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ABSTRACT

For graphs G and F, the saturation number sat(G, F) is the minimum number of edges in an inclusion-maximal
F-free subgraph of G. In 2017, Korandi and Sudakov initiated the study of saturation in random graphs. They showed
that for constant p € (0,1), whp sat(G(n D), K ) 1+ o0(Q))n log 1 n. We show that for every graph F and every

constant p € (0, 1), whp sat(G(n, p), F) = O(nln n). Furthermore, 1f every edge of F belongs to a triangle, then the
above is the right asymptotic order of magnitude, that is, whp sat(G(n, p), F) = O(nln n). We further show that for
a large family of graphs 7 with an edge that does not belong to a triangle, which includes all bipartite graphs, for
every F € F and constant p € (0, 1), whp sat(G(n, p), F) = O(n). We conjecture that this sharp transition from O(n)
to ©(n1n n) depends only on this property, that is, that for any graph F with at least one edge that does not belong
to a triangle, whyp sat(G(n, p), F) = O(n). We further generalize the result of Korandi and Sudakov, and show that
for a more general family of graphs F’, including all complete graphs K, and all complete multipartite graphs of the
form K W for every F € F’ and every constant p € (0, 1), whp sat(G(n, p), F) = (1 + o(1))n log% n. Finally,

>
we show that for every complete multipartite graph K, , and every p € [%, 1), sat(G(n, p. K, . ’s{) =1+
o(1))nlog 1 n.

1-p

1 | Introduction
1.1 | Background and Main Results

For two graphs G and F, a subgraph H C G is said to be F-saturated in G if it is a maximal F-free subgraph of G, that
is, H does not contain any copy of F as a subgraph, but adding any missing edge e € E(G) \ E(H) creates a copy of F
(throughout the paper, we assume for convenience that F does not contain isolated vertices and note that it does not
cause any loss of generality). The minimum number of edges in an F-saturated subgraph in G is called the saturation
number, which we denote by sat(G, F). Zykov [1], and independently Erdés, Hajnal, and Moon [2] initiated the study of
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the saturation number of graphs, specifically of sat(K,,, K). Since then, there has been an extensive study of sat(K,,, F) for
different graphs F. Note that the maximum number of edges in an F-saturated graph is ex(n, F), and hence the saturation
problem of finding sat(K,, F) is, in some sense, the opposite of Turdn problem. Of particular relevance is the following
result due to Kaszonyi and Tuza [3], which shows that for every graph F, there exists some constant ¢ = ¢(F) such that
sat(K,, F) < cn. We refer the reader to [4] for a comprehensive survey on results on saturation numbers of graphs.

In 2017, Korandi and Sudakov initiated the study of the saturation problem for random graphs, that is, when the host graph
G is the binomial random graph G(n, p) for constant p. Considering the saturation number for cliques in the binomial
random graph, sat(G(n, p), K,), they showed the following:

Theorem 1.1 (Theorem 1.1in[5]). Let0 < p <1 be a constant and let s > 3 be an integer. Then whp!

sat(G(n,p), KS) =0+o01)n log+ n

If F is a graph such that every e € E(F) belongs to a triangle, it is not hard to see that sat(G(n, p), F) = Q(nln n). Indeed,
the neighborhood N (v) of every vertex v in the saturated subgraph H should dominate its neighborhood in G(n, p), and
thus whp | N (v)| should be at least of logarithmic order in n. More precisely, the lower bound in Reference [5] comes
from the following:

Theorem 1.2 (Theorem 2.2 in [5]). Let0 < p < 1 be a constant. Let F be a graph such that every e € E(F) belongs to
a triangle in F. Then whp

sat(G(n,p), F) > (1 + o(1))n log+ n

Following [5], there has been subsequent work on the saturation number sat(G(n, p), F) for other concrete graphs F.
Mohammadian and Tayfeh-Rezaie [6] and Demyanov and Zhukovskii [7] proved tight asymptotics for F = K ;. Demi-

dovich, Skorkin and Zhukovskii [8] proved that whp sat(G(n, p),C,,) = n + @(ﬁ) when m > 5, and showed that whp
sat(G(n, p), C;) = O(n).

In this paper, we revisit the problem of saturation number in G(#n, p). Our first main result gives a general upper bound,
holding for all graphs F.

Theorem 1. Let0 < p < 1 be a constant. Let F be an arbitrary graph. Then whp

sat(G(n, p), F) = O(nlnn)

Comparing with the result of [3], Theorem 1 shows that the saturation number in random graphs can be larger than the
saturation number in K, by at most a factor of O(In n), whereas Theorem 1.2 shows that this is asymptotically tight.

We note that the hidden constant in O(nIn n), which we obtain in the proof, may depend on the probability p and
the graph F. Note that if every edge of F belongs to a triangle in F, then Theorems 1 and 1.2 imply that whp
sat(G(n, p), F) = O(nlnn). In fact, we conjecture that the asymptotics of the saturation number are dictated by the
assumption of Theorem 1.2. That is:

Conjecture 1.3. Let0 < p < 1 be a constant. If F is a graph such that every e € E(F) belongs to a triangle in F, then
whp

sat(G(n, p), F) = ©(nln n)
On the other hand, if F is a graph such that there exists e € E(F) which does not belong to a triangle in F, then whp

sat(G(n, p), F) = O(n)

Our second main result further advances us towards settling this conjecture. We define a family of graphs for which the
saturation number in G(n, p) is typically linear in n. We say that a graph F has property () if there exists a connected
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FIGURE1 | Anillustration of a connected graph satisfying property ().

component F’ of F which satisfies the following. There exists a largest color class I,,,,, € V' (F’),among all proper colorings
of F’ with y(F’) colors (Where y(F’) is the chromatic number of F’),and avertexv € V(F’) \ I, suchthat N, (v) C I,
(see Figure 1). Note that every bipartite graph satisfies property (#).

Theorem 2. Let0 < p < 1 be a constant. Let F be a graph with property (#). Then whp

sat(G(n, p), F) = O(n)

Once again, the hidden constant in O(n) which we obtain in the proof may depend on the probability p and the graph F.
Furthermore, observe that the vertex v in Theorem 2 does not belong to a triangle in G. In particular, since we assume F
has no isolated vertices and thus v is not an isolated vertex, there exists at least one edge which does not lie in a triangle in
F, supporting the second part of Conjecture 1.3, although not resolving it completely. Furthermore, Theorem 2 extends
the asymptotic results of [8], as every F = C,, also satisfies property ().

The second part of the paper aims for tight asymptotic bounds. Indeed, more ambitiously, one could try and aim for tight
asymptotics in the case where every edge of F belongs to a triangle (as in Theorems 1.1 and 1.2). Our next two results
aim at extending the tight asymptotics of Theorem 1.1 to a wider family of graphs. The first one extends Theorem 1.1 to
complete multipartite graphs for p > % (note that the case of bipartite graphs, that is £ = 2, is covered by Theorem 2).

Theorem 3. Let¢ >3,s,<s,<---<s,, andlet % < p < 1 be a constant. Then whp

sat(G(n, p. K, . ’sf> =1+ o1)n logf n

Remark 1.4. Though it may be possible that the same result holds for constant p < 1/2, our proof does not work in this
case since one of its main ingredients, Lemma 2.1, fails to be true when p < 1/2.

The second one defines a family of graphs for which the above is an asymptotic upper bound for all values of p. For two
graphs A and B, we say that a graph B is A-degenerate if every two-vertex-connected subgraph of it is a subgraph of A.
Furthermore, we say that a graph F = (V, E) has the property (%) if there is an edge {u, v} = e € E such that for every
independentset I C V', we have that F[V' \ I']isnon-F[V \ {u,v}]-degenerate, that is, there exists a two-vertex-connected
subgraph of F[V \ I]which is not a subgraph of F[V \ {u, v}].

