51% 0.5642 -1.25% | 0.5529 -3.17% | 0.5631 -1.39% 1 0.5720 +0.31% 0.5698 -0.16% |
AANPar 0.4748 0.4602 -3.00% 0.4878 +2.79% 1 0.4791 +0.95% | 0.4730 -0.31% | 0.4718 -0.61% 0.4726 -0.40% 1
AANMT 0.4492 0.4529 +0.85% 0.4576 +1.96% 1 0.4489 -0.02% | 0.4535 +1.02% 1 0.4461 -0.70% 0.4545 +1.20% 7
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Table 10 shows the results of topical coherence evalua-
tion. From the “Evaluate on MPN' rows, again, we
observed that adding usage citations (the ‘plus_add_Use’
column) lead to worse topical coherence compared to
using extension and motivation citations (the ‘add_Ext_-
Mot’ column).” This corroborates with the evaluation
results of topic coverage, adding usage citations may intro-
duce more diversified topics, which increases topical cov-
erage at the expense of decreasing topical coherence.
Contrastively, adding similarity citations (the “plus_add_-
Sim” column) improved topical coherence. This may be
because similarity in research goal or methodology often
happens between topically closer studies. On all three
datasets, better topical coherence was consistently
obtained (i.e., with a negative A% value) except on
“plus_add_Use,” which demonstrated that semantic MPN
may exhibit better semantic coherence than the
semantics-agnostic counterpart. For comparison purposes,
the lower half of the table shows the results evaluated on
CN[MN], the citation subnetwork induced from MN with
a few more unimportant citations. The results met our
anticipation to see worse topical coherence. This conforms
to our initial conjecture that semantically important cita-
tions may help improve semantic coherence.

6.4 | Ranking pertinence

Ranking pertinence measures whether an extracted MPN
effectively and efficiently represents the significant stud-
ies of a research field. To approximate expert evaluation,
we built three gold standard sets following Jiang et al.'s
approach (Jiang et al., 2019). The three gold standard
sets, named GS-Par, GS-Sum and GS-MT, each contains
99, 204, and 197 papers respectively.'? Note that, some
gold standards were not recoverable by the way we built
citation networks (refer to Supplementary Section B
about experimental setup), so evaluation was based on
the total number of gold standards recoverable from the
citation network. For GS-Par, GS-Sum and GS-MT, the
sizes of recoverable gold standards were 78, 151, and
176 respectively.

Taking MPN as an unranked set of papers, pertinence
could be evaluated using classical information retrieval
evaluation measures. Table 11 summarizes the results,
where V represents MPN size, GS represents the number
of matched gold standard papers, and ~GS represents
the maximal number of gold standards in the correspond-
ing citation network or semantic citation network, fol-
lowed by precision, recall and F1 score. We observed
that, although a single semantic MPN might not return
more matches, the composite semantic MPNs achieved
much better ranking performance. Comparing the

Evaluation results of pertinence of main path networks.

TABLE 11

GS-MT/AANMT

GS-Par/AANPar

GS-Sum/AANSum

Rec. F1 rGS GS Prec. Rec. F1 AGS GS Prec. Rec. F1

Prec.

GS

GS

20.21%
14.52%
15.15%
14.67%
18.89%
20.36%

14.72%

32.22%
35.29%
29.85%
30.65%
26.36%
35.90%
28.57%

29
18
20
19
29
28

90

176
156

27.43%
22.51%
30.90%
37.69%

20.53%
17.22%
23.84%
32.45%

41.33%
32.50%
43.90%
44.95%
38.89%
44.12%
37.31%

31

75

151
118

24.59%
26.79%
30.30%
30.16%

19.23%
19.23%
25.64%
24.36%

34.09%
44.12%
37.04%
39.58%
32.43%
29.55%
31.31%

15
15
20
19
24
13
31

44

MPN

9.14%
10.15%

26

34
54
48

59
66

add_Ext_Mot

s_add_Use

170
171
171

36
49

134
138
138
151
151

s_add_Sim

plu:

9.64%
14.72%
14.21%

62
110

109
162

69
69

add_Combined

plu:

40.26%
27.40%

41.72%
19.87%

63

31.58%
21.32%

30.77%
16.67%

del_Bk;

78
168

176
176

30
75

68
201

77 44

g_Fut

del_Combined

26.30%

24.37%

48

42.61%

49.67%

35.02%

39.74%

77

565
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“add_Combined” and “del_Combined” rows against the
“MPN” row, the recalls of the former were more than
doubled on AANPar and AANSum, and gained more
than 65% relative increase on AANMT. Recall that, it is
extremely important that as many crucial studies as pos-
sible are detected by MPA. At the same time, F1 scores
were also largely improved except on AANMT add -
Combined. In addition, from the last three rows, we saw
that “add_Combined” and “del_Bkg Fut” results also
complemented each other. The most extreme case was on
AANMT: the sum of recalls of “add_Combined” and
“del_Bkg Fut” was only slightly larger than the recall of
“del_Combined,” implying that they returned drastically
different subsets of gold standards. This justifies our
claim that semantic MPNs may exhibit higher diversity
to complement each other, and it would be better to
merge them for a more comprehensive view. Finally, the
recalls and F1 scores on all three datasets corroborate
with the findings of Filippin (2021) about MPA's unsatis-
factory recognition rate of the most significant studies.
Although semantic MPA proved to improve ranking per-
tinence by a large margin, there seemed to still large
space to improve recall. To achieve this, we guess that it
may be helpful to start and guide main path exploration
by first ranking and selecting important publications in
some way (Bae et al., 2014; Zhang et al., 2014; Tao
et al., 2017; Ding et al., 2022).

