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ABSTRACT
For graphs 𝐺 and 𝐹 , the saturation number 𝑠𝑎𝑡(𝐺, 𝐹 ) is the minimum number of edges in an inclusion-maximal

𝐹 -free subgraph of𝐺. In 2017, Korándi and Sudakov initiated the study of saturation in random graphs. They showed

that for constant 𝑝 ∈ (0, 1), whp 𝑠𝑎𝑡
(
𝐺(𝑛, 𝑝), 𝐾𝑠

)
= (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛. We show that for every graph 𝐹 and every

constant 𝑝 ∈ (0, 1), whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = 𝑂(𝑛 ln 𝑛). Furthermore, if every edge of 𝐹 belongs to a triangle, then the

above is the right asymptotic order of magnitude, that is, whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = Θ(𝑛 ln 𝑛). We further show that for

a large family of graphs  with an edge that does not belong to a triangle, which includes all bipartite graphs, for

every 𝐹 ∈  and constant 𝑝 ∈ (0, 1),whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = 𝑂(𝑛). We conjecture that this sharp transition from 𝑂(𝑛)

to Θ(𝑛 ln 𝑛) depends only on this property, that is, that for any graph 𝐹 with at least one edge that does not belong

to a triangle, whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = 𝑂(𝑛). We further generalize the result of Korándi and Sudakov, and show that

for a more general family of graphs  ′, including all complete graphs 𝐾𝑠 and all complete multipartite graphs of the

form 𝐾1,1,𝑠3,… ,𝑠𝓁
, for every 𝐹 ∈  ′ and every constant 𝑝 ∈ (0, 1), whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛. Finally,

we show that for every complete multipartite graph 𝐾𝑠1,𝑠2,… ,𝑠𝓁
and every 𝑝 ∈

[
1

2
, 1
)
, 𝑠𝑎𝑡

(
𝐺(𝑛, 𝑝), 𝐾𝑠1,𝑠2,… ,𝑠𝓁

)
= (1 +

𝑜(1))𝑛 log 1

1−𝑝
𝑛.

1 | Introduction

1.1 | Background andMain Results

For two graphs 𝐺 and 𝐹 , a subgraph 𝐻 ⊆ 𝐺 is said to be 𝐹 -saturated in 𝐺 if it is a maximal 𝐹 -free subgraph of 𝐺, that
is, 𝐻 does not contain any copy of 𝐹 as a subgraph, but adding any missing edge 𝑒 ∈ 𝐸(𝐺) ⧵ 𝐸(𝐻) creates a copy of 𝐹
(throughout the paper, we assume for convenience that 𝐹 does not contain isolated vertices and note that it does not
cause any loss of generality). The minimum number of edges in an 𝐹 -saturated subgraph in 𝐺 is called the saturation
number, which we denote by 𝑠𝑎𝑡(𝐺, 𝐹 ). Zykov [1], and independently Erdős, Hajnal, and Moon [2] initiated the study of
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the saturation number of graphs, specifically of 𝑠𝑎𝑡(𝐾𝑛, 𝐾𝑠). Since then, there has been an extensive study of 𝑠𝑎𝑡(𝐾𝑛, 𝐹 ) for
different graphs 𝐹 . Note that themaximumnumber of edges in an 𝐹 -saturated graph is 𝑒𝑥(𝑛, 𝐹 ), and hence the saturation
problem of finding 𝑠𝑎𝑡(𝐾𝑛, 𝐹 ) is, in some sense, the opposite of Turán problem. Of particular relevance is the following
result due to Kászonyi and Tuza [3], which shows that for every graph 𝐹 , there exists some constant 𝑐 = 𝑐(𝐹 ) such that
𝑠𝑎𝑡(𝐾𝑛, 𝐹 ) ≤ 𝑐𝑛. We refer the reader to [4] for a comprehensive survey on results on saturation numbers of graphs.

In 2017, Korándi and Sudakov initiated the study of the saturation problem for randomgraphs, that is, when the host graph
𝐺 is the binomial random graph 𝐺(𝑛, 𝑝) for constant 𝑝. Considering the saturation number for cliques in the binomial
random graph, 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐾𝑠), they showed the following:

Theorem 1.1 (Theorem 1.1 in [5]). Let 0 < 𝑝 < 1 be a constant and let 𝑠 ≥ 3 be an integer. Thenwhp1

𝑠𝑎𝑡
(
𝐺(𝑛, 𝑝), 𝐾𝑠

)
= (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛

If 𝐹 is a graph such that every 𝑒 ∈ 𝐸(𝐹 ) belongs to a triangle, it is not hard to see that 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = Ω(𝑛 ln 𝑛). Indeed,
the neighborhood𝑁𝐻 (𝑣) of every vertex 𝑣 in the saturated subgraph𝐻 should dominate its neighborhood in𝐺(𝑛, 𝑝), and
thus whp |𝑁𝐻 (𝑣)| should be at least of logarithmic order in 𝑛. More precisely, the lower bound in Reference [5] comes
from the following:

Theorem 1.2 (Theorem 2.2 in [5]). Let 0 < 𝑝 < 1 be a constant. Let 𝐹 be a graph such that every 𝑒 ∈ 𝐸(𝐹 ) belongs to
a triangle in 𝐹 . Thenwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) ≥ (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛

Following [5], there has been subsequent work on the saturation number 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) for other concrete graphs 𝐹 .
Mohammadian and Tayfeh-Rezaie [6] and Demyanov and Zhukovskii [7] proved tight asymptotics for 𝐹 = 𝐾1,𝑠. Demi-

dovich, Skorkin and Zhukovskii [8] proved thatwhp 𝑠𝑎𝑡
(
𝐺(𝑛, 𝑝), 𝐶𝑚

)
= 𝑛 + Θ

(
𝑛

ln 𝑛

)
when 𝑚 ≥ 5, and showed thatwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐶4) = Θ(𝑛).

In this paper, we revisit the problem of saturation number in 𝐺(𝑛, 𝑝). Our first main result gives a general upper bound,
holding for all graphs 𝐹 .

Theorem 1. Let 0 < 𝑝 < 1 be a constant. Let 𝐹 be an arbitrary graph. Thenwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = 𝑂(𝑛 ln 𝑛)

Comparing with the result of [3], Theorem 1 shows that the saturation number in random graphs can be larger than the
saturation number in 𝐾𝑛 by at most a factor of 𝑂(ln 𝑛), whereas Theorem 1.2 shows that this is asymptotically tight.

We note that the hidden constant in 𝑂(𝑛 ln 𝑛), which we obtain in the proof, may depend on the probability 𝑝 and
the graph 𝐹 . Note that if every edge of 𝐹 belongs to a triangle in 𝐹 , then Theorems 1 and 1.2 imply that whp
𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = Θ(𝑛 ln 𝑛). In fact, we conjecture that the asymptotics of the saturation number are dictated by the
assumption of Theorem 1.2. That is:

Conjecture 1.3. Let 0 < 𝑝 < 1 be a constant. If 𝐹 is a graph such that every 𝑒 ∈ 𝐸(𝐹 ) belongs to a triangle in 𝐹 , then
whp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = Θ(𝑛 ln 𝑛)

On the other hand, if 𝐹 is a graph such that there exists 𝑒 ∈ 𝐸(𝐹 ) which does not belong to a triangle in 𝐹 , thenwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = 𝑂(𝑛)

Our second main result further advances us towards settling this conjecture. We define a family of graphs for which the
saturation number in 𝐺(𝑛, 𝑝) is typically linear in 𝑛. We say that a graph 𝐹 has property (⋫) if there exists a connected
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FIGURE 1 | An illustration of a connected graph satisfying property (⋫).

component𝐹 ′ of𝐹 which satisfies the following. There exists a largest color class 𝐼max ⊆ 𝑉 (𝐹 ′), among all proper colorings
of𝐹 ′with𝜒(𝐹 ′) colors (where𝜒(𝐹 ′) is the chromatic number of𝐹 ′), and a vertex 𝑣 ∈ 𝑉 (𝐹 ′) ⧵ 𝐼max such that𝑁𝐹 ′(𝑣) ⊆ 𝐼max
(see Figure 1). Note that every bipartite graph satisfies property (⋫).