Theorem 4. Let0 < p < 1 be a constant and let F be a graph with property (x). Then whp
sat(G(n, p), F) < (1 +o(1))nlog 1 n
Let us mention a family of graphs satisfying property (x), which could be of particular interest. Let F be a graph with

an edge {u, v} such that there exists a proper coloring of F with y(F) colors, where {u} and {v} are distinct color classes
(see Figure 2), and let us further suppose that for every independent set I C V(F), F[V (F) \ I]is two-vertex-connected.
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F\ {u,v}

x(F\{u,v}) = x(F) — 2

FIGURE2 | Anillustration of the edge {u, v} and the remaining graph F \ {u, v}.

Then F \ {u, v} is y(F) — 2 colorable, whereas for any independent set I, F[V \ I] requires at least y(F) — 1 colors, and
therefore F satisfies property (x).

Note that if, in addition, every edge of F lies in a triangle, then by Theorem 1.2, we obtain sharp asymptotics. That is,
whp sat(G(n, p), F) = (1 + o(1))nlog_1 n. In particular, we obtain the following corollary.
1-p

Corollary 1.5. Let0 < p <1beaconstant. Let £ > 3 and s;, ... ,s, > 1 beintegers. Let F = Ky ; . Then whp

sat(G(n,p), F) = (1 + o(1))n log% n

Observe that Theorem 3 provides the same asymptotic as Corollary 1.5 for any multipartite graph F, that is, without the
requirement that s; = s, = 1, however only for p € [% 1).

Theorem 1.2 together with Theorems 3 and 4 suggest that one may make a more ambitious claim in Conjecture 1.3,
stating that if every edge of F lies in a triangle, then whp sat(G(n, p), F) = (1 + o(1))nlog_ 1 n (see more on that in
1-p

Section 5).

1.2 | Main Methods and Organization

Let us begin with some conventions that will be useful for us throughout the paper. Given two graphs H C G, and a
graph F, we say that an edge e € E(G) is completed by H (or that H completes e), if there is a subgraph of H' C H such
that eU H' = F. In this case, we also say that e completes (or closes) a copy of F. Furthermore, we use the notion of an
F-saturated graph for a family of graphs 7. We say that a graph H is F-saturated in G if H does not contain a copy of any
F € F,yet adding any edge e € E(G) \ E(H) closes a copy ofat least one F € F.

The structure of the paper is as follows. In Section 2, we present and establish several lemmas that we will use throughout
the paper.

In Section 3, we prove Theorems 1 and 2. Both proofs rely on a construction of an F-saturated subgraph of G(n, p) given
in the proof of Lemma 3.1. The proof of Theorem 2 follows rather immediately from the above-mentioned construction,
whereas the proof of Theorem 1 utilizes an inductive argument based on Lemma 3.1.

In Section 4, we prove Theorems 3 and 4. The proof of Theorem 4 utilizes the construction of [ 5], refined with the following
lemma. For every two graphs G and A, and € > 0, we say that a graph G is e-dense with respect to A if every induced
subgraph of G on at least €|V (G)| vertices contains a copy of A. Finally, given a family of graphs 7, we say that G is F-free
if it does not contain a subgraph isomorphic to F for every F € F. We will make use of the following result:
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Lemma 1.6 ([9, Theorem 2.1 and Remark 2]). Let p € (0,1). Let A be a graph and let F be a family of graphs such
that every F € F is non-A-degenerate. Then for every sufficiently small 6 > 0, whp there is a spanning subgraph in G(n, p)
which is F-free and n~-dense with respect to A.

We note that in Reference [9], it was shown that the condition on F in the above lemma is not only sufficient, but also
necessary. In particular, this implies some limitations in the results that can be obtained using the construction of [5] (see
Section 5 for more details on the matter).

The proof of Theorem 3 is more delicate and is the most involved in this paper. Let us briefly outline the key ideas in the
construction, while comparing them with the construction of [5] for cliques.

Very roughly, in Reference [5], one takes a set A on ®(logn) vertices, and let B := [n] \ A. One can then find in A a
spanning subgraph of G(n, p) that is K,_,-free, but (1/ In*| A|)-dense with respect to K,_,, denote this subgraph by A’. Let
H be the subgraph of G(n, p) with all the edges between A and B, all the edges of the subgraph A’, and no edges inside
B. Then, typically almost any pair of vertices u, v in B is likely to have many common neighbors in A and one can find
a copy of K,_, in A’ induced by this common neighborhood, such that together with the edge {u, v} they close a copy of
K, while on the other hand the graph is K -free since A’ is K,_;-free and B is empty.

Thus, in the case of a complete graph, one is mainly concerned with the property that the endpoints of every edge in
G(n, p)[ B] have a large common neighborhood in A. However, in the case of a complete r-partite graph F with all parts
being non-trivial, one cannot assume that in every large induced subgraph of A’ there is a copy of F minus an edge, as
otherwise it is easy to see that our graph is not F-free. In particular, one cannot consider an empty graph in B. Moreover, a
suitable subgraph that we take in B should satisfy the property that every vertex and its B-neighbors have a large common
neighborhood in A. To show the likely existence of such a subgraph in B, we use a coupling with an auxiliary random
graph in a Hamming space and prove a tight bound for its independence number using a covering-balls argument (see
Lemma 4.8 and the paragraph after its statement).

Finally, in Section 5, we discuss the obtained results and some of their limitations, and mention some questions as well
as open problems.

2 | Preliminary Lemmas

Given a graph H and a vertex v € V' (H ), we denote by N, (v) the neighborhood of vin H and by d;(v) = | Ny (v)|. Given
asubset .S C V(H), we denote by N (.S) the common neighborhood of all v € S in H and by d;(S) = | Ny (S)|. That is,
Ny(S) :=(),es Ny (v). Finally, given subsets S},.S, C V' (H), we denote by N (S,|S,) the common neighborhood of .S
in S, in the graph H and by d;(S5,1.S,) = I[N (S;[S,)|. That is, N (S;1S,) := Ny(S;) N S,. When the graph H is clear
from context, we may omit the subscript. We denote by K‘f the complete Z-partite graph where each part is of size s. We
omit rounding signs for the sake of clarity of presentation.

We will make use of the following bounds on the tail of binomial distribution (see, e.g., [10, Theorem 2.1], [11, Theorem
A.1.12], and [5, Claim 2.1]).

Lemma2.1. Let N eN,pe€[0,1],and X ~ Bin(N, p). Then, for 0 < a < Npand for b > 0,

P(|X — Np| 2a)$2exp<—3§p> (1)
e bNp
P(X > bNp) < (5) )
P<X < %) <-p"Er ©)
In“N

We will require the following probabilistic lemma, which shows that large enough sets are very likely to have a vertex
whose number of neighbors in this set deviates largely from the expectation.
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For every p € (0,1), we set

=1
p(p)-—l_p 4)

When the choice of p is clear, we may abbreviate p := p(p).

Lemma2.2. Letpe [% 1>, and let G ~ G(n, p). For every y > 0, there exists a sufficiently small ¢ > 0 such that the
Jfollowing holds. Let X and Y be disjoint sets of vertices in V (G) of sizes (1 + €) log, n and at least ﬁ respectively. Then,

[F"(Vy EY d(y|X) <1+ @1 -y)e)log, n) < exp(—n€)

Proof. Note that for every vertex y € Y, the number of neighbors of y in X in the graph G is distributed according to
Bin(]X|, p). Hence, forafixed y € Y,

P(d(IX) = 1+ = )e)log, n) = P(d1X) = (1 + (1 - y)e) log, n)

— |X| p(1+(1—y)€) logpn(l _ p)yelogﬂn
1+ @ —-7)e)log,n

velog n
> 1+e)1-p ’ p(1+(1_7)€)10g"n
e e —
S (1 = py<oes (5 ) log, mevelog ey sdog, , pii+a-periog,

l+e
ve

_ relom, ( )—(1og1_,, PA+1-p)e)—ye

Since p > % we have that log, , p <1 and thus

1+e

P(d(y1X) > (1+ (1 - p)e)log, n) > n "% (L)-1-¢

> n—1+2€

where the last inequality is true since for sufficiently small ¢ we have —yelog,_, <%> > 3e.

