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Abstract 

Much effort has been made in the past decades to citation function classification, but noteworthy issues exist. Annotation 

difficulty resulted in limited data size, especially for minority classes, and inadequate representativeness of the underlying 

scientific domains. Concerning algorithmic classification, state-of-the-art deep learning-based methods are flawed by 

generating a feature vector for the whole citation context (or sentence) and failing to exploit the full realm of citation modelling 

options. Responding to these issues, this paper studied contextualised citation function classification. Specifically, a large new 

citation context dataset was created by merging and re-annotating six datasets about computational linguistics. A variety of 

strong SciBERT-based citation function classification models were proposed, and new states of the art were achieved. Through 

deeper performance analysis, this study focused on answering several research questions about the effective ways of performing 

citation function classification. More specifically, the study justified the necessity of modelling in-text citations in context and 

confirmed the superiority of doing citation function classification at citation (segment) level. A particular emphasis was placed 

on in-depth per-class performance analysis to understand whether citation function classification is robust enough to suit 

various popular downstream applications and what further efforts are required to meet such analytic needs. Finally, a naïve 

ensemble classifier was proposed, which greatly improved citation function classification performance. 
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1. Introduction 

Citation function1 is “the author’s reason for citing a given paper” (Teufel et al., 2006a), e.g., the cited paper is compared to 

“as a rival approach”, used “as part of the solution”, criticised “to justify the current research, or appraised “to motivate the 

current research” (Teufel et al., 2006b). It is part of the scientific argumentation about the “rhetorical function” of citations in 

scientific writing (Teufel, 2010). For instance, Ex. 1 in Table 1 illustrates a citation sentence (abbr. citance) with two in-text 

citations (citation hereafter) of different citation functions. “Prince et al., 1993” is a citation about the weakness of the cited 

work (“Weak”), while “Kisseberth 1970” is a neutral citation that merely acknowledges an existing study (“Neut”). 

        Citation function classification (CFC), i.e., the recognition of the rhetorical functions of citations, is an important task of 

scientific text understanding with rich downstream applications (Ding et al., 2014). Significant progress has been made in the 

past two decades since the early work on automated CFC using rule-based algorithms (Garzone & Mercer, 2000; Nanba et al., 

2000) and machine learning (ML) algorithms (Teufel et al., 2006b). The state of the art (SOTA) on the ACL-ARC dataset of a 

6-class annotation scheme has been improved from around 55% macro F1 by feature engineering approaches (Jurgens et al., 

2018) to about 70% by deep learning (DL) without domain-specific language modelling (Cohan et al., 2019) and 71% using 

the domain-specific large pretrained language model SciBERT (Beltagy et al., 2019).  

        However, several noteworthy issues exist in current automated CFC research, which motivated the current study. We will 

discuss them in the following (Sect. 1.1) and then summarise the main contributions we made (Sect. 1.2).  

1.1. Issues of Citation Function Classification Research   

We discuss the issues from three aspects: dataset annotation, algorithm development and practical application. 

        Issues with Citation Function Annotations and Datasets. The first issue is about annotation scheme. Many citation function 

annotation schemes were used, ranging from 12 classes (Teufel et al., 2006a) to only 3 classes (Cohan et al., 2019; Zhang et 

al., 2022). Sect. 2.1 gives a critical review in detail. Most existing studies worked on a particular annotation scheme, and there 

was little discussion of mapping between different annotation schemes. The second issue is about dataset size. Due to annotation 

difficulty, datasets are limited in size. Because dataset distributions are highly skewed, some important functions are very small. 

For example, the technical modification (“PModi”) and ideational basis (“PBas”) classes in Teufel et al. (2006a) both only have 

60 instances, while in Jurgens et al. (2018), the extension class (“Extends” = “PModi” and “PBas” combined) only has 73 

instances. A more extreme case is the criticism/weakness function, e.g., the “hed” class (criticism via hedging) in Hernández-

Alvarez et al. (2017) only has 40 instances, and the “Weak” class in Su et al. (2019) only has 30 instances. This makes these 

datasets less feasible for training large deep learning models. If the annotation schemes of some datasets were cognitively 

 

1 Generally, we do not see a consensus on the terminology used by the community. Various synonyms of citation function exist, including citation role (Agarwal, 

et al., 2010), citation purpose (Abu-Jbara et al., 2013; Kunnath et al., 2020), citation intent (Cohan et al., 2019; Ferrod et al., 2021). They have been used 

interchangeably. Noteworthily, citation motive or citation motivation was not seen as equivalent to citation function. Indeed, Zhang et al. (2013) said citation 

content analysis “endeavors to describe the citing behavior itself, as well as to interpret and understand the underlying motives for the observed pattern. Namely, 

it seeks to understand what the purposes, functions, attitudes, dispositions, and sentiments behind the citing behavior are and how these patterns are represented 

in citations to indicate authors’ motivations”. Citation motivation was regarded by Zhang et al. as an umbrella of a few operationalised tasks including citation 

function classification, citation polarity classification, citation sentiment analysis, etc. Citation motivation was mainly used in qualitative studies by social 

scientists to analyse the subjective motive for authors to cite a paper, while citation function was mainly used in empirical studies by computer scientists with 

an emphasis, as Teufel (2010) stated, on the rhetorical function of citations in scientific argumentation. However, we also observed cases where citation 

motivation and citation function were interchangeably used, e.g. in the surveys by Tahamtan and Bornmann (2019; the “Citer motivation surveys or interviews” 

subsection), and Lyu et al. (2021; the “Scientific motivation” subsection). In addition, we observed that citation motivations and citation functions were often 

partially mappable. For example, the “Active support”, “Active criticism” sub-categories of the motives to cite by Erikson and Erlandson (2014) are equivalent 

to the “PSup” (supporting) and “Weak” (weakness) functions by Teufel et al. (2006a), while most of their citation motives were not mappable to any meaningful 

function but could be fit to Teufel et al.’s “Neut” function.   
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mappable, at least partially, then it would theoretically allow the creation of a larger and more comprehensive citation function 

dataset by merging and potentially re-annotating part of them.  

        Issues with Citation Function Classification Algorithms. The first issue about algorithmic classification is that most DL 

approaches did either citance-level or context-level CFC because they generated one feature vector for either the whole citance 

or the whole citation context (Munkhdalai et al., 2016; Lauscher e al., 2017; Bakhti et al., 2018; Cohan et al., 2019; Su et al., 

2019; Beltagy et al., 2019). This is conceptually flawed. Citance-level CFC will inevitably err on citances with multiple citations 

of different functions such as Ex. 1-2 in Table 1. Ideally, we do citation-level CFC, i.e., model and classify each citation 

separately. The second issue is that only a limited design space of citation modelling has been explored. When there are multiple 

citations, it is equally important to understand the meaning of each citation as understanding the meaning of the enclosing 

citance. Often, citation functions can only be decided in context. For example, the similarity citation (“PSim”) in Ex. 2 in Table 

1 is decided based on the context sentence S-2, and all “CoCoXY” citations (comparison or contrast between cited studies) in 

Ex. 3 are decided based on the meta-statement S-1. There are various ways of modelling citance and context representations. 

However, these modelling options have not been fully explored, nor the effective ways of combining citation, citance and 

context representations. 

        Issues with Practical Application of Citation Function Classification. It is plausible that one CFC model can suit and be 

applied to all downstream applications2. However, this may not work in practice. Take Teufel et al.’s difficult “CoCoXY” class 

for example. “CoCoXY” may be either confused with other comparison classes due to using similar comparative expressions 

(e.g., compare the italicized expressions in Ex. 3 and Ex. 4), or confused with “Neut” because neither class describes any 

relationship between the citing and cited papers (e.g., compare Ex. 5 to Ex. 3). Is it better to treat “CoCoXY” as a comparison 

class or as a neutral class as in Jurgens et al. (2019)? No matter what choice to make, there will be a seesaw effect on the CFC 

performances, i.e., the CFC performance improvement on one class usually causes performance drop on others. For example, 

Cohan et al.’s best model got worse performance on the neutral class than their second best model despite of significant 

improvement on the comparison class (Cohan et al., 2019, Table 5). Seesaw effects occurred on other citation functions too. 

Indeed, Cohan et al.’s best overall result was obtained at the cost of sacrificing the extension and motivation classes. We believe 

that a systematic analysis of the impacts of various modelling options on the CFC performances of different citation functions 

will give us useful insights into the potentials and pitfalls of applying existing CFC models to real-world applications.  

1.2. Summary and Main Contributions of This Study  

According to the analysis above, this study focused on one central question: What are the most effective citation modelling 

methods for high-performance citation function classification? Two subquestions arose for us to answer.  

• Q1: Should citation modelling be done in context and at citation level?  

• Q2: What are the most effective ways of modelling and combining the representations of citation, citance and context? 

To answer these questions, this study comprehensively explored the design space of modelling the representations of citation, 

citance and context, made in-depth performance analysis of large-scale experiments using the trained CFC models, and built 

strong ensemble algorithms that achieved new SOTAs of CFC. Meanwhile, we hope that this study provides a good CFC 

benchmark to facilitate further research in citation context analysis and semantics-driven scientometric and bibliometric 

analysis based on citation context analysis. 

       The following summarises the main contributions of this study and accordingly the organisation of the paper. Concerning 

the issues with dataset annotation, we created a larger citation context dataset by merging and re-annotating six datasets in the 

 

2 This is what (almost) all existing studies did. Lauscher et al., (2021) can be said the only exception, where multi-label CFC was the focus, which essentially 

built, or can be seen as building, one classifier per citation function.  
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computation linguistics domain (Sect. 3). Concerning our central research question about the effective ways of citation 

modelling, we developed a series of strong DL-based CFC models based on SciBERT (Beltagy et al., 2019) by extensively 

exploring the options of encoding citance and/or citation context into the citation feature representation (Sect. 4). In addition 

to achieving new SOTAs of CFC, we made a detailed performance analysis of to derive the answers for the afore-mentioned 

two questions about the proper level of citation modelling (Q1) and the promising options for citation modelling (Q2) 

respectively (Sect. 5). Concerning how well the CFC models are applicable to real-world applications, we made an in-depth 

per-class performance analysis, concluded that there is no single best model that fits all, and discussed the strengths and 

weaknesses of existing DL-based CFC models in a wide range of scientific applications (Sect. 6). Following the per-class 

performance analysis, we proposed a naïve ensemble approach and obtained CFC models that significantly improved the overall 

performance and per-class performances. 

 

Table 1. Citation Context Examples. All Come from Teufel’s Annotations or Annotation Guidelines. 

Example Citation Context 

Ex. 1: Two functions in one citance.  

From: https://aclanthology.org/W00-1804.  

S-1. While Optimality Theory (OT) (Prince et al. 1993) [Weak] has been successful in 

explaining certain phonological phenomena such as conspiracies (Kisseberth 1970) 

[Neut], it has been less successful for computation. (...more weaknesses...)  

Ex. 2: Context sentence S-2 is needed to infer 

the “PSim” citation in S-1. 

From: https://aclanthology.org/J00-1004.  

 

S-1. Formalisms for finite-state and context-free transduction have a long history 

(e.g., Lewis and Stearns 1968; Aho and Ullman 1972) [PSim], and such formalisms 

have been applied to the machine translation problem, both in the finite-state case 

(e.g., Vilar et al. 1996) [Neut] and the context-free case (e.g., Wu 1997) [Neut]. S-2. 

In this paper we have added to this line of research by providing a method for 

automatically constructing fully lexicalized statistical dependency transduction 

models from training examples. 

Ex. 3. The meta-statement of comparison or 

contrast like S-1 indicates the subsequent 

comparisons between cited studies (“CoCoxY”). 

Otherwise, all citations would be “Neut”.   

From: https://aclanthology.org/C00-2175.  

S-1 However, different sets of GRs are useful for different purposes. S-2 For example, 

Ferro et al. (1999) [CoCoXY] is interested in semantic interpretation, and needs to 

differentiate between time, location and other modifiers. S-3 The SPARKLE project 

(Carroll et al., 1997) [CoCoXY], on the other hand, does not differentiate between 

these types of modifiers. S-4 As has been mentioned by John Carroll (personal 

communication) [PSup], this is fine for information retrieval.  

Ex.4: Meta-statement of comparison and 

contrast may apply to all “CoCo” classes 

(Comparison or Contrast). The meta-statement 

can appear very far from a particular citation it 

covers, say “Miller et al” in S-5. The meta-

statement about “main parallels” also qualify 

“CoCo” over “PSim”. “CoCoGM” means 

Comparison or Contrast in Goal and Method.  

From: Teufel (2010, pp. 434).   

 

S-1 We will outline here the main parallels and differences between our method and 

previous work. S-2 In cooccurrence smoothing [Brown et al. 1993] (CoCoGM), as in 

our method, a baseline model is combined with a similarity-based model that refines 

some of its probability estimates. S-3 In Brown et al’s work, given a baseline 

probability model P, which is taken to be the MLE, the confusion probability EQN 

between conditioning words EQN and EQN is defined as EQN and the probability 

that EQN is followed by the same context words as EQN. S-4 Then the bigram 

estimate derived by cooccurrence smoothing is given by EQN. S-5 In addition, the 

cooccurrence smoothing method sums over all words in the lexicon. [Miller et al] 

(CoCoGM) suggest a similar method... S-6 They do... (and so on …) 

Ex.5: “CoCoXY” may be confused with “Neut” 

if the contrast or difference can be inferred but 

not explicit enough.  

From: https://aclanthology.org/A00-2009.  

 

S-1 The line data was recently revisited by both (Towell and Voorhees, 1998) [Neut] 

and (Leacock et al., 1998) [Neut]. S-2 The former take an ensemble approach where 

the output from two neural networks is combined; one network is based on a 

representation of local context while the other represents topical context. S-3 The 

latter utilize a Naive Bayesian classifier.  
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2. Related Work 

2.1. Citation Function Datasets and Annotation Schemes  

The field of citation context analysis has used various names to describe the reasons for authors to cite references in scientific 

writing, including citation type, citation category, citation purpose, citation role, citation intent and citation function 

(Hernández-Alvarez & Gómez, 2016; Kunnath et al., 2021; Lyu et al., 2021). From a computational point of view, this study 

focuses on the annotation schemes and corresponding datasets in empirical studies which were more application oriented, i.e., 

the studies since the seminal work by Teufel et al. (2006b). Table 2 summarises them into three categories: 1) general-purpose 

citation function datasets (the majority part), 2) special-purpose datasets for a subset of citation functions or citation functions 

on specific scientific entities, and 3) a special type of datasets about citation importance (annotated per citing-cited paper pair). 

The “Fulltext” column says whether all citation contexts and all in-text citations of involved papers were annotated (marked 

by “•”) or not (left blank). For the “Context (size)” column, the notation “[–l, +r]” specifies that the context consists of l and r 

sentences to the left and right sides of the citance respectively, while a “?” indicates the information is unclear from the paper 

and “variable” means the context can be of variable length according to user needs (only when full-texts are parsed and 

annotated). “OA” stands for “open access”. The last column “Authoritative” indicates whether the annotations were done by 

the authors of the involved papers (marked by “•”).  

        Most datasets provided citation contexts of certain lengths. Teufel et al. and Hernández-Alvarez et al. both annotated all 

citations in their full contexts (Teufel et al., 2006b; Teufel, 2010; Hernández-Alvarez et al., 2017). Dong and Schäfer (2011) 

instead annotated all citations only in their citances and replaced each citation string with a pair of empty parentheses as 

placeholder (Similarly, we used a pseudoword “CITSEG” to replace the consecutive segment of citation strings in our own 

dataset). Abu-Jbara et al. (2013), also Jha et al. (2016), and Su et al. (2019) used a window of sentences as context, while 

Jurgens et al. (2018) and Tuarob et al. (2020) used a window of words that were extracted and controlled by ParsCit3. Full 

context of any length is available in our own dataset, but in the experiments, we set l = 2 and r = 3. We found that the majority 

of cases could be covered by this setting. Lauscher et al. (2021) made a similar observation. Indeed, during annotation, we 

encountered a few exceptional cases when the minimal context must go far beyond [–2, +3] to correctly determine citation 

function. A representative example is Teufel’s General Rule 27 about meta-statements of the “CoCo” (Comparison or Contrast) 

class (Teufel, 2010). A meta-statement may appear at the beginning of a paragraph to qualify all subsequent citations as “CoCo”, 

some of which may be very far from the meta-statement, as Ex. 4 in Table 1 shows. For another example, to decide “PMot”, 

Teufel’s guidelines require annotators to skim-read the source paper to understand what approach/tool is used/extended to solve 

what problem, i.e., the contribution sentences defined in D’Souza et al. (2021). In this sense, context sentences for “PMot” can 

appear anywhere, although they will more likely occur in the Title, Abstract, Introduction and Conclusion sections. Therefore, 

we decided that full text availability was the first prerequisite for creating a citation context dataset. 

  

 

3 https://github.com/knmnyn/ParsCit  
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Table 2. Survey of Existing Citation Function Datasets 

Dataset Fields* Size Annotation Scheme Fulltext  Context OA Authoritative  
Teufel et al. (2006b, 2010) CL 4022 Neut, Weak, CoCoXY, CoCoGM, CoCoR0, CoCo-, 

PSim, PSup, PMot, PUse, PModi, PBas 
• variable •  

Agarwal et al. (2010) BM 3491 Background/Perfunctory, Contemporary, 

Contrast/Conflict, Evaluation, Explanation, Method, 

Modality, Similarity/Consistency 

• [-1, +1] •  

Dong and Schäfer (2011) CL 1728 Level 1: Background, Compare, Fundamental 

Level 2: Background_GRelated, Background_SRelated, 

Background_MRelated, Compare, Fundamental_Idea, 

Technical_Basis 

•  •  

Jochim and Schütze (2012) CL 2008 Aspect 1: conceptual vs operational;  

Aspect 2: evolutionary vs juxtapositional;  

Aspect 3: organic vs perfunctory;  

Aspect 4: confirmative vs negational. 

