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Abstract

Beam grillages are commonly used to form bridge decks and building floorplates. Although analytical means of identifying 

optimal beam grillage layouts were developed in the 1970s, various issues limited their practical usefulness. More recently, a 

ground-structure-based numerical layout optimization approach was proposed to identify optimal beam grillages, overcoming 

the limitations of previous analytical methods and solving plastic design problems rapidly. However, in engineering prac-

tice, both ultimate and serviceability limit states need to be considered in the design process. To address this, here, a novel 

method capable of handling non-linear material models, displacement constraints and strain constraints, and multiple-load 

cases is applied to beam grillage optimization problems. Example problems of varying complexity are then used to verify 

and demonstrate the novel capabilities of the method.

Keywords Grillages · Layout optimization · Topology optimization · Material efficiency · Elastoplastic material

1 Introduction

A grillage is a planar network of intersecting beams, com-

monly employed to form bridge decks, building floorplates 

and other structures. Research on the optimization of ele-

ments forming building structures can be traced back to 

the 1950s and 1960s (Heyman 1959; Morley 1966), with 

work specifically on grillages carried out in the early 1970s; 

key research in this area was carried out by Rozvany and 

co-workers (Rozvany 1972a, b), and by Lowe and Melch-

ers (1972, 1973). Although Rozvany’s original kinematic 

method provided a means of obtaining exact optimal grillage 

layouts for problems involving both single- and multiple-

load cases (Rozvany 1972a), it could only be applied to 

clamped domains and required all loads to be orientated in 

a downward direction; it also did not furnish the optimal dis-

tribution of beam widths. While some of these restrictions 

were subsequently lifted (Rozvany et al. 1973; Rozvany and 

Hill 1976; Prager and Rozvany 1977; Rozvany and Lieber-

mann 1994), and a computer program that allowed for auto-

matic generation of analytical optimal layouts for arbitrary 

polygonal domains with partially clamped and simply sup-

ported boundaries was developed (Hill and Rozvany 1985), 

many restrictions still remained. For example, the cited ana-

lytical approaches could not be applied to problems involv-

ing free edges, interior simple supports, mixed downward/

upward loadings, or point moment loadings. This severely 

affected the practical usefulness of the methods developed.

In all the aforementioned analytical investigations, the 

plastic design of grillages was considered in a continuous 

context, assuming a notional slab composed of an infinite 

number of fiber-like beams. An optimal fibrous slab can be 

compared with an in-plane Michell structure (Michell 1904), 

which often also includes fibrous regions, and is well known 

in the field of structural optimization (e.g., see Hemp 1973; 

Chan 1967; Lewinski et al. 1994a, b). A numerical means of 

identifying Michell-type structures was proposed by Dorn 

et al. (1964), and further developed by other workers (Gil-

bert and Tyas 2003; Sokól 2014; Zegard and Paulino 2014). 

To identify an optimal layout, a ‘ground structure’ compris-

ing members interconnecting a grid of nodes distributed over 

the design domain was first created; optimization was then 
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used to identify the subset of members present in the optimal 

(e.g., minimum volume) structure.

These numerical approaches stimulated Sigmund et al. 

(1993) and later Bołbotowski et  al. (2018) to develop 

‘ground structure’-based layout optimization approaches 

for grillages. However, only problems using coarse nodal 

grids were tackled by Sigmund et al. (1993); in developing 

a formulation that could be solved using linear program-

ming (LP), and taking advantage of the computationally effi-

cient adaptive solution technique proposed by Gilbert and 

Tyas (2003), Bołbotowski et al. (2018) were able to tackle 

problems involving many millions of potential beams. Their 

approach could also be applied to arbitrary design problems, 

free of the restrictions that had greatly limited the useful-

ness of earlier analytical approaches. In the plastic design 

formulation that was developed, the goal was to minimize 

the volume of material for specified applied loading, with 

the generated optimal layouts closely approximating the ana-

lytical solutions found by Rozvany et al. (1973) for a range 

of benchmark problems.

However, when using modern limit state design methods 

to design a structure, engineers need to consider not just 

the ultimate limit state (ULS), but also the serviceability 

limit state (SLS). This means that the plastic design con-

siderations accounted for in the grillage layout optimiza-

tion method described by Bołbotowski et al. (2018) should 

be coupled with elastic design considerations. To achieve 

this goal, a non-linear material model that includes both 

elastic and plastic regions must be considered. In analysis, 

non-linear material models are typically treated via iterative 

methods that utilize a tangent stiffness for each load step. 

An alternative method for determining the response of the 

non-linear model involves using an energy-based approach 

within an optimization framework. It is based on the prin-

ciple of least action and often involves minimizing or limit-

ing the strain energy (see, e.g., Stricklin and Haisler 1977; 

Ohkubo et al. 1987; Toklu 2004). Recent development has 

led to tools for energy optimization of reinforced concrete 

panels (Vestergaard et al. 2021, 2023a, b).