Therefore, since d(y| X) are independent for y € Y, we obtain that

P(Yy €Y d(y1X) < 1+ - pe)log,n) < (1—n12)"]

< exp(—n)
where in the last inequality we used our assumption that |Y| > ﬁ O

We will also utilize the fact that random graphs typically have relatively small chromatic number (see, e.g., Chapter 7 in
Reference [12]):

Lemma 2.3. Let0 < p <1 bea constant. Then whp y(G(n, p)) = O<i>

Inn

3 | Global Bounds

We begin by giving a construction showing that, for any family of graphs which contains at least one bipartite graph, whp
the saturation number in G(n, p) is linear in ». This construction will be key for both the proofs of Theorems 1 and 2.

Lemma3.1. Letp € (0,1). Let F be a family of graphs that contains at least one bipartite graph. Then whp

sat(G(n, p), F) = O(n)

6 of 20 Random Structures & Algorithms, 2025
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Proof. Note that if there exist two graphs F,, F, € F such that F, C F, then any graph G is F-saturated if and only if G
is F \ { F,}-saturated, and thus sat(G, F) = sat(G, F \ { F,}). Hence, we may assume that there are no such two graphs
F,,F,eF.

Set

¢ :=min{|Vy| : F € F, F' C F is aconnected component of F, y(F') =2,
¥, and V, are color classes of F' and V(F') = V; UV, }

Let F and its connected component F’ be graphs that achieve the minimum above.

We construct a subgraph H C G(n, p) which is F-saturated such that whp | E(H)| = O(n) in a couple of stages. Let k =
|F\ F'|.Fixv,; € V(G(n, p)), and consider N; := N, ,(v;). Then, for every 2 < i < k, choose v; from N,_; and set N; =

N;_1 N Ng, ;). Note that for any constant k, whp we are able to find such {v;, ... ,v;}, and that they form a clique
in G(n, p). Noting that we have not revealed any of the edges induced by [n] \ {v;, ... ,v,}, we have that the graph on
[n]\ {vy, ... ,v,} is distributed as G(n — k, p), which for constant k and p is essentially the same distribution as G(n, p).

Thus, whp we are able to find a copy of F \ F’ in G(n, p), with the rest of the graph distributed as G ~ G(n — k, p). We then
set H to be the graph whose vertex set is V' (G(n, p)), and its set of edges contains only the edges of this copy of F \ F’.
Note that H is F-free by the assumption that there are no two graphs F,, F, € F such that F;, C F,. Further, we set
V :=V(G).

If # = 1, then, as long as there exists an edge in G which does not close a copy of some F € F in H, we may add it to H.
Note that in this way we increase the degree of every vertex in H by at most |V (F’)| — 2. Further, as long as there exists
an edge not induced by V in G(n, p) (i.e., from the edges touching the copy of F \ F’ we set aside at the beginning), which
does not close a copy of some F € F in H, we may add it to H. Since k is a constant, we have added O(n) edges to H, and
H is F-saturated.

We may thus assume that # > 2. Let = be the smallest integer satisfying
(L=pn<n (%)

Let us fix 7 vertex disjoint sets of size # — 1 from V, denote them by A,, ... , A, and set A = [J, A;. We then proceed
iteratively. In the first step, we set B, to be the set of all common neighbors of A; in G among the vertices outside A.
At the i-th step, where 1 < i < 7, we set B; to be the set of all common neighbors of 4; in G among the vertices outside
AU, B;. Letus add to H all the edges between A; and B; in G forevery 1 <i < 7.

Observe that H remains F-free since at this stage we have added to H only bipartite graphs admitting a 2-coloring with
one color class of size at most # — 1. Moreover, every edge in H is incident to B;, for some 1 < i < 7. Hence, the number
of edges in H thus far is at most

e(F\ F))+ Y |B|(£ —=1) < e(F \ F')+ (£ = )n

We now turn to add edges to H such that it becomes F-saturated. First, we consider edges whose both endpoints are in
B, forsome 1 <i < 7. Forevery 1 < i < r, as long as there is an edge in G[ B,] which does not close a copy of some F € F,
we add it to H. Note that the degree of every vertex increased by at most | F’| — ¢ — 1. Indeed, if for some 1 < i < 7 there
isavertex v € B; with degree | F'| — £ in H[B;], then we can form a copy of K, | _, With v, Ny 5,(v), and A;. However,
F' C K, s> & contradiction since this copy will close a copy of F together with F \ F’ we set aside at the start of the
construction. Hence, the number of edges that are added to H in this step is at most

MIBIF | =¢-1) <(|F'|=¢—1n

Now, for every 1 < i < 7, as long as there is an edge between V' \ U, ; B; and B; in G which does not close a copy of some
F € F,weadditto H. Note that, by the same argument as before, at every step i the degree of every vertex v € [n] \ U i<iB;
increased by at most | F’| — # — 1. For every vertex v & A, the probability that v ¢ U;lej is (1 — p’~1)". By Lemma 2.1 (1),
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the probability that there are at least 2(1 — p*~1)'n such vertices is at most exp(—nl/ 4). Thus, by the union bound over all
less than n choices of i < 7, whp

i
n=Y|Bl<201-pn VI<i<t (6)
j=1

Hence, by (6), the number of edges we add to H in this step is whp at most

Z<"— Z|B,|>(|F’| —£=1)< Y201 -p")n(|F'| - £ —1) = O(n)
j=1 i

i<t

Let us now consider the edges induced by V' \ |J; B;. As before, as long as there exists an edge in G[V'\ U;lei] which
does not close a copy of some F € F, we add it to H. By (6) (for i = ) and our choice of = and (5), we have that whp

‘V\ U B<| < 2(1 - p’~1"n = o(y/n). Therefore, we only add o( < [\ szr'le"| >> = o(n) many edges in this step.

j=1"i

Lastly, there are O(n) edges in G(n, p) which are not induced by V' (edges touching the copy of F \ F’ we set aside at the
beginning). Hence, we can add to H these edges one by one, until the resulting graph becomes F-saturated. We thus
obtain the required 7-saturated subgraph H, where whp |E(H)| = O(n). O

The proof of Theorem 2 follows a similar construction to the one in Lemma 3.1.

Proof of Theorem 2.  Let F be a graph satisfying property (#). Then, there exists a connected component F’ C F with
I...« € V(F’) being a color class of maximum size among all proper colorings of F’ with y(F’) colors, and a vertex v €

V(F')\ I, such that N, (v) C I,.. Letk := [V(F)\ V(F")|.

As in the proof of Lemma 3.1, we may assume that there are no two connected components F;, F, of F such that F; C F,.
Similarly to the proof of Lemma 3.1, let us find a copy of F \ F’ in G(n, p), and consider the remaining graph G which is
distributed as G(n — k, p). Let H be the graph whose vertex set is V' (G(n, p)) and whose edge set contains only the edges
of this copy of F \ F’. In particular, H is F-free. We now continue to construct an F’-saturated graph in G. Then, the
F’-saturated graph in G together with the copy of F \ F’ (that we set aside) forms an F-free graph in G(n, p), and any
edge we add in G closes a copy of F.

The case where F’ is a star may be treated in the same manner as in the proof of Lemma 3.1; thus, we may assume that
F'isnotastar. Set V := V(G), and let = be as in Equation (5). Let U C V be a subset of n¢ vertices, for some small € > 0.
Whp, we can find a K|, -factor in G[U] (see, i.e., [13]). Let us take 7 vertex-disjoint copies of F' \ (I, U {v}) from
G[U], denote them by A,, ... , A,, and add them to H. Then, we take B, to be the set of common neighbors of 4; in
V' \ U, and forevery 1 < i < 7, we set B, to be the set of all common neighbors of 4; in V"' \ (UU U;_:llB,.). We then add to
H all the edges between A; and B, for every 1 < i < 7. By the same arguments as in Lemma 3.1, whp we added only O(n)
edges to H.