• variable •  

Li et al. (2013) BM 6335 Based_on+, Corroboration+, Discover+, Positive+, 

Practical+, Significant+, Standard+, Supply+, Contrast=, 

Co-citation=, Neutral=,  

Negative- (+/=/-: positive/neutral/negative) 

• [-?, +?]   

Abu-Jbara et al. (2013) 

  also Jha et al. (2016) 

CL 2098 Neutral, Criticizing, Comparison, Substantiating, Basis, 

Use 

 [-1, +2] •  

Hernández-Alvarez et al. 

(2017) 

CL 3013 acknowledge, corroborate, weakness, hedge, useful, 

based 

• variable •  

Jurgens et al. (2018) CL 1954 Background, Compare or Contrasts, Motivation, Uses, 

Continuation (=> Extends), Future 

partial**  •*** •  

Cohan et al. (2019) CS, BM 11020 Background introduction, Method, Result comparison   •  

Su et al. (2019)  CL 1402 Neut, Weak, CoCo, Pos  [-1, +1] •  

Kunnath, Pride, et al. (2020, 

2021) 

CS, BM 3000 Background, Compares_Contrasts, Motivation, Uses, 

Extension, Future  

  • • 

Pride and Knoth (2020) various 11233 Background, Compare_Contrast (subclasses: similarities, 

differences, disagreement), Motivation, Uses, Extension, 

Future 

  ? • 

Ferrod et al. (2021) 

 

various 1380 Proposes, Analyzes (subclass: critiques), Compares 

(subclass: contrasts), Uses (subclass: dataset), Extends 

Additional aspect: role – subj v.s. obj  

  •  

Lauscher et al. (2021) 

  Multi-label annotation 

CL 12653 Background, Differences, Similarities, Motivation, Uses, 

Extends, Future Work 

 variable •  

Zhang et al. (2021) CL 9594 Relationship – Motivation, Comparison, Extension, 

Application;  

Content – Background, Method, Data, Result; 

Sentiment – Positive v.s. Negative 

• ? •  

Zhang et al., (2022) 

 

CS, BM, 

plus CL 

9645*** Cohan et al., (2019) enlarged with CL papers: 

Background introduction, Method, Result comparison 

  •  

        

Meyers (2013) BM 291 Corroborate v.s. Contrast ? [-?, +?]   

Zhao et al. (2019), Zheng et 

al. (2021) 

Resource citation 

CL, ML, 

BM 

3088 Use, Produce, Introduce, Compare, Extend, Other 

Role: Material – Data; Method – Tool, Code, Algorithm; 

Supplement – Website, Document, Paper, Media, License  

 [-2, +2] •  

Tuarob et al. (2020) 

Algorithm citation 

CS 8796 Level 1: UTILIZE v.s. NONUTILIZE 

Level 2: USE, EXTEND v.s. MENTION, NOTALGO 

 •**** •  

        

Jochim and Schütze (2012) CL 2008 2-grade: organic v.s. perfunctory (citation-level) • variable •  

Wan et al. (2014) CL ~800 5-grade N/A N/A   

Zhu et al. (2015) various  140+ 2-grade: influential v.s. non-influential N/A N/A • • 

Valenzuela et al. (2015) CL 465 4-grade; 2-grade (important v.s. incidental) N/A N/A •  

Qayyum and Afzal (2019) CS 488 2-grade N/A N/A  • 
        

This study 

CITSEG- and citation-

level annotation 

CL 4784/ 

3854 

11-/10-class: Future, Neutral, Weak, CoCoXY, 

CoCoGM, CoCoRes, Similar, (Support)*****, Motivation, 

Usage, Basis 

• [-2, +3] 

or 

variable 

•  

* Field abbreviations: CL – Computational Linguistics; BM – Biomedicine; CS – Computer Science in general; ML – Machine Learning.   
** Not all citations and not all citation contexts were annotated. 
*** The original size, i.e., number of citation contexts, is 11965. We cleaned it to 9645 non-duplicate contexts. CFC is made on citation contexts rather than citations. 
**** A context window of a certain number of characters around the citation were extracted by ParsCit’s.context size is not in measured in sentence count.  
***** 11- or 10-class depending on whether including a Support class or re-annotating Support into other categories 
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        It is observable that very different aspects were annotated for biomedicine (BM) and computational linguistics (CL) or 

computer science (CS) domains, which are non-ignorable nuances if we want to map and merge different datasets. For example, 

BM had an obvious focus on scientific claims in biomedical publications, evidenced by the “confute/contrast” relationships, 

e.g., “Similarity/Consistency” v.s. “Contrast/Conflict” in Agarwal et al. (2010), and “Corroboration” v.s. “Contrast” in Li et al. 

(2013) and Meyers (2013). In addition, annotation schemes for BM are less consistent and mappable. Some citation functions 

are of special interest to biomedical scientists, like “Evaluation”, “Explanation” and “Modality” in Agarwal et al. (2010) and 

“Discover+”, “Practical+” and “Standard+” in Li et al. (2013). On the other hand, citation function schemes for engineering 

science like CS or CL have been more or less “stabilised” to a 6-class scheme since Jurgens et al. (2018). Although Teufel et 

al.’s 12-class scheme (Teufel et al., 2006a; Teufel, 2010) may be the most cognitively plausible, the 6-class scheme is easier to 

understand and annotate by scientists who are not specialised in the area of citation context analysis. For the ease of re-

annotation, our second prerequisite was that the annotation schemes of source datasets should be at least partially mappable 

(detailed in Sect. 3.1). 

2.2. Citation Function Classification Algorithms  

This section presents a critical review of the studies of computational algorithms for citation function classification (CFC) in 

the past two decades. Some good surveys exist (Hernández-Alvarez & Gómez, 2016; Iqbal et al., 2021; Kunnath et al., 2021). 

Among them, Kunnath et al. (2021) not only reviewed the preprocessing steps and feature engineering approaches when 

applying machine learning algorithms for CFC, but also made a meta-analysis of annotation schemes, datasets, benchmarks, 

and the state of the art of machine learning and deep learning methods on CFC.  

        The early attempt to building an automated citation function classifier was manually created based on rules called 

pragmatic grammar, which describes a number of handcrafted cue lists and certain syntactic constraints and relations around 

cue words (Garzone & Mercer, 2000). Similarly, by designing a set of 160 cue phrased-based rules, Nanba et al. (2000) 

developed a citation classifier for three classes, theoretical basis, gap or weakness, and other. In 2006, Teufel et al. provided 

the first comprehensive and, at the same time, operationalizable 12-class annotation scheme and a dataset suitable for machine 

learning algorithm (Teufel et al., 2006a, 2006b). The 12-class scheme followed a four-way distinction between citation 

motivations: Explicit statement of weakness of cited work; contrast or comparison with other work; agreement, usage, or 

compatibility with other work; and a neutral category (holding all cases that unfit other categories). They designed a large set 

of features capturing commonly seen cue phrases in expressing scientific ideas as well as the syntactic information around these 

phrases or the main verbs of the citation sentence, and applied IBk (Instance-Based k-nearest-neighbor classifier) for CFC 

(Teufel et al., 2006b). Annotation schemes proposed in follow-up studies were greatly simplified, but more or less mappable 

to Teufel et al.’s scheme (Dong & Schäfer, 2011; Abu-Jbara et al., 2013; Jha et al., 2017; Hernández-Alvarez et al., 2017; 

Jurgens et al., 2018; Su et al., 2019). Sect. 3.1 details the partial mappability between these annotation schemes and Teufel et 

al.’s scheme in order to build a larger citation context dataset.  

        Teufel et al.’s seminal works embarked a lot of research in this line by adapting their 12-class annotation scheme and 

adding or adjusting the syntactic features and lexical patterns around the manually collated informative cue-phrases for different 

classes (Agarwal et al., 2010; Dong & Schäfer, 2011; Li et al., 2013; Abu-Jbara et al., 2013; Jha et al., 2017; Hernández-Alvarez 

et al., 2017; Meng et al., 2017). Among this line, the work by Jochim and Schütze (2012) was special. They followed Moravcsik 

and Murugesan’s quadchotomic approach to dividing citations into four dimensions (Moravcsik & Murugesan, 1975), including 

conceptual v.s. operational (akin to “Fundamental_Idea” v.s. “Technical_Basis” in Dong and Schäfer (2011)), organic v.s. 

perfunctory (akin to the meaningful v.s. incidental dichotomy in Valenzuela et al. (2015)4), evolutionary v.s. juxtapositional 

 

4 “The organic vs perfunctory facet – ORG-PERF – distinguishes those citations that form the underpinnings of the citing work from more cursory citations.” 

(Jochim and Schütze, 2012, p. 1345.) 
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(i.e., “based on” v.s. “alternative to” cited work), and confirmative v.s negational. While this scheme is cognitively plausible, 

not all aspects appear in every citation. Jochim and Schütze (2012) also concluded on the significance of named entity features 

in CFC. The problem with previous studies is that they all provided their own schemes, datasets, algorithms but did not evaluate 

on the same benchmark. The SOTA result of feature engineering approaches was produced by Jurgens et al. (2018) with an 

easy-to-understand 6-class scheme (see Table 2). New features like topics of citation context, bootstrapped linguistic patterns 

around the citation, and PageRank rankings were introduced. This scheme was later used in the 3C (Citation Context 

Classification) shared tasks (Kunnath et al., 2020). 

        Recently deep learning approaches have been introduced to the CFC task. Earlier works applied Convolutional Neural 

Network (CNN; Lauscher et al., 2017; Bakhti et al., 2018), Bidirectional Long-Short Term Memory (BiLSTM; Munkhdalai et 

al., 2016) or CNN stacked over BiLSTM (Yousif et al., 2018) to encode and pool a feature representation from the citation 

sentence or context, which was then fed into a linear classifier or MLP (Multiple-Layer Perceptron) for classification. Pretrained 

word embeddings (Cohan et al., 2019; Roman et al., 2021) or contextualised language models (Beltagy et al., 2019; Maheshwari 

et al., 2021) were used to improve the understanding of citation contexts. Multi-tasking has been a recent trend, which transfers 

knowledge from semantically related tasks to improve CFC performance through joint learning on both the main task and 

supplementary tasks. Such tasks included sentiment classification (Yousif et al., 2019), citation worthiness prediction and 

section type classification (Cohan et al., 2019). A common issue with most existing deep learning solution is that they typically 

model the whole citation context or citance, instead of modelling individual in-text citations. For example, after encoding using 

CNN or BiLSTM, typically a max-pooling or self-attention operator was used to pool one single feature vector to summarise 

the meaning of the whole citation context or citance. While SciBERT achieved significant performance gains over previous 

DL approaches, Beltagy et al. (2019) only used the encodings of the sequence-level classification symbol “[CLS]” in their CFC 

experiments. As we mentioned in Sect. 1, this is conceptually flawed. The current study investigated the necessity and explored 

the promising ways of contextualised citation modelling for CFC, i.e., modelling individual citations in context. Sect. 5 presents 

more discussions. 

        A very closely related task, though not being our focus, is citation importance classification, i.e., identifying important, 

significant or meaningful citations. Wan & Liu (2014), Zhu et al. (2014), and Valenzuela et al. (2015) were the seminal studies 

embarking on the topic of citation importance classification, after which a lot of studies appeared (Hassan et al., 2017; Pride & 

Knoth, 2017; Qayyum & Afzal, 2019; Wang et al., 2020; Qayyum et al., 2021; Aljohani et al, 2021b). Citation importance 

classification can be seen as a special case of CFC with an extremely reduced annotation scheme, because citation importance 

in essence was defined based on citation function (Lu et al., 2014; Valenzuela et al. 2015). The difference is that CFC was done 

per each in-text citation, but all studies did citation importance classification on each citing and cited paper pair. Therefore, 

only paper metadata was used (Wan & Liu, 2014; Valenzuela et al., 2015). Full text features used were also primitive, such as 

cue phrases and textual similarities (Zhu et al., 2014; Hassan et al., 2018; Qayyum & Afzal, 2019; Ghosh et al., 2022). Deep 

learning approaches for this task typically suffered the same problem as in CFC that was mentioned in the paragraph above 

(Yousif et al., 2019; Aljohani et al., 2021b; Maheshwari et al., 2021). 
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3. Dataset and Annotation 

3.1. Dataset Choices  

We created a large citation context dataset by merging and re-annotating six available datasets in the computational linguistics 

(CL) domain. Initially, biomedicine (BM) domain was also considered because most BM papers are freely available in PubMed 

Central5, but we found the BM datasets mentioned in Sect. 2 were either not publicly available or inaccessible any more. In 

addition, BM datasets focused on relationships between scientific claims (Agarwal et al., 2010; Li et al., 2013; Meyers, 2013) 

and their annotation schemes are less consistent and hard to map. Finally, we were able to obtain six publicly available citation 

function datasets of CL papers for re-annotation, namely Teufel20106 (Teufel et al., 2006a; Teufel et al., 2006b; Teufel, 

2010), Dong2011 7  (Dong & Schäfer, 2011), Jha2016 8  (Abu-Jbara et al., 2013; Jha et al., 2016), Alvarez2017 9 

(Hernández-Alvarez et al., 2017), Jurgens201810 (Jurgens et al., 2018), and Su201911 (Su et al., 2019). Aljohani et al. 

(2021a) made a similar effort, but they only merged Teufel2010 and Jurgens2018, and used Jurgens et al.’s rules to map 

all instances to the 6-class scheme of the latter. In this sense, they did not do re-annotation. We believed that it would be better 

to re-annotate all datasets according to a set of consistent annotation guidelines for better data quality. Indeed, many instances 

of these datasets, even a small number of Teufel2010, were re-annotated (“corrected”) according to our annotation 

guidelines that were extended from Teufel (2010). 

        Re-annotation was possible because the six annotation schemes were conceptually mappable, although they are often only 

partially mappable (summarised in Table 3). For example, the comparison functions “CoCoGM”, “CoCoR0” and “CoCo-” 

defined in Teufel2010 are merged into a single function in other datasets. “Technical_Basis” in Dong2011 subsumes the 

“PUse” and “PModi” functions in Teufel2010, and “Fundamental_Idea” conceptually subsumes “PBas”, “PMot” and “PSim”. 

The “bas” function in Alvarez2017 is equivalent to “Fundamental_Idea” and “Technical_Basis” combined, while “Pos” in 

Su2019 moves instances about similarity to “CoCo”. To conclude, we felt it feasible to re-annotate a large portion of each 

dataset. A notable benefit of re-annotation of six datasets is the wide time span of the merged dataset, ranging from early 1990s 

to late 2010s, which is believed to better reflect authors’ patterns of placing citations and exhibit richer language expressions 

around citations.  

3.2. Dataset Re-annotation  

Our dataset, named Jiang2021, was created in three steps: dataset preparation, re-annotation and post-processing (Figure 1). 

To avoid distracting the readers, the details of the whole pipeline were moved to Appendix A. Three postgraduate research 

students in natural language processing were recruited to re-annotate (parts of) the six datasets with the first author (see 

Appendix A2 and A4 for more details). The re-annotation was done according to Teufel et al.’s 12-class scheme (Teufel et al., 

2006a) plus a “Future” class for future work (Jurgens et al., 2018). See Table 4 for the annotation schemes we used. After re-

annotation, we merged consecutive citation strings in each citance into a citation segment, represented by a pseudoword 

“CITSEG”. For example, the citance “SHRDLU (Winogard, 1973) was intended to address this problem.” would be tokenized 

and rewritten to “[“SHRDLU”, “(”, “CITSEG”, “)”, “was”, “intended”, “to”, “address”, “this”, “problem”, “.”]”. 

 

 

5 https://pubmed.ncbi.nlm.nih.gov  
6 https://www.cl.cam.ac.uk/~sht25/CFC.html  
7 https://aclbib.opendfki.de/repos/trunk/citation_classification_dataset   
8 https://github.com/ivder/University-Project/tree/master (The “Citation Sentiment_Purpose Analyser/citation_sentiment_umich/” subfolder) 
9 http://rua.ua.es/dspace/handle/10045/47416  
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Figure 1. The Dataset Re-annotation Pipeline. 

 

        The first author was the main annotator (C4) who lead the annotation guideline development and refinement, designed the 

re-annotation protocols, and guided the three annotators (C1–C3) in the whole process. In the annotation guideline development 

stage (Stage 1), we mainly worked on re-annotating Teufel’s “PSup”, “PSim”, “PUse”, “PMot”, “PModi”, “PBas” and 

“CoCoXY” instances to reach a consensus of understanding her annotation guidelines. Four annotators reached very high inter-

annotator agreements (IAA) in term of Fleiss’s κ (Fleiss, 1971; Davies & Fleiss, 1982): 0.8252 on the original 13-class scheme 

and 0.8529 on a condensed 9-class scheme. We must be extremely cautious when interpreting such extremely high agreements. 

We believe it mainly reflected the high quality of Teufel’s annotation guidelines and manual annotations (Teufel et al., 2006a; 

Teufel, 2010). In the final re-annotation and adjudication stage, the pairwise IAAs between C4 and C1–C3 were 0.6344, 0.6413, 

0.5107 respectively on the 13-class scheme and 0.6758, 0.6714, 0.5350 respectively on the 9-class scheme. The overall IAA 

was about 0.6358 and 0.6614 on the 13-class and 9-class schemes respectively, which were regarded good (Artstein & Poesio, 

2008, Table 8). We must remind that these figures only reflected how the four annotators agreed with each other during our 

special re-annotation process, which should be cognitively less complex than annotating from scratch, so these figures were 

not comparable with other studies. Appendix A.4 gives more details.  