Theorem 2. Let 0 < 𝑝 < 1 be a constant. Let 𝐹 be a graph with property (⋫). Thenwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = 𝑂(𝑛)

Once again, the hidden constant in 𝑂(𝑛) which we obtain in the proof may depend on the probability 𝑝 and the graph 𝐹 .
Furthermore, observe that the vertex 𝑣 in Theorem 2 does not belong to a triangle in 𝐺. In particular, since we assume 𝐹
has no isolated vertices and thus 𝑣 is not an isolated vertex, there exists at least one edge which does not lie in a triangle in
𝐹 , supporting the second part of Conjecture 1.3, although not resolving it completely. Furthermore, Theorem 2 extends
the asymptotic results of [8], as every 𝐹 = 𝐶𝑚 also satisfies property (⋫).

The second part of the paper aims for tight asymptotic bounds. Indeed, more ambitiously, one could try and aim for tight
asymptotics in the case where every edge of 𝐹 belongs to a triangle (as in Theorems 1.1 and 1.2). Our next two results
aim at extending the tight asymptotics of Theorem 1.1 to a wider family of graphs. The first one extends Theorem 1.1 to
complete multipartite graphs for 𝑝 ≥

1

2
(note that the case of bipartite graphs, that is 𝓁 = 2, is covered by Theorem 2).

Theorem 3. Let 𝓁 ≥ 3, 𝑠1 ≤ 𝑠2 ≤ · · · ≤ 𝑠𝓁 , and let
1

2
≤ 𝑝 < 1 be a constant. Thenwhp

𝑠𝑎𝑡
(
𝐺(𝑛, 𝑝), 𝐾𝑠1,… ,𝑠𝓁

)
= (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛

Remark 1.4. Though it may be possible that the same result holds for constant 𝑝 < 1∕2, our proof does not work in this
case since one of its main ingredients, Lemma 2.1, fails to be true when 𝑝 < 1∕2.

The second one defines a family of graphs for which the above is an asymptotic upper bound for all values of 𝑝. For two
graphs 𝐴 and 𝐵, we say that a graph 𝐵 is 𝐴-degenerate if every two-vertex-connected subgraph of it is a subgraph of 𝐴.
Furthermore, we say that a graph 𝐹 = (𝑉 ,𝐸) has the property (⋆) if there is an edge {𝑢, 𝑣} = 𝑒 ∈ 𝐸 such that for every
independent set 𝐼 ⊆ 𝑉 , we have that𝐹 [𝑉 ⧵ 𝐼] is non-𝐹 [𝑉 ⧵ {𝑢, 𝑣}]-degenerate, that is, there exists a two-vertex-connected
subgraph of 𝐹 [𝑉 ⧵ 𝐼] which is not a subgraph of 𝐹 [𝑉 ⧵ {𝑢, 𝑣}].

Theorem 4. Let 0 < 𝑝 < 1 be a constant and let 𝐹 be a graph with property (⋆). Thenwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) ≤ (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛

Let us mention a family of graphs satisfying property (⋆), which could be of particular interest. Let 𝐹 be a graph with
an edge {𝑢, 𝑣} such that there exists a proper coloring of 𝐹 with 𝜒(𝐹 ) colors, where {𝑢} and {𝑣} are distinct color classes
(see Figure 2), and let us further suppose that for every independent set 𝐼 ⊆ 𝑉 (𝐹 ), 𝐹 [𝑉 (𝐹 ) ⧵ 𝐼] is two-vertex-connected.
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FIGURE 2 | An illustration of the edge {𝑢, 𝑣} and the remaining graph 𝐹 ⧵ {𝑢, 𝑣}.

Then 𝐹 ⧵ {𝑢, 𝑣} is 𝜒(𝐹 ) − 2 colorable, whereas for any independent set 𝐼 , 𝐹 [𝑉 ⧵ 𝐼] requires at least 𝜒(𝐹 ) − 1 colors, and
therefore 𝐹 satisfies property (⋆).

Note that if, in addition, every edge of 𝐹 lies in a triangle, then by Theorem 1.2, we obtain sharp asymptotics. That is,
whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛. In particular, we obtain the following corollary.

Corollary 1.5. Let 0 < 𝑝 < 1 be a constant. Let 𝓁 ≥ 3 and 𝑠3, … , 𝑠𝓁 ≥ 1 be integers. Let 𝐹 = 𝐾1,1,𝑠3,… ,𝑠𝓁
. Thenwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛

Observe that Theorem 3 provides the same asymptotic as Corollary 1.5 for any multipartite graph 𝐹 , that is, without the

requirement that 𝑠1 = 𝑠2 = 1, however only for 𝑝 ∈
[
1

2
, 1
)
.

Theorem 1.2 together with Theorems 3 and 4 suggest that one may make a more ambitious claim in Conjecture 1.3,
stating that if every edge of 𝐹 lies in a triangle, then whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛 (see more on that in

Section 5).

1.2 | MainMethods and Organization

Let us begin with some conventions that will be useful for us throughout the paper. Given two graphs 𝐻 ⊆ 𝐺, and a
graph 𝐹 , we say that an edge 𝑒 ∈ 𝐸(𝐺) is completed by𝐻 (or that𝐻 completes 𝑒), if there is a subgraph of𝐻 ′ ⊆ 𝐻 such
that 𝑒 ∪𝐻 ′ ≅ 𝐹 . In this case, we also say that 𝑒 completes (or closes) a copy of 𝐹 . Furthermore, we use the notion of an
 -saturated graph for a family of graphs  . We say that a graph𝐻 is  -saturated in𝐺 if𝐻 does not contain a copy of any
𝐹 ∈  , yet adding any edge 𝑒 ∈ 𝐸(𝐺) ⧵ 𝐸(𝐻) closes a copy ofat least one 𝐹 ∈  .

The structure of the paper is as follows. In Section 2, we present and establish several lemmas that we will use throughout
the paper.

In Section 3, we prove Theorems 1 and 2. Both proofs rely on a construction of an  -saturated subgraph of 𝐺(𝑛, 𝑝) given
in the proof of Lemma 3.1. The proof of Theorem 2 follows rather immediately from the above-mentioned construction,
whereas the proof of Theorem 1 utilizes an inductive argument based on Lemma 3.1.

In Section 4,we prove Theorems 3 and 4. The proof of Theorem4utilizes the construction of [5], refinedwith the following
lemma. For every two graphs 𝐺 and 𝐴, and 𝜀 > 0, we say that a graph 𝐺 is 𝜀-dense with respect to 𝐴 if every induced
subgraph of𝐺 on at least 𝜀|𝑉 (𝐺)| vertices contains a copy of𝐴. Finally, given a family of graphs  , we say that𝐺 is  -free
if it does not contain a subgraph isomorphic to 𝐹 for every 𝐹 ∈  . We will make use of the following result:
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Lemma 1.6 ([9, Theorem 2.1 and Remark 2]). Let 𝑝 ∈ (0, 1). Let 𝐴 be a graph and let  be a family of graphs such
that every 𝐹 ∈  is non-𝐴-degenerate. Then for every sufficiently small 𝛿 > 0, whp there is a spanning subgraph in 𝐺(𝑛, 𝑝)

which is  -free and 𝑛−𝛿-dense with respect to 𝐴.

We note that in Reference [9], it was shown that the condition on  in the above lemma is not only sufficient, but also
necessary. In particular, this implies some limitations in the results that can be obtained using the construction of [5] (see
Section 5 for more details on the matter).

The proof of Theorem 3 is more delicate and is the most involved in this paper. Let us briefly outline the key ideas in the
construction, while comparing them with the construction of [5] for cliques.

Very roughly, in Reference [5], one takes a set 𝐴 on Θ(log 𝑛) vertices, and let 𝐵 ∶= [𝑛] ⧵ 𝐴. One can then find in 𝐴 a
spanning subgraph of 𝐺(𝑛, 𝑝) that is𝐾𝑠−1-free, but (1∕ln

3|𝐴|)-dense with respect to𝐾𝑠−2, denote this subgraph by 𝐴
′. Let

𝐻 be the subgraph of 𝐺(𝑛, 𝑝) with all the edges between 𝐴 and 𝐵, all the edges of the subgraph 𝐴′, and no edges inside
𝐵. Then, typically almost any pair of vertices 𝑢, 𝑣 in 𝐵 is likely to have many common neighbors in 𝐴 and one can find
a copy of 𝐾𝑠−2 in 𝐴′ induced by this common neighborhood, such that together with the edge {𝑢, 𝑣} they close a copy of
𝐾𝑠, while on the other hand the graph is 𝐾𝑠-free since 𝐴

′ is 𝐾𝑠−1-free and 𝐵 is empty.