Note that, for any i € [z], the graph H[A, Ul B;] does not contain a copy of F’. Indeed, if we had a copy of F’, denote it by
F', then
2(F'TA 0 V(ED]) < g (F'TAD < g (F'\ Uy U {0)) < 2(F) = 1

and thus we could color V' (F'[B, n V(F’)]) with one color and V (F'[A, n V (E')]) with y(F’) — 1 colors, obtaining a color
class of size |V (F '[Bi NV EHD| = |1,,.x] + 1—a contradiction to the assumption that I, is a color class of F’ of maxi-
mum size among all proper colorings with y(F’) colors.

As in the construction in the proof of Lemma 3.1, we first add to H edges induced by B,, for all 1 <i < 7, as long as it
remains F-free. Next, for every 1 <i < 7, aslong as there is an edge between V' \ U, ; B; and B, in G which does not close
a copy of some F € F, we add it to H. Observe that connecting any v ¢ A, to aset .S C B, of size |I,,,,,| creates a copy of
F’with v, S, and A, in H and thus creates a copy of F in H together with the copy of F \ F’ we set aside at the beginning,
and we thus added only O(n) edges at this step. The obtained graph H[V (G)] is F’-saturated in G, and has whp O(n)
edges. The graph H is, in fact, F-free, and any edge we add in G will create a copy of F in H. Then, again as in the proof

of Lemma 3.1, we may add to H all the edges not induced by V (i.e., edges touching the copy of F \ F’ we set aside at the
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FIGURE3 | Indashed red line, there is a missing edge u, v which closes a copy of F’ € 7. Together with its common neighborhood
in A (colored light green and blue), this closes a copy of F € F.

beginning of the construction) one by one, until H is F-saturated in G(n, p). Since k is a constant, we have added only
O(n) edges to H.

Utilizing Lemma 3.1, we can now prove Theorem 1.

Proof of Theorem 1. In fact, we will prove a slightly stronger statement: That for any finite family of graphs F, we
have that whp sat(G(n, p), F) = O(nlog n) for any fixed p € (0,1)—as we prove by induction, this will help us with the
inductive step.

Set y, := y(F) = mingr y(F). We prove by induction on y,,. If y, = 2, we are done by Lemma 3.1. We may assume now
that y, > 3, and that the statement holds for any family 7’ with y(F’) < y,.

‘We now construct H C G(n, p) such that whp H is F-saturated, and e(H) = O(n In n). We begin by letting H be the empty
graph. Let A be a set of C In n vertices for some large enough constant C := C(F, p) > 0. Set

F :={F\I : F e F and I is an independent set of F}

We stress that we go over all the possible pairs (F, I) where F € F and I is an independent set of F. We thus have that
for some F’' € F, y(F') = Zo — 1 (note that this holds also when F is disconnected). By induction, whp there exists H' C
[n] \ Awhichis F-saturated in G(n, p)[[n] \ A]with O(nIn n) edges. Furthermore, for a fixed set X of order max ¢z |V (F)|
in [n] \ A, dg,,(X|A) is distributed according to Bin(|Al, p'*1). Thus, by Lemma 2.1 (1),

C(in n)p!¥! —2 max; e, [V(F)
[P’(dc(n,p)(XlA) < rpg;,(lV(F)I> < eXP(—T <n
for C large enough. Thus, by the union bound, whp for every set of order max,.» |V (F)| in [n] \ A, we can find a set of
maxpcr |V (F)| common neighbors in A. Therefore, when we add a missing edge from G(n, p)[V' \ A], we close a copy of
some F’ € F. This copy of F’ together with its common neighbors in A form a copy of some F € F (see Figure 3).

Let E’ be the set of edges of G(n, p) between [n] \ A and A. Let H be H' together with E’.

First, note that H is F-free. Indeed, since H[A]is an empty graph, if thereis a copy of F in H, F[A] must be an independent
set. However, by definition of H’, F[[n] \ A]is free of any F \ I for any independent set I of F—a contradiction.

Furthermore, by construction, every edge of G(n, p) \ E(H) in [n] \ A closes a copy of F € F. Since |E’| = O(nln n) and
whp |E(H’)| = O(nln n), we have that whp | E(H)| = O(nln n). To ensure that H is F-saturated, the only edges to con-
sider are those where both endpoints are in A, and there are at most O(In*n) such edges. Hence, whp there exists H which
is F-saturated with O(n In n) edges.
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4 | Sharp Bounds
In this section, we prove Theorems 3 and 4. We begin with the proof of Theorem 3.

Let us begin with an outline of the proof. We show that whp there exists a subgraph H C G(n,p) which is
K, -saturated and e(H) < (1 +o(1))nlog 1 n. Note that if we find a subgraph H C G(n,p), with e(H) < (1+

o()n log 1 n, which completes all but at most o(n In n) edges, then we can add edges one by one if necessary, and obtain
a subgraph which is K, ..., f—saturated and has at most (1 + o(1))nlog 1 » many edges.

Very roughly, we take a subset A of order ®(Inn) and B from [n] \ A. We then find a subgraph in G(n, p)[A] which

S {Kf, Kif ‘1)} free and such that there is a copy of K in every large enough subset of A (where if s, =1,

s1=1,83,...,5,

5=y, = Ky ;,)- Inthe case of s, = 1, as in Reference [5], it suffices to set B as the empty graph and draw all the
edges between A and B, and then to show that almost all the edges are completed. However, as in Reference [5], there
will still be a small (yet non-negligible) amount of edges that will not be completed, as the co-degree of their endpoints
in A is too small. For these type of edges, some additional technical work is required, which will force us to maintain two
additional small sets outside of B— A, and A;—which, as in Reference [5], will allow us to deal with these problematic

edges.

The case of s, > 2 is naturally more delicate, as B cannot be taken to be an empty graph, but instead requires some special
properties. Using a novel construction, we find a subgraph in G(n, p)[ B] which is almost-(s, — 1)-regular (i.e., almost all
its vertices are of degree s, — 1, and the others might have smaller degree) and K, , _ ,,-free in G(n, p)[B]. This subgraph
will have another crucial property— the vertices of any copy of K ; _; have a large common neighborhood in A, which
we show through coupling and covering-balls arguments (the construction of this graph is the most involved part of the
proof and includes key new ideas, this appears in Lemma 4.1). In this way, almost all edges in B close a copy of K,
such that this copy has a large common neighborhood in 4, in which we can find a copy of K _;, , (asin the clique
case, some additional technical work is required to deal with the other edges). These two copies form a copy of K,
as needed.

LSy

Note that the requirement that the subgraph in G(n, p)[Bl is K, ; _, ,,-free is necessary, as otherwise a copy of K
could be formed when drawing the edges between B and A.

JERREREY

41 | Proofof Theorem 3
We may assume that s, > 2, as the case of cliques has been dealt with in Reference [5].