The energy method has been combined with material 

optimization. Kaliszky and Lógó (1997, 2002) optimized 

trusses in the framework of shakedown analysis. Klarbring 

and Strömberg (2013), Ramos and Paulino (2015) presented 

a method for hyper-elastic bodies using topology optimi-

zation. While Klarbring and Strömberg (2013) used two-

dimensional elements, Ramos and Paulino (2015) used a 

truss-based ground-structure approach. Larsen et al. (2024) 

optimized reinforced concrete panels using Sequential Con-

vex Programming consider multiple limit states.

In the present paper, the combined energy method and 

material optimization scheme for reinforced concrete pan-

els tentatively proposed by Vestergaard (2022) (in a supple-

mentary work chapter of his PhD thesis) is applied to beam 

grillages. And for the sake of simplicity, a truss representa-

tion of a grillage is adopted. The novelty of the approach lies 

in the incorporation of displacement and strain constraints 

on the grillage, while accommodating both elastic and elas-

toplastic material behavior. In addition, multiple-load cases 

are incorporated, allowing for more realistic loading sce-

narios that account for both SLS and ULS criteria, while 

still ensuring minimal material usage.

The paper is organized as follows: in Sect. 2, a truss 

optimization formulation capable of handling non-linear 

material models and displacement and strain constraints is 

described and then used as the basis of a grillage optimiza-

tion formulation; in Sect. 3, the approach is applied to a 

range of examples, from simple benchmarks to more geo-

metrically complex problems, including a building floor-

plate comprising 16 supporting columns; these results are 

discussed in Sect. 4 and the conclusions drawn in Sect. 5.

2  Formulations

2.1  Truss optimization

Here, the optimal grillage problem is, for the sake of sim-

plicity, formulated using a truss model. In the model, three-

dimensional bar elements are used; each element has a 

cross-sectional area, A
e
 , and a constant normal force, N

e
 , 

where e is the element number. In this case, the element is 

a stress-based (force-based) element, where the degree of 

freedom (DOF) in the element is the normal force rather 

than the displacement.

The material is characterized by its Young’s modulus, 

E, and the yield stress, fy , at which point perfectly plastic 

behavior follows, as illustrated in Fig. 1.

The response of a structure can be found by utilizing 

the principle of minimum complementary energy, which 

states that of all stress fields in an elastic body that satisfy 

Fig. 1  Linear elastic-perfectly plastic behavior ( �
uk

 = ultimate strain)
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equilibrium and stress boundary conditions, the one that also 

satisfies compatibility will minimize the complementary 

energy. The material model given in Fig. 1 can be approxi-

mated as a hyper-elastic model, and since only monotonically 

increasing loads are considered, the behavior of an elastoplas-

tic and hyper-elastic model is identical.

For a truss structure with this material behavior, the com-

plementary strain energy, Π
c
 , is given by

Here, � is the normal stress, L
e
 is the element length, Ω is the 

domain of the structure, and n
el

 is the number of elements.

Equilibrium is expressed by stating that the sum of internal 

forces at a given node should equal the applied load at that 

node. This can be achieved using an equilibrium matrix, H , 

given as

where n
e
 is the unit direction vector of the element, and d

e
 is 

the system DOF numbering of the element. h
e
 and H

e
 are the 

element-wise equilibrium matrices on element and system 

levels, respectively. Thus, equilibrium can be written as

where � is a vector of all normal forces and r is the load 

vector.

Yielding of the bar elements can be implemented by limit-

ing the normal force in the elements to the yield force. This 

can be written as

This can be stated in matrix form for all elements as

where m is a vector containing the areas of all elements.

To produce optimized structures, the principle of minimum 

complementary energy is combined with material optimiza-

tion, such that the volume of the structure is minimized. This 

can be stated as a weighted sum of the complementary energy 

and the material usage, which is a multi-criterion optimization 

problem

(1)Π
c
= ∫

Ω

�
2

2E
dΩ =

n
el

∑

e=1

L
e

2E

N
2

e

A
e

.

(2)H =

n
el

∑

e=1

H
e
, H

e
(d

e
, e) = h

e
, h

e
=

[

−n
e

n
e

]

,

(3)H� = r,

(4)−fyAe ≤ Ne ≤ fyAe.

(5)−fym ≤ � ≤ fym,

where � is a vector containing the lengths of all elements, 

w
E,i

 is the weighting on the potential energy of load case i, 

w
A
 is the weighting on the volume, and n

lc
 is the number of 

load cases. Equation (6) is a Second-Order Cone Program-

ming problem, which can be solved efficiently via modern 

solvers, e.g., Mosek ApS (2023). Furthermore, as the objec-

tive is convex, all solutions can be found using the linear 

scalarization approach. From the above optimization prob-

lem, the dual problem can be derived (for derivation, see 

Appendix)

In the dual problem, �
i
 and �p,i are vectors containing the 

total and plastic strains for load case i, respectively. �
e,i

 is 

element e of �
i
 . u

i
 is the displacement vector of load case 

i, while u
e,i

 is the displacement vector of element e with 

respect to load case i. B is the strain interpolation matrix. 