Thus, in the case of a complete graph, one is mainly concerned with the property that the endpoints of every edge in
𝐺(𝑛, 𝑝)[𝐵] have a large common neighborhood in 𝐴. However, in the case of a complete 𝑟-partite graph 𝐹 with all parts
being non-trivial, one cannot assume that in every large induced subgraph of 𝐴′ there is a copy of 𝐹 minus an edge, as
otherwise it is easy to see that our graph is not 𝐹 -free. In particular, one cannot consider an empty graph in𝐵. Moreover, a
suitable subgraph that we take in𝐵 should satisfy the property that every vertex and its𝐵-neighbors have a large common
neighborhood in 𝐴. To show the likely existence of such a subgraph in 𝐵, we use a coupling with an auxiliary random
graph in a Hamming space and prove a tight bound for its independence number using a covering-balls argument (see
Lemma 4.8 and the paragraph after its statement).

Finally, in Section 5, we discuss the obtained results and some of their limitations, and mention some questions as well
as open problems.

2 | Preliminary Lemmas

Given a graph𝐻 and a vertex 𝑣 ∈ 𝑉 (𝐻), we denote by𝑁𝐻 (𝑣) the neighborhood of 𝑣 in𝐻 and by 𝑑𝐻 (𝑣) = |𝑁𝐻 (𝑣)|. Given
a subset 𝑆 ⊆ 𝑉 (𝐻), we denote by𝑁𝐻 (𝑆) the common neighborhood of all 𝑣 ∈ 𝑆 in𝐻 and by 𝑑𝐻 (𝑆) = |𝑁𝐻 (𝑆)|. That is,
𝑁𝐻 (𝑆) ∶=

⋂
𝑣∈𝑆 𝑁𝐻 (𝑣). Finally, given subsets 𝑆1, 𝑆2 ⊆ 𝑉 (𝐻), we denote by𝑁𝐻 (𝑆1|𝑆2) the common neighborhood of 𝑆1

in 𝑆2 in the graph𝐻 and by 𝑑𝐻 (𝑆1|𝑆2) = |𝑁𝐻 (𝑆1|𝑆2)|. That is,𝑁𝐻 (𝑆1|𝑆2) ∶= 𝑁𝐻 (𝑆1) ∩ 𝑆2. When the graph𝐻 is clear
from context, we may omit the subscript. We denote by 𝐾𝓁

𝑠
the complete 𝓁-partite graph where each part is of size 𝑠. We

omit rounding signs for the sake of clarity of presentation.

We will make use of the following bounds on the tail of binomial distribution (see, e.g., [10, Theorem 2.1], [11, Theorem
A.1.12], and [5, Claim 2.1]).

Lemma 2.1. Let 𝑁 ∈ ℕ, 𝑝 ∈ [0, 1], and𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑝). Then, for 0 ≤ 𝑎 ≤ 𝑁𝑝 and for 𝑏 ≥ 0,

ℙ(|𝑋 −𝑁𝑝| ≥ 𝑎) ≤ 2 exp

(
−

𝑎2

3𝑁𝑝

)
(1)

ℙ(𝑋 > 𝑏𝑁𝑝) ≤
(
𝑒

𝑏

)𝑏𝑁𝑝

(2)

ℙ

(
𝑋 ≤

𝑁

ln2𝑁

)
≤ (1 − 𝑝)𝑁−

𝑁

ln𝑁 (3)

We will require the following probabilistic lemma, which shows that large enough sets are very likely to have a vertex
whose number of neighbors in this set deviates largely from the expectation.
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For every 𝑝 ∈ (0, 1), we set

𝜌(𝑝) ∶=
1

1 − 𝑝
(4)

When the choice of 𝑝 is clear, we may abbreviate 𝜌 ∶= 𝜌(𝑝).

Lemma 2.2. Let 𝑝 ∈
[
1

2
, 1
)
, and let 𝐺 ∼ 𝐺(𝑛, 𝑝). For every 𝛾 ≥ 0, there exists a sufficiently small 𝜖 > 0 such that the

following holds. Let 𝑋 and 𝑌 be disjoint sets of vertices in 𝑉 (𝐺) of sizes (1 + 𝜖) log𝜌 𝑛 and at least
𝑛

ln3𝑛
, respectively. Then,

ℙ
(
∀𝑦 ∈ 𝑌 𝑑(𝑦|𝑋) < (1 + (1 − 𝛾)𝜖) log𝜌 𝑛

)
≤ exp(−𝑛𝜖)

Proof. Note that for every vertex 𝑦 ∈ 𝑌 , the number of neighbors of 𝑦 in 𝑋 in the graph 𝐺 is distributed according to
𝐵𝑖𝑛(|𝑋|, 𝑝). Hence, for a fixed 𝑦 ∈ 𝑌 ,

ℙ
(
𝑑(𝑦|𝑋) ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛

)
≥ ℙ

(
𝑑(𝑦|𝑋) = (1 + (1 − 𝛾)𝜖) log𝜌 𝑛

)

=

(
|𝑋|

(1 + (1 − 𝛾)𝜖) log𝜌 𝑛

)
𝑝(1+(1−𝛾)𝜖) log𝜌 𝑛(1 − 𝑝)𝛾𝜖 log𝜌 𝑛

≥

(
(1 + 𝜖)(1 − 𝑝)

𝛾𝜖

)𝛾𝜖 log𝜌 𝑛

𝑝(1+(1−𝛾)𝜖) log𝜌 𝑛

≥ (1 − 𝑝)
𝛾𝜖 log1−𝑝

(
1+𝜖

𝛾𝜖

)
log𝜌 𝑛+𝛾𝜖 log𝜌 𝑛(1 − 𝑝)(log1−𝑝 𝑝)(1+(1−𝛾)𝜖) log𝜌 𝑛

= 𝑛
−𝛾𝜖 log1−𝑝

(
1+𝜖

𝛾𝜖

)
−(log1−𝑝 𝑝)(1+(1−𝛾)𝜖)−𝛾𝜖

Since 𝑝 ≥
1

2
, we have that log1−𝑝 𝑝 ≤ 1 and thus

ℙ
(
𝑑(𝑦|𝑋) ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛

)
≥ 𝑛

−𝛾𝜖 log1−𝑝

(
1+𝜖

𝛾𝜖

)
−1−𝜖

≥ 𝑛−1+2𝜖

where the last inequality is true since for sufficiently small 𝜖 we have −𝛾𝜖 log1−𝑝

(
1+𝜖

𝛾𝜖

)
≥ 3𝜖.

Therefore, since 𝑑(𝑦|𝑋) are independent for 𝑦 ∈ 𝑌 , we obtain that

ℙ
(
∀𝑦 ∈ 𝑌 𝑑(𝑦|𝑋) ≤ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛

)
≤
(
1 − 𝑛−1+2𝜖

)|𝑌 |

≤ exp(−𝑛𝜖)

where in the last inequality we used our assumption that |𝑌 | ≥ 𝑛

ln3𝑛
. ◽

We will also utilize the fact that random graphs typically have relatively small chromatic number (see, e.g., Chapter 7 in
Reference [12]):

Lemma 2.3. Let 0 < 𝑝 < 1 be a constant. Thenwhp 𝜒(𝐺(𝑛, 𝑝)) = 𝑂
(

𝑛

ln 𝑛

)
.

3 | Global Bounds

We begin by giving a construction showing that, for any family of graphs which contains at least one bipartite graph,whp
the saturation number in 𝐺(𝑛, 𝑝) is linear in 𝑛. This construction will be key for both the proofs of Theorems 1 and 2.

Lemma 3.1. Let 𝑝 ∈ (0, 1). Let  be a family of graphs that contains at least one bipartite graph. Thenwhp

𝑠𝑎𝑡(𝐺(𝑛, 𝑝), ) = 𝑂(𝑛)
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Proof. Note that if there exist two graphs 𝐹1, 𝐹2 ∈  such that 𝐹1 ⊆ 𝐹2 then any graph 𝐺 is  -saturated if and only if 𝐺
is  ⧵ {𝐹2}-saturated, and thus 𝑠𝑎𝑡(𝐺, ) = 𝑠𝑎𝑡(𝐺, ⧵ {𝐹2}). Hence, we may assume that there are no such two graphs
𝐹1, 𝐹2 ∈  .

Set

𝓁 ∶= min
{|𝑉1| ∶ 𝐹 ∈  , 𝐹 ′ ⊆ 𝐹 is a connected component of 𝐹 , 𝜒(𝐹 ′) = 2,

𝑉1 and 𝑉2 are color classes of 𝐹
′ and 𝑉 (𝐹 ′) = 𝑉1 ⊔ 𝑉2

}

Let 𝐹 and its connected component 𝐹 ′ be graphs that achieve the minimum above.