Let y,e > 0 be sufficiently small constants. Let G ~ G(n, p). Let L := L(sl, ,sf) be a constant large enough with
respect to sy, ... ,s,. Let p = p(p) and set

a,
yIna,

Let A;, A,, and A;, be disjoint sets of vertices of sizes a;, a,, and a5, respectively. Set B : =V \ (4; U 4, U 4;). Set

a, = %(1 +(1+pelog,n, a,=Llog,n, a;=

I:= [(1 +e)log,n, (1+(1+2y)e)log, "]

We say that a vertex v € B is A;-good if d;(v|A,) € I. Otherwise, we say that v is A;-bad. Let B; C B be the set of
A,-good vertices, and set B, = B\ B;. Note that whp |B,| = O<ﬁ> Indeed, for every vertex v € B, we have d;(v|A;) ~
Bin(a,, p). By Lemma 2.1 (1), for every vertex v € B,

P(v isA; — bad) < exp(—clnn)

for some constant ¢ > 0. Thus, E[| B,|] = O(n'~¢). By Markov’s inequality, whp | B,| = O( log” p )

As mentioned prior to the proof, a key element in the proof is finding in B, a subgraph Hy of G whichis K, , _, .;-free
and almost-(s, — 1)-regular in the edges in G[B, ]. Moreover, we want H  to satisfy the following property. Every vertex
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v € B, and its neighbors in H have a large common neighborhood in A, in G. The proof of this key lemma is deferred
to the end of this proof.

Lemma4.1. Whp thereexists Hy C G with V (Hp ) = B, such that the following holds.

* Hp isK

S1,8,—81+1

~free.

n

* The maximum degree of Hy is s, — 1, and all but O( ) of its vertices are of degree s, —1in Hp .

logn

« Foreveryu,v € V(HBI) such that {u,v} € E(HBI), de(u,v|A) > 1+ (1 —6y)e) logp n.

We move the vertices of degree less than s, —1in Hp from B, to B,. Note that by Lemma 4.1, whp we moved 0( - >

logn

vertices from B, to B,, and this has not affected the above properties of Hy, .

;,~degenerate, by

Since K, and K~V are two-vertex-connected graphs (as £ > 3 by assumption) and are non-K, _;
1 s1—1,83, ...,

Lemma 1.6, we can take a spanning subgraph H, C G[A;] which is (1 /In®| A, |)-dense with respect to K and

{K,, Kf‘l) }-free.

s1=1,83,...,5,

Let H, be the graph on A, U B with the edges H, , Hp , and all the edges between A, and B in G. We now continue with
a series of self-contained claims.

Claim 4.2. Whp, H, completes all but o(n In n) of the vertex pairs in B not induced by B,.

Proof. Fix S C Ay, u € B. We say that u avoids S if | Ng(u, S)| < 1n|2i|v|'

tributed according to Bin(|.S|, p). Thus, by Lemma 2.1 (3), the probability that u avoids S is at most (1 — p)!SI=1S1/1n1S1 1n
particular, if |.S| = <1 + %e) log, n, then the probability that u avoids ' is at most

The number of neighbors of  in .S in G is dis-

(1= p)SI-Isi/misl < q — p)(1+§e)1og,,n _ it

Fix a vertex v € B and expose the edges in G from v to A;. Assume that v is A;-good. Fix S C N;(v, A;) of size
(1 + %e) log, n. Let X ¢ be the random variable counting the number of vertices u € B \ {v} that avoid S. Then X is

stochastically dominated by Bin<|B| -1, n_1_§€>. Since |B| — 1 < n, by Lemma 2.1 (2),

P<XS = 1nn> = <ﬁ> " < exp(—%eln%n)

nn-ns

Note that since v is A;-good, then [N (v, A;)| < (1 + (1 + 2y)e) log, n. Hence, by the union bound, the probability that
there exists § C N (v, A;) of size (1 + %e) log, n such that X g > /Inn is at most

1+ @ +2y)e)log,n
(1 + %e) log, n

< exp(%eln(%ﬁ) log, n> exp(—%eln%n) = o(%)

2

1 1 3
exp(——e n2n>
3

Thus, by the union bound whp there are no vertices v € B; such that Xg > v/Inn for some S C Ng(v, A,) of size
(1 + %e) log, n.

Now, fix an edge {u, v} C B in G butnot in H,, such that v € B,. Since v € B;, we have that v € V(HBI) and has degree
s, —1in Hp . Therefore, this edge closes a copy of K; ,, with the neighbors of v in Hp , denote them by v;, ... , v Let

> Ys,—1t
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v 41-o,
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uz

Ny, ({x,v,v1,v2})

FIGURE4 | An illustration of how the edge {x, v}, which is not induced by B,, is completed by H;. In this case, we consider
K, 35- In Hp , we have the vertices v, v; € B, and v, € B,, with the edges {v, v, } and {v, v,}. In the common neighborhood in 4, of
{x,v,0v,,0,}, we can find inside H, a copy of K, ;. Note that with the edges of H; and the edge {x, v}, we now have a copy of K, 3 ;,
with its parts being {v, u}, {v,, vy, x}, {ug, 1y, us}.

S =S, vy, ... ,u,, ) be the set of common neighbors of v, vy, ... , v, _; in A, in the graph G. We note that the size of
S must be at least (1 + %e) log )1 Indeed, we have

s,—1

|S| > |Ng(v, A)| - Z|NG(U, A)\ Ng(v;, A)|

i=1
> |Ng(v, A)| = (s, — D)(8re) log, n
> (1+e—8syre)log,n

> <1 + %e) log, n

where the second inequality follows from the fact that, by Lemma 4.1, given {x, y} € E(H ) we have that d;(x, y|4,) >

1+ @A —6y)e)log )1 and the last inequality is true ify < ﬁ Note that if # has more than ln|25|‘.|5‘|
2

H, is (1/In*| A, |)-dense with respect to K 15, .., Wecanfind acopy of K, _;, . in.S such that the edge {v,u},
joined with the neighbors of v in By, completes a copy of K, (see Figure 4). Thus, by this and the above, whp there

neighborsin .S, then since

are at most ny/Inn = o(nIn n) non-completed edges from B not induced by B,. O

Let us continue with the construction of H. The set A, will be crucial when dealing with edges induced by B,. By
Lemma 1.6, we can take a spanning subgraph H, C G[A,] which is (1/1In|A,|)-dense with respect to K, _;,  , and
{K,, Kb(,f ~U}-free. Let H, be the graph on A, U B, with the edges of H 4, and all the edges between 4, and B, in G. We
will prove how we close edges induced by B, at the last step of the construction —then, we will able to add edges induced
by B, to H one by one, retaining the property that H is K, -free, and show that at that step we have added only

O(n/Inn) = o(nlnn) edges.

Observe that whp we have O(n log n) edges between A, and B, in G. We now utilize the set A; to complete them. Indeed,

by Lemma 2.3 whp k := y(G[A,]) = O(lrfiz ) We can then split A, to k color classes Al . ,A’Z‘. Thus, there are no
edges of G (and thus of H, ) inside A?, for every i € [k]. We further partition the vertices of A, to 2k (almost) equal parts
A;, ,A_f}" of size a, := ;—2 = @(M). For every i € [2k], by Lemma 1.6, the probability that there exists a subgraph
H, C G[A{] whichis (1/Inln In*n)-dense with respect to K, ;. and {K,, Kglf ~D}-free is 1 — o(1). Hence, by stan-
dard binomial tail bounds, whp there exist distinct i, ... ,i, such that there exists such a subgraph in each A"', for every

J € [k]. Therefore, for every j € [k], thereis H WES G[A;/] whichis (1/Inln In*n)-dense with respect to K and

s1—=1,85,...,5,

{K,, Kf ~D1-free. We let Aé = A;j and H,; = H ,;, for simplifying notations and without loss of generality.
3 3

Let H, be the graph with edgesof H, , H ats o Hys, together with the edges between A, and B, in G, and together with
the edges between A} and A), for every i € [k],in G.Set H := H, U H, U H;.
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Claim 4.3. 'Whp, H completes all but at most o(n log n) edges from B, to A,.

Proof.  Fix two vertices v € B, and u € A, for some i € [k].