        Context matters a lot for annotation. For example, instances about weakness often require reading a few context sentences 

ahead because a common scientific argumentation pattern is that the citance gives a neutral description while the following 

sentences point out its weakness. Full text is available in our dataset. A related issue is that there may be several functions 

appropriate for a citation depending on how we deem the citation in context, e.g., as “Neut” by only looking at the citance or 

“Weak” by overlooking at context sentences. In such situations, Teufel (2010) chose to let the stronger class overwrite or 

subsume the weaker, e.g., “Weak” overwrites “Neut”. Following Teufel (2010), we defined “overwriting rules” for all citation 

functions, and always assigned the strongest function to each citation. A good example is the following rule from Teufel’s 

annotation guidelines: “PMot” subsumes “PUse” if the plausible usage of something is justified by a positive statement 

(qualifying motivation). Note that, multi-label annotation (Lauscher et al., 2021) is an alternative solution, which was left to 

future work.  

3.3. Statistics of the New Datset  

In total, our dataset Jiang2021 gathered 3356 citation contexts, 4784 in-text citations, and 3854 CITSEGs in total (Table 4). 

Compared to Teufel2010, most small classes like “CoCo-”, “CoCoR0” and “PBas” were more than doubled, similar for 

 

10 https://github.com/davidjurgens/citation-function  
11 https://github.com/WING-NUS/citation_func_n_prov (We combined the “func” and “prov” portions of this dataset) 
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some other important functions like “PMot” and “PSim”. The most difficult class “PSup” was almost tripled. Because “PModi” 

and “PBas” were still too small, although much bigger than past datasets, we decided to merge them into “Basis” (equivalent 

to “Extends”). Then, “CoCo-” was split and re-annotated into either “CoCoGM” or “CoCoR0” due to its small size. These 

treatments resulted in our own 11-class citation function annotation scheme, which was mapped to 9-class, 7-class and 6-class 

schemes as Table 4 shows. They would be useful if the scientific analysis task did not require as fine-grained an annotation 

scheme as the 11-class scheme, e.g., when we did not distinguish between comparisons of methods and results. With different 

annotations schemes, we were able to run extensive experiments to justify the reasons for good or bad performances, and 

meanwhile able to find the best CFC models for a particular citation function of interest. Note that, during re-annotation, most 

of the time we did not find explicit comparison between a weakness citation and the citing paper, which is a requirement by 

Teufel’s guidelines to qualify a comparison function. Sometimes a weakness citation will be accompanied by a statement or 

hint that the citing study tries to overcome the weakness, but this is not frequent. Because weakness is an explicit description 

about the cited work, we decided that it might be more suitable to merge it into “Background” in our 7-class scheme.  

 

Table 4. Citation function scheme mapping and CITSEG-level statistics of the re-annotated dataset 

Teufel2010 (12+1 class) 
 

Jiang2021 (11-class)  Jiang2021 (9-class) 
 

Jiang2021 (7-class)  Jurgens2018 (6-class) 

label 
size ratio  

label size ratio 
 
label size ratio 

 
label size ratio 

 
label size ratio 

citstr citseg citseg     

Future 97 85 2.21%  Future 85 2.21%  Future 85 2.21%  Future 85 2.21%  Future 85 2.21% 

CoCoXY 200 152 3.94%  CoCoXY 152 3.94%  
Neutral 1615 41.90% 

 

Background 1773 46.00% 

 
Background 1615 41.90% 

Neut 1924 1463 37.96%  Neutral 1463 37.96%    

Weak 223 158 4.10%  Weakness 158 4.10%  Weakness 158 4.10%   

ComOrCon 944 24.49% 

CoCoGM 390 299 7.76%  
CoCoGM 328 8.51% 

 

Comparison 479 12.43% 

 

ComOrCon 479 12.43% 

 

CoCo- 108 80 2.08% 
    

 
CoCoRes 151 3.92% 

   

CoCoR0 107 100 2.59%     

PSup 123 100 2.59%  Support 100 2.59%  Support 100 2.59%  
Similar* 307 7.97% 

 

PSim 247 207 5.37%  Similar 207 5.37%  Similar 207 5.37%   

PMot 365 288 7.47%  Motivation 288 7.47%  Motivation 288 7.47%  Motivation 288 7.47%  Motivation 288 7.47% 

PUse 794 755 19.59%  Usage 755 19.59%  Usage 755 19.59%  Uses 755 19.59%  Uses 755 19.59% 

PModi 72 65 1.69%  
Basis 167 4.33% 

 
Basis 167 4.33% 

 
Extends 167 4.33% 

 
Extends 167 4.33% 

PBas 134 102 2.65%     

Total 4784 3854    3854    3854    3854    3854  
* Cognitively, it was not plausible to merge “Support” into “Similar” because it has the meaning of “computational plug-in-ability”. Experiments proved this. 
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Table 3. Annotation Schemes, Statistics, and (Partial) Conceptual Mappings between Six Citation Function Datasets 

Teufel2010 Dong2011 Jha2016 Alvarez2017 Jurgens2018 Su2019 

Type # % Type # % Type # % Type # % Type # % Type # % 

PSup2 46 1.14 Background4  
 - GRelated 
General  
 - SRelated 
Specifics:  

method, 

parameter, … 

 - MRelated 
Methods that 

may be usable 

Neu 953 55.15 Substantiate?? 
Unmappable!! 

126 6.01 Background 
corroborate 
acknowledge 

 

 
debate (0) 

 
0 

 

0 

ComOrCon - - Neut 993 70.83 

Neut 
Neutral description, or not 

fit into other classes 

2398 
 

59.6 Future 69 3.53 

Neutral 1283 61.15 982 32.59 

Background 999 51.13 

CoCoXY  
Contrast between 2 cited 

methods 

125 3.11 0 0 

Pos   
PMot?                                                                                                          

149 8.62 

Criticising Pos 
PMot? 

71 3.38 Use (useful) 
Partly PMot? 

857 28.44 

Weak 
Weakness  

127 3.16 Neg 46 2.66 Neg 
 

150 7.15 Critique  
 - weakness 
 - hedge  

 
141 

 
4.68 

ComOrCon  

(Compare or 

Contrast) 

353 18.07 Weak 

 
30 2.14 

40 1.33 

CoCo- 
Unfavourable 

contrast/comparison 

(against cited work) 

62 1.54 Compare 70 4.05 Comparison 
 

122 5.82 Contrast 
(con) 

136 4.51 CoCo 

 
90 6.42 

CoCoGM1 

contrast/comparison in 

Goals or Methods 

187 4.65 

CoCoR0 
comparison in Results 

51 1.27 

PSim 
similar 

133 3.31 Fundamental 

 - (Fundamental) 
Idea 
+PSim 
 

 

 

127 7.35 Use (based) 
 = PSim +  

    PUse +  

    PModi +  

    PBas +  

    PMot  

 

491 16.30 

PMot 
positive about approach 
used or problem studied, as 

motivation for citing paper 

131 3.26 Basis 74 3.53 Motivation 89 4.55 Pos 
Positive 

(usage)  

289 20.61 

PBas 
starting point 

60 1.49 Extends 

 

78 3.99 

PModi 
Adapt or modify tools, 

algorithms, data etc. 

60 1.49  - (Technical) 
Basis 
+PSim 

420 24.31 

PUse 
Use algorithms, tools, data 

and etc. 

642 15.96 Use 272 12.96 Uses  366 18.73 

Total 4022   1728  2098  3013  1954  1402 
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4. Citation Function Classification Algorithms 

We designed a series of SciBERT-based DL models for citation function classification. The overall model architecture is shown 

in Figure 2. To perform segment-wise CFC, the pseudoword “CITSEG” was added to the vocabulary of SciBERT. SciBERT 

was used to encode the citation context. The CITSEG Encoder used the encodings of CITSEG as the citation representation h. 

According to Lauscher et al. (2021), more than 90% citation instances could be annotated based on the citance alone, so we 

defined the Citance Pooler to generate the citance representation s. To handle citations requiring multi-sentence contexts, the 

Context Pooler generated the context representation c. In this study, we fixed the context window to [-2, +3], i.e., two left and 

three right sentences. Indeed, Lauscher et al. (2021) showed that only a very tiny portion of citation instances need contexts 

larger than 6 sentences. The final feature vector f was the concatenation of these three parts, i.e., f = [h; s; c]. An MLP (Multiple-

Layer Perceptron) was used for citation function classification. Citation representation was a mandatory component distinguish 

different citations in the same citance, but citance and context representations were optional. If only context representation was 

used, then f = [h; c]. On the contrary, we also tested only using citance representation, i.e., f = [h; s], to prove the indispensability 

of citation context.  

 

 

Figure 2. SciBERT-based Citation Semantics Analysis Model (Demonstrated Using a Hierarchical Context). 

 

        Following the BERT tradition, the token sequence of citation context was prepended with the sequence-level classification 

symbol “[CLS]” and appended with a sequence separator “[SEP]” to the end. Two types of contexts were tested: sequential 

context without inserting “[SEP]” to separate context sentences and hierarchical context with sequence separators inserted after 

each context sentence. For sequential context, citance representation was pooled from the tokens of the citance by applying a 

citance mask to the context, while context representation was pooled from all context tokens. We opted for two types of 

citance/context poolers: max-pooling (Eberts & Ulges, 2020) and self-attention (Munkhdalai et al., 2016). For hierarchical 

context, context representation was pooled from the representations of all enclosed sentences that were generated by a Sentence 

Pooler. In this case, “[SEP]” was used as the third option for pooling sentence representation.   

        In summary, the citation function classification model architecture was controlled by several options, as shown in Table 

5 and subsequent tables. Ctx_type specified whether a sequential context (ctx_type = sequential) or hierarchical context 

(ctx_type = hierarchical) was used. Citance and context defined the citance pooler and context pooler respectively. 

Valid options included “max_pool”, “self_attnd” or “X” (i.e., not used). Context pooler had the last option “[CLS]”. With a 

sequential context, citance and context poolers generated feature representations from the tokens, therefore sentence encoder 

(the sentence option) did not apply (“N/A”). Sentence specified the sentence encoder in case of a hierarchical context. 

Valid options included “max_pool”, “self_attnd” and “[SEP]”. Finally, citseg specified whether CITSEG encoder was used 

SciBERT Encoder

Citance PoolerCITSEG Encoder Context Pooler

SHRDLU ( CITSEG ) was intended to address this problem . [SEP] … Right ctx sent [SEP]Left ctx sent [SEP] …[CLS]

h s c

f = [h; s; c]

MLP
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(i.e., citseg = O) or not (i.e., citseg = X). The former meant performing segment-wise CFC. The latter was purposed for 

simulating existing deep learning approaches which performed either citance-level or context-level CFC.  

5. Results 

5.1. Experimental Implementation  

The models were implemented using HuggingFace’s Transformers library12 (version 4.2.2). The pretrained SciBERT model 

was downloaded from the official website13 and the special token CITSEG was added to its vocabulary. The word embedding 

of CITSEG was randomly initialized and learned during the training process. Citation context was built in a “zig-zag” way, i.e., 

by first concatenating the right context sentence to the citance, then the left, and so on, until the context length reached the 512-

token threshold of SciBERT. If citance alone exceeded the threshold (typically due to a failure in sentence segmentation), we 

centered the context window around the target CITSEG to include as many tokens as possible from both sides. Most SciBERT 

hyperparameters were unchanged. For self-attention, the attention dimensionality was fixed to 250. The hidden size of the MLP 

was twice the size of the feature vector (f). The AdamW optimizer was used with most parameters set to default. The learning 

rates for the parameters of SciBERT and MLP were initialised to 5e-5 (lr_pret: learning rate for the pretrained part, i.e., 

SciBERT) and 5e-4 (lr_cust: learning rate for the customised part, i.e., MLP) respectively. Different initial learning rates, like 

lr_pret = 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, and 5e-3, were tested for the MLP but no significant difference was seen. The learning 

rate warmup ratio was fixed to 0.1. The batch size was fixed to 16 for training and validation. The experiments were run on a 

GeForce RTX 3080 GPU card with CUDA version 11.6. The samples of each citation function were randomly split into training 

(65%), validation (15%) and test (20%) splits and then merged. Each model was trained for a maximum of 20 epochs with five 

randomly generated seeds (5171, 13429, 25603, 32491, 47353). The “best” models were picked based on their validation 

performance. For each model variant, i.e., each combination of the modelling options for citation representation, citance 

representation and context representation, the best macro F1, average macro F1 and the standard deviation across 5 runs were 

reported.  

5.2. An Additional Dataset and Two Baselines 

For a fair comparison (explained below), we also compared with the most recent SciBERT-based contextualised CFC approach 

(Zhang et al., 2022) and experimented on an additional dataset that Zhang et al. extended from scicite (Cohan et al., 2019). 

The dataset was named NI-Cite (Native Information enhanced Citation dataset) by us. The NI-Cite dataset made the 

following extensions to scicite by (i) including adding a few thousand more instances from ACL papers to the latter, (ii) 

complementing each citance with one left context sentence and one right context sentence, (iii) enriching each citation context 

with a series of metadata, called “native information”, such as the functional role of the enclosing section14, the titles, DOIs 

and Web URLs of the citing and cited papers. The original dataset has 11195 citation contexts, each labeled with one citation 

function. During data preprocessing, we found there were a lot of errors and duplicates in the original NI-Cite dataset. Thus, 

we cleaned as many duplicates as detectible and removed as many errors as possible using our in-house scripts followed by 

manual check. Finally, there were 9645 citation contexts remained in the cleaned NI-Cite dataset15. Note that this dataset 

only has three functions: Background, Method and Results. The 3-class annotation scheme is used in Semantic Scholar16, 

 

12 https://github.com/huggingface/transformers  
13 https://github.com/allenai/scibert  
14 Such as Abstract, Introduction, Method, Results, Conclusion 
15 Accessible through our GitHub fork of Zhang et al.’s code and data repository: https://github.com/xiaoruijiang/nativeinformation  
16 https://www.semanticscholar.org  
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technically backed by Cohan et al. (2019) and Beltagy et al. (2019), both coming from the Semantic Scholar group of Allen 

Institute for Artificial Intelligence. However, we believe this annotation scheme is cognitively incomplete, which limits its use 

in scientometrics.  

        The two baselines that were compared to both came from Zhang et al. (2022). We adapted their source codes for training 

the baselines. We found that the cross-references of a large portions of the original NI-Cite dataset were wrong, and so were 

the titles and DOIs of the cited papers, so we thought it was unreliable to use such information. In addition, the Jiang2021 

dataset only contains section titles but no manually annotated functional roles, so we only compared our methods to Zhang et 

al.’s two baseline methods which do not use metadata but only use citation context (See the last two rows in Table 5 and the 

last two columns in Figure 3 in Sect. 5.7). The first baseline “ni-cite w/ context” encoded the citance alone and used “[CLS]” 

for classification. The second baseline “ni-cite w/o context”, considered one left context sentence, the citance, and one right 

context sentence. Zhang et al. used SciBERT to encode each sentence separately, pooled the citance representation and two 

context sentence representations using “[CLS]”, and concatenated the three sentences’ representations for classification. As 

such, Zhang et al.’s method actually did citance-level CFC. For this group of experiments, most hyperparameters were 

borrowed from the original implementations reported in their paper. However, we did grid search for learning rate (lr) and loss 

accumulation steps (acc_step) with the following ranges of values: lr in [1e-4, 5e-5, 1e-5, 5e-6], and acc_step in [1, 10, 20]. 

Similar to the experiments on Jiang2021, 20 epochs were run.  

5.3. Citation Function Classification Results: Summary 

Table 5 shows the CFC performances on the Jiang2021 dataset. There are in total 36 model variants (models hereafter when 

the context is clear): models seq-01 to seq-12 and hie-01 to hie-24. We also ran preliminary experiments on citance-level CFC 

i.e., using citance alone. They are models cita-01 to cita-03, where cita-01 simulates previous studies based on SciBERT which 

used the sequence classification symbol “[CLS]” for classification (Beltagy et al., 2019; Varanasi et al., 2021)17. In addition, 

we also ran five more models which did contextualised encoding but used either citance or context representation alone for 

CFC, i.e., models seq-x07 to seq-x11. They are the CITSEG-agnostic counterparts (i.e., citseg = X) of models seq-07 to seq-

11 respectively. The difference between seq-x07/x08/x09 with cita-01/02/03 is that the former encoded the whole context while 

the latter only encoded the citance. Finally, the difference between seq-x10 (resp. seq-x11) and cita-02 (resp. cita-03) is that 

the former encoded the citance in its context while the latter encoded the citance alone. To prove that citations should be 

encoded in context, we also tested CITSEG-only variants (i.e., model seq-12 and hie-24). The top-3 models (from seq-01 to 

seq-12 and hie-01 to hie-24) in term of best macro F1 were in bold underlined, bold, and underlined fonts respectively. If a 

top-3 model falls in seq-x07 to seq-x11, then it is highlighted in bold italic. 

        On the 11-class annotation scheme, the best F1 was as high as 66.16% and the average F1 could reach more than 63.5%. 