Note that the inequality in the equation must hold for all 

elements on the right-hand side. Thus, the objective of the 

dual problem is to minimize the potential energy; from this, 

the dual variables (i.e., the displacements and the strains) 

can be obtained.

As seen from the dual problem, the value of w
A
∕w

E,i
 

can be chosen as a limit on the strains or displacements of 

a given load case. Thus, an iterative method can be for-

mulated in which the value of w
A
∕w

E,i
 is chosen as unity; 

subsequently, Eq. (6) is solved. Hereafter, the strains or 

displacements are compared to a given limit. If the limit 

is exceeded for load case i, the value w
E,i

 is increased 

corresponding to the utilization. The same is true of the 

strains that are below the limit, where the value of w
E,i

 is 

decreased. This is illustrated in Algorithm 1.

(6)

min
� i,m

nlc
∑

i=1

(

wE,i

nel
∑

e=1

(

Le

2E

N2

e,i

Ae

))

+ wA�
⊤

m

s.t.
H� i = ri i = 1, ..., nlc

− fym ≤ � i ≤ fym i = 1, ..., nlc,

(7)

max
ui,�p,i

nlc
∑

i=1

wE,ir
⊤

i
ui

s.t. wA≥

nlc
∑

i=1

wE,i

(

1

2
E(�i − �p,i)

2 + fy�p,i

)

𝜀e,i = Bue,i, i = 1, ..., nlc, e = 1, ..., nel.
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Algorithm 1  Optimization scheme

where U
i
= max(|�

i
|)∕�

lim
 or U

i
= max(|u

i
|)∕u

lim
 for 

restrictions on strains or displacements, respectively.

This heuristic approach solves the problem efficiently, 

with simple cases using less than five iterations and up to 

ten iterations for more complex examples. For single-load 

cases, the termination of the iterative process is guaranteed, 

which is also true for most practical examples with multiple-

load cases. Designed examples with identical load cases but 

different load levels do not terminate. However, this is not 

deemed a problem, as the non-governing load case can be 

removed from the optimization.

2.2  Grillage optimization (truss formulation)

The truss optimization formulation will now be used to 

find the optimal layout of beams forming a grillage sub-

jected to out-of-plane loading. A layered model is used, 

with the two layers representing the top and bottom parts 

(e.g., ‘flanges’) of a typical beam member. To compare 

the results with current methods, the areas of the top and 

bottom flanges are chosen to be identical. Furthermore, 

to correctly carry shear, a mesh connecting the top and 

bottom layer, representing the web, must be included. The 

web elements are excluded from the volume in the objec-

tive function, such that the area can be chosen freely with 

no penalty. The flanges are thus the only contributor to the 

volume part of the objective function. The ground structure 

is shown in Fig. 2.

The support conditions must be modeled to describe the 

supports accurately. Three different kinds of supports are 

used in the present study, which are shown in Fig. 3.

For support (a) and (c), additional constraints are added 

to ensure against rigid body motion.

Fig. 2  Illustration of ground-structure mesh (assuming adjacent con-

nectivity)

Fig. 3  Truss model representation of the different support types, with 

gray elements being web elements (free area): a simply supported 

boundary (only supporting vertical load); b fixed supported bound-

ary; c internal column support, with the red line indicating the col-

umn that connects to a node positioned at mid-depth and the dotted 

black line indicating the support placed at the mid-depth node
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2.3  Single beam example

To investigate the truss formulation, a pin-supported beam 

is studied. Two load cases are considered (Table 1), one at 

the quarter span and the other at the three-quarter span, as 

shown in Fig. 4.

An analytical expression for the optimal layout for Load 

Case 1 (LC1) can be calculated as

where M
1
(x) is the moment for LC1. For two load cases, the 

optimal layout can be determined as follows:

where M
2
(x) is the moment for Load Case 2 (LC2) given by

The optimized beam for the structure loaded by both LC1 

and LC2 is shown in Fig. 5, where the size of the flanges is 

shown alongside the displacements of the two load cases.

Figure 5 illustrates the truss representation of the beam, 

the optimized area of flanges, and the displacements. How-

ever, for thin plates with a large thickness-to-length ratio, 

this representation becomes unsuitable. Since the area of 

the top and bottom layers is identical, only one layer is 

shown for the following examples, with colors indicating 

hogging moments (red) and sagging moments (blue). For 

(8)

V1 =

l

�
x=0

M1(x)

1

2
hfy

dx =
3Pl2

16hfy

M1(x) =

{

3

4
Px x ≤ 1

4
l

1

4
P(l − x)

1

4
l ≤ x,

(9)V =

l

∫
x=0

max

(

M1(x), M2(x)
)

1

2
hfy

dx =
Pl2

4hfy
,

(10)M
2
(x) =

{

1

4
Px x ≤

3

4
l

3

4
P(l − x)

3

4
l ≤ x.

displacement plots, the average displacement of the corre-

sponding top and bottom nodes is used.