Recall that v has s, — 1 neighbors in B. Thus, together with u, we close a copy of K; , . If this copy has more than lo;’;‘a
. 4
common neighbors in A’, then we can find among these neighbors a copy of K

By Lemma 2.1 (3), the probability that this copy of K, ; has less tha

=55y which closes a copy of K -

a- ps2+1)a4—a4/lna4 <@1- ps2+1)9(\/1na2)
Hence, the expected number of uncompleted edges e = {v,u} with v € B; and u € A, is at most
a- psl+1)9(\/lna2) i |Bll . |A2| =(1- ps1+1)9(\/lna2) -O(n logp n)

Therefore, by Markov’s inequality, whp the number of uncompleted such pairs is o(n log,, n). O
Claim4.4. Whp, e(H) = (1 + 0(e))nlog,n
Proof. Indeed, whp

e(H) <e(H;)+e(H,) + e(H;)
<A+ o1))a,np+ e(HBl) + e(HAl) +a,|B,|p+ e(HAZ) + e(HA3) + aznp
<A +o0o1)A+(sy+De)n logp n=(14+0())n logp n

Claim4.5. HisK, _ -free.

Proof.  Suppose towards contradiction that there exists a copy of K, ., in H,denote this copy by F.

e
Assume first that V(F)n A; # 0. Set F:=V(F)n As. Suppose further that V(F)n (B, U A;) # 0. Since there are no
edges between B, U A; and A, all the vertices in V' (F) N (B, U A; U A;) must belong to the same independent set of F.
Thus, V' (F) n (B, U A,) must contain a copy of K, . Since there are no edges between B; and A,, this copy is con-
tained entirely in B, or entirely in A,. Since H[B,]is K, , _, ,,-freeand K  _ ,, €K, ,and H[A,]is Kﬁf ~D_free
and Kf YV CK, _, thisisacontradiction, and hence V(F) N (B, U A,) = 0. Since H[A;] is K,-free, then at least one
full part I’ of K, mustcome from B, U A,, asallits vertices must be adjacent to every vertex of F.If F \ I lies entirely
in A5, then H[A;] must contain a copy of Ks(lf ~U —a contradiction, as by construction H[A,] is composed of vertex disjoint
subsets, each of which is Ks(’f ~D-free. Hence, there must be another vertex v € F \ I’ which is in B; U A,. Thus, B, U 4,
contains at least one full part as well as an additional vertex from another part of K; . As this additional vertex is
adjacent to I” in B; U A, and there are no edges between B, and A,, all these vertices must belong exclusively to B; or
exclusively to A,. If they belong to B, then since the maximum degree of Hy is s, — 1 we have that the full part must be
of size s,. Furthermore, we have that Hp is K, , _ ,,-free. Thus, if they belong to B,, H[A;] must contain K~ in order
to complete K, , as there are # — 1 parts missing at least s, vertices, once again leading to contradlctlon Finally, if
they belong to Az, then they should be split between different independent sets A’2 and AJZ, but there are no vertices in A,
which are adjacent to both A} and A} in H —a contradiction.

Let us now assume that V(F)Nn A; =0 and V(F) N A, # 0. Set F :=V(F)n A,. Similarly to before, we may assume
that V'(F) n (B, U A) = o, as otherwise V' (F) N B, must contain K;  and in particular a vertex of degree s,, con-
tradicting the fact that every v € B has degree at most s, —1in H. Since H [A,] is K, -free, then a full part of K,
must come from B, and, as before, at least one additional vertex. This vertex is adjacent to all the vertices in the full
part, and thus, since every v € B has degree at most s, — 1 in H, the full part must be of size s,. Moreover, there are
at most s, — s, vertices of F in B, that do not belong to this part of size s, (otherwise, H[B,], and in particular H|[B]
would contain a copy of K, , _, ,;, contradicting the fact that the set of edges of H[B] is the set of edges of Hp ). There-
fore, each part of F must contain at least s, vertices, creating a copy of K(f D —a contradiction to the fact that H[A,] is

KD free.
$1
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Suppose now that V(F)n A; = V(F)n A, = e and V(F) N A; # 0. Once again, by our assumptions on H[A,], we obtain
that there must be a full side and an additional vertex of F in B. Since the degree of every v € B in H is at most s, — 1,
we have that this side is of size s,. Since H[B] (whose set of edges is as the set of edges of Hy )is K| , _; ,,-free, there are
at most s, — s; vertices of F in B that do not belong to this part of size s,. Thus, each part of V/(F) n A; must contain at
least s, vertices, creating a copy of Ks(f - —a contradiction.

We may thus assume that V'(F) C B. However, H[B] is K, , _, ,,-freeand K, , _ ., € K, —a contradiction, thus
completing the proof. O

In conclusion, whp by Claim 4.5 H is K, -free and by Claims 4.2 and 4.3 H completes all but at most o(n In n) of the
edges not induced by B,. Let us add each of these edges (not induced by B,) which do not close a copy of F to H until
none remain. By Claim 4.4, we have now that whp e(H) = (1 + ©(¢))nlog ,n+o(n Inn) = (1 + O(e))nlog , 1. We are thus
left with the edges of G induced by B,. Let us show that we can add each of these edges that do not close a copy of F to H
until none remain, and in doing so, add at most o(n log n) edges. As we may choose ¢ arbitrarily small, we will then obtain
agraph H whichis K, -saturated with (1 + o(1))nlog, n edges.

To the task at hand, recall that L := L(sy, ... ,s,) is a constant large enough with respect to sy, ... ,s,, and that |4,| =

5p+1
Gp?

Llog, n. We may thus choose L large enough such that whp every s, + 1 vertices from B, have at least common
neighbors in A, in G. Indeed, for a fixed set of s, + 1 vertices, the number of their common neighbors in A, is distributed
according to Bin(|A,|, p*>*!). Lemma 2.1 together with a union bound on the less than n*2*! choices of such sets in B,,
completes this claim. Since H[A,]is (1/In|A,|)-dense with respectto K, _;, , ,these common neighborsin 4, induce
a copy of K 15,0, in H[A,]. Hence, there cannot be a copy of K, in H[B,] (i.e., a vertex of degree s, in H[B,]), as
itcloses a copy of K, together with its common neighbors in A,. Now, as long as there are edges of G induced by B,
which do not close a copy of K, we add them to H. We thus only added at most s, - | B,| = O(n/ logn) edges to H

in this final step.

.80

4.2 | ProofofLemma4.1

We build such a subgraph iteratively. In each iteration, we find a large matching in G[ B, ], which we add to the subgraph,
such that the matching satisfies the following:

1. The union of the previous matching together with this matching does not induce a copy of K| and,

51,5,—87+12

2. the endpoints of every edge in the matching have a large common neighborhood in 4, in G.

Denote by I' the auxiliary graph with vertex set B, and the set of edges defined as follows. For every two vertices v # u
in By,

{u,v} € E) & dgu, v|A;) 2 (1 + (1 - 6y)e)log, n

Set p’ =1— (1 - p)/“~V. For every i € [s, — 1], denote by I'; the subgraph of I' obtained by retaining every edge inde-

pendently with probability p’. We have I', :=T"n G(n, p). Note that I', has the same distribution as Ufi;ll“,-.

We will, in fact, prove the following equivalent lemma:

Lemma4.6. Whp thereexists Hy CT',whichis K , _ .,-free, has maximum degree s, — 1, and all but O( lorgl - ) of its

vertices have degree s, — 1.
We consider two cases separately. In the first case, we assume that p = % While some details will be different when p > %

we believe the key ideas—in particular the ball-covering technique (see Claim 4.9)—are clearer in this case. Afterwards,
we mention how to complete the proof for the range of p > % where, in particular, Claim 4.7 no longer necessarily holds.

4.2.1 | Proofof Lemma 4.1, P=0.5

Recall that we are seeking a subgraph of I', which is K, , _, ,,-free, has maximum degree s, — 1 and all but O(@) of
its vertices are of degree s, — 1.
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As for the first requirement, note that a graph whose maximum degree is s, — 1 and is C,-free, is K, , _, .,-free graph.
Indeed, if s; = s, ors; = 1, we have that K, , _, ,; = K; ;,, and thus asking for the maximum degree to be s, — 1 suffices.
Otherwise, 1 < s; < s, and we have that any copy of K , _, |, contains K, ,, that is, C,.