7 | CONCLUSIONS

This paper advocated a novel semantic main path net-
work analysis approach for extracting the scientific back-
bone from a citation network based on citation function
analysis. First, according to per-class performance analy-
sis, the best models for extension, motivation, usage, sim-
ilarity, neutral (equiv. background) and future work
citations were cherry-picked from 55 contextualized cita-
tion function classification models trained from 11 model
architectures based on SciBERT. Then, four types of
semantic citation networks were created by gradually
adding extension and motivation citations, usage cita-
tions, and similarity citations in a recall-oriented fashion,
and by deleting neutral and future work citations in a
precision-oriented way. On each semantic citation net-
work, semantic main path network was extracted by
merging the top-K key-route main paths extracted from
different time slices of the network. Meanwhile, for the
first time, this paper performed quantitative main path
analysis evaluation by proposing a three-way framework
consisting of topical coverage, topical coherence and
ranking pertinence. The effectiveness of semantic main
path network analysis was demonstrated on three

computational linguistics fields, namely natural language
parsing, automatic text summarization and machine
translation.

Qualitative analysis showed that each semantic main
path network was able to reveal novel topic branches,
new important papers of existing branches, and the
development pathways between papers and branches,
thus provided complementary views of domain evolution.
For example, for large domains such as natural language
parsing that were guided by a few seminal studies (like
Penn Treebank) and ground-breaking shared tasks, the
semantic main path networks were much better at find-
ing these representative works, such as the two early
shared tasks on (multilingual) dependency parsing and
more future shared tasks on a plethora of topics includ-
ing semantic dependency parsing, semantic role labeling
and dependency parsing of morphologically rich lan-
guages, most of which were missed by traditional main
path analysis. For automatic text summarization, the
semantic main path network approach was able to find
an important novel branch about summarization evalua-
tion and the branch about optimization methods for sum-
marization, at the same time enrich the multidocument
summarization, graph-based ranking and sentence
fusion/compression branches that were recognized by
the traditional approach.

Merging multiple semantic main path networks
resulted in significantly better topical coverage. When
main path analysis is seen as a method to return an unor-
dered set of top-ranked studies, the composite semantic
main path networks achieved much better ranking
pertinence based on expert-selected gold standards,
thus proved to be more comprehensive representations
of scientific development. In addition, extension, motiva-
tion and similarity citations proved to achieve better
semantic coherence on all three datasets than traditional
approaches which ignore citation semantics, but adding
usage citations may introduce topical diversity, which
resulted in lower coherence but higher coverage. In the
extracted semantic main path networks, most recognized
citation relations were more relevant to uncovering the
knowledge flow among scientific ideas. On the contrary,
in the traditional approach, many main path papers were
connected via incidental citations such as neutral cita-
tions. Therefore, we conclude that the semantic main
path network analysis approach can discover more perti-
nent topic branches, uncover more coherent knowledge
flows, and provide a more comprehensive scientific
domain representation.
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ENDNOTES
! Refer to Kuan (2023) for more discussions.
2 https://aclanthology.org/

3 Supplementary materials: https://github.com/xiaoruijiang/CFC_
MPN/blob/main/jasist2022_v2_SM_for_review.pdf

* This choice was supported by the claim made by Lauscher et al.
(2022) that most citation instances’ functions could be deter-
mined only using citance alone.

w

When f = h, depending on context_type, the number of model
variants is 2. When f = [h; s], the number of model variants is:
2 (context_type = “sequential”’) 4+ 2 x 3 (context_type = “hierar-
chical”) = 8. When f = [h; c], if context_type = “sequential”, the
model variant number is 2; otherwise, if context_type = “hierar-
chical”, it is 3 x 2 = 6 (3 sentence poolers by 2 context encoders).
When f = [h; s; c], if context_type = “sequential”, the model var-
iant number is 2 x 2 (2 citance encoders multiplied by 2 context
encoders) = 4; otherwise if context_type = “hierarchical”, there
are 2 x 3 x 2 = 12 model variants (2 citance encoders by 3 sen-
tence poolers by 2 context encoders). Therefore, there are in total
2+ 8+ (2 + 6) + (4 + 12) = 34 model variants.

o

https://github.com/xiaoruijiang/JMPA

Parsing: Parsing, syntax analysis, or syntactic analysis is the pro-
cess of analyzing a string of symbols, either in natural language,
computer languages or data structures, conforming to the rules
of a formal grammar. See Wikipedia page: https://en.wikipedia.
org/wiki/Parsing.

®

Note that more grammars were proposed even earlier, outside
our time range of analysis.

From Wikipedia, shallow parsing is also chunking or light pars-
ing: https://en.wikipedia.org/wiki/Shallow_parsing

19 Both semantic role labeling and dependency parsing became

rather standalone topics and had bespoke monographs on these
two topics.

M https://radimrehurek.com/gensim

12 They are available at: https://github.com/xiaoruijiang/scirank/

tree/main/datasets/gold_standards/ACL. Note that, to construct
GS-Par, we referred to Jiang et al.'s gold standard papers about
computational linguistics/natural language (Jiang et al., 2019),
and manually picked out the papers about natural language pars-
ing technologies, because the surveys we were able to find could
not cover the whole area of natural language processing.
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