Considering the cognitive complexity of the 11-class scheme, the performance figures were considered very promising. From 

the results on all four annotation schemes in Table 5, we observed a consistent trend that the more concise the annotation 

scheme, the better the overall classification performance. The best F1 was improved by 1.62% to 67.78% on the 9-class scheme, 

by about 6.65% to 72.81% on the 7-class scheme, and further to 74.03% on the 6-class scheme, a 7.87% absolute improvement 

from the 11-class scheme. Correspondingly, in term of average F1, the best performance was improved from around 63.5% on 

the 11-class scheme to about 71.2% on the 6-class scheme, an approximately 7.7% absolute improvement. These performance 

results could be deemed rather strong compared to two recent SOTAs: 67.9% by Cohan et al. (2019) and 70.98% by Beltagy 

et al., (2019). Concerning the latter SciBERT baseline, we will present more experimental results in Sect. 5.7. Note that the 

 

17 Models cita-01 to cita-03 are CITSEG-agnostic. This is however what most SciBERT-based SOTAs did. In fact, we also tested the CITSEG-aware versions: 

Encode the citance alone and set the feature vector as f = h, or f = [h; s] (citance = CLS, max_pool or self_attend). The performances were not good. The 

highest F1 was only around 59%, demonstrating the necessity of modelling citation context for CFC.  
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results were only indicative and not directly comparable because (1) they were obtained from our own dataset Jiang2021, 

and (2) we did CFC for each in-text citation segment, i.e., segment-wise CFC, but both SOTAs did citance-level or context-

level CFC (and used different randomly generated seeds). Our dataset absorbed Teufel2010 and Alvarez2017, which 

contain all citations in all sentences. On the contrary, Jurgens2018 did not annotate all citations in a paper, even not all 

citations in the same citance. This might give citance-level CFC a small unfair advantage. Citance-level CFC is likely to stumble 

when seeing more citances with multiple citations of different functions. This claim was partially supported by the fact that the 

CITSEG-agnostic models seq-x07/x08/x09 performed consistently worse than all CITSEG-aware models on all annotation 

schemes, and models seq-x10/x11 were most of the time worse than their CITSEG-aware counterparts. Note that model seq-

x07 simulated Beltagy et al.’s approach, so we are confident to conclude the superiority of contextualised citation-level 

CFC. More discussions are in Sect. 5.4-5.5. 

5.4. Effectiveness of Citation-Level Classification  

In this section, we try to answer part of research question Q1: Should citation modelling be done at citation level?  In Table 4, 

models cita-01/02/03 reported the CFC performances by only encoding citance and using citance representation alone, i.e., no 

context sentences were considered. This is how Beltagy et al. (2019) reported their results on the scicite dataset. On the 

contrary, models seq-x07/x08/x09 encoded the surrounding context and used context representation alone for classification. 

This is how Beltagy et al. reported their results on the Jurgens2018 dataset. A consistent phenomenon was observed across 

all four annotation schemes that the performances of the context-level CFC models, i.e., the CITSEG-agnostic models seq-

x07/x08/x09, were worse than their context-level counterparts, i.e., the CITSEG-aware models seq-07/08/09 which used the 

pooled context representation to enhance citation representation. The poor performances of CITSEG-agnostic models justified 

our statement that it is conceptually flawed to use the summarised context representation for CFC. The citance-level models 

cita-01/02/03 got even worse performance than all other models we tested. From the above observations, we can partially 

conclude that citation function classification should be done per citation rather than per citation sentence or context.  

        However, when only citance representation was used to enhance citation representation this trend seemed to disappear. 

By comparing models seq-09/10 with seq-x09/x10, it appeared that the CITSEG-agnostic counterparts performed on par with 

the CITSEG-aware models. both won in some scenarios and the performances could be said close. It seemed that in certain 

cases, citance alone could provide strong enough signals for CFC. Indeed, Beltagy et al. (2019) reported that their first SciBERT 

baseline performed very well on scicite, which contains only a single citance for each sample and thus only allows CFC at 

citance level. From the above, it seems hard to draw a convincing conclusion. But, we can still observe the fact that all (top-2) 

best-performing models on all annotation schemes came from the family where citation was properly encoded in its context, 

e.g., models seq-08 and seq-06 on the 11-class scheme, models seq-12 and hie-08 on the 9-class scheme, models hie-14 and 

hie-19 on the 7-class scheme, and models seq-01 and seq-12 on the 6-class scheme (model seq-x10 is an exception; the fact 

that its avg F1 is not competitive implies that it might not be a very stable model). Therefore, it stills seems valid to conclude 

that citation function classification should be done per citation rather than per citation sentence. 
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Table 5. Citation Function Classification Performances on Different Annotation Schemes 

Model options   Macro F1 (%) 

Model citseg ctx_type 
Encoding methods  11-class 

 

9-class  7-class  6-class 

citance context sentence  best avg std 
 

best avg std  best avg std  best avg std 

seq-01 O sequential max_pool CLS N/A  63.93 62.72 1.11 
 

66.53 63.89 1.94  70.70 69.03 1.45  74.03 70.88 1.87 

seq-02 O sequential max_pool max_pool N/A  63.21 62.61 0.45 
 

64.84 63.60 1.08  71.39 68.13 1.89  70.23 68.25 1.60 

seq-03 O sequential max_pool self_attnd N/A  64.26 62.82 1.04 
 

65.61 63.66 1.91  70.19 69.24 0.64  70.99 68.86 1.71 

seq-04 O sequential self_attnd CLS N/A  63.12 62.07 1.00 
 

65.16 63.86 1.03  68.56 67.54 1.46  69.96 68.22 1.58 

seq-05 O sequential self_attnd max_pool N/A  64.12 62.82 1.20 
 

64.69 64.19 0.47  68.86 66.80 1.62  71.56 69.05 1.85 

seq-06 O sequential self_attnd self_attnd N/A  65.12 63.05 1.60 
 

64.84 62.52 1.48  70.63 69.16 1.43  72.19 69.81 1.37 

seq-07 O sequential X CLS N/A  64.65 61.01 2.21 
 

65.38 62.20 1.78  70.35 68.28 1.33  71.48 69.75 1.07 

seq-08 O sequential X max_pool N/A  66.16 63.53 1.55 
 

66.03 62.98 2.05  69.89 67.98 1.90  70.98 69.90 1.21 

seq-09 O sequential X self_attnd N/A  63.92 62.80 0.89 
 

65.41 64.18 0.75  70.80 69.78 0.85  71.91 69.66 1.47 

seq-10 O sequential max_pool X N/A  63.93 62.72 1.11 
 

66.19 63.72 2.74  69.16 67.87 1.85  71.89 70.18 1.77 

seq-11 O sequential self_attnd X N/A  64.42 63.01 0.89 
 

66.92 64.58 1.45  68.83 67.22 1.75  71.32 69.69 1.01 

seq-12§ O sequential X X N/A  64.93 63.50 1.04 
 

67.78 64.74 1.88  70.65 69.28 1.30  73.56 70.22 2.44 

seq-x07* X sequential X CLS N/A  60.20 58.93 1.06 
 

60.28 59.34 0.87  62.74 61.68 0.94  68.07 66.20 1.73 

seq-x08 X sequential X max_pool N/A  59.54 57.89 1.40 
 

61.36 59.34 1.68  63.97 62.81 1.18  65.56 64.43 1.15 

seq-x09* X sequential X self_attnd N/A  60.55 58.72 1.22 
 

59.96 59.02 0.92  65.10 63.95 0.99  68.31 65.90 2.48 

seq-x10 X sequential max_pool X N/A  64.09 62.23 1.70 
 

65.04 63.62 1.6  68.68 67.85 0.62  73.52 69.31 3.12 

seq-x11 X sequential self_attnd X N/A  64.38 62.46 1.13 
 

67.08 64.21 2.38  69.34 67.31 1.90  69.48 68.85 0.59 

cita-x01 X citance CLS N/A N/A  58.16 56.20 1.64 
 

60.30 58.75 1.38  60.30 58.75 1.38  63.58 62.39 1.16 

cita-x02 X citance max_pool N/A N/A  57.47 55.77 1.36 
 

59.07 58.00 1.06  59.07 58.00 1.06  63.88 61.81 1.58 

cita-x03 X citance self_attnd N/A N/A  59.49 58.13 1.11 
 

56.99 56.01 1.17  56.99 56.01 1.17  62.54 61.51 0.95 

hie-01 O hierarchical SEP max_pool SEP  62.78 61.76 0.89 
 

65.39 63.24 1.40  69.18 67.35 1.50  69.39 68.42 1.25 

hie-02 O hierarchical SEP self_attnd SEP  61.42 61.42 0.96 
 

63.12 61.95 1.60  70.00 67.76 1.73  71.08 69.87 1.51 

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12 
 

65.39 63.24 1.40  69.18 67.35 1.50  71.71 69.60 1.36 

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71 
 

63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69 

hie-05 O hierarchical self_attnd max_pool SEP  63.69 63.69 2.21 
 

64.96 62.95 1.50  67.77 66.39 0.84  70.09 67.83 1.74 

hie-06 O hierarchical self_attnd self_attnd SEP  63.79 63.79 1.71 
 

63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69 

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51 
 

62.37 61.25 1.00  70.76 68.71 1.60  70.22 67.94 1.38 

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24 
 

67.49 64.51 1.97  69.53 67.47 1.73  69.77 68.24 1.33 

hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59 
 

64.69 62.92 1.16  69.38 67.66 1.49  72.11 70.07 1.8 

hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89 
 

65.45 63.11 2.21  69.45 68.75 0.41  71.40 70.02 1.03 

hie-11 O hierarchical self_attnd max_pool max_pool  64.46 62.17 1.99 
 

64.00 62.80 1.62  68.76 67.09 1.50  72.38 69.33 3.07 

hie-12 O hierarchical self_attnd self_attnd max_pool  63.43 62.26 0.83 
 

65.36 64.28 0.97  69.66 68.27 1.60  70.78 69.56 1.57 

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15 
 

64.97 63.97 0.80  70.10 67.99 1.88  71.49 69.52 1.66 

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02 
 

65.69 64.44 1.29  72.81 69.47 2.64  71.32 68.35 2.22 

hie-15 O hierarchical X max_pool SEP  61.17 59.98 1.14 
 

65.53 63.07 1.66  68.71 67.12 1.45  73.24 70.19 2.41 

hie-16** O hierarchical X self_attnd SEP  63.22 62.25 0.89 
 

65.24 63.79 1.09  69.57 67.97 1.90  71.56 70.40 1.18 

hie-17** O hierarchical X max_pool max_pool  64.56 64.16 0.39 
 

65.96 62.81 2.29  69.35 67.96 1.31  70.90 70.04 0.94 

hie-18­ O hierarchical X self_attnd max_pool  64.95 62.82 1.64 
 

66.07 63.76 1.56  70.05 68.87 0.97  72.09 69.35 2.11 

hie-19 O hierarchical X max_pool self_attnd  62.62 61.61 1.18 
 

65.35 64.16 1.08  72.39 68.40 2.47  71.89 70.48 1.04 

hie-20 O hierarchical X self_attnd self_attnd  63.15 62.39 0.60 
 

66.25 63.79 1.97  70.88 69.54 1.10  70.72 69.75 1.1 

hie-21 O hierarchical SEP X N/A  63.48 61.27 1.39 
 

65.36 64.11 0.96  69.81 68.19 1.04  72.81 70.96 1.32 

hie-22 O hierarchical max_pool X N/A  63.48 61.27 1.39 
 

66.88 63.38 2.06  69.47 67.89 1.93  72.81 70.96 1.32 

hie-23 O hierarchical self_attnd X N/A  62.55 61.09 1.05 
 

64.60 61.89 1.56  68.82 66.55 2.23  70.38 69.28 1.19 

hie-24 O hierarchical X X N/A  64.37 62.80 1.51 
 

65.68 64.97 0.73  70.44 69.01 1.29  72.07 71.21 0.70 

ni-cite w/o context 
(Zheng et al., 2022) 

 51.94 (lr = 1e-5)  52.44 (lr = 1e-5)  58.47 (lr = 5e-5)  59.83 (lr = 5e-5) 

ni-cite w/ context  52.55 (lr = 5e-5)  51.99 (lr = 5e-5)  55.92 (lr = 5e-5)  60.27 (lr = 5e-5) 

* Models seq-x07 (note: no intermediate “[SEP]”) and seq-x09 simulate the CFC approach in Beltagy et al. (2019) and Cohan et al. (2019) respectively. 

** Difference between models hie-16/18 and seq-10/11: The former takes into consideration intermediate “[SEP]” symbols.                                                     
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5.5. Effectiveness of Contextualised Encoding  

Now we try to answer the second part of research question Q1: Should citation modelling be done in context? To answer this 

question, we should look at several aspects. Firstly, consider the citance-only CITSEG-agnostic models, i.e., cita-x01/x02/x03. 

The highest F1 was only around 59%. These performances were much worse than the models which encoded citance in context, 

i.e., seq-x07/x08/x09. This demonstrated the necessity of contextualised CFC, i.e., modelling citation context for CFC. Recall 

that the best feature engineering approach by Jurgens et al. (2018) got a 54.6% F1 while BiLSTM reported a 54.3% F1 on the 

Jurgens2018 dataset (Cohan et al., 2019). Despite being not directly comparable, the results still proved the power of 

domain-specific contextualised word embeddings like SciBERT. Note that, we also ran the CITSEG-aware counterparts of 

models cita-x01/x02/x03 (not shown in Table 5), which encoded the citance and used citance representation to enhance citation 

representation (f = [h; s]). Their performances were very close to cita-x01/x02/x03, thus much worse than their contextualised 

counterparts seq-07/08/09. The results are not shown in the table as they are not our focus. Anyway, these results partially 

support our conjecture that citations should be encoded in context.  

        Secondly, there was a confirmative fact that, for all annotation schemes, the best models all encoded the whole context 

and used context representation (c) and/or citance representation (s) to enhance citation representation, i.e., the encodings of 

“CITSEG” (h). For example, the best model on the 11-class scheme seq-08 used the max-pooled context representation to 

enhance citation representation. The best model on the 6-class scheme seq-01 used “[CLS]” as the pooled context representation 

to enhance citation representation. For the 7-class scheme, hie-14 was the best model, which used both citance representation 

and context representation, for which the citation representation was pooled from the encodings of all citance words while the 

context representation was pooled from the representations of all context sentences. The only “exception” was the 9-class 

scheme, where the best model seq-12 only used citation representation. However, “CITSEG” was still encoded in its full context. 

In summary, we could argue that citations should better be encoded in context. This conclusion can be further supported by 

the fact that the contextualised citance-level models seq-x10/x11 reported unexpected strong performances but the context-

agnostic counterparts cita-x02/x03 performed very poor.  

5.6. Effectiveness of Citation Modelling Options 

It is more complex for research question Q2: What are the most effective ways of modelling and combing the representations 

of citation, citance and context? It becomes very hard for us to draw meaningful conclusions. For different annotation schemes, 

the best encoding combination (of citance pooler, sentence encoder and context pooler) has to be determined case by case. 

Using sequential context, “self_attnd” was most of the time a stronger context pooler than “max_pool” when context 

representation was used to enhance citance representation, e.g., by comparing models seq-03/06 against models seq-02/05 

respectively. However, we see that model seq-01, i.e., ctx_type = “sequential”, citance = “self_attnd” and context = 

“[CLS]”, was very strong across all four annotation schemes. This corroborates with the results of experiments on scientific 

named entity recognition, where this combination also produced highly competitive results (Eberts & Ulges, 2020; Jiang, 2021). 

It would be interesting to investigate more NLP tasks and more datasets to see whether this phenomenon was a coincidence or 

is a common law. In general, it is unfortunately unable for us to say whether “self_attnd” or “max_pool” is a better context 

pooler; more mixed behaviours happened to models seq-08/09 and seq-10/11, including models seq-x08/x09 and seq-x10/x11.  

        The same also applies to hierarchical context. No conclusions could be made to which is the better context pooler, 

“self_attnd” or “max_pool”; more mixed behaviours happened. The only regularity we find is that “self_attnd” worked better 

than “max_pool” as context pooler in the following setting: citance = “X” and sentence = “max_pool” (comparing 

models hie-18 against hie-17).  Further, we are unable to conclude from Table 5 whether “self_attnd” or “max_pool” is a better 

sentence encoder; mixed behaviours happened across all annotation schemes. To see this clearly, we need to do a bit of re-

arrangement of Table 5. See Table B1 in Appendix B, where we used upward arrow (­) or downward arrow (¯) to indicate 
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performance gain or loss when changing one option while fixing the others, a pair of upward and downward arrows (­¯) to 

indicate mixed behaviours in terms of best F1 and avg F1 or equal performances, and a yellow trèfle (§) to indicate the cases 

where “[SEP]” performed the best as sentence encoder. For the latter case, it is also difficult to conclude whether “[SEP]” is a 

good sentence encoder. However, what we can confirm is that “[SEP]”, as sentence encoder, sometimes brought competitive 

performances, such as models hie-15 on the 6-class scheme, and hie-04/06 on both the 7-class and 6-class schemes (See the 

yellow trèfles in Table B1). It would be interesting to investigate if we could further pre-train “[SEP]” to make it a better 

sentence encoder, for example, by following the pre-training paradigm used for long document extractive summarisation (Xu 

et al., 2020). 

        Concerning citance pooler, still we are unable to answer which is better, “self_attnd” or “max_pool”. To see this better, 

we need to re-arrange the rows about models seq-04/05/06 against seq-01/02/03 respectively. See Table B2 in Appendix B. 

The only regularity we find is that “max_pool” worked better than “self_attnd” as citance pooler together with “[CLS]” 

as context pooler. This strengthens our conjecture on the compatibility between the settings citance = max_pool” and 

context = “[CLS]”. Similarly, there were mixed behaviours with hierarchical context. The only regularity occurred when 

context = “X”, where “max_pool” outperformed “self_attnd” as citance pooler. Overall, “max_pool” outperformed 

“self_attnd” in more cases as citance pooler (Table B2). Finally, we may be able to conclude that, across both sequential and 

hierarchical contexts, it is NOT effective to integrate citance representation alone with citation representation, when the 

latter is properly encoded in its context (comparing model seq-12 against seq-10/11, model hie-24 against hie-21/22/23). Often, 

the best (top-2) models were either the models using context representation to enhance citation representation or the models 

integrating both context and citance representations, with only two exceptions from model seq-12 on the 9-class and 6-class 

schemes. Anyway, even in these two exceptional cases, the citance tokens were contextually encoded too. This re-iterates the 

importance and usefulness of encoding citation in its context. 