Figure 6 compares the flanges of the beams in both ana-

lytical and numerical solutions. The optimized beam for 

two load cases has a volume of 0.2500
Pl2

hfy
 when allowing 

for fully plastic actions, coinciding with the analytical 

solution. However, contrary to what is expected, when 

limiting the strains to the yield strain, �
y
 , through the itera-

tive process described in Algorithm 1, the value becomes 

0.2690
Pl2

hfy
 . This is due to the interaction between the limit 

on the strains and the weighting on the complementary 

energy. When the weighting increases, the corresponding 

relative weight on the volume decreases. When the limit 

Fig. 4  Single beam example: problem definition

Table 1  Single beam example: 

load cases
Load case P

1
P

2

LC1 P 0

LC2 0 P

Fig. 5  Displacements of the truss model of the single beam test sub-

jected to both load cases: a load case 1; b load case 2 (Gray lines 

indicate the ‘free’ web elements.)

Fig. 6  Single beam test: a optimized beam for LC1; b optimized 

beam for LC2; c optimized beam for LC1+LC2 ( �
lim

= �
uk

 ); d opti-

mized beam for LC1+LC2 ( �
lim

= �
y
)
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on strains becomes high, and the weighting approaches 

infinity, the weight on the volume relatively approaches 

zero. Hence, the algorithm can find a better overall objec-

tive value by increasing the volume and thus decreasing 

the complementary energy. Therefore, the method can find 

optimal solutions for low-strain constraints (fully allowing 

plastic deformations). However, only close to optimal 

solut ions are  found when using st r ic t  st ra in 

requirements.

This behavior is, however, not seen for a single-load case; 

this is thought to be due to the total complimentary energy 

for two load cases being much larger than for one, resulting 

in different weightings. The behavior is shown in Fig. 7.

As seen in Fig. 7, the error is, in general, small, with the 

highest error found when �
lim

= �
y
 , at 7.6%. When consider-

ing multiple-load cases, compatibility is still guaranteed, as 

the complementary energy for a chosen layout is independ-

ent. Thus, the complementary energy of all load cases will 

be at a minimum for the given layout, ensuring compatibil-

ity. However, the material consumption is not necessarily at 

a global minimum, as shown in the analysis.

The convergence with respect to the number of elements 

is also investigated when �
lim

= �
uk

 . The convergence behav-

ior is shown in Fig. 8.

The figure clearly shows that the solutions from all meth-

ods converge toward the analytical solution for increasing 

nodal division. Furthermore, convergence is slightly faster 

than the traditional beam formulation in the test with one 

load case, which is likely because the truss formulation per-

mits different normal forces in the top and bottom layers and, 

consequently, more freedom in the design.

3  Examples

To ensure well-scaled problems, a scaling factor is used on 

the forces and lengths in the following examples. For all 

examples, the forces in Newton are scaled by a factor of 

10
−8 , and the lengths in meters are scaled by 10

3 . These val-

ues are chosen empirically and proved to perform well for 

all examples. Furthermore, for the sake of simplicity, all 

loads are applied evenly between the top and bottom layers.

3.1  Uniformly loaded square domain problems

Two simple benchmark examples are used to validate the 

method described against available analytical and numeri-

cal solutions. Both examples involve square domains and 

uniform out-of-plane loading; the first has simply supported 

boundary edges, and the second has fixed corner supports, 

as illustrated, respectively, in Figs. 9a and 10a. Blue and 

red lines indicate sagging and hogging beams, respectively:

The optimal grillages are presented in Figs. 9b and 10b, 

solved using a nodal division of n = 50 per side. The results 

are very similar to the analytical solutions presented by 

Morley (1966) and Rozvany (1972b), respectively. When 

using a higher nodal division of n = 451 , the optimal vol-

umes reported by the method are Vnum = 0.05208pL4∕mp and 

Vnum = 0.06253pL4∕mp (where m
p
= fyh ), which are also 

very close to the analytical solutions ( Vana = 0.05208pL4∕mp 

and Vana = 0.06250pL4∕mp , respectively). The differences 

are thought to be due to the constant truss element used, 

compared to an element with a linear cross-sectional area 

variation. To further investigate the solution, the displace-

ments from the dual variables are presented in Figs. 9c and 

10c. The displacements are as expected, with the largest 

Fig. 7  Single beam test: evolution of volume for different strain 

requirements
Fig. 8  Single beam test: convergence compared to beam formulation 

given by Bołbotowski et al. (2018) (percentage error calculated using 

the analytical solution)
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displacement in the center of the domains. A convergence 

plot for the two solutions is given in Fig. 11, where it is 

compared to the standard beam formulation given by, e.g., 

Bołbotowski et al. (2018). Note that in the beam formula-

tion, beams are kept non-tapered to more accurately repre-

sent the truss mesh shown in Fig. 2.