As for the second requirement, our strategy will then be to find a sufficiently large matching M, inT;, foreveryi € [s, — 1],
s,—1
i=1
vertices that are unmatched. Thus, the subgraph whose edges are the edges of M would then be the desired subgraph
of I,.

p

such that there are no copies of C, in M := 2, M,. We will show that for every i € [s, — 1], there are at most O(@)

Fixi € {2, cee s Sy — 1}. Assume that there exist edge-disjoint matchings M, CI'y, ... , M, ; CI',_; such that Ul,_:ll M; is
C,-free. We will find a matching M; C T'; such that U;le ;18 Cy-free.

Recall that I = [(1 +¢)log,n, (1+ (1 +2y)e)log, n|. Set
W={xCA, :|x|lel}
Denote by Gy, the graph with vertex set W and the set of edges defined as follows. For every x # y € W,
{x,y} € E(Gy) = |xny|l 21+ (1 - 6y)e)log,n (7

Define ¢ : V(I') = V(Gy,) such that ¢(v) = Nj(v|A;) for every v € V(I'). Note that this definition is valid since if v €
V ('), then v is A;-good and thus N;(v|A;) € W.

Claim 4.7. Whp ¢ is injective.

Proof. Fixu € B.Ifu € V(I), then for every vertex v € V(I), we have ¢(u) = ¢(v) if and only if N;(v|A;) = Ngu|A,).
For every vertex v € B,

P(No(u14) = No(ulAy)) = paiti(1 — pyo-doteian = (1)

2
La+@+y)e)log, n
=<l>” 2 =0(1/f’l2)
2
Hence, by the union bound, whp there are no two vertices u # v € V/(I') such that ¢(u) = ¢(v). ]

Set 5W = Gy [¢p(V (I))]. Denote by 5W(p’ ) the random subgraph of éw obtained by retaining every edge of éw indepen-
dently with probability p’. By Claim 4.7, whp ¢ is injective. Therefore, G, = I'. Recall that we want to find a matching
in I';. We will show that whp a(I";) < logLn and later we will construct the desired matching. Since G, =T, it suffices to

prove the following lemma.

Lemmad4.8. Whp

~ '
<
a(Gy, (p) < log, n

Before proving this lemma, let us outline how we shall use the notion of ball-covering in the proof. Let us recall that
x, y are not connected in Gw if [xny| <1+ (@1 —6y)e)log, n. Consider a Hamming ball around x € W, containing all
y € W such that |x n y| is sufficiently large. If we can find m vertices, such that the Hamming balls around them cover
all the vertices of W (and the respective edges are retained in 5W (p")), then the independence number of the graph is at
most m—indeed, any set of more than m vertices must have two vertices in the same Hamming ball, and thus there must
be an edge between them (here we will use the fact that for every v € B, the number of neighbors of v in A, lies in I).
Let us proceed with the detailed proof.

Proof.  For every x € W, denote by B(x) the following Hamming ball around x:

B(x):={yeW :|xny|l 21+ Q1 -y)e)log,n}

._ _n P _n_ ’_ ; ; ’
Setm := Toa) and m’ := g Let B = {y, ... ,y,,} € V(') be an arbitrary subset of size m'.
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Claim 4.9. Whp, for every x € W, there exists a vertex v € B’ such that

dg(v]x) 2 (1 + (1 —y)e)log,n

Proof.  For every x € W, set
B'(x)={ve B :dg|x)>1+1-y)e)log,n}

Fix x € W. Since |B’| > logL3n’ by Lemma 2.2 the probability that B'(x) = o is at most exp(—n®>¢). Note that |[W| = n®D.
Thus, by the union bound over W, the probability that there exists a vertex x € W such that B’(x) = o is at most

now . exp(—no'se) =0(1)
O

Let A be the event that for every x € W, there exists a vertex v € B’ such thatd;(v|x) > (1 + (1 — y)e) log, n. By Claim 4.9,
we have that P(A) = 1 — o(1). In the following claim, we assume that .4 holds deterministically.

Claim 4.10. ForeveryJ = {x;, ... ,x,} C V((NPW), we have |E(5W[J])| > 0.25nlog, n. O

Proof. Foreveryi € [m'], set
Y, :={xeJ : No(ylA,) € B(x)}

Note that by .A, we have that U:”:’IYi = J. Indeed, for every x € J, there exists a vertex y € B’ such that N;(y|4;) € B(x)
and thus there exists i € [m'] such that x € Y,.

‘We now show that GW[Y,.] isaclique for every i € [m']. Fixi € [m'] and two different vertices x, x’ € Y;. By the definition
of Y,

lx N Ng(yilAD| = [Ng(il0)| 2 (1 + (1 = y)e)log, n

and

IxX" N Ng(i1AD] = [Ng(y;1xD] > (1 + (1 = y)e) log, n

Recall that y; € B,, so y, is A;-good and thus d;(y;|4;) < (1 + (1 + 2y)e) 10gp n. Then,

INc(nilA) \ x| < Bye)log,n and |Ng(y;|A)) \ x'| < (3ye)log,n
Hence,

xNx'| > |xnx" N NgW|A)|
> NG |ADI = N |AD \ x| = [Ng(y;] A)) \ X'|
> (1+e—6ye)log,n

where the last inequality is true since dg(y;|A;) > (1 + €) log, n because y, is A,-good. Therefore, by D, {x,x'} € E(5W)
implying that GW[Y,.] is indeed a clique.

For every i € [m'], set

i-1
Y/ =Y\ <UY,-)
j=1

Since for every i € [m'] we have that (NiW[Y,.] is a clique, (NJW[Y[’ ]1C (NJW[K] is also a clique. Thus,
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!

el |Yt,| / % / m 2
EGli)I 2 ( " >2m -<2>zm ()

3

I
—

= m 1n log n
4m' 4 &
where the second inequality is true by Jensen’s inequality and the fact that m = |J| = Zlm:l [Y/]. O

By Claim 4.10,
P, (IE@Gy (PHIID] = 014) = (1 = ) FOwIDl < (1 — p/yo2snlog,
‘We have,
("™1) < w1 = exp@(mlogm) = exp@n)
Therefore, by the union bound, the probability that there is an independent set in Gy, (p') of size m is at most

P(_‘A) + (lljn/l )(1 _ pl)O.ZSnlogﬂn — 0(1)
m}

Recall that our goal is to find a matching M, C T, \ (uj.‘:l1 M) such that Uj’:l M; is C,-free. By Claim 4.8 and the fact that
GW =T, whp

al) < —2
log, n

Let M, C T\ (U;;l1 M) be a matching of the maximum size such that U;le ; is Cy-free.

Let U C V(I';) be the set of unmatched vertices. The next claim bounds the maximum degree A(I';[U]).
Claim4.11. A([,[U]) < s3.

Proof.  Suppose towards contradiction that A(I';[U]) > s3 and take a vertex v € U such that dr (v (0) > 55

Note that there are at most s; many paths with three edges in Uj.le ; which start with the vertex v. Thus, there
exists a vertex u € Ny ;;)(v) such that u is not adjacent to another endpoint of the above paths and thus {u, v} does
not close a copy of C, in U’j=l M;. Hence, we can add {u,v} to the matching M, a contradiction to the maximality

of M,. O
We finish with the following claim.