We construct a subgraph 𝐻 ⊆ 𝐺(𝑛, 𝑝) which is  -saturated such that whp |𝐸(𝐻)| = 𝑂(𝑛) in a couple of stages. Let 𝑘 =

|𝐹 ⧵ 𝐹 ′|. Fix 𝑣1 ∈ 𝑉 (𝐺(𝑛, 𝑝)), and consider𝑁1 ∶= 𝑁𝐺(𝑛,𝑝)(𝑣1). Then, for every 2 ≤ 𝑖 ≤ 𝑘, choose 𝑣𝑖 from𝑁𝑖−1 and set𝑁𝑖 =

𝑁𝑖−1 ∩𝑁𝐺(𝑛,𝑝)(𝑣𝑖). Note that for any constant 𝑘, whp we are able to find such {𝑣1, … , 𝑣𝑘}, and that they form a clique
in 𝐺(𝑛, 𝑝). Noting that we have not revealed any of the edges induced by [𝑛] ⧵ {𝑣1, … , 𝑣𝑘}, we have that the graph on
[𝑛] ⧵ {𝑣1, … , 𝑣𝑘} is distributed as 𝐺(𝑛 − 𝑘, 𝑝), which for constant 𝑘 and 𝑝 is essentially the same distribution as 𝐺(𝑛, 𝑝).
Thus,whpwe are able to find a copy of𝐹 ⧵ 𝐹 ′ in𝐺(𝑛, 𝑝), with the rest of the graph distributed as𝐺 ∼ 𝐺(𝑛 − 𝑘, 𝑝). We then
set 𝐻 to be the graph whose vertex set is 𝑉 (𝐺(𝑛, 𝑝)), and its set of edges contains only the edges of this copy of 𝐹 ⧵ 𝐹 ′.
Note that 𝐻 is  -free by the assumption that there are no two graphs 𝐹1, 𝐹2 ∈  such that 𝐹1 ⊆ 𝐹2. Further, we set
𝑉 ∶= 𝑉 (𝐺).

If 𝓁 = 1, then, as long as there exists an edge in 𝐺 which does not close a copy of some 𝐹 ∈  in𝐻 , we may add it to𝐻 .
Note that in this way we increase the degree of every vertex in𝐻 by at most |𝑉 (𝐹 ′)| − 2. Further, as long as there exists
an edge not induced by 𝑉 in𝐺(𝑛, 𝑝) (i.e., from the edges touching the copy of 𝐹 ⧵ 𝐹 ′ we set aside at the beginning), which
does not close a copy of some 𝐹 ∈  in𝐻 , we may add it to𝐻 . Since 𝑘 is a constant, we have added𝑂(𝑛) edges to𝐻 , and
𝐻 is  -saturated.

We may thus assume that 𝓁 ≥ 2. Let 𝜏 be the smallest integer satisfying

(1 − 𝑝𝓁−1)𝜏𝑛 ≤ 𝑛2∕5 (5)

Let us fix 𝜏 vertex disjoint sets of size 𝓁 − 1 from 𝑉 , denote them by 𝐴1, … , 𝐴𝜏 and set 𝐴 =
⋃

𝑖 𝐴𝑖. We then proceed
iteratively. In the first step, we set 𝐵1 to be the set of all common neighbors of 𝐴1 in 𝐺 among the vertices outside 𝐴.
At the 𝑖-th step, where 1 < 𝑖 ≤ 𝜏, we set 𝐵𝑖 to be the set of all common neighbors of 𝐴𝑖 in 𝐺 among the vertices outside
𝐴 ∪

⋃
𝑗<𝑖 𝐵𝑗 . Let us add to𝐻 all the edges between 𝐴𝑖 and 𝐵𝑖 in 𝐺 for every 1 ≤ 𝑖 ≤ 𝜏.

Observe that𝐻 remains  -free since at this stage we have added to𝐻 only bipartite graphs admitting a 2-coloring with
one color class of size at most 𝓁 − 1. Moreover, every edge in𝐻 is incident to 𝐵𝑖, for some 1 ≤ 𝑖 ≤ 𝜏. Hence, the number
of edges in𝐻 thus far is at most

𝑒(𝐹 ⧵ 𝐹 ′) +
∑
𝑖

|𝐵𝑖|(𝓁 − 1) ≤ 𝑒(𝐹 ⧵ 𝐹 ′) + (𝓁 − 1)𝑛

We now turn to add edges to𝐻 such that it becomes  -saturated. First, we consider edges whose both endpoints are in
𝐵𝑖, for some 1 ≤ 𝑖 ≤ 𝜏. For every 1 ≤ 𝑖 ≤ 𝜏, as long as there is an edge in𝐺[𝐵𝑖]which does not close a copy of some 𝐹 ∈  ,
we add it to𝐻 . Note that the degree of every vertex increased by at most |𝐹 ′| − 𝓁 − 1. Indeed, if for some 1 ≤ 𝑖 ≤ 𝜏 there
is a vertex 𝑣 ∈ 𝐵𝑖 with degree |𝐹 ′| − 𝓁 in𝐻[𝐵𝑖], then we can form a copy of 𝐾𝓁,|𝐹 ′|−𝓁 with 𝑣,𝑁𝐻[𝐵𝑖]

(𝑣), and 𝐴𝑖. However,
𝐹 ′ ⊆ 𝐾𝓁,|𝐹 ′|−𝓁 , a contradiction since this copy will close a copy of 𝐹 together with 𝐹 ⧵ 𝐹 ′ we set aside at the start of the
construction. Hence, the number of edges that are added to𝐻 in this step is at most

∑
𝑖

|𝐵𝑖|(|𝐹 ′| − 𝓁 − 1) ≤ (|𝐹 ′| − 𝓁 − 1)𝑛

Now, for every 1 ≤ 𝑖 ≤ 𝜏, as long as there is an edge between 𝑉 ⧵ ∪𝑗≤𝑖𝐵𝑗 and 𝐵𝑖 in 𝐺 which does not close a copy of some
𝐹 ∈  , we add it to𝐻 . Note that, by the same argument as before, at every step 𝑖 the degree of every vertex 𝑣 ∈ [𝑛] ⧵ ∪𝑗≤𝑖𝐵𝑗

increased by at most |𝐹 ′| − 𝓁 − 1. For every vertex 𝑣 ∉ 𝐴, the probability that 𝑣 ∉ ∪𝑖
𝑗=1𝐵𝑗 is (1 − 𝑝𝓁−1)𝑖. By Lemma 2.1 (1),
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the probability that there are at least 2(1 − 𝑝𝓁−1)𝑖𝑛 such vertices is at most exp
(
−𝑛1∕4

)
. Thus, by the union bound over all

less than 𝑛 choices of 𝑖 ≤ 𝜏,whp

𝑛 −

𝑖∑
𝑗=1

|𝐵𝑗| ≤ 2(1 − 𝑝𝓁−1)𝑖𝑛, ∀1 ≤ 𝑖 ≤ 𝜏 (6)

Hence, by (6), the number of edges we add to𝐻 in this step iswhp at most

∑
𝑖≤𝜏

(
𝑛 −

𝑖∑
𝑗=1

|𝐵𝑗|
)
(|𝐹 ′| − 𝓁 − 1) ≤

∑
𝑖

2(1 − 𝑝𝓁−1)𝑖𝑛(|𝐹 ′| − 𝓁 − 1) = 𝑂(𝑛)

Let us now consider the edges induced by 𝑉 ⧵
⋃

𝑖 𝐵𝑖. As before, as long as there exists an edge in 𝐺[𝑉 ⧵
⋃𝜏

𝑗=1𝐵𝑖] which

does not close a copy of some 𝐹 ∈  , we add it to 𝐻 . By (6) (for 𝑖 = 𝜏) and our choice of 𝜏 and (5), we have that whp
|||𝑉 ⧵

⋃𝜏

𝑗=1𝐵𝑖
||| ≤ 2(1 − 𝑝𝓁−1)𝜏𝑛 = 𝑜(

√
𝑛). Therefore, we only add 𝑜

(( |||𝑉 ⧵
⋃𝜏

𝑗=1𝐵𝑖
|||

2

))
= 𝑜(𝑛)many edges in this step.