The relative error for both examples is seen to approach 

zero in both cases, indicating that the method does converge 

toward the optimal solution. For both examples, the truss 

formulation converges faster than the beam formulation due 

to the same effect explained previously in Sect. 2.3.

3.2  Domain with internal line supports

In addition to the benchmark examples, more complex 

examples are also investigated. The first structural example 

is a square domain with internal line supports, as shown in 

Fig. 12.

Three load cases are considered; see Fig. 13.

The resulting grillage is shown in Fig. 14a, and the opti-

mal volume is V = 0.0366pL4∕mp . Figure 14b–d illustrates 

the displacements for each load case.

Fig. 9  Uniformly loaded simply supported square domain problem: a 

problem definition; b optimized grillage; c displacements for a simply 

supported problem

Fig. 10  Uniformly loaded fixed corner square domain problem: a 

problem definition; b optimized grillage; c displacements for a fixed 

corner supports problem
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The optimized grillage in Fig. 14 shows that the method 

can handle multiple-load cases, and that the structural 

responses of all load cases can be identified. For the exam-

ples with multiple-load cases, the color indicates a com-

bined behavior for all load cases. Red indicates hogging 

in all load cases, blue indicates sagging in all load cases, 

and gray indicates a mixture of hogging and sagging. The 

transverse displacements are the largest for Load Case 3.

Fig. 11  Uniformly loaded square domain problems: convergence 

characteristics

Fig. 12  Domain with internal line supports: problem specification

Fig. 13  Domain with internal line supports: illustration of the load 

areas and load cases

Fig. 14  Domain with internal line supports: a optimized grillage lay-

out plotted for n = 50 ; b displacement under Load Case 1; c displace-

ment under Load Case 2; d displacement under Load Case 3

Fig. 15  Domain with L-shaped hole: illustration of a domain with an 

L-shaped hole and both free and supported edges
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3.3  Domain with L‑shaped hole

The next example is a square domain with an L-shaped 

hole, which has a mixture of fixed and free boundaries; see 

Fig. 15.

Three cases are considered: one with a point load in the 

inner corner, one with a point load in the upper right-most 

corner, and one with a distributed load. The optimized 

layout for all three cases is given in Fig. 16, with an opti-

mal volume of V = 0.211PL
2∕mp , V = 0.785PL

2∕mp , and 

V = 0.111pL4∕mp , for cases 1, 2, and 3, respectively.

The solutions are not identical to those found by 

Bołbotowski et  al. (2018), though the layouts remain 

somewhat similar. This is due to the difference in ground 

structures: here, only members oriented at 0°, 45°, and 90° 

are present in the ground structure, whereas Bołbotowski 

et al. (2018) utilize full connectivity. As a result, the opti-

mal volume reported here is 15–30% above that found by 

Bołbotowski et al. (2018). If the same ground structure 

is employed, the difference in volume between the two 

approaches is within 2%.

In Fig. 16b, a pattern of orthogonally intersecting hog-

ging and sagging beams can be observed along the edges 

near the point load. This is the so-called ‘beam-weave’ 

phenomenon, also discussed by Rozvany and Liebermann 

(1994) and Bołbotowski et al. (2018).

Since multiple-load cases are essential in civil engi-

neering, the following study considers three load cases. To 

ensure that the optimal design is not dominated by a single-

load case, the point loads are defined as P = 1.5pL2 for load 

case 1 and P = 0.25pL2 for load case 2, while the uniformly 

distributed load in load case 3 is given by p.

First, the three load cases are considered separately, 

so the outcome layout is an overlap of the three designs 

in Fig. 16. And the member area is the maximum cross-

sectional area among all load cases

where A
e
 is the area of bar e, while A

e,1 , Ae,2 and A
e,3 are the 

areas for bar e for the optimal layout of load cases 1, 2, and 

3, respectively. This leads to an estimate of the total volume 

given as V = 0.491pL4∕mp.

Second, all three load cases are considered simultane-

ously. The optimized layout is shown in Fig. 17a and the 

total volume is V = 0.381pL4∕mp , revealing a saving of 

22.4% compared to the case where the load cases are con-

sidered separately.

To further show the potential of the proposed method, 

different material behaviors and limits are considered. In 

Fig. 17a, b, limits on the strains of �
lim

= �
uk

 and �
lim

= �
y
 

are applied, respectively. Figure 17c imposes a limit of 

L/100 on the transverse displacement. It can be observed 

(11)A
e
= max(A

e,1, A
e,2, A

e,3),

(a) (b)

(c)

Fig. 16  Domain with L-shaped hole: optimized grillage solutions for 

three different loads, plotted for n = 66 : a Case 1—point load in the 

inner corner indicated by ⊗ ; b Case 2—point load in the upper right-

most corner indicated by ⊗ ; c Case 3—uniformly distributed pressure 

load

Fig. 17  Domain with L-shaped hole with three load cases: optimized 

grillage solutions for limiting behavior, plotted for n = 66 : a elasto-

plastic behavior with �
lim

= �
uk

 ; b elastic behavior with �
lim

= �
y
 ; c 

elastoplastic behavior with �
lim

= �
uk

 with a limit on the transverse 

displacement of L/100
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that different material behaviors result in different resulting 

layouts. Also note that different material behaviors can be 

assigned to different load cases for more realistic designs. 