5.7. Additional Experiments on NI-Cite 

To further demonstrate the necessity of modelling citations in their contexts, this section presents our additional experimental 

results on the NI-Cite dataset (Figure 3). We reported the top-3 best performances (with suffices “max”, “2nd” and “3rd”), 

the mean (with suffix “avg”) and median (with suffix “medn”) of all CITSEG-aware models with a sequential context (with 

prefix “seq-??”), and the mean and median of all CITSEG-aware models with a hierarchical context (with prefix “hie-??”). We 

also reported the max, mean and median performances of all five CITSEG-agnostic models with a sequential context (with 

prefix “seq-x??”) and the performances of the three CITSEG-agnostic citance-level models (cita-01/02/03). For comparison 

purpose, the rightmost two columns reported the performances of the two baseline models of Zhang et al. (2022) (with prefix 

“ni-cite”): One ignores citation context (with suffix “w/o ctx”), and the other encodes context sentences (with suffix “w/ ctx”).   

        The best F1 score we achieved was 83.21%. It was almost on par with the best performances reported by running the 

method of Zhang et al. (2022) using their best seed, which was 83.61% without considering citation context (the “ni-cite w/o 

context” column in Figure 3). We also see that the three citance-level models, cita-x01 to cita-x03, were among the top models, 

surpassing their contextualised counterparts, i.e., seq-x07 to seq-x11. These results implies that the NI-Cite dataset (Zhang 

et al., 2022), similarly the scicite dataset (Cohan et al., 2019) it extends on, is “problematic” in the sense that the citations 

could be recognised using the citance alone. Indeed, the scicite dataset, as we discussed in Sect. 3, does not contain citation 

context information. We guess that the dataset might be annotated using citance alone. Another nuance is that scicite and 

its extended version NI-Cite both assign one label to each citance. Therefore, it did not help much by encoding citation 

context, although the best performance of Zhang et al. (2022) was improved a bit to 84.06% by searching the best learning rate. 

This may also explain why our citance-level models slightly outperformed citation-level models on NI-Cite, although the 

latter proved to be much stronger on Jiang2021 (described in the next paragraph). Note that, our contextualised CFC models 
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were not hyperparameter-tuned; due to high computational overloads, we used the same learning parameters that were used in 

the experiments on Jiang2021, i.e., lr_pret = 5e-5 and lr_cust = 5e-4. Excluding the impact of random seed, we also 

conjecture that the slight performance disadvantage might also be caused by the fact that, for the NI-Cite dataset with the 

easiest 3-class annotation scheme, the 3-layer MLP used in our models might be harder to learn than the linear classifier used 

by Zhang et al. Anyway, our contextualised CFC models were competitive.  

        On the contrary, the picture on Jiang2021 was totally different (see the last two rows in Table 5). We found that acc_step 

= 1 always produced the best performances on Jiang2021. We can see that Zhang et al.’s methods reported extremely poor 

performances, even after extensive hyperparameter tuning. This not only demonstrated that citation context provides 

indispensable information for CFC, but also proved that an appropriate citation context for CFC can  often be quite large. Again, 

we can claim the importance that citations should be encoded in context and that citation function classification should 

be done at citation level rather than per citance (answers for Q1). In addition, citation function annotation should also be 

done at context level rather than relying on citance alone. Recall that Zhang et al.’s method dealt with only one context sentence 

at each side of a citance, while our methods dealt with the 2 left context sentences and 3 right context sentences. Indeed, it is a 

difficult problem to decide the proper context size. The ideal is to determine a “dynamic” context, i.e., the minimal context 

around the citance which provides enough information for determining the citation function (Abu-Jbara et al., 2012; Aggarwal 

et al., 2016). We leave this line of research to future work. 

 

 

Figure 3. CFC Performances on the NI-Cite Dataset. 
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* Note: The last two columns “ni-cite w/o ctx” and “ni-cite w/ ctx” are the baseline method by Zhang et al. (2022) which do not consider citation context and 

encode context sentences respectively. There were finetuned by different learning parameters and reported using the best parameter lr = 5e-6 for both baselines.

* *
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6. Analysis  

In this section, we take a deeper dive into the performances of the CFC models to see what implications we can derive for 

different scientific analysis tasks and the potential directions of improving CFC to suit the needs of these tasks.  

6.1. Per-Class Performance Analysis 

Table 6-9 present the per-class performances of a few selected models that performed well with at least one annotation scheme. 

Note that the first three models in each table are the top-3 models on the corresponding annotation scheme. Citation functions 

that are large or cognitively less complex were easier to recognise, such as neutral citations (“Neutral”/“Background”) and 

usage citations (“Usage”/“Uses”). Teufel et al. (2006b) and Cohan et al. (2019) made similar observations. For example, the 

best models for neutral citations achieved the highest per-class performance 78.85% F1 with the 11-class scheme (model hie-

08 in Table 6), 79.66% F1 with the 9-class scheme (model hie-14 in Table 7), 82.64% F1 with the 7-class scheme (model seq-

06 in Table 8), which was close to the highest per-class performance 83.45%, and 79.88% F1 with the 6-class scheme. “Future” 

was a small and easy class. Indeed, we found the linguistic features were more obvious than most other categories for re-

annotation. The highest F1 could reach 90.91% on the 11-class scheme (model seq-06) and the 9-class scheme (model hie-18), 

and 90.32% with 100% precision on the 7-class scheme (model seq-06, seed = 25603). This allows accurate bibliometric 

analysis of the impact and role of future work in scientific development (Teufel, 2017; Hao et al., 2020).  

        “Basis” was a difficult citation function. Language patterns like “following <cited>” and “based on <cited>” might cause 

confusion between “Basis” and “Usage”. Human annotators often disagreed on this class too. Indeed, Teufel (2010) reported a 

low inter-annotator agreement on “PBas” (α = 0.41) and “PModi” (α = 0.55)18. This low inter-annotator agreement was partially 

why we decided to also check all Teufel2010 instances that were merged into our new dataset. Concerning algorithmic 

classification, good models could achieve 66.67% F1 on the 11-class scheme (model seq-08 in Table 6). Note that the best 

performance 69.70% F1 was obtained by a citation-agnostic model seq-x10. This was probably because usually one approach, 

i.e., one CITSEG, in a citation sentence was “based on” the citing paper. On the 7-class scheme, we were excited to see an 

obvious performance improvement to 70% F1 (model seq-01 in Table 8, “Extends” = “Basis”). For “Motivation” we could get 

higher than 71.70% F1. This is promising. The best performance obtained for the motivation class was 73.21% F1 on the 6-

class scheme (model hie-10, the “best of all models” column in Table 9). The overall best performing models, in term of macro 

F1, could not produce the best performances for “Motivation”. In summary, these results are promising because they make it 

possible to screen out perfunctory citations using a good “Neutral”/“Background” model or to keep organic citations (Jochim 

& Schütze, 2012) using good “Usage”/“Uses” and/or “Basis”/“Extends” models as well as “Motivation” models. This is an 

important first step for semantic analysis of scientific knowledge flows (Ghosal et al., 2022; Jiang et al., 2022). 

        Comparison or contrast functions often recorded good performances. With the 11-class scheme (Table 6), we got high F1 

scores for “CoCoRes” (78.12%, by model seq-12) and “CoCoGM” (71.83%, by model seq-08). With the 9-class and 7-class 

schemes, the F1 scores were able to reach 77.23% (model seq-12 in Table 7) and 77.84% (model hie-21, the “best of all models” 

column in Table 8) respectively. We see that the “Background” performance on the 7-class scheme was greatly improved to 

83.45%. This seemed to empirically support the reason for merging “Weakness” into “Background” that we stated in Sect. 3, 

where we also explained the cognitive plausibility of doing so. On the contrary, the 6-class scheme merged both “Weakness” 

and “Similar” (including “Support”) into the comparison classes (Jurgens et al., 2018). The performance on “Background” was 

about 3.5% worse compared to the 7-class scheme. We believe that this again gave partial empirical support to the decision of 

absorbing “Weakness” into “Background”. However, it did not worsen the performance on “ComOrCon” by merging both 

“Weakness” and “Similarity” into it. This result is promising to applications that do not distinguish similarity from contrast 

 

18 Krippendorff’s alpha (α): https://en.wikipedia.org/wiki/Krippendorff%27s_alpha.  
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and difference between two studies. Cognitively, both similarity and comparison functions (also including the supporting class 

“Support”) imply high topical or technical relatedness between studies, so these results are very useful for building academic 

recommendation systems to identify related studies for many down-stream applications, such as assisting peer review and 

performing systematic review.  

        A related class was “Support” (equiv. Teufel et al.’s “PSup” class), which was also the most difficult class. The best F1 

values on “Support” were only 50% and 51.16% on the 11-class and 9-class schemes respectively. Even such low performances 

were rarely seen. Similarly, Teufel (2010) reported a 0.47 F1 by her machine learning algorithm on “PSup” and the lowest 

inter-annotator agreement 0.27 among all her classes. Since “Support” caused an extremely low recognition rate, it was 

acceptable to merge it into other classes, but Table 8 shows that simply absorbing “Support” into “Similar” made it even more 

difficult to correctly recognise the similarity class. According to Teufel’s annotation guidelines, there are two distinct meanings 

of “PSup”/“Support”, i.e., compatibility between scientific knowledge claims or computational plug-in-ability between 

approaches (viewed as technical compatibility), which have quite different language uses. Therefore, we tried to re-annotate 

all “Support” instances into other categories and re-ran all experiments. Supplementary Sect. C presents these additional results. 

        “CoCoXY” was another confusing category. One possible reason is that, for certain cases, we need a meta-statement about 

comparison in a long context, which however often falls out of our context window. Ex. 3 in Table 1 illustrates this case, where 

the first sentence is the meta-statement. Without seeing such a meta-statement, the “CoCoXY” instance could be mis-recognised 

as either “CoCoGM” or “Neutral”. This class often confuses with Teufel’s Rule 40 about “List of Approaches”, which says 

“Neut(ral)” should be applied if no meta-statement of comparison exists. Although in certain cases comparison can be inferred 

from juxtaposed citations, Teufel’s annotation guideline says that only explicit comparison expressions qualify “CoCoXY”. 

Ex. 5 in Table 1 illustrates the latter case. We followed Teufel’s principle in our own annotation guidelines. 

6.2. No Single Model Fits All  

An important observation is that no single model variant and no single trained model (with a specific seed) could beat others 

on all citation functions or on all annotation schemes. This phenomenon is especially obvious on the 6-class scheme (Table 9), 

where the model with the best overall performance (74.03% F1) was not the best model in term of per-class performance for 

any citation function. On the contrary, the second best model (73.56% F1) won on the “Future” class, while the third best model 

(73.22% F1) won on “Background”, “ComOrCon” and “Uses” classes by large margins. By now, we can conclude that no 

single CFC model is robust enough for performing all types of scientific analysis tasks based on citation context analysis. 

Our opinion is that, for each different task, it is better to choose or develop a bespoke CFC model tailored to that task.  

        For example, the best CFC model for “Future” should be chosen to analyse the scientometric value of the future work 

sections of a paper (Teufel, 2017; Hao et al., 2020). To bibliometrically analyse the usage of scientific entities, such as 

algorithm usage (Wang & Zhang, 2020), method usage (Wang et al., 2022), software usage (Li et al., 2019), or dataset usage 

(Fan et al., 2022), we will need to turn to the best “Usage” model. However, the annotation schemes adopted in this study are 

rooted in Teufel et al.’s 12-class scheme, and does not annotate the type of cited entity, such as algorithm, method, software, 

and dataset etc. To facilitate fine-grained scientometric analysis, it would be better to employ a two-level annotation scheme 

(Lu et al., 2014; Zhang et al., 2021) or multi-level annotation scheme (Budi & Yaniasih, 2022), which consider not only why 

something is cited but also what specific scientific entity is cited. To analyse scientific research lineage (Ghosal et al., 2022) 

or extract technology dependency roadmap (Zha et al., 2019; Yin et al., 2021) we will need a strong CFC model for 

“Basis”/“Extends” citations. The best model across all four annotation schemes reported a 70.00% F1. While the overall 

performance can be said good, there is still a problem of trade-off between precision and recall. As this is the most important 

class (Lu et al., 2014; Valenzuella et al., 2015), there is large room of improvement and demand of further research. In Sect. 

7.1, we will see how a simple ensemble method could improve the performance to around 75% F1.  
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        For the purpose of scientific ranking, we may wish to either suppress incidental citations (Valenzuella et al., 2015) or 

remove such perfunctory citations (Jochims & Schütze, 2012). Luckily, “Future” and “Neutral”/“Background” both reported 

good performances. Recall that the best “Background” model absorbed “Weakness” and reported an 83.45% F1. We believe 

that it is valid to rely on citation function classification to screen out incidental/perfunctory citations, or weight citations 

based on citation function for scientific ranking. In addition, it would be interesting to do main path network analysis 

(Jiang et al., 2020) in a citation semantics-aware way. To do this, we can choose to keep only organic citations by use of strong 

“Usage” and “Basis”/“Extends” modes. Optionally, we can also only rely on good “Basis”/“Extends” models if we emphasise 

on the “evolutionary v.s. juxtapositional” aspect of citations (Jochims & Schütze, 2012), which characterizes whether a citing 

study “builds on the cited work” or “presents an alternative to the cited. Jiang and Liu (2022) presented an initial attempt of 

this idea. 
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Table 6. Per-Class Performances of Selected Models with the 11-Class Scheme 

ID (seed) seq-08 (5171)  seq-06 (47353)  hie-18 (13249)  hie-08 (32491)  seq-12 (5171)  seq-11 (47353)  seq-01(13249)  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 68.50 65.17 66.16  67.74 64.05 65.12  67.10 64.17 64.95  65.18 65.31 65.02  65.59 65.11 64.93  65.28 64.00 64.42  65.91 63.28 63.93  -- -- -- 

Future 88.24 88.24 88.24  93.75 88.24 90.91  93.33 82.35 87.50  66.67 82.35 73.68  70.00 82.35 75.68  87.50 82.35 84.85  81.25 76.47 78.79  93.75 88.24 90.91 

Neutral 72.24 78.16 75.08  74.76 79.86 77.23  75.60 75.09 75.34  78.19 79.52 78.85  77.48 79.86 78.66  75.33 78.16 76.72  77.70 78.50 78.10  78.19 79.52 78.85 

Weakness 65.52 59.38 62.30  70.37 59.38 64.41  73.91 53.12 61.82  65.52 59.38 62.30  71.43 46.88 56.60  66.67 56.25 61.02  75.00 46.88 57.69  76.92 62.50 68.97 

CoCoXY 69.23 58.06 63.16  60.00 48.39 53.57  59.46 70.97 64.71  57.58 61.29 59.38  69.23 58.06 63.16  51.61 516.1 51.61  58.82 64.52 61.54  78.57 70.97 74.58
*
 

CoCoGM 67.11 77.27 71.83  70.97 66.67 68.75  72.41 63.64 67.74  63.38 68.18 65.69  62.16 69.70 65.71  67.65 69.70 68.66  52.53 78.79 63.03  67.11 77.27 71.83 

CoCoRes 65.62 67.74 66.67  62.50 80.65 70.42  81.82 58.06 67.92  63.64 67.74 65.52  75.76 80.65 78.12  62.50 80.65 70.42  68.75 70.97 69.84  80.00 77.42 78.69 

Similar 67.74 50.00 57.53  60.87 66.67 63.64  60.00 57.14 58.54  68.42 61.90 65.00  59.18 69.05 63.74  67.57 59.52 63.29  60.98 59.52 60.24  71.05 64.29 67.50 

Support 46.15 30.00 36.36  46.15 30.00 36.36  34.62 45.00 39.13  36.84 35.00 35.90  38.10 40.00 39.02  42.11 40.00 41.03  29.41 25.00 27.03  47.53 55.00 51.16 

Motivation 65.00 67.24 66.10  59.42 70.69 64.57  51.85 72.41 60.43  65.08 70.69 67.77  62.90 67.24 65.00  61.29 65.52 63.33  74.07 68.97 71.43  65.71 79.31 71.88 

Usage 77.94 70.20 73.87  76.39 72.85 74.58  71.71 72.19 71.95  77.62 73.51 75.51  77.21 69.54 73.17  75.54 69.54 72.41  79.86 73.51 76.55  79.17 75.50 77.29 

Basis 63.16 70.59 66.67  70.00 41.18 51.85  63.33 55.88 59.38  74.07 58.82 65.57  58.06 52.94 55.38  56.25 52.94 54.55  66.67 52.94 59.02  71.88 67.65 69.70* 

* This result comes from model hie-13. 