Lastly, there are 𝑂(𝑛) edges in 𝐺(𝑛, 𝑝) which are not induced by 𝑉 (edges touching the copy of 𝐹 ⧵ 𝐹 ′ we set aside at the
beginning). Hence, we can add to 𝐻 these edges one by one, until the resulting graph becomes  -saturated. We thus
obtain the required  -saturated subgraph𝐻 , wherewhp |𝐸(𝐻)| = 𝑂(𝑛). ◽

The proof of Theorem 2 follows a similar construction to the one in Lemma 3.1.

Proof of Theorem 2. Let 𝐹 be a graph satisfying property (⋫). Then, there exists a connected component 𝐹 ′ ⊆ 𝐹 with
𝐼max ⊆ 𝑉 (𝐹 ′) being a color class of maximum size among all proper colorings of 𝐹 ′ with 𝜒(𝐹 ′) colors, and a vertex 𝑣 ∈

𝑉 (𝐹 ′) ⧵ 𝐼max such that𝑁𝐹 ′(𝑣) ⊆ 𝐼max. Let 𝑘 ∶= |𝑉 (𝐹 ) ⧵ 𝑉 (𝐹 ′)|.
As in the proof of Lemma 3.1, we may assume that there are no two connected components 𝐹1, 𝐹2 of 𝐹 such that 𝐹1 ⊆ 𝐹2.
Similarly to the proof of Lemma 3.1, let us find a copy of 𝐹 ⧵ 𝐹 ′ in 𝐺(𝑛, 𝑝), and consider the remaining graph 𝐺 which is
distributed as 𝐺(𝑛 − 𝑘, 𝑝). Let𝐻 be the graph whose vertex set is 𝑉 (𝐺(𝑛, 𝑝)) and whose edge set contains only the edges
of this copy of 𝐹 ⧵ 𝐹 ′. In particular, 𝐻 is 𝐹 -free. We now continue to construct an 𝐹 ′-saturated graph in 𝐺. Then, the
𝐹 ′-saturated graph in 𝐺 together with the copy of 𝐹 ⧵ 𝐹 ′ (that we set aside) forms an 𝐹 -free graph in 𝐺(𝑛, 𝑝), and any
edge we add in 𝐺 closes a copy of 𝐹 .

The case where 𝐹 ′ is a star may be treated in the same manner as in the proof of Lemma 3.1; thus, we may assume that
𝐹 ′ is not a star. Set 𝑉 ∶= 𝑉 (𝐺), and let 𝜏 be as in Equation (5). Let 𝑈 ⊆ 𝑉 be a subset of 𝑛𝜖 vertices, for some small 𝜖 > 0.
Whp, we can find a 𝐾|𝑉 (𝐹 ′)|-factor in 𝐺[𝑈 ] (see, i.e., [13]). Let us take 𝜏 vertex-disjoint copies of 𝐹 ′ ⧵ (𝐼max ∪ {𝑣}) from
𝐺[𝑈 ], denote them by 𝐴1, … , 𝐴𝜏 , and add them to 𝐻 . Then, we take 𝐵1 to be the set of common neighbors of 𝐴1 in
𝑉 ⧵ 𝑈 , and for every 1 < 𝑖 ≤ 𝜏, we set 𝐵𝑖 to be the set of all common neighbors of 𝐴𝑖 in 𝑉 ⧵ (𝑈∪

⋃𝑖−1
𝑗=1𝐵𝑖). We then add to

𝐻 all the edges between𝐴𝑖 and 𝐵𝑖 for every 1 ≤ 𝑖 ≤ 𝜏. By the same arguments as in Lemma 3.1,whpwe added only𝑂(𝑛)
edges to𝐻 .

Note that, for any 𝑖 ∈ [𝜏], the graph𝐻[𝐴𝑖 ⊔ 𝐵𝑖] does not contain a copy of 𝐹
′. Indeed, if we had a copy of 𝐹 ′, denote it by

𝐹
′
, then

𝜒(𝐹
′
[𝐴𝑖 ∩ 𝑉 (𝐹

′
)]) ≤ 𝜒(𝐹

′
[𝐴𝑖]) ≤ 𝜒(𝐹 ′ ⧵ (𝐼max ∪ {𝑣})) ≤ 𝜒(𝐹 ′) − 1

and thus we could color 𝑉 (𝐹
′
[𝐵𝑖 ∩ 𝑉 (𝐹

′
)])with one color and 𝑉 (𝐹

′
[𝐴𝑖 ∩ 𝑉 (𝐹

′
)])with 𝜒(𝐹 ′) − 1 colors, obtaining a color

class of size |𝑉 (𝐹
′
[𝐵𝑖 ∩ 𝑉 (𝐹

′
)])| ≥ |𝐼max| + 1—a contradiction to the assumption that 𝐼max is a color class of 𝐹

′ of maxi-
mum size among all proper colorings with 𝜒(𝐹 ′) colors.

As in the construction in the proof of Lemma 3.1, we first add to 𝐻 edges induced by 𝐵𝑖, for all 1 ≤ 𝑖 ≤ 𝜏, as long as it
remains 𝐹 -free. Next, for every 1 ≤ 𝑖 ≤ 𝜏, as long as there is an edge between 𝑉 ⧵ ∪𝑗≤𝑖𝐵𝑗 and 𝐵𝑖 in𝐺 which does not close
a copy of some 𝐹 ∈  , we add it to𝐻 . Observe that connecting any 𝑣 ∉ 𝐴𝑖 to a set 𝑆 ⊆ 𝐵𝑖 of size |𝐼max| creates a copy of
𝐹 ′ with 𝑣, 𝑆, and𝐴𝑖 in𝐻 and thus creates a copy of 𝐹 in𝐻 together with the copy of 𝐹 ⧵ 𝐹 ′ we set aside at the beginning,
and we thus added only 𝑂(𝑛) edges at this step. The obtained graph 𝐻[𝑉 (𝐺)] is 𝐹 ′-saturated in 𝐺, and has whp 𝑂(𝑛)

edges. The graph𝐻 is, in fact, 𝐹 -free, and any edge we add in 𝐺 will create a copy of 𝐹 in𝐻 . Then, again as in the proof
of Lemma 3.1, we may add to𝐻 all the edges not induced by 𝑉 (i.e., edges touching the copy of 𝐹 ⧵ 𝐹 ′ we set aside at the
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FIGURE 3 | In dashed red line, there is a missing edge 𝑢, 𝑣which closes a copy of 𝐹 ′ ∈ ̂ . Together with its common neighborhood

in 𝐴 (colored light green and blue), this closes a copy of 𝐹 ∈  .

beginning of the construction) one by one, until 𝐻 is 𝐹 -saturated in 𝐺(𝑛, 𝑝). Since 𝑘 is a constant, we have added only
𝑂(𝑛) edges to𝐻 .

Utilizing Lemma 3.1, we can now prove Theorem 1.

Proof of Theorem 1. In fact, we will prove a slightly stronger statement: That for any finite family of graphs  , we
have that whp 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), ) = 𝑂(𝑛 log 𝑛) for any fixed 𝑝 ∈ (0, 1)—as we prove by induction, this will help us with the
inductive step.

Set 𝜒0 ∶= 𝜒( ) = min𝐹∈ 𝜒(𝐹 ). We prove by induction on 𝜒0. If 𝜒0 = 2, we are done by Lemma 3.1. Wemay assume now
that 𝜒0 ≥ 3, and that the statement holds for any family  ′ with 𝜒( ′) < 𝜒0.

We now construct𝐻 ⊆ 𝐺(𝑛, 𝑝) such thatwhp𝐻 is -saturated, and 𝑒(𝐻) = 𝑂(𝑛 ln 𝑛). We begin by letting𝐻 be the empty
graph. Let 𝐴 be a set of 𝐶 ln 𝑛 vertices for some large enough constant 𝐶 ∶= 𝐶( , 𝑝) > 0. Set

̂ ∶= {𝐹 ⧵ 𝐼 ∶ 𝐹 ∈  and 𝐼 is an independent set of 𝐹 }

We stress that we go over all the possible pairs (𝐹 , 𝐼) where 𝐹 ∈  and 𝐼 is an independent set of 𝐹 . We thus have that
for some 𝐹 ′ ∈ ̂ , 𝜒(𝐹 ′) = 𝜒0 − 1 (note that this holds also when 𝐹 is disconnected). By induction,whp there exists𝐻 ′ ⊆

[𝑛] ⧵ 𝐴which is ̂ -saturated in𝐺(𝑛, 𝑝)[[𝑛] ⧵ 𝐴]with𝑂(𝑛 ln 𝑛) edges. Furthermore, for a fixed set𝑋 of ordermax𝐹∈ |𝑉 (𝐹 )|
in [𝑛] ⧵ 𝐴, 𝑑𝐺(𝑛,𝑝)(𝑋|𝐴) is distributed according to 𝐵𝑖𝑛(|𝐴|, 𝑝|𝑋|). Thus, by Lemma 2.1 (1),

ℙ

(
𝑑𝐺(𝑛,𝑝)(𝑋|𝐴) ≤ max

𝐹∈
|𝑉 (𝐹 )|

)
≤ exp

(
−
𝐶(ln 𝑛)𝑝|𝑋|

4

)
≤ 𝑛−2 max𝐹∈ |𝑉 (𝐹 )|

for 𝐶 large enough. Thus, by the union bound,whp for every set of order max𝐹∈ |𝑉 (𝐹 )| in [𝑛] ⧵ 𝐴, we can find a set of
max𝐹∈ |𝑉 (𝐹 )| common neighbors in 𝐴. Therefore, when we add a missing edge from 𝐺(𝑛, 𝑝)[𝑉 ⧵ 𝐴], we close a copy of
some 𝐹 ′ ∈ ̂ . This copy of 𝐹 ′ together with its common neighbors in 𝐴 form a copy of some 𝐹 ∈  (see Figure 3).