For example, some load cases can be associated with linear 

elastic material behavior, while others can allow for elasto-

plastic behavior.

3.4  Domain with four inset columns

The next example considers four simply supported inset col-

umns, as illustrated in Fig. 18. Three load cases are consid-

ered, including a UDL on the entire surface, a UDL on the 

perimeter outside the columns, and a UDL on the interior of 

the columns, as shown in Fig. 19.

To identify the optimal placement of the columns, a 

parametric study of the value of L
s
 is carried out, and the 

optimal volume is compared to a reference solution of 

V0 = 0.1701pL4∕mp , obtained with L
s
= 0 ; see Fig. 20.

Fig. 18  Domain with four inset columns: problem specification

Fig. 19  Domain with four inset columns: illustration of the load areas 

and load cases

Fig. 20  Domain with four inset columns: parametric study of column 

inset distance, considering: only load case 1; load cases 2 and 3; all 

load cases (solutions obtained using a nodal division of n = 100)

Fig. 21  Domain with four inset columns: a optimized grillage layout 

plotted for n = 50 ; b displacement under load case 1; c displacement 

under load case 2; d displacement under load case 3 (optimal design 

and displacement with L
s
= 0.232L)
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In Fig. 20, the results obtained by considering only LC1 

correspond to those presented by Whiteley et al. (2023); 

potentially significant savings can therefore be found using 

inset columns. The optimal column location is found to be 

L
s
= 0.23L . The savings become slightly less when more 

load cases are considered. The optimal design under all 

load cases is found at L
s
= 0.232L , and the corresponding 

layout and displacements are shown in Fig. 21. In addi-

tion to allowing for multiple-load cases, it is also pos-

sible to investigate the influence of strain requirements; 

see Fig. 22.

In Fig. 22, it can be observed that the resulting solu-

tion is influenced by strain limits when they are relatively 

low (e.g., �
lim
∕�

y
≤ 1.5 ). Therefore, a further increase in 

material ductility beyond this limit will not have a signifi-

cant impact on the optimal design.

Furthermore, through the new method, it is possible 

to set limits on the maximum transverse displacements. 

Here, the case with L
s
= 0 is studied, as it leads to the 

largest displacements. In Fig. 23, the volume for different 

transverse displacement requirements is shown. For this 

study, L
s
= 0 and a slenderness ratio of L∕h = 50 is used.

Fig. 22  Domain with four inset columns: evolution of volume for dif-

ferent strain requirements

Fig. 23  Domain with four inset columns: evolution of volume for dif-

ferent transverse displacement requirements

Fig. 24  Domain with 16 inset columns: problem specification

Fig. 25  Domain with 16 inset columns: illustration of the load areas 

and load cases
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Figure 23 shows that the volume increases when displace-

ment constraints are implemented. For realistic displacement 

constraints, e.g., 
1

200
L , a volume increase of around 500% 

is needed, indicating that the purely plastic solutions com-

monly used are not adequate for designing structures when 

displacements are considered. However, it is important to 

note that, here, the optimal layout remains the same, which is 

simply an up-scaled version of the design without displace-

ment constraints.

3.5  Domain with 16 inset columns

A domain with 16 inset columns is also solved. The problem 

specification is shown in Fig. 24.

Three loading areas are considered; see Fig. 25.

The objective for different values of L
s
 is investigated using 

different numbers of included load cases, see Fig. 26, where 

V0 = 0.01276pL4∕mp is the volume for L
s
= 0 and four load 

cases. The results for a single-load case are in accordance with 

Whiteley et al. (2023), and through the addition of multiple-

load cases, it is shown that large savings of material can be 

found when insetting the columns.

4  Discussion

The presented method is seen to reproduce known globally 

optimal solutions for plastic behavior and can be considered 

equivalent to more traditional Finite Element Limit Analy-

sis methods. However, the convergence speed is faster than 

current methods that utilize constant elements. Even faster 

convergence may be seen using a higher-order element with 

a linear variation of stress and area.

With strict requirements on the strain, excessive materi-

als are added due to the nature of multi-criteria optimiza-

tion problems. Thus, for certain weights on the material, 

the presented method increases the material consumption 

to decrease the overall complementary energy. However, as 

these errors are seen to be small, this behavior is deemed 

of little importance. Furthermore, for practical structures, 

only small plastic strains are needed for optimal solutions. 