** This result comes from model seq-x10. 

 

Table 7. Per-Class Performances of Selected Models with the 9-Class Scheme 

ID (seed) seq-12 (47353)  hie-08 (47353)  seq-11 (47353)  hie-18 (13491)  seq-08 (32491)  hie-14 (5171)  hie-14 (25603)  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 69.25 67.13 67.78  67.51 67.89 67.49  68.24 66.31 66.92  72.21 62.51 66.07  70.71 63.02 66.03  67.90 64.62 65.69  69.37 63.58 65.67  -- -- -- 

Future 93.33 82.35 87.50  86.67 76.47 81.25  86.67 76.47 81.25  93.75 88.24 90.91  92.31 70.59 80.00  83.33 88.24 85.71  76.19 94.12 84.21  93.75 88.24 90.91 

Neutral 77.31 79.94 78.60  76.53 73.46 74.96  46.88 75.93 76.40  73.94 85.80 79.43  74.86 83.64 79.01  76.88 75.93 76.40  73.88 86.42 79.66  73.88 86.42 79.66 

Weakness 65.38 53.12 58.62  60.61 62.50 61.54  66.67 56.25 61.02  94.44 53.12 68.00  70.00 43.75 53.85  78.26 56.25 65.45  62.50 46.88 53.57  80.00 62.50 70.18 

Comparison 68.81 80.41 77.23  63.25 76.29 69.16  64.55 73.20 68.60  60.00 71.13 65.09  67.31 72.16 69.65  67.77 84.54 75.23  66.98 73.20 69.95  68.81 80.00 77.23 

Similar 62.79 64.29 63.53  61.36 64.29 62.79  60.87 66.67 63.64  64.86 57.14 60.76  58.54 57.14 57.83  57.78 61.90 59.77  68.57 57.14 62.34  76.47 61.90 68.42 

Support 45.45 50.00 47.62  50.00 55.00 52.38  52.94 45.00 48.65  30.00 30.00 30.00  61.54 40.00 48.48  46.67 35.00 40.00  50.00 35.00 41.18  66.67 40.00 50.00 

Motivation 59.46 75.86 66.67  62.69 72.41 67.20  59.46 75.86 66.67  79.17 65.52 71.70  68.42 67.24 67.83  69.23 62.07 65.45  79.55 60.34 68.63  79.17 65.52 71.70 

Usage 79.84 68.21 73.57  76.47 68.87 72.47  78.26 71.52 74.74  82.26 67.55 74.18  81.68 70.86 75.89  71.15 73.51 72.31  80.00 66.23 72.46  76.13 78.05 77.12 

Basis 65.38 50.00 56.67  70.00 61.76 65.62  67.86 55.88 61.29  71.43 44.12 54.55  61.76 61.76 61.76  60.00 44.12 50.85  66.67 52.94 59.02  82.61 55.88 66.77 
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Table 8. Per-Class Performances of Selected Models with the 7-Class Scheme 

ID (seed) hie-14 (13249)  hie-19 (13249)  seq-02 (32491)  seq-01 (47353)  seq-12 (32491)  seq-06 (25603)  seq-06 (13249)  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 73.04 73.04 72.81  73.72 71.26 72.39  71.18 71.80 71.39  76.77 66.83 70.77  70.00 71.57 70.65  74.60 68.23 70.63  70.08 70.66 70.35  -- -- -- 

Future 82.35 82.35 82.35  86.67 76.47 81.25  82.35 82.35 82.35  100.0 58.82 74.07  72.22 76.47 74.29  100.00 82.35 90.32  76.47 76.47 76.47  93.33 82.35 87.50 

Background 80.28 81.18 80.73  80.91 83.99 82.37  81.34 82.02 81.68  77.25 86.80 81.75  83.67 80.62 82.12  81.08 84.27 82.64  82.15 81.46 81.81  80.10 87.08 83.45 

ComOrCon 83.12 65.98 73.56  73.96 73.20 73.58  70.71 72.16 71.43  71.29 74.23 72.73  76.40 70.10 73.12  59.35 75.26 66.36  73.12 70.10 71.58  81.82 74.23 77.84 

Similar 63.08 66.13 64.57  64.41 61.29 62.81  63.16 58.06 60.50  58.62 54.84 56.67  55.56 64.52 59.70  58.93 53.23 55.93  54.10 53.23 53.66  63.08 66.13 64.57 

Motivation 61.43 74.14 67.19  62.90 67.24 65.00  66.67 65.52 66.09  68.52 63.79 66.07  61.19 70.69 65.60  71.70 65.52 68.47  68.25 74.14 71.07  80.85 65.52 72.38 

Uses 76.32 76.32 76.32  79.58 74.83 77.13  77.93 74.83 76.35  80.95 67.55 73.65  75.32 76.82 76.07  79.71 72.85 76.12  76.47 77.48 76.97  83.85 72.19 77.58 

Extends 64.71 64.71 64.71  67.14 61.76 64.62  56.10 67.65 61.33  80.77 61.76 70.00  65.62 61.76 63.64  71.43 44.12 54.55  60.00 61.76 60.87  80.77 61.76 70.00 

 

 

Table 9. Per-Class Performances of Selected Models with the 6-Class (Jurgens2018) Scheme 

ID (seed) seq-01 (47353)  seq-12 (5171)  hie-15 (13249)  hie-15 (5171)  seq-06 (5171)  hie-18 (47353)  hie-19 (25603))  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 77.27 71.53 74.03  75.86 71.82 73.56  72.80 73.81 73.24  72.80 72.17 72.17  75.27 69.69 72.19  75.91 70.06 72.09  72.34 71.55 71.89  -- -- -- 

Future 92.86 76.47 83.87  93.33 82.35 87.50  83.33 88.24 85.71  81.25 76.47 78.79  8667 76.47 81.25  82.35 82.35 82.35  76.47 76.47 76.47  88.24 88.24 88.24 

Background 75.00 78.70 76.81  75.29 79.01 77.11  78.92 80.86 79.88  75.83 77.47 76.64  74.71 80.25 77.38  76.21 73.15 74.65  77.13 78.09 77.61  78.92 80.86 79.88 

ComOrCon 73.37 76.44 74.87  73.80 72.25 73.02  77.22 72.77 74.93  72.19 70.68 71.43  71.07 73.30 72.16  62.55 82.20 71.04  73.23 75.92 74.55  76.68 77.49 77.08 

Motivation 67.24 67.24 67.24  61.90 67.24 64.46  61.54 68.97 65.04  55.84 74.14 63.70  72.00 62.07 66.67  72.55 63.79 67.89  62.30 65.52 63.87  75.93 70.69 73.21 

Uses 78.26 71.52 74.74  77.78 74.17 75.93  78.23 76.16 77.18  78.36 69.54 73.68  76.81 70.20 73.36  84.55 68.87 75.91  77.14 71.52 74.23  76.97 77.48 77.23 

Extends 76.92 58.82 66.67  73.08 55.88 63.33  57.58 55.88 56.72  73.33 64.71 68.75  70.37 55.88 62.30  77.27 50.00 60.71  67.74 61.76 64.62  77.78 61.76 68.85 
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7. Ensembling 

In Sect. 6.2, we discussed that there was no single best model that worked the best on all citation function annotation schemes 

for all citation functions. We saw a seesaw phenomenon that, typically, when a model worked well on some functions it became 

less effective on the remaining. From Sect. 6.1 sometimes the best model in term of overall performance could not produce the 

best performance for any citation function. The best performances for different functions could only be obtained by different 

models. In addition, we also saw drastic differences in the behaviours of different models, i.e., the prediction results of different 

models bore high degree of diversity. These observations are all the basis of utilising multiple trained models to build an 

ensemble classifier to achieve better CFC performance. This section presents our preliminary results in this direction. Figure 4 

illustrates the idea of the naïve ensemble classifier. Refer to Zhou (2014) for more details of ensemble learning. 

         

 

Figure 4. Naïve Ensemble Model for Citation Function Classification 

 

7.1. Building Ensembles  

The first step was base classifier selection. Recall that, we proposed in total 36 model variants, i.e., seq-01 to seq-12, and hie-

01 to hie-24. For each model variant, we trained five models with five seeds, each trained with 20 epochs. We obtained one 

best trained model for each seed and each model variant according to validation performance. There were in total 5 ´ 36 = 180 

trained models as base classifiers. To build the ensemble classifier, we first filtered the base classifiers according to (either 

overall or per-class) test F1 score by adjusting performance threshold such that no less than 20 models were kept as candidate 

base classifiers. Then we sorted the base classifiers in descending order of their performances (i.e., test F1 score) and chose the 

top T models as the base classifiers. Note that, this is why we call our approach naïve ensemble because typically ensembling 

choices need be made based on analysing classifier diversity. However, we skipped this step but simply chose the top T as base 
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classifiers. This simplification, or naïve treatment, might cause some problems when base classifiers have similar behaviours. 

However, we will see that this naïve ensemble method worked pretty well most of the time.  

        The second part of the ensemble approach was the combiner. We left more in-depth study of ensembling to future work 

but focused on the simplest approach, hard majority voting. This is the second reason we call our approach naïve ensemble. 

Please refer to Zhou (2014; Ch. 4) for details about different combination methods. Here, three types of information should be 

considered to derive ensemble decisions: (1) predictions of each base classifier, i.e., the predicted class labels, (2) base 

classifier’s confidence, i.e., the posterior probabilities of each base classifier for each instance, and (3) base classifier’s 

reliability, i.e., the overall performances of each base classifier. The last two types of inputs were used to break ties when two 

or more classes got the same number of votes. In case of ties, the accumulated confidence for each base classifier was used 

first, and if in rare cases ties still happened, then base classifier reliability was used to break ties. From the top-T base classifiers, 

we selected K (K = 2, 3, …, T) from them in descending order of their performances to build ensembles and found the best K 

which produced the best ensemble performance. We were aware that we did by no means exhaust all possibilities of choosing 

K base classifiers for the purpose of building ensemble; there should be !!
" possible ways to combine K base classifiers out of 

a pool of T models. Note that, exhaustive searching is usually avoided by anlaysing classifier diversity. Please refer to Zhou 

(2014; Ch. 5) for details about classifier diversity. An in-depth analysis of the various available ensembling choices deserves a 

separate paper, so we leave this line of research to future work.   

7.2. Ensemble Results  

Experiments were done on each annotation scheme targeting at improving either the overall CFC performance or the CFC 

performance of difficult functions, e.g., “Basis”, “Motivation”, “Similar”, “Support”, “Weakness”. In addition, we also tested 

“Future” as this class also has a special bibliometric analysis purpose. To improve the overall performance, base classifiers 

were selected, filtered, and sorted according to macro F1. When targeting at improving the recognition rate of a specific function, 

base classifiers were selected, filtered, and sorted according to per-class F1 of the function. T was set to 20 in all experiments. 

Table 10 summarises the results of each ensemble classifier together with the corresponding best K. We see that our naïve 

ensemble method brought in non-trivial performance boosts to almost all cases, except on the “Future” class with the 9-class 

and 8-class scheme. We reported a small performance drop in the former case and recorded an ensemble performance on par 

with the best base classifier in the latter case. We conjecture that this might be caused by not performing classifier diversity 

analysis. “Future” was the class gaining the highest recognition rate. High recognition rate means relatively low classifier 

diversity, which in turn may bring adverse impact rather than positive impact on ensemble performance (Sesmero et al., 2021).  

        Huge improvement happened to the difficult classes, e.g., raising the performance of “Weakness” to 75.88%, “Similar” to 

72.94%, and the important “Motivation” class and “Basis” class to 77.31% and 75.41% respectively. On all these four classes, 

the performance improvements were very significant. Although the biggest improvement happened to “Support”, which 

recorded a 9.3% absolute improvement (a 18.15% relative improvement) to 59.46% F1, the performance was still too low, 

which re-iterates the importance of treating the annotation and recognition of “Support” (in the sense of “mutual compatibility”) 

relationships as a specific machine learning task, as in the recent work by Nicholson et al. (2021). Obviously, we could further 

merge the models trained on various annotation schemes, if the annotation schemes share the same class. We shall leave further 

analysis to future work. Note that, all our base classifiers were multi-class CFC models, which were trained in a multi-class 

way but were used as binary classifiers. If binary CFC models were developed, we should be able to anticipate even better 

performances. In addition, the multi-class models developed in the current study should be good starting points for training the 

binary CFC models bespoke to specific citation functions. Overall, these results are very promising as they prove that decent 

recognition performances are achievable by contextualised citation modelling based on cutting edge deep learning and machine 

learning techniques. The ensemble models with decent performances for “Basis”, “Usage”, “Motivation”, and “Similar” classes 



 

28 

allow us to perform various types of scientific analysis tasks that were discussed in Sect. 6.2. This would be one very important 

and interesting future direction.  
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Table 10. Performances of Naïve Ensembles of Citation Function Classification Models 

 11-class    9-class    7-class    6-class    

 best model  best ensemble   best model best ensemble   best model best ensemble   best model best ensemble   

 P R F1 P R F1  K  P R F1 P R F1  K  P R F1 P R F1  K  P R F1 P R F1  K  

Macro Avg 68.50 65.17 66.16 72.76 68.30 69.98  19  69.25 67.13 67.78 74.17 67.77 70.40  5  73.04 73.04 72.81 76.71 74.80 75.66  5  77.27 71.53 74.03 78.63 74.61 76.47  6  

Future 93.75 88.24 90.91 100.0 88.24 93.75  9  93.75 88.24 90.91 100.0 82.35 90.32  5*  93.33 82.35 87.50 93.33 82.35 87.50  4  88.24 88.24 88.24 100.0 88.24 93.75  15  

Neutral/Background 78.19 79.52 78.85 78.06 84.98 81.37  16  73.88 86.42 79.66 75.80 87.96 81.43  19  80.10 87.08 83.45 81.94 87.92 84.82  7  78.92 80.86 79.88 78.20 83.02 80.54  3  

Weakness 76.92 62.50 68.97 78.57 68.75 73.33  3  80.00 62.50 70.18 84.62 68.75 75.86  9  -- -- -- -- -- --  --  -- -- -- -- -- --  --  

Similar 71.05 64.29 67.50 72.09 73.81 72.94
  3**  76.47 61.90 68.42 72.50 69.05 70.73  7  63.08 66.13 64.57 73.68 67.74 70.59  2***  -- -- -- -- -- --  --  

Support 47.53 55.00 51.16 64.71 55.00 59.46  4  66.67 40.00 50.00 64.71 55.00 59.46  14  -- -- -- -- -- --  --  -- -- -- -- -- --  --  

Motivation 65.71 79.31 71.88 75.41 79.31 77.31  9  79.17 65.52 71.70 75.86 75.86 75.86  5  80.85 65.52 72.38 75.86 75.86 75.86  10  75.93 70.69 73.21 78.18 74.14 76.11  7  

Usage/Uses 79.17 75.50 77.29 82.52 78.15 80.27  12  76.13 78.05 77.12 84.29 78.15 81.10  11  83.85 72.19 77.58 82.64 78.81 80.68  15  76.97 77.48 77.23 82.61 75.50 78.89  17  

Basis/Extends 71.88 67.65 69.70 80.00 70.59 75.00  5  82.61 55.88 66.77 81.48 64.71 72.13  5  80.77 61.76 70.00 88.00 64.71 74.58  10  77.78 61.76 68.85 85.19 67.65 75.41  5  

* Here we reported the only performance drop from the experiments on “Future” on the 9-class scheme, and no performance improvement on the 7-class scheme. 
** This result was reported after removing a duplicate model (hie-18), i.e., a model which makes 100% the same predictions as another model. Without removing it, the performance degraded.  
*** Hard voting worked with even two base classifiers because we also considered base classifiers’ confidence and reliability to break ties.  
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8. Concluding Remarks 

This paper studied contextualised segment-wise citation function classification and analysed the implications of the results for 

scientific analysis applications. Several contributions were made. The first contribution was a larger citation context dataset 

that was created by merging and re-annotating six datasets in the computational linguistics domain whose annotation schemes 

were identified partially mappable by a critical review. The new dataset contains 3356 citation contexts, 4784 in-text citations 

and 3854 citation segments (consecutive block of in-text citation strings). The new dataset has three-fold prominent benefits: 

(i) The important minority classes are at least doubled, making it better suit deep learning, (ii) the computational linguistics 

domain is better represented by covering a wide time range from early 1990s to late 2010s, and (iii) the availability of full 

citation contexts allows for the development of strong citation function classification algorithms based on better citation 

modelling. Secondly, we performed extensive experiments to study the effective ways of citation modelling – the main research 

question to answer in this study. To do this, we proposed a series of contextualised segment-wise citation function classification 

models based on SciBERT by exploring a comprehensive set of options for modelling and combining the feature representations 

of in-text citation (segment), citation sentence and citation context. New states of the art were achieved. The best model reported 

a 66.16% macro F1 on the 11-class scheme and improved it to 74.03% on the 6-class scheme.  

        Concerning the main research question, we were able to empirically conclude that citation function classification should 

be done at citation level, i.e., by modelling individual citation (segments), rather than per citation sentence or context. Notably, 

ignoring citation representation led to very poor performance most of the time, and using citation representation alone produced 

surprisingly competitive results in many cases. Experiments also justified the importance of contextualised citation modelling, 

i.e., citations should better be encoded in context. This also means that often the best performances were only achievable by 

appropriately modelling citation sentence and/or context into citation representation. However, it was hard to conclude what 

are the consistently effective ways of modelling and combining the representations of in-text citations, citation sentences and 

citation contexts. They had to be decided case by case for different annotation schemes. Even though, we were able to observe 

some minor patterns. For example, “self_attnd” was most of the time a stronger context pooler than “max_pool” to enrich 

citation representation in case of sequential context. On the contrary, “max_pool” was a better citance pooler than “self_attnd” 

when “[CLS]” was used as context pooler.  

        An in-depth per-class performance analysis revealed that large functions like the neutral and usage citations got the best 

and most stable results. The weakness class was more difficult because the weak point of something is often pointed out after 

a neutral description in the citation context, which re-iterates the necessity of contextualised citation function classification. 

Two citation functions were difficult to recognise: (i) functions whose language expressions overlap other categories like 

similarity v.s. usage citations, and (ii) functions whose definitions embrace two or more distinct meanings such as the citation 

relation about mutual support. The per-class performance analysis also pointed out an important reality of citation function 

classification: NO single best general-purpose citation function classifier exists for all citation functions and all scientific 

analysis tasks. For each task, a bespoke model tailored to a specific function is needed. Good news was that, thanks to the 

versatility of well-performing models, we were able to build a naïve ensemble model for citation function classification, which 

significantly improved not only the overall performance but also the performances of all difficult classes. We believe that there 

is much room to explore in this direction. 