Let 𝐸′ be the set of edges of 𝐺(𝑛, 𝑝) between [𝑛] ⧵ 𝐴 and 𝐴. Let𝐻 be𝐻 ′ together with 𝐸′.

First, note that𝐻 is -free. Indeed, since𝐻[𝐴] is an empty graph, if there is a copy of𝐹 in𝐻 ,𝐹 [𝐴]must be an independent
set. However, by definition of𝐻 ′, 𝐹 [[𝑛] ⧵ 𝐴] is free of any 𝐹 ⧵ 𝐼 for any independent set 𝐼 of 𝐹—a contradiction.

Furthermore, by construction, every edge of 𝐺(𝑛, 𝑝) ⧵ 𝐸(𝐻) in [𝑛] ⧵ 𝐴 closes a copy of 𝐹 ∈  . Since |𝐸′| = 𝑂(𝑛 ln 𝑛) and
whp |𝐸(𝐻 ′)| = 𝑂(𝑛 ln 𝑛), we have thatwhp |𝐸(𝐻)| = 𝑂(𝑛 ln 𝑛). To ensure that𝐻 is  -saturated, the only edges to con-
sider are those where both endpoints are in𝐴, and there are atmost𝑂(ln2𝑛) such edges. Hence,whp there exists𝐻 which
is  -saturated with 𝑂(𝑛 ln 𝑛) edges.
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4 | Sharp Bounds

In this section, we prove Theorems 3 and 4. We begin with the proof of Theorem 3.

Let us begin with an outline of the proof. We show that whp there exists a subgraph 𝐻 ⊆ 𝐺(𝑛, 𝑝) which is
𝐾𝑠1,… ,𝑠𝓁

-saturated and 𝑒(𝐻) ≤ (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛. Note that if we find a subgraph 𝐻 ⊆ 𝐺(𝑛, 𝑝), with 𝑒(𝐻) ≤ (1 +

𝑜(1))𝑛 log 1

1−𝑝
𝑛, which completes all but at most 𝑜(𝑛 ln 𝑛) edges, then we can add edges one by one if necessary, and obtain

a subgraph which is 𝐾𝑠1,… ,𝑠𝓁
-saturated and has at most (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛many edges.

Very roughly, we take a subset 𝐴 of order Θ(ln 𝑛) and 𝐵 from [𝑛] ⧵ 𝐴. We then find a subgraph in 𝐺(𝑛, 𝑝)[𝐴] which

is
{
𝐾𝓁 , 𝐾

(𝓁−1)
𝑠1

}
-free and such that there is a copy of 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

in every large enough subset of 𝐴 (where if 𝑠1 = 1,

𝐾𝑠1−1,𝑠3,… ,𝑠𝓁
= 𝐾𝑠3,… ,𝑠𝓁

). In the case of 𝑠𝓁 = 1, as in Reference [5], it suffices to set 𝐵 as the empty graph and draw all the
edges between 𝐴 and 𝐵, and then to show that almost all the edges are completed. However, as in Reference [5], there
will still be a small (yet non-negligible) amount of edges that will not be completed, as the co-degree of their endpoints
in 𝐴 is too small. For these type of edges, some additional technical work is required, which will force us to maintain two
additional small sets outside of 𝐵—𝐴2 and 𝐴3—which, as in Reference [5], will allow us to deal with these problematic
edges.

The case of 𝑠𝓁 ≥ 2 is naturally more delicate, as𝐵 cannot be taken to be an empty graph, but instead requires some special
properties. Using a novel construction, we find a subgraph in 𝐺(𝑛, 𝑝)[𝐵] which is almost-(𝑠2 − 1)-regular (i.e., almost all
its vertices are of degree 𝑠2 − 1, and the others might have smaller degree) and𝐾𝑠1,𝑠2−𝑠1+1

-free in𝐺(𝑛, 𝑝)[𝐵]. This subgraph
will have another crucial property—the vertices of any copy of 𝐾1,𝑠2−1

have a large common neighborhood in 𝐴, which
we show through coupling and covering-balls arguments (the construction of this graph is the most involved part of the
proof and includes key new ideas, this appears in Lemma 4.1). In this way, almost all edges in 𝐵 close a copy of 𝐾1,𝑠2
such that this copy has a large common neighborhood in 𝐴, in which we can find a copy of 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

(as in the clique
case, some additional technical work is required to deal with the other edges). These two copies form a copy of 𝐾𝑠1,… ,𝑠𝓁
as needed.

Note that the requirement that the subgraph in 𝐺(𝑛, 𝑝)[𝐵] is 𝐾𝑠1,𝑠2−𝑠1+1
-free is necessary, as otherwise a copy of 𝐾𝑠1,… ,𝑠𝓁

could be formed when drawing the edges between 𝐵 and 𝐴.

4.1 | Proof of Theorem 3

We may assume that 𝑠𝓁 ≥ 2, as the case of cliques has been dealt with in Reference [5].

Let 𝛾, 𝜖 > 0 be sufficiently small constants. Let 𝐺 ∼ 𝐺(𝑛, 𝑝). Let 𝐿 ∶= 𝐿
(
𝑠1, … , 𝑠𝓁

)
be a constant large enough with

respect to 𝑠1, … , 𝑠𝓁 . Let 𝜌 = 𝜌(𝑝) and set

𝑎1 =
1

𝑝
(1 + (1 + 𝛾)𝜖) log𝜌 𝑛, 𝑎2 = 𝐿 log𝜌 𝑛, 𝑎3 =

𝑎2√
ln 𝑎2

Let 𝐴1, 𝐴2, and 𝐴3, be disjoint sets of vertices of sizes 𝑎1, 𝑎2, and 𝑎3, respectively. Set 𝐵 ∶= 𝑉 ⧵ (𝐴1 ∪ 𝐴2 ∪ 𝐴3). Set

𝐼 ∶=
[
(1 + 𝜖) log𝜌 𝑛, (1 + (1 + 2𝛾)𝜖) log𝜌 𝑛

]

We say that a vertex 𝑣 ∈ 𝐵 is 𝐴1-good if 𝑑𝐺(𝑣|𝐴1) ∈ 𝐼 . Otherwise, we say that 𝑣 is 𝐴1-bad. Let 𝐵1 ⊆ 𝐵 be the set of

𝐴1-good vertices, and set𝐵2 = 𝐵 ⧵ 𝐵1. Note thatwhp |𝐵2| = 𝑂
(

𝑛

ln 𝑛

)
. Indeed, for every vertex 𝑣 ∈ 𝐵, we have 𝑑𝐺(𝑣|𝐴1) ∼

Bin(𝑎1, 𝑝). By Lemma 2.1 (1), for every vertex 𝑣 ∈ 𝐵,

ℙ(𝑣 is𝐴1 − bad) ≤ exp(−𝑐 ln 𝑛)

for some constant 𝑐 > 0. Thus, 𝔼[|𝐵2|] = 𝑂
(
𝑛1−𝑐

)
. By Markov’s inequality,whp |𝐵2| = 𝑂

(
𝑛

log𝜌 𝑛

)
.

As mentioned prior to the proof, a key element in the proof is finding in 𝐵1 a subgraph𝐻𝐵1
of 𝐺 which is 𝐾𝑠1,𝑠2−𝑠1+1

-free
and almost-(𝑠2 − 1)-regular in the edges in 𝐺[𝐵1]. Moreover, we want𝐻𝐵1

to satisfy the following property. Every vertex
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𝑣 ∈ 𝐵1 and its neighbors in𝐻𝐵1
have a large common neighborhood in 𝐴1 in 𝐺. The proof of this key lemma is deferred

to the end of this proof.