Thus, there is no need for highly ductile behavior with large 

plastic deformations. The out-of-plane action can also be 

limited, showing that the commonly used plastic solutions 

are inadequate for designing structures for realistic con-

straints on transverse displacements. However, these results 

are very dependent on the slenderness of the domain, and 

if the thickness is high compared to the span, this behavior 

is lessened. As the method assumes small displacements, 

the relationship between displacement and strain is linear. 

Thus, the restrictions on transverse displacements are also 

related to restrictions on strains and vice versa. A limit on 

the transverse displacements will, therefore, inherently 

include a limit on the vertical strain of the domain.

The proposed method uses a truss-based representation 

for beams, which has proven effective for planar grillages. 

Modeling a beam with a truss model and a bi-linear mate-

rial behavior will result in a beam model with a bi-linear 

moment–curvature relationship. Therefore, the truss for-

mulation can represent all grillage scenarios typically han-

dled by traditional two-dimensional beam elements. Here, 

bending is represented in a standard way and torsion is rep-

resented by beam-weaving. The benefit of the truss-based 

formulation lies in its capacity to handle both elastic and 

plastic constraints with multiple-load cases. Therefore, 

within the context of grillages, the truss formulation serves 

as an adequate and reliable representation.

To verify the method against other numerical approaches, 

several assumptions are made, including neglecting the local 

bending contribution from the top and bottom slabs, while 

accounting for the parallel axis contribution. Additionally, 

the effects of self-weight are not considered, which may lead 

to different solutions.

The method suggests that savings can be achieved by stra-

tegically placing columns within the domain instead of at 

the perimeter. While some of this saving can be found from 

traditionally designed grillages, as demonstrated in other 

works, the investigation shows that this approach remains 

effective when considering multiple-load cases.

Fig. 26  Domain with 16 inset columns: a parametric study of column 

inset distance, considering: only load case 1; only load case 2; only 

load case 3; all load cases (solutions obtained using a nodal division 

of n = 100)
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5  Conclusions

A new method of identifying optimal grillages, which allows 

strain and displacement design considerations to be taken 

into account, has been presented. The method utilizes the 

principle of minimum complementary energy as part of a 

multi-criteria optimization problem, which can be solved 

quickly using convex optimization algorithms. When using 

a truss formulation, both strain and displacement constraints 

can be considered under multiple-load cases.

In the paper, the method has been successfully validated 

against benchmark examples and provides results equivalent 

to a previously presented beam formulation for problems 

involving only plastic constraints and a single-load case.

The proposed method effectively determines optimized 

solutions for multiple-load cases. The example demonstrates 

a 22.4% saving when considering all load cases simultane-

ously, compared to simply combining designs for each load 

case individually. Furthermore, the method incorporates 

both elastic and elastoplastic material behaviors, along with 

constraints on strains or displacements. The impact of select-

ing different material behaviors on the optimized layout was 

investigated, leading to various designs and highlighting the 

importance of considering the appropriate material behavior 

during layout optimization. The method also allows designs 

for each material behavior and limits to be associated with 

different load cases, enabling optimization for both SLS and 

ULS criteria simultaneously. This results in more robust 

designs, underscoring the strength of the approach.

Appendix A: Duality

Consider the optimization problem given by

The optimization problem can be stated in conic form as

(12)

min
� i,m

nlc
∑

i=1

(

wE,i

nel
∑

e=1

(

Le

2E

N2

e,i

Ae

))

+ wA�
⊤

m

s.t. H� i = ri i = 1, ..., nlc

− fym ≤ � i ≤ fym i = 1, ..., nlc.

where � and � are auxiliary variables. This is written in 

standard form as

where H =

∑n
el

e=1
H

e
 has been introduced, as well as writing 

most equations as single equations instead of vectorized.

The Lagrangian is then calculated by introducing the 

Lagrangian multipliers � and � associated with the inequal-

ity and the equality constraints, respectively

(13)

min
� i,m

nel
∑

e=1

(𝛼e) + wA�
⊤

m

s.t.

H� i = ri i = 1, ..., nlc

− fym ≤ � i ≤ fym i = 1, ..., nlc

𝛾e,i =

√

wE,iLe

E
Ne,i

{

i = 1, ..., nlc

e = 1, ..., nel

2𝛼eAe ≥

nlc
∑

i=1

𝛾2

e,i
, e = 1, ..., nel,

(14)

min
� i,m

nel
∑

e=1

(�e + wALeAE)

s.t.

nel
∑

e=1

HeeNe,i − ri = 0 i = 1, ..., nlc

Ne,i − fyAe ≤ 0

{

i = 1, ..., nlc

e = 1, ..., nel

− Ne,i − fyAe ≤ 0

{

i = 1, ..., nlc

e = 1, ..., nel

− Ae ≤ 0 e = 1, ..., nel

− �e ≤ 0 e = 1, ..., nel

�e,i =

√

wE,iLe

E
Ne,i

{

i = 1, ..., nlc

e = 1, ..., nel

2�eAe ≥

nlc
∑

i=1

�
2

e,i
, e = 1, ..., nel,
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which can be rewritten as follows:

The Lagrangian function is then given by

which leads to the following relationships:

This leads to the dual problem

(15)

L(� i, m,�, �) =

nel
∑

e=1

(𝛼e + wALeAe)

−

nlc
∑

i=1

�⊤

v,i

(

nel
∑

e=1

(HeeNe,i) + ri

)

+

nlc
∑

i=1

nel
∑

e=1

𝜆+
y,i,e

(Ne,i − fyAe)

+

nlc
∑

i=1

nel
∑

e=1

𝜆−
y,e,i

(−Ne,i − fyAe)

+

nlc
∑

i=1

nel
∑

e=1

𝜈E,i,e

(

−

√

wE,i

E
LeNe,i + 𝛾e,i

)

−

nel
∑

e=1

(𝜆𝛼,e𝛼e) −

nel
∑

e=1

𝜆A,eAe,

(16)

L(� i, m,�, �) =

nel
∑

e=1

[

(1 − 𝜈𝛼,e)𝛼e

+

( nlc
∑

i=1

(𝜆+
y,i,e

− 𝜆−
y,i,e

)fy + wALe − 𝜈A,e

)

Ae

+

nlc
∑

i=1

{

𝜈E,i,e𝛾e,i +

(

(𝜆+
y,e,i

− 𝜆−
y,e,i

)

−

√

WE,i

E
Le𝜆E,i,e − (Hee)⊤�v,i

)

Ne,i

}

]

+

nlc
∑

i=1

r
⊤

i
𝜈v,i.

(17)g(�, �) = inf
� i,m

L(� i, m,�, �),

(18)

𝜈
𝛼,e = 1, e = 1, ..., nel

𝜈A,e =

nlc
∑

i=1

(𝜆+
y,i,e

− 𝜆
−

y,i,e
)fy

+ wALe, e = 1, ..., nel

nel
∑

e=1

(Hee)⊤𝜈v,i =

nel
∑

e=1

(

(𝜆+
y,e,i

− 𝜆
−

y,e,i
)

−

√

WE,i

E
Le𝜆E,i,e

)

, i = 1, ..., nlc.

which can be simplified to

Here, 
�

v,i

w
E,i

 can be interpreted as the displacement vector, u
i
 , 

H
e
e

L
e

 is the strain interpolation matrix B and 
�
+

y,i,e
−�

−

y,i,e

wE,iLe

 can be 

interpreted as the plastic strain vector, �p,i . Introducing 

Bu
e,i

= �
e,i

 , with �
e,i

 being element e of �
i
 which is the total 

strain vector, and u
e,i

 is the element displacement vector. The 

problem can then be simplified as

(19)

max
�,�

nlc
∑

i=1

(r⊤
i
𝜈v,i)

𝜈𝛼,e = 1, e = 1, ..., nel

Ne,i − fyAe ≤ 0, i = 1, ..., nlc

𝜈A,e =

nlc
∑

i=1

(𝜆+
y,i,e

− 𝜆−
y,i,e

)fy

+ wALe, e = 1, ..., nel

s.t. 2𝜈𝛼,e𝜈A,e ≥

nlc
∑

i=1

𝜈2

𝛾 ,i,e
, e = 1, ..., nel

{𝜆+
y,e,i

, 𝜆−
y,e,i

, 𝜆E,i,e} ≥ 0,

{

i = 1, ..., nlc

e = 1, ..., nel

nel
∑

e=1

(Hee)⊤𝜈v,i =

nel
∑

e=1

(

(𝜆+
y,e,i

− 𝜆−
y,e,i

)

−

√

WE,i

E
Le𝜆E,i,e

)

, i = 1, ..., nlc,

(20)

max
�v,i,𝜆

+

y,e,i
,𝜆−

y,e,i

nlc
∑

i=1

wE,ir
⊤

i

�v,i

wE,i

s.t. wA≥

nlc
∑

i=1

wE,i

[

1

2
E

(

(

Hee

Le

)⊤ �v,i

wE,i

−

𝜆
+

y,i,e
−𝜆−

y,i,e

wE,i

Le

)2

+ fy

𝜆
+

y,i,e
−𝜆−

y,i,e

wE,i

Le

]

, e = 1, ..., nel

{𝜆+
y,e,i

, 𝜆
−
y,e,i

}≥0,

{

i = 1, ..., nlc

e = 1, ..., nel.

(21)

max
ui,�p,i

nlc
∑

i=1

wE,ir
⊤

i
ui

s.t. wA≥

nlc
∑

i=1

wE,i

(

1

2
E(�i − �p,i)

2 + fy�p,i

)

𝜀e,i = Bue,i, i = 1, ..., nlc, e = 1, ..., nel.
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