        In summary, we were able to conclude that, although not perfect for all citation functions, existing citation function 

classification models allow for a wide range of scientific applications. For example, the best models were extremely strong in 

screening out incidental or perfunctory citations, such as citations about neutral description, background introduction and future 

work etc. This would allow us to perform scientific knowledge flow analysis and academic ranking in a semantics-rich way 

based on citation context analysis. Citations about comparison or contrast were able to be recognised rather correctly, so would 
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be promising to be applied to recommending related studies to facilitate many useful applications such as peer review and 

systematic review etc. Our citation function classification models also obtained decent performances on citations about 

technical extension or ideational basis or citations about inspiration and motivation. Especially our naïve ensemble models 

significantly improved performances for these two difficult classes. They greatly facilitate analysing scientific research lineage. 

The third, but not the last, interesting application would be analysing the pattern of scientific entity usage, including dataset, 

software, algorithm, method and so on. Our models were strong enough on recognising usage citations for such applications, 

but the citation context dataset must be extended by citation object.  
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SUPPLEMENTARY MATERIALS 

A. Details of the Re-annotation Process 

Our dataset, named Jiang2021, was created between Dec 2020 and May 2021. According to Figure 3, the dataset creation 

pipeline included three steps: dataset preparation, re-annotation and post-processing.  

A.1. Preparation 

The whole ACL Anthology19. was crawled. Full texts and citation contexts of each paper were extracted using Allen AI’s s2orc-

doc2json tool20, which postprocessed and transformed the output of Grobid21 to JSON format. To ease re-annotation, two left 

and three right context sentences were extracted, together with the citance, to form a citation context. All sentences of all source 

papers were indexed using Lucene22. For each source citation instance, we used it to query the source sentence index to get the 

matched citance and its context. Then the source citation strings were matched against the citation strings in the matched citance. 

Both the matched citation context and citation strings were manually checked during re-annotation.  

A.2. Re-annotation 

Three postgraduate research students in natural language processing were recruited for re-annotation. The first author was the 

main annotator (C4) who lead the annotation guideline development and refinement, designed the re-annotation protocols, and 

guided the three annotators (C1–C3) in the whole process. We re-annotated most non-neutral citation instances (excluding 

“Neut(ral)”, “Background”, “ack”) from the six datasets according to Teufel et al.’s 12-class scheme (Teufel et al., 2006a; 

Teufel, 2010) plus a “Future” class for future work (Jurgens et al., 2018). The instances of all “CoCo” and “Weak” classes of 

Teufel2010 were directly copied. This was because C4 had already done this part of re-annotation before the whole project 

started using the partial annotation guidelines Teufel publicised in her monograph (Teufel, 2010), and got almost 100% 

consistent results with the latter. Neutral instances of the final dataset consisted of “Neut” instances from Teufel2010 and 

instances from all six datasets that were re-annotated to “Neut”. This way implicitly down-sampled the biggest class “Neut”. 

The final function for each sample was agreed by consensus among all four annotators. Difficult cases were discussed by all 

annotators and adjudicated. The re-annotation was done in three stages.  

        Stage 1 (guideline development). In the training process, we re-annotated the “PSup”, “PSim”, “PUse”, “PMot”, “PModi” 

and “PBas” instances from Teufel2010. Our own annotation guidelines were based on and extended from Teufel’s full 

annotation guidelines about citation function classification (CFC) and argumentative zoning (AZ-II) that were kindly shared 

by the latter at the beginning of this project. Description of both schemes can be found in Teufel’s monograph (Teufel, 2010). 

We started from Teufel’s description of these functions, reached consensus among all four annotators, and drafted our 

annotation guidelines for these functions. We found our re-annotations were highly consistent with Teufel2010’s original 

annotation (Table A1 and Sect. A.4). This gave us confidence in the overall quality of our guidelines and re-annotations.   

        Stage 2 (guideline refinement). The focus was put on cognitively more difficult classes. According to Teufel (2010), 

there is a blurred border between some functions, such as “PUse” v.s. “PBas” when we see expressions like “following” or 

“based on”, “PUse” v.s. “PSim” when we see expressions like “similar to” or “in the same way as”. The annotation guidelines 

for “PSup”, “PSim”, “PUse”, “PMot”, “PModi” and “PBas” were refined at this stage. To further enrich or refine our own 

 

19 Association for Computational Linguistics (ACL) maintains an open repository of computational linguistics (CL) papers published in ACL-sponsored venues, called 

ACL Anthology: https://aclanthology.org   
20 https://github.com/allenai/s2orc-doc2json   
21 https://github.com/kermitt2/grobid  
22 https://lucene.apache.org/core/   
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annotation guidelines (Stage 2: guideline refinement), we further worked on Jha et al.’s “Substantiating” class to gain more 

insights from collectively re-annotating more examples. We chose this class because it was the most ill-defined class in the six 

datasets we used. Re-annotation of this “complex” class gave us quite a comprehensive coverage of different classes to help us 

further clear the boundaries between confusing classes in the difficult cases.  

        Stage 3 (re-annotation & adjudication): The three co-authors re-annotated (a large part of) the remaining non-Neutral 

samples. This included “Fundamental” (_Idea or _Basis) and “Background+Neg” (_MRelared, _GRelated or _SRelated) from 

Dong2011, “Criticising”, “Uses” and “Basis” from Jha2016, “use”, “bas”, “wea” and “hed” from Alvarez2017, “Uses” 

(not used as “PUse” was already a large enough category so was less needed to be expand) and “Extends” from Jurgens2018 

(Future was directly copied because of 100% agreement of re-annotation done by C4), and “CoCo”, “Weak” and “Pos” from 

Su2019. The main author re-annotated all instances and reached consensus with each co-annotator. A large portion of these 

samples were re-annotated to a semantically different function according to Teufel’s 12-class scheme, which implied the 

incomparability of the results in different CFC papers. However, after careful guideline refinement and more collective practice, 

the four annotators greatly improved the re-annotation stability in the last stage (Table A2 and Sect. A.4).  

A.3. Post-processing  

After re-annotation, we merged consecutive citation strings in each citance into a citation segment, represented by a pseudoword 

“CITSEG”. For example, the citance “SHRDLU (Winogard, 1973) was intended to address this problem.” would be tokenized 

and rewritten to “[“SHRDLU”, “(”, “CITSEG”, “)”, “was”, “intended”, “to”, “address”, “this”, “problem”, “.”]”. We performed 

segment-wise CFC for each CITSEG because citations in the same CITSEG must have the same function. As a result, our 

dataset Jiang2021 gathered in total 3356 citation contexts, 4784 in-text citations, and 3854 CITSEGs. Note that only 

Teufel2010 annotated implicit citations represented by author names, which we left as future work.  

A.4. Re-Annotation Reliability  

Although all annotations were agreed by consensus among the four annotations, we still report the inter-annotator agreement 

(IAA) among the guideline development and final annotation stages. By doing this, we did not purpose to prove the quality of 

our re-annotation. Instead, we think the emphasis should be more put on the quality of the annotation guidelines, especially 

Teufel’s comprehensive annotation guidelines (Teufel, 2010) that were later extensively enriched by us. The first author, as the 

main annotator (C4), lead the annotation guideline development and refinement, designed the re-annotation protocols, and 

guided the three annotators (C1–C3) in the whole process.  

        In the annotation guideline development stage, all four annotators were required to annotate all samples and collaborated 

in a flat structure. Four annotators each re-annotated all samples independently and sat together to discuss if either C4 disagreed 

with others or there was no majority-based “consensus” with C4 (i.e., three annotators, inclusive of C4, agreed on the instance). 

Even there was such “automatic consensus” based on majority voting, each disputed case was still carefully checked. Table A1 

shows that the four annotators reached very high agreement on the selected classes of Teufel2010 (see the “Stage 1” column). 

We must be very cautious when interpreting the high IAA in this stage. We believe it mainly reflected the high quality of 

Teufel’s annotation guidelines and manual annotations (Teufel et al., 2006a; Teufel, 2010). Meanwhile, it also reflected that 

consensual understanding of Teufel’s annotation guidelines were established through the collective learning process. Table A2 

shows the pair-wise agreement between the four annotators (see the “Stage 1” column). The high agreements show that all 

three coders C1–C3 were able to establish good understandings of the verified/re-annotated samples with C4, and at the same 

time brought a lot of value insights for annotation development and refinement to complement each other.  

        In the re-annotation and adjudication stage, the four annotators worked in a two-level structure. Thus, there was two-level 

consensus to ensure quality and accelerate annotation. The samples were split into three folds. For each fold, one of C1–C3 was 
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assigned as the responsible (secobd) annotator. Because annotators performed much better in verifying annotations (proved in 

the previous stages), the remaining two annotators were asked to reach consensus with the responsible annotator of the fold. 

This was Level-1 consensus. The main annotator of the project C4 annotated all samples. After that, whenever there was a 

dispute on a sample, consensus was reached by discussion among all four annotators. This was Level-2 consensus. Table A2 

(the “Stage 3” column) shows the pair-wise agreements between annotators C1–C3 and C4. Because annotations made by C1–

C3 were already adjudicated with the other two before being compared with annotations made by C4, each sample was in effect 

annotated by all four annotators. In this sense, we somehow treated C1–C3 as one single coder, denoted as C1-3 (Table A2) and 

calculated its agreement with the main coder C4. Again, we feel obliged to warn that the results presented here are not 

comparable to other studies because this study focused on re-annotating the instances of existing datasets that we believe are 

partially mappable to Teufel et al.’s annotation scheme. We argue that our re-annotation task should be easier than annotating 

a dataset from scratch. In addition, we aimed at agreeing on each disputed instance, so IAA was not the focus of our design of 

re-annotation protocol.  

 

Table A1. Inter-Annotator Agreement. 

Stage 1: Guideline Development  Stage 3: Re-annotation & Adjudication 

Category κ Category κ Category κ Category κ 

13-class 0.8252 9-class 0.8529 13-class 0.6358 9-class 0.6614 

Neut 0.2162 
Neutral 0.9433 

Neut 0.5718 
Neutral 0.6268 

CoCoXY 0.7521 CoCoXY 0.5593 

Future 0.1512 Future 0.1512 Weak 0.6406 Weakness 0.6406 

Weak x Weakness x Future 1.0000 Future 1.0000 

PSup 0.7508 Support 0.9702 PSup 0.6692 Support 0.6692 

PSim 0.9063 Similar 0.9063 PSim 0.7176 Similar 0.7176 

PUse 0.8552 Usage 0.8552 PUse 0.7735 Usage 0.7735 

PMot 0.9577 Motivation 0.9553 PMot 0.5073 Motivation 0.5073 

PModi 0.9122 
Basis 0.7688 

PModi 0.4631 
Basis 0.6318 

PBas 0.5186 PBas 0.6534 

CoCo- x 

Comparison x 

CoCo- 0.4792 

Comparison 0.6306 CoCoR0 -- CoCoR0 0.4174 

CoCoGM -- CoCoGM 0.4124 

Note: “x” means no report due to extremely small sample size, and “--” means no sample at all for reporting 

 

Table A2. Pair-Wise Inter-Annotator Agreement. 

 Stage 1: Annotation Guideline Development Stage 3: Re-annotation & Adjudication 

 C1 v.s. C4 C2 v.s. C4 C3 v.s. C4 C1 v.s. C4 C2 v.s. C4 C3 v.s. C4 C1-3 v.s. C4 

13-class 0.7959 0.8194 0.8332 0.6344 0.6413 0.5107 0.6358 

9-class 0.8480 0.8204 0.8391 0.6758 0.6714 0.5350 0.6614 

Note: C1-3 is the pseudo-coder by treating coders C1-C3 as a single second coder and merging all three splits. 
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B. Re-arranged Views of Citation Function Classification Performances 

 

Table B1. Citation Function Classification Performances Re-Arranged to Investigate the Impact of Sentence Encoder  

Model options   Macro F1 (%)  

Model citseg ctx_type 
Encoding methods  11-class 

 

9-class  7-class  6-class  

citance context sentence  best avg std  best avg std  best avg std  best avg std  

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12  65.39 63.24 1.40 § 69.18 67.35 1.50  71.71 69.60 1.36  

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51  62.37 61.25 1.00  70.76 68.71 1.60  70.22 67.94 1.38  

hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59 ­ 64.69 62.92 1.16 ­ 69.38 67.66 1.49 ¯ 72.11 70.07 1.8 ­ 

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71  63.12 61.95 1.60  70.00 67.76 1.73 § 72.10 70.25 1.69 § 

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24  67.49 64.51 1.97  69.53 67.47 1.73  69.77 68.24 1.33  

hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89 ¯ 65.45 63.11 2.21 ¯ 69.45 68.75 0.41 ¯­ 71.40 70.02 1.03 ­ 

hie-05 O hierarchical self_attnd max_pool SEP  63.69 63.69 2.21  64.96 62.95 1.50  67.77 66.39 0.84  70.09 67.83 1.74  

hie-11 O hierarchical self_attnd max_pool max_pool  64.46 62.17 1.99  64.00 62.80 1.62  68.76 67.09 1.50  72.38 69.33 3.07  

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15 ­ 64.97 63.97 0.80 ­ 70.10 67.99 1.88 ­ 71.49 69.52 1.66 ¯ 

hie-06 O hierarchical self_attnd self_attnd SEP  63.79 63.79 1.71 § 63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69 § 

hie-12 O hierarchical self_attnd self_attnd max_pool  63.43 62.26 0.83  65.36 64.28 0.97  69.66 68.27 1.60  70.78 69.56 1.57  

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02 ¯ 65.69 64.44 1.29 ­ 72.81 69.47 2.64 ­ 71.32 68.35 2.22 ­ 

hie-15 O hierarchical X max_pool SEP  61.17 59.98 1.14  65.53 63.07 1.66  68.71 67.12 1.45  73.24 70.19 2.41 § 

hie-17 O hierarchical X max_pool max_pool  64.56 64.16 0.39  65.96 62.81 2.29  69.35 67.96 1.31  70.90 70.04 0.94  

hie-19 O hierarchical X max_pool self_attnd  62.62 61.61 1.18 ¯ 65.35 64.16 1.08 ¯­ 72.39 68.40 2.47 ­ 71.89 70.48 1.04 ­ 

hie-16 O hierarchical X self_attnd SEP  63.22 62.25 0.89  65.24 63.79 1.09  69.57 67.97 1.90  71.56 70.40 1.18  

hie-18 O hierarchical X self_attnd max_pool  64.95 62.82 1.64  66.07 63.76 1.56  70.05 68.87 0.97  72.09 69.35 2.11  

hie-20 O hierarchical X self_attnd self_attnd  63.15 62.39 0.60 ¯ 66.25 63.79 1.97 ­ 70.88 69.54 1.10 ­ 70.72 69.75 1.1 ¯ 
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Table B2. Citation Function Classification Performances Re-Arranged to Investigate the Impact of Citance Encoder  

Model options   Macro F1 (%)  

Model citseg ctx_type 
Encoding methods  11-class  9-class  7-class  6-class  

citance context sentence  best avg std  best avg std  best avg std  best avg std  

seq-01 O sequential max_pool CLS N/A  63.93 62.72 1.11  66.53 63.89 1.94  70.70 69.03 1.45  74.03 70.88 1.87  

seq-04¯ O sequential self_attnd CLS N/A  63.12 62.07 1.00 ¯ 65.16 63.86 1.03 ¯ 68.56 67.54 1.46 ¯ 69.96 68.22 1.58 ¯ 

seq-02 O sequential max_pool max_pool N/A  63.21 62.61 0.45  64.84 63.60 1.08  71.39 68.13 1.89  70.23 68.25 1.60  

seq-05 O sequential self_attnd max_pool N/A  64.12 62.82 1.20 ­ 64.69 64.19 0.47 ¯ 68.86 66.80 1.62 ­ 71.56 69.05 1.85 ­ 

seq-03 O sequential max_pool self_attnd N/A  64.26 62.82 1.04  65.61 63.66 1.91  70.19 69.24 0.64  70.99 68.86 1.71  

seq-06 O sequential self_attnd self_attnd N/A  65.12 63.05 1.60 ­ 64.84 62.52 1.48 ¯ 70.63 69.16 1.43 ­ 72.19 69.81 1.37 ­ 

seq-10 O sequential max_pool X N/A  63.93 62.72 1.11  66.19 63.72 2.74  69.16 67.87 1.85  71.89 70.18 1.77  

seq-11 O sequential self_attnd X N/A  64.42 63.01 0.89 ­ 66.92 64.58 1.45 ­ 68.83 67.22 1.75 ¯ 71.32 69.69 1.01 ¯ 

seq-x10 X sequential max_pool X N/A  64.09 62.23 1.70  65.04 63.62 1.6  68.68 67.85 0.62  73.52 69.31 3.12  

seq-x11 X sequential self_attnd X N/A  64.38 62.46 1.13 ­ 67.08 64.21 2.38 ­ 69.34 67.31 1.90 ­ 69.48 68.85 0.59 ¯ 

cita-01 X citance CLS N/A N/A  58.16 56.20 1.64  60.30 58.75 1.38 § 60.30 58.75 1.38 § 63.58 62.39 1.16 § 

cita-02 X citance max_pool N/A N/A  57.47 55.77 1.36  59.07 58.00 1.06  59.07 58.00 1.06  63.88 61.81 1.58  

cita-03 X citance self_attnd N/A N/A  59.49 58.13 1.11 ­ 56.99 56.01 1.17 ¯ 56.99 56.01 1.17 ¯ 62.54 61.51 0.95 ¯ 

hie-01 O hierarchical SEP max_pool SEP  62.78 61.76 0.89  65.39 63.24 1.40 § 69.18 67.35 1.50 § 69.39 68.42 1.25  

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12  65.39 63.24 1.40  69.18 67.35 1.50  71.71 69.60 1.36  

hie-05 O hierarchical self_attnd max_pool SEP  63.69 63.69 2.21 ­ 64.96 62.95 1.50 ¯ 67.77 66.39 0.84 ¯ 70.09 67.83 1.74 ¯ 

hie-02 O hierarchical SEP self_attnd SEP  61.42 61.42 0.96  63.12 61.95 1.60  70.00 67.76 1.73  71.08 69.87 1.51  