Lemma 4.1. Whp there exists𝐻𝐵1
⊆ 𝐺 with 𝑉 (𝐻𝐵1

) = 𝐵1 such that the following holds.

• 𝐻𝐵1
is 𝐾𝑠1,𝑠2−𝑠1+1

-free.

• The maximum degree of 𝐻𝐵1
is 𝑠2 − 1, and all but 𝑂

(
𝑛

log 𝑛

)
of its vertices are of degree 𝑠2 − 1 in𝐻𝐵1

.

• For every 𝑢, 𝑣 ∈ 𝑉 (𝐻𝐵1
) such that {𝑢, 𝑣} ∈ 𝐸(𝐻𝐵1

), 𝑑𝐺(𝑢, 𝑣|𝐴1) ≥ (1 + (1 − 6𝛾)𝜖) log𝜌 𝑛.

We move the vertices of degree less than 𝑠2 − 1 in𝐻𝐵1
from 𝐵1 to 𝐵2. Note that by Lemma 4.1,whp we moved 𝑂

(
𝑛

log 𝑛

)

vertices from 𝐵1 to 𝐵2, and this has not affected the above properties of𝐻𝐵1
.

Since 𝐾𝓁 and 𝐾
(𝓁−1)
𝑠1

are two-vertex-connected graphs (as 𝓁 ≥ 3 by assumption) and are non-𝐾𝑠1−1,𝑠3,… ,𝑠𝓁
-degenerate, by

Lemma 1.6, we can take a spanning subgraph 𝐻𝐴1
⊆ 𝐺[𝐴1] which is (1∕ln

3|𝐴1|)-dense with respect to 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁
and

{𝐾𝓁 , 𝐾
(𝓁−1)
𝑠1

}-free.

Let𝐻1 be the graph on 𝐴1 ∪ 𝐵 with the edges𝐻𝐴1
,𝐻𝐵1

, and all the edges between 𝐴1 and 𝐵 in𝐺. We now continue with
a series of self-contained claims.

Claim 4.2. Whp,𝐻1 completes all but 𝑜(𝑛 ln 𝑛) of the vertex pairs in 𝐵 not induced by 𝐵2.

Proof. Fix 𝑆 ⊂ 𝐴1, 𝑢 ∈ 𝐵. We say that 𝑢 avoids 𝑆 if |𝑁𝐺(𝑢, 𝑆)| < |𝑆|
ln2|𝑆| . The number of neighbors of 𝑢 in 𝑆 in 𝐺 is dis-

tributed according to Bin(|𝑆|, 𝑝). Thus, by Lemma 2.1 (3), the probability that 𝑢 avoids 𝑆 is at most (1 − 𝑝)|𝑆|−|𝑆|∕ ln |𝑆|. In
particular, if |𝑆| =

(
1 + 1

2
𝜖
)
log𝜌 𝑛, then the probability that 𝑢 avoids 𝑆 is at most

(1 − 𝑝)|𝑆|−|𝑆|∕ ln |𝑆| ≤ (1 − 𝑝)

(
1+ 1

3
𝜖
)
log𝜌 𝑛 = 𝑛−1−

1

3
𝜖

Fix a vertex 𝑣 ∈ 𝐵 and expose the edges in 𝐺 from 𝑣 to 𝐴1. Assume that 𝑣 is 𝐴1-good. Fix 𝑆 ⊂ 𝑁𝐺(𝑣, 𝐴1) of size(
1 + 1

2
𝜖
)
log𝜌 𝑛. Let 𝑋𝑆 be the random variable counting the number of vertices 𝑢 ∈ 𝐵 ⧵ {𝑣} that avoid 𝑆. Then 𝑋𝑆 is

stochastically dominated by Bin
(
|𝐵| − 1, 𝑛−1−

1

3
𝜖
)
. Since |𝐵| − 1 < 𝑛, by Lemma 2.1 (2),

ℙ

(
𝑋𝑆 ≥

√
ln 𝑛

)
≤

(
𝑒√

ln 𝑛 ⋅ 𝑛
1

3
𝜖

)√
ln 𝑛

≤ exp
(
−
1

3
𝜖ln

3

2 𝑛
)

Note that since 𝑣 is 𝐴1-good, then |𝑁𝐺(𝑣, 𝐴1)| ≤ (1 + (1 + 2𝛾)𝜖) log𝜌 𝑛. Hence, by the union bound, the probability that

there exists 𝑆 ⊂ 𝑁𝐺(𝑣, 𝐴1) of size
(
1 + 1

2
𝜖
)
log𝜌 𝑛 such that𝑋𝑆 >

√
ln 𝑛 is at most

⎛⎜⎜⎝
(1 + (1 + 2𝛾)𝜖) log𝜌 𝑛(

1 + 1

2
𝜖
)
log𝜌 𝑛

⎞⎟⎟⎠
exp

(
−
1

3
𝜖ln

3

2 𝑛
)

≤ exp

(
3

2
𝜖 ln

(
𝑒(1 + 2𝜖)

3

2
𝜖

)
log𝜌 𝑛

)
exp

(
−
1

3
𝜖ln

3

2 𝑛
)
= 𝑜

(
1

𝑛

)

Thus, by the union bound whp there are no vertices 𝑣 ∈ 𝐵1 such that 𝑋𝑆 >
√
ln 𝑛 for some 𝑆 ⊂ 𝑁𝐺(𝑣, 𝐴1) of size(

1 + 1

2
𝜖
)
log𝜌 𝑛.

Now, fix an edge {𝑢, 𝑣} ⊂ 𝐵 in 𝐺 but not in𝐻1, such that 𝑣 ∈ 𝐵1. Since 𝑣 ∈ 𝐵1, we have that 𝑣 ∈ 𝑉 (𝐻𝐵1
) and has degree

𝑠2 − 1 in𝐻𝐵1
. Therefore, this edge closes a copy of𝐾1,𝑠2

with the neighbors of 𝑣 in𝐻𝐵1
, denote them by 𝑣1, … , 𝑣𝑠2−1. Let
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FIGURE 4 | An illustration of how the edge {𝑥, 𝑣}, which is not induced by 𝐵2, is completed by 𝐻1. In this case, we consider

𝐾2,3,3. In 𝐻𝐵1
, we have the vertices 𝑣, 𝑣1 ∈ 𝐵1 and 𝑣2 ∈ 𝐵2, with the edges {𝑣, 𝑣1} and {𝑣, 𝑣2}. In the common neighborhood in 𝐴1 of

{𝑥, 𝑣, 𝑣1, 𝑣2}, we can find inside𝐻𝐴1
a copy of 𝐾1,3. Note that with the edges of𝐻1 and the edge {𝑥, 𝑣}, we now have a copy of 𝐾2,3,3,

with its parts being {𝑣, 𝑢}, {𝑣1, 𝑣2, 𝑥}, {𝑢1, 𝑢2, 𝑢3}.

𝑆 ∶= 𝑆(𝑣, 𝑣1, … , 𝑣𝑠2−1) be the set of common neighbors of 𝑣, 𝑣1, … , 𝑣𝑠2−1 in 𝐴1 in the graph 𝐺. We note that the size of

𝑆 must be at least
(
1 + 1

2
𝜖
)
log𝜌 𝑛. Indeed, we have

|𝑆| ≥ |𝑁𝐺(𝑣, 𝐴)| −
𝑠2−1∑
𝑖=1

|𝑁𝐺(𝑣, 𝐴) ⧵𝑁𝐺(𝑣𝑖, 𝐴)|

≥ |𝑁𝐺(𝑣, 𝐴)| − (𝑠2 − 1)(8𝛾𝜖) log𝜌 𝑛

≥ (1 + 𝜖 − 8𝑠2𝛾𝜖) log𝜌 𝑛

≥

(
1 +

1

2
𝜖
)
log𝜌 𝑛

where the second inequality follows from the fact that, by Lemma 4.1, given {𝑥, 𝑦} ∈ 𝐸(𝐻𝐵1
) we have that 𝑑𝐺(𝑥, 𝑦|𝐴1) ≥

(1 + (1 − 6𝛾)𝜖) log𝜌 𝑛, and the last inequality is true if 𝛾 ≤
1

16𝑠2
. Note that if 𝑢 hasmore than |𝑆|

ln2|𝑆| neighbors in𝑆, then since
𝐻𝐴1

is (1∕ln3|𝐴1|)-dense with respect to 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁
, we can find a copy of 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

in 𝑆 such that the edge {𝑣, 𝑢},
joined with the neighbors of 𝑣 in 𝐵1, completes a copy of 𝐾𝑠1,… ,𝑠𝓁

(see Figure 4). Thus, by this and the above,whp there

are at most 𝑛
√
ln 𝑛 = 𝑜(𝑛 ln 𝑛) non-completed edges from 𝐵 not induced by 𝐵2. ◽

Let us continue with the construction of 𝐻 . The set 𝐴2 will be crucial when dealing with edges induced by 𝐵2. By
Lemma 1.6, we can take a spanning subgraph 𝐻𝐴2

⊆ 𝐺[𝐴2] which is (1∕ ln |𝐴2|)-dense with respect to 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁
and

{𝐾𝓁 , 𝐾
(𝓁−1)
𝑠1

}-free. Let 𝐻2 be the graph on 𝐴2 ∪ 𝐵2 with the edges of 𝐻𝐴2
and all the edges between 𝐴2 and 𝐵2 in 𝐺. We

will prove how we close edges induced by𝐵2 at the last step of the construction—then, we will able to add edges induced
by 𝐵2 to 𝐻 one by one, retaining the property that 𝐻 is 𝐾𝑠1,… ,𝑠𝓁

-free, and show that at that step we have added only
𝑂(𝑛∕ ln 𝑛) = 𝑜(𝑛 ln 𝑛) edges.

Observe thatwhpwe haveΘ(𝑛 log 𝑛) edges between𝐴2 and 𝐵1 in𝐺. We now utilize the set𝐴3 to complete them. Indeed,

by Lemma 2.3 whp 𝑘 ∶= 𝜒(𝐺[𝐴2]) = 𝑂
(

𝑎2
ln 𝑎2

)
. We can then split 𝐴2 to 𝑘 color classes 𝐴1

2
, … , 𝐴𝑘

2
. Thus, there are no

edges of 𝐺 (and thus of𝐻𝐴2
) inside 𝐴𝑖

2
, for every 𝑖 ∈ [𝑘]. We further partition the vertices of 𝐴3 to 2𝑘 (almost) equal parts

𝐴1
3
, … , 𝐴2𝑘

3
of size 𝑎4 ∶=

𝑎3

2𝑘
= Θ(

√
ln 𝑎2). For every 𝑖 ∈ [2𝑘], by Lemma 1.6, the probability that there exists a subgraph

𝐻𝐴𝑖
3
⊂ 𝐺[𝐴𝑖

3
] which is (1∕ ln ln ln4𝑛)-dense with respect to 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

and {𝐾𝓁 , 𝐾
(𝓁−1)
𝑠1

}-free is 1 − 𝑜(1). Hence, by stan-

dard binomial tail bounds,whp there exist distinct 𝑖1, … , 𝑖𝑘 such that there exists such a subgraph in each 𝐴
𝑖𝑗
3
, for every

𝑗 ∈ [𝑘]. Therefore, for every 𝑗 ∈ [𝑘], there is𝐻
𝐴
𝑖𝑗

3

⊆ 𝐺[𝐴
𝑖𝑗
3
] which is (1∕ ln ln ln4𝑛)-dense with respect to 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

and

{𝐾𝓁 , 𝐾
(𝓁−1)
𝑠1

}-free. We let 𝐴𝑗

3
= 𝐴

𝑖𝑗
3
and𝐻𝐴

𝑗

3
= 𝐻

𝐴
𝑖𝑗

3

for simplifying notations and without loss of generality.

Let𝐻3 be the graph with edges of𝐻𝐴2
,𝐻𝐴1

3
, … ,𝐻𝐴𝑘

3
, together with the edges between𝐴3 and𝐵1 in𝐺, and together with

the edges between 𝐴𝑖
3
and 𝐴𝑖

2
, for every 𝑖 ∈ [𝑘], in 𝐺. Set𝐻 ∶= 𝐻1 ∪𝐻2 ∪𝐻3.
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Claim 4.3. Whp,𝐻 completes all but at most 𝑜(𝑛 log 𝑛) edges from 𝐵1 to 𝐴2.

Proof. Fix two vertices 𝑣 ∈ 𝐵1 and 𝑢 ∈ 𝐴𝑖
2
, for some 𝑖 ∈ [𝑘].

Recall that 𝑣 has 𝑠2 − 1 neighbors in 𝐵. Thus, together with 𝑢, we close a copy of 𝐾1,𝑠2
. If this copy has more than

𝑎4
log3𝑎4

common neighbors in 𝐴𝑖
3
, then we can find among these neighbors a copy of𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

which closes a copy of𝐾𝑠1,… ,𝑠𝓁
.

By Lemma 2.1 (3), the probability that this copy of 𝐾1,𝑠2
has less than

𝑎4
log3𝑎4

common neighbors is at most

(1 − 𝑝𝑠2+1)𝑎4−𝑎4∕ ln 𝑎4 ≤ (1 − 𝑝𝑠2+1)Ω(
√
ln 𝑎2)

Hence, the expected number of uncompleted edges 𝑒 = {𝑣, 𝑢} with 𝑣 ∈ 𝐵1 and 𝑢 ∈ 𝐴2 is at most

(1 − 𝑝𝑠1+1)Ω(
√
ln 𝑎2) ⋅ |𝐵1| ⋅ |𝐴2| = (1 − 𝑝𝑠1+1)Ω(

√
ln 𝑎2) ⋅ 𝑂(𝑛 log𝜌 𝑛)

Therefore, by Markov’s inequality,whp the number of uncompleted such pairs is 𝑜(𝑛 log𝜌 𝑛). ◽

Claim 4.4. Whp, 𝑒(𝐻) = (1 + Θ(𝜖))𝑛 log𝜌 𝑛.

Proof. Indeed,whp

𝑒(𝐻) ≤ 𝑒(𝐻1) + 𝑒(𝐻2) + 𝑒(𝐻3)

≤ (1 + 𝑜(1))𝑎1𝑛𝑝 + 𝑒(𝐻𝐵1
) + 𝑒(𝐻𝐴1

) + 𝑎2|𝐵2|𝑝 + 𝑒(𝐻𝐴2
) + 𝑒(𝐻𝐴3

) + 𝑎3𝑛𝑝

≤ (1 + 𝑜(1))(1 + (𝑠1 + 1)𝜖)𝑛 log𝜌 𝑛 = (1 + Θ(𝜖))𝑛 log𝜌 𝑛
◽

Claim 4.5. 𝐻 is 𝐾𝑠1,… ,𝑠𝓁
-free.

Proof. Suppose towards contradiction that there exists a copy of 𝐾𝑠1,… ,𝑠𝓁
in𝐻 , denote this copy by 𝐹 .

Assume first that 𝑉 (𝐹 ) ∩ 𝐴3 ≠ ø. Set 𝐹 ∶= 𝑉 (𝐹 ) ∩ 𝐴3. Suppose further that 𝑉 (𝐹 ) ∩ (𝐵2 ∪ 𝐴1) ≠ ø. Since there are no
edges between 𝐵2 ∪ 𝐴1 and 𝐴3, all the vertices in 𝑉 (𝐹 ) ∩ (𝐵2 ∪ 𝐴1 ∪ 𝐴3) must belong to the same independent set of 𝐹 .
Thus, 𝑉 (𝐹 ) ∩ (𝐵1 ∪ 𝐴2)must contain a copy of 𝐾𝑠1,… ,𝑠𝓁−1

. Since there are no edges between 𝐵1 and 𝐴2, this copy is con-

tained entirely in 𝐵1 or entirely in 𝐴2. Since𝐻[𝐵1] is𝐾𝑠1,𝑠2−𝑠1+1
-free and𝐾𝑠1,𝑠2−𝑠1+1

⊆ 𝐾𝑠1,… ,𝑠𝓁−1
, and𝐻[𝐴2] is𝐾

(𝓁−1)
𝑠1

-free

and𝐾 (𝓁−1)
𝑠1

⊆ 𝐾𝑠1,… ,𝑠𝓁−1
, this is a contradiction, and hence 𝑉 (𝐹 ) ∩ (𝐵2 ∪ 𝐴1) = ø. Since𝐻[𝐴3] is𝐾𝓁-free, then at least one

full part 𝐼 ′ of𝐾𝑠1,… ,𝑠𝓁
must come from𝐵1 ∪ 𝐴2, as all its verticesmust be