Claim 4.12. Whp |U]| < (s3 + 1)~

log,n”

Proof.  Suppose towards contradiction that |U| > (sg +1) - By Claim 4.11, A(T;[U]) < sg. Hence,

_n_
log,

U1 n
«(CUY) = e+ log,

a contradiction to Lemma 4.8. ]

The desired subgraph in Lemma 4.1 is the subgraph Hp with its edges from UZ;IM ;—indeed, note that by Claim 4.12,

there are at most O(@) unmatched vertices at each round, and thus at most O(@) vertices of degree at
most s, — 1.
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4.2.2 | Proofof Lemmad.l,p > 0.5

Let us now explain how to complete the proof for p > 0.5. Indeed, note that Claim 4.7 is not necessarily true, and hence

we require a more delicate treatment to overcome the lack of isomorphism. Recall that our main goal is to show that

al’;) < mgLn' We prove this with the following series of relatively short claims and lemmas, where the key idea is that one
p

can consider equivalence classes under ¢, and show that whp either all such classes are of bounded order, or polynomial
order (Claim 4.13).

For every v,u € V(I'), we say that v ~ u if and only if ¢(v) = ¢(u). Let Cy, ... ,C, be the equivalence classes under this
relation. With a slight abuse of notation, given C; = {v;, ... , v, } we write ¢(C;) := p(v;).

Claim 4.13. Whp one of the following holds.

1. There exists a constant C such that
icl<C. Viel]

2. There exists f > 0 such that
IC;)| >n", Vjel]

Proof. For every v € [n] \ A,, set X, =0 if v is A;-bad and X, to be the number of vertices u ~ v otherwise. Fix v €
[n] \ A; and consider the random variable €’ = ¢'(v) such that | Ng, ,(v) N A;| = (1 +€’) log, n. Note that if v is A;-good,
then ¢/ € [¢, (1 + 2y)e]. We have

E[X,| NG, () N Ay and v is A, — good] = (1 + o(1))np!NewrAil(1 — p)lAil=INGe, 0]

— (1 + 0(1))np(1+€’)10gﬂn(1 _ p)MIOg,, n—(1+¢) logpn

1+(1+4y)e
- log, n—(1+¢€") log, n

= (1L+ o()n(L = p)Br PO — p)

’ 1+(1+y)e ’
= (1 + o(1)n e oey pm T A le

+y)e

1 J_ _
= (1 + o(L))n” Py +e e 081 =T

Set f(x) :=2—log,_,(x)— i Let x’ bein (0, 1) such that f(x") = 0, noting that f(x)isincreasingin x € (0,1)and f(x) =0
around x ~ 0.64. We then have that for e small enough and for some constant ¢ > 0, ¢’ — ¢’ log, , x' — 2 < _ce. Thus,
if p < x’, we have that E[X,, | visA; — good] < n~“¢ for every v € [n] \ A,, where we stress that ¢ can )Eiepend on p. By
Lemma 2.1 (2), .

P(X,>C|vis A; —good) < % <n ¢ =o(1/n)

E[X,]

Hence, by the union bound over all v € [n] \ 4;, whp X, < C for every v € V(I'), and thus the first item of the claim
holds.

If p > x’, then we may choose e small enough such that E[ X, |v is A, — good] > n”, for some § > 0, for every v € [n] \ 4.
By Lemma 2.1 (1),
P(X, < 0.5E[X,|vis A, — good||v is A; — good) < exp(—O(n”))

Hence, by the union bound over all v € V(I'), whp X, > 0.5n” for every v € [n] \ A; which is A,-good, and thus the
second item of the claim holds as well. O

We complete the proof with the following two lemmas.
Lemma 4.14. Ifthere exists a constant C such that

IC;)l<C, Vjel]

then whp a(I';)) < —

log, n’
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Proof.  Set éw. Consider the following coupling (§W(p’ ),I'y). T, is obtained by retaining each edge independently in
I" with probability p'. For every v,u € V(C?W), there is an edge {u, v} in (~?W(p’ )ifand only if in ', there are all the edges

between ¢! (v) and ¢~(u). Note that
a(Fp,) ~ ,
< a(Gy(p)

Indeed, let I be a maximum independent set in I',,. Assume that / has vertices from m different equivalence classes.
Observe that m > % as otherwise, by the pigeonhole principle, we have an equivalence class larger than C. Notice that
¢(I) is also an independent set in 5W (p) since, for every v,u € I, there is at least one edge missing in Ly between the

equivalence classes of v and u, and thus there is no edge between ¢(v) and ¢(u) in GW(p’ ). Hence, ¢(I) < a(gw(p’ )

and thus,
a (F 4

) -
<m=|p)| < a(Gy (p'))

By the coupling above, every edge in GW(p ) appears with probability at least (p))€’. Thus, it suffices to show that whp the
1ndependence number of the binomial random subgraph of GW obtained by retaining every edge with probability (p’ )¢
is at most ——. The rest of the proof is identical to the proof of Claim 4.8. O

P

Lemma 4.15. If there exists f > 0 such that

IC;| >n’, Vjel?]

then whp a(I;) < og, 7"

Proof. Let I be a maximum independent set in I';. For every j € [£], set I, :=1nC;.

Notice that, for every j € [¢], C; isaclique inI". The probability that there is an independent set in G(n, p) of size n? /log "

is at most
n nﬂ/log n nzﬂ
» @ —p)( ") < exp<2nﬁ _ P >
og 7 2Iln“n
;

There are at most n'~# many C;s, and thus, by the union bound, whp I; < for every j € [7]. Hence,

o on

<. 2 - 1
log,n  log,n

43 | Theorem4

Let us first recall that since F satisfies property (), we may find an edge {u, v} such that for every independent set I C
V(F), F[V \ I]is non-F[V \ {u,v}]-degenerate. Let T := {I C V : [isan independent set of F}, and let ¥ := {F[V \
I]: I € 1}.By Lemma 1.6, whp there exists a graph which is F-free, and is n~°-dense with respect to F[V \ {u, v}].

The proof of Theorem 4 follows then from the construction given in the proof of Theorem 3, where B is taken to be the
empty graph (similarly to [5]), and in A; we take H , to be the graph guaranteed by Lemma 1.6, as detailed in the above
paragraph. Again, there can be a small, yet non-negligible amount of edges in G[B] such that their endpoints have small
common degree in A,. For these edges, we define B, to be the set of vertices which are not A;-good in B, and we use A,
and A, in the same manner. We note that Lemma 4.1 is not relevant here.

5 | Discussion and Open Problems
In this paper, we present Conjecture 1.3 and make progress towards resolving it, in particular obtaining a universal bound

of O(nIn n) for the saturation number sat(G(n, p), F) for all F (Theorem 1), and characterizing a family of graphs for which
the bound is linear in n (Theorem 2). On the same matter, let us also iterate the question raised in the introduction:
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Question 5.1. Is it true that, for all constant 0 < p < 1 and all graphs F where every edge of F is in a triangle, whp
sat(G(n, p), F) = (1 + o(1))nlog_ 1 n?

For specific graph families, we answer positively. In particular, we extended the sharp asymptotics results of [5], both to
a wide family of graphs (Theorem 4), and to complete multipartite graphs when p > % (Theorem 3). However, our proof
of Theorem 3 requires our graph to be dense enough, so that we may find a subgraph A of an appropriate size and such
that the neighborhoods of the vertices outside this subgraph form a dense enough subset in a Hamming space with the
domain A. Unfortunately, this no longer holds when p is a small constant (with the technicalities explicit in Lemma 2.2).
It would be interesting to know whether a similar construction, with different probabilistic or combinatorial tools, could
extend the result for p < %

Finally, let us reiterate that it was shown in Reference [9] that Lemma 1.6 is, in fact, tight, in the sense that the conditions
for it are both sufficient and necessary. This implies that the results that can be obtained by the construction given in
Reference [5], where B is taken as an empty graph, are limited to those of Theorem 4. Indeed, already trying to extend
this result to complete multipartite graphs, which may not adhere to the conditions of Lemma 1.6, required a delicate
(and at times technical) treatment, utilizing a coupling with an auxiliary random graph in a Hamming space and proving
a tight bound for its independence number using a covering-balls argument.
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Endnotes

1With high probability, that is, with probability tending to 1 as n tends to infinity.
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