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71  63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69  

hie-06 O hierarchical self_attnd self_attnd SEP  63.79 63.79 1.71 ­¯ 63.12 61.95 1.60 ­¯ 70.00 67.76 1.73 ­¯ 72.10 70.25 1.69 ­¯ 

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51  62.37 61.25 1.00  70.76 68.71 1.60  70.22 67.94 1.38  

hie-11 O hierarchical self_attnd max_pool max_pool  64.46 62.17 1.99 ­ 64.00 62.80 1.62 ­ 68.76 67.09 1.50 ¯ 72.38 69.33 3.07 ­ 

hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59  64.69 62.92 1.16  69.38 67.66 1.49  72.11 70.07 1.8  

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15 ­ 64.97 63.97 0.80 ­ 70.10 67.99 1.88 ­ 71.49 69.52 1.66 ¯ 

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24  67.49 64.51 1.97  69.53 67.47 1.73  69.77 68.24 1.33  

hie-12 O hierarchical self_attnd self_attnd max_pool  63.43 62.26 0.83 ¯ 65.36 64.28 0.97 ¯ 69.66 68.27 1.60 ­ 70.78 69.56 1.57 ­ 

hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89  65.45 63.11 2.21  69.45 68.75 0.41  71.40 70.02 1.03  

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02 ¯ 65.69 64.44 1.29 ­ 72.81 69.47 2.64 ­ 71.32 68.35 2.22 ¯ 

hie-21 O hierarchical SEP X N/A  63.48 61.27 1.39 § 65.36 64.11 0.96  69.81 68.19 1.04 § 72.81 70.96 1.32 § 

hie-22 O hierarchical max_pool X N/A  63.48 61.27 1.39  66.88 63.38 2.06  69.47 67.89 1.93  72.81 70.96 1.32  

hie-23 O hierarchical self_attnd X N/A  62.55 61.09 1.05 ¯ 64.60 61.89 1.56 ¯ 68.82 66.55 2.23 ¯ 70.38 69.28 1.19 ¯ 

 



 

40 

C. Further Discussions about The Support Class 

According to Teufel’s annotation rules, “Support”/“PSup” has two meanings: “mutual compatibility” between knowledge 

statements (or viewed as conceptual compatibility) and “computational plug-in-ability” of approaches to each other (or viewed 

as technical compatibility). This might be the potential cause for its low recognition rate. We did a few additional experiments 

by re-annotating this class into other categories. The majority fell into “Similar” (for “mutual compatibility”) and “Neutral” 

(for “computational plug-in-ability”; not into “Usage” because not actually used). This resulted in a 10-class scheme (Table 

C1). Table C2 presents the CFC performances. The best F1 was significantly improved over the 11-class scheme to 68.93% 

after re-annotating “Support”, even higher than the 9-class scheme. We guess that the significant performance gap between the 

9-class and 10-class schemes was due to two factors: (i) The poor performance of the “Support” class on the 9-class scheme; 

and (ii) the better performance of the comparison functions on the 10-class scheme (mean F1 of “CoCoGM” and “CoCoRes”) 

compared to the 11-class and 9-class schemes (refer to the per-class performances in Table C3).  

        The 10-class scheme was further reduced to 8-class by merging “CoCoGM” and “CoCoRes” into “Comparison” and 

merging “CoCoXY” into “Neutral”. By comparing the 10-class (resp. 8-class) against 11-class (resp. 9-class) schemes, we see 

the former improved the overall performance over the latter by a large margin. One conclusion we can make is that “Support” 

should better be re-annotated if it is not the focus of the downstream application. At the same time, however, we also observe 

performance drop for the “Similar” class on the 8-class scheme compared to on the 9-class scheme. On the other hand, the 

“mutual compatibility” meaning of “Support” is an important relationship between knowledge claims of biomedical papers (Li 

et al., 2013; Meyers, 2013). The same applies to the contradiction relationship, e.g., “Conflict” in Agarwal, et al. (2010) and 

“Anti-Support” in Teufel (2010). To reflect this, our second conclusion is that if “Support” is the focus of study, we must 

develop a bespoke citation function classification model for it and focus on its “mutual compatibility” meaning. Recently, 

Nicholson et al., (2022) made a significant contribution to the annotation and classification of “supporting” v.s. “contrasting” 

relationships. Unfortunately, their proprietary dataset is not publicly accessible. We leave the annotation and recognition of 

these two functions to future work. Note that, “Support” (at its “mutual compatibility between scientific claims” meaning) and 

“Anti-Support” are very small classes, so we expect to apply semi-supervised learning and few-shot learning techniques to 

developing efficient machine learning CFC models for them in our future work.  

 

Table C1. Citation function scheme mapping and CITSEG-level statistics after Re-annotating “PSup”/“Support” 

Teufel2010+ (12+1 class) Jiang2021 (11-class)  Jiang2021 (10-class) Jiang2021 (8-class)  Jurgens2018 (6-class) 

label 
size ratio 

label size ratio 
 

label size ratio label size ratio 
 

label size ratio 
citstr citseg citseg   

Future 97 85 2.21% Future 85 2.21%  Future 89* 2.31% Future 89 2.31%  Future 89 2.31% 

CoCoXY 200 152 3.94% CoCoXY 152 3.94%  CoCoXY 153 3.97% 

Background 1673 43.41% 

 

Background 1670 43.38% Neut 1924 1463 37.96% Neutral 1463 37.96%  
Neutral 1520 39.44% 

 

PSup 123 100 2.59% Support 100 2.59% 
  

 
Similar 235 6.10% Similar 235 6.10% 

 

ComOrCon 877 22.78% 

PSim 247 207 5.37% Similar 207 5.37%   

Weak 223 158 4.10% Weakness 158 4.10%  Weakness 158 4.10% Weakness 158 4.10%  

CoCoGM 390 299 7.76% 
CoCoGM 328 8.51% 

 
CoCoGM 328 8.51% 

Comparison 485 12.58% 

 

CoCo- 108 80 2.08% 
  

CoCoRes 151 3.92% 
 

CoCoRes 157 4.07% 
 

CoCoR0 107 100 2.59%   

PMot 365 288 7.47% Motivation 288 7.47%  Motivation 289 7.50% Motivation 289 7.50%  Motivation 289 7.52% 

PUse 794 755 19.59% Usage 755 19.59%  Usage 758 19.67% Usage 758 19.67%  Usage 755 19.59% 

PModi 72 65 1.69% 
Basis 167 4.33% 

 
Basis 167 4.33% Basis 167 4.33% 

 
Basis 167 4.33% 

PBas 134 102 2.65%   

Total 4784 3854   3854    3854   3854    3854  
* A small number of “Support” instances were reannotated to classes other than “Neutral” or “Similar”, e.g., Future” for potential “computational plug-in-ability”.  
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Table C2. Citation Function Classification Performances with after Re-annotating “PSup”/“Support” 

Model options   Macro F1 (%)     

Model citseg ctx_type 
Encoding methods  

11-class 

w/ “Support” 
 

10-class 

w/o “Support”  
 

9-class 

w/ “Support” 
 

8-class 

w/o “Support”  
 

7-class 

“Support” ® “Similar” 

citance context sentence  best avg std 
 

best avg std  best avg std  best avg std  best avg std 

seq-01 O sequential max_pool CLS N/A  63.93 62.72 1.11 
 

67.01 65.24 1.43  66.53 63.89 1.94  67.98 66.20 1.41  70.70 69.03 1.45 

seq-02 O sequential max_pool max_pool N/A  63.21 62.61 0.45 
 

66.86 65.47 1.40  64.84 63.60 1.08  68.23 66.66 1.15  71.39 68.13 1.89 

seq-03 O sequential max_pool self_attnd N/A  64.26 62.82 1.04 
 

68.93 66.42 2.20  65.61 63.66 1.91  70.14 67.05 2.50  70.19 69.24 0.64 

seq-04 O sequential self_attnd CLS N/A  63.12 62.07 1.00 
 

65.53 64.76 0.48  65.16 63.86 1.03  67.18 66.30 1.03  68.56 67.54 1.46 

seq-05 O sequential self_attnd max_pool N/A  64.12 62.82 1.20 
 

67.63 66.39 0.82  64.69 64.19 0.47  68.59 67.26 1.47  68.86 66.80 1.62 

seq-06 O sequential self_attnd self_attnd N/A  65.12 63.05 1.60 
 

66.77 65.88 0.94  64.84 62.52 1.48  66.75 65.72 0.89  70.63 69.16 1.43 

seq-07 O sequential X CLS N/A  64.65 61.01 2.21 
 

66.96 65.10 1.64  65.38 62.20 1.78  68.75 66.03 1.89  70.35 68.28 1.33 

seq-08 O sequential X max_pool N/A  66.16 63.53 1.55 
 

68.23 65.33 2.02  66.03 62.98 2.05  70.27 67.78 2.24  69.89 67.98 1.90 

seq-09 O sequential X self_attnd N/A  63.92 62.80 0.89 
 

68.40 65.60 1.61  65.41 64.18 0.75  67.23 65.11 2.38  70.80 69.78 0.85 

seq-10 O sequential max_pool X N/A  63.93 62.72 1.11 
 

67.36 65.65 1.05  66.19 63.72 2.74  69.23 67.06 1.94  69.16 67.87 1.85 

seq-11 O sequential self_attnd X N/A  64.42 63.01 0.89 
 

67.64 66.45 1.19  66.92 64.58 1.45  66.75 66.02 0.63  68.83 67.22 1.75 

seq-12 O sequential X X N/A  64.93 63.50 1.04 
 

67.47 66.24 0.98  67.78 64.74 1.88  68.05 67.16 1.05  70.65 69.28 1.30 

seq-x10 X sequential max_pool X N/A  64.09 62.23 1.70 
 

66.80 65.16 1.19  65.04 63.62 1.6  68.04 66.38 1.09  68.68 67.85 0.62 

seq-x11 X sequential self_attnd X N/A  64.38 62.46 1.13 
 

66.32 64.37 1.39  67.08 64.21 2.38  67.52 65.63 1.73  69.34 67.31 1.90 

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12 
 

65.84 64.26 1.23  65.39 63.24 1.40  67.35 66.01 1.52  69.18 67.35 1.50 

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71 
 

66.34 64.67 1.28  63.12 61.95 1.60  68.41 65.79 1.65  70.00 67.76 1.73 

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51 
 

68.41 65.65 1.73  62.37 61.25 1.00  65.83 65.00 0.90  70.76 68.71 1.60 

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24 
 

67.41 65.87 1.34  67.49 64.51 1.97  68.61 67.94 0.70  69.53 67.47 1.73 

hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59 
 

64.71 63.22 1.76  64.69 62.92 1.16  67.66 65.39 2.42  69.38 67.66 1.49 

hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89 
 

66.91 64.59 2.06  65.45 63.11 2.21  66.71 66.24 0.57  69.45 68.75 0.41 

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15 
 

67.09 65.38 1.59  64.97 63.97 0.80  68.44 66.98 1.39  70.10 67.99 1.88 

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02 
 

66.63 64.77 1.54  65.69 64.44 1.29  67.93 66.09 1.75  72.81 69.47 2.64 

hie-15 O hierarchical X max_pool SEP  61.17 59.98 1.14 
 

66.62 64.77 1.13  65.53 63.07 1.66  68.45 66.22 1.93  68.71 67.12 1.45 

hie-16 O hierarchical X self_attnd SEP  63.22 62.25 0.89 
 

65.67 64.69 0.57  65.24 63.79 1.09  68.07 66.58 1.35  69.57 67.97 1.90 

hie-17 O hierarchical X max_pool max_pool  64.56 64.16 0.39 
 

66.23 65.48 1.32  65.96 62.81 2.29  68.90 66.29 1.54  69.35 67.96 1.31 

hie-18 O hierarchical X self_attnd max_pool  64.95 62.82 1.64 
 

66.78 65.68 1.08  66.07 63.76 1.56  67.89 66.28 1.01  70.05 68.87 0.97 

hie-19 O hierarchical X max_pool self_attnd  62.62 61.61 1.18 
 

64.79 64.12 0.48  65.35 64.16 1.08  68.02 66.45 1.22  72.39 68.40 2.47 

hie-20 O hierarchical X self_attnd self_attnd  63.15 62.39 0.60 
 

65.97 64.76 0.97  66.25 63.79 1.97  66.37 65.39 0.60  70.88 69.54 1.10 

hie-21 O hierarchical SEP X N/A  63.48 61.27 1.39 
 

67.81 64.64 1.95  65.36 64.11 0.96  67.98 66.61 1.28  69.81 68.19 1.04 

hie-22 O hierarchical max_pool X N/A  63.48 61.27 1.39 
 

67.81 64.64 1.95  66.88 63.38 2.06  67.98 66.61 1.28  69.47 67.89 1.93 

hie-23 O hierarchical self_attnd X N/A  62.55 61.09 1.05 
 

66.10 64.13 1.69  64.60 61.89 1.56  69.49 66.74 1.71  68.82 66.55 2.23 

hie-24 O hierarchical X X N/A  64.37 62.80 1.51 
 

65.35 64.17 1.19  65.68 64.97 0.73  68.27 67.81 0.32  70.44 69.01 1.29 

Models hie-01/02, hie-05/06, and hie-11/12 are removed because no model in either group appeared to be a top-3 model on any annotation scheme.  
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Table C3. Per-Class Performances of Selected Models after Reannotating “PSup”/“Support” 

  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

 ID (seed) seq-08 (5171)  seq-06 (47353)  hie-18 (13249)  hie-08 (32491)  seq-12 (5171)  seq-11 (47353)  best of all models 

11-class Macro Avg 68.50 65.17 66.16  67.74 64.05 65.12  67.10 64.17 64.95  65.18 65.31 65.02  65.59 65.11 64.93  65.28 64.00 64.42  -- -- -- 

 CoCoGM 67.11 77.27 71.83  70.97 66.67 68.75  72.41 63.64 67.74  63.38 68.18 65.69  62.16 69.70 65.71  67.65 69.70 68.66  67.11 77.27 71.83 

 CoCoRes 65.62 67.74 66.67  62.50 80.65 70.42  81.82 58.06 67.92  63.64 67.74 65.52  75.76 80.65 78.12  62.50 80.65 70.42  80.00 77.42 78.69 

 Similar 67.74 50.00 57.53  60.87 66.67 63.64  60.00 57.14 58.54  68.42 61.90 65.00  59.18 69.05 63.74  67.57 59.52 63.29  71.05 64.29 67.50 

 Support 46.15 30.00 36.36  46.15 30.00 36.36  34.62 45.00 39.13  36.84 35.00 35.90  38.10 40.00 39.02  42.11 40.00 41.03  47.53 55.00 51.16 

 ID (seed) seq-03 (25603)  hie-04 (25603)  seq-09 (13249)  seq-08 (5171)  seq-11 (5171)  seq-12 (25603)  best of all models 

10-class Macro Avg 72.00 66.60 68.93  68.90 68.42 68.41  70.28 67.34 68.40  70.76 66.44 68.23  68.48 67.19 67.64  70.78 65.58 67.47  -- -- -- 

 CoCoGM 58.75 71.21 64.38  69.01 74.24 71.53  76.27 68.18 72.00  63.89 69.70 66.67  65.15 65.15 65.15  63.16 72.73 67.61  70.83 77.27 73.91 

 CoCoRes 80.77 65.62 72.41  77.42 75.00 76.19  60.00 75.00 66.67  69.70 71.88 70.77  65.79 78.12 71.43  61.54 75.00 67.61  75.68 87.50 81.16 

 Similar 68.18 61.22 64.52  59.26 65.31 62.14  71.43 61.22 65.93  59.18 59.18 59.18  57.78 53.06 55.32  64.44 59.18 61.70  70.45 63.27 66.67 

 ID (seed) seq-12 (47353)  hie-08 (47353)  seq-11 (47353)  hie-18 (13491)  seq-08 (32491)  hie-14 (5171)  best of all models 

9-class Macro Avg 69.25 67.13 67.78  67.51 67.89 67.49  68.24 66.31 66.92  72.21 62.51 66.07  70.71 63.02 66.03  67.90 64.62 65.69  -- -- -- 

 Comparison 68.81 80.41 77.23  63.25 76.29 69.16  64.55 73.20 68.60  60.00 71.13 65.09  67.31 72.16 69.65  67.77 84.54 75.23  76.47 61.90 68.42 

 Similar 62.79 64.29 63.53  61.36 64.29 62.79  60.87 66.67 63.64  64.86 57.14 60.76  58.54 57.14 57.83  57.78 61.90 59.77  79.17 65.52 71.70 

 Support 45.45 50.00 47.62  50.00 55.00 52.38  52.94 45.00 48.65  30.00 30.00 30.00  61.54 40.00 48.48  46.67 35.00 40.00  66.67 40.00 50.00 

 ID (seed) seq-08 (13249)  seq-03 (47353)  hie-23 (5171)  hie-08 (32491)  seq-02 (5171)  seq-12 (25603)  best of all models 

8-class Macro Avg 71.91 69.21 70.27  72.33 68.51 70.14  71.93 68.35 69.49  67.63 70.19 68.61  70.82 67.61 68.23  69.48 66.77 68.05  -- -- -- 

 Comparison 67.27 75.51 71.15  72.00 73.47 72.73  63.87 75.55 70.05  66.67 75.51 70.81  68.42 79.59 73.58  73.20 72.45 72.82  77.32 76.53 76.92 

 Similar 70.73 59.18 64.44  62.26 67.35 64.71  65.85 55.10 60.00  62.50 61.22 61.86  60.00 48.98 53.93  58.70 55.10 56.84  69.57 65.31 67.37 

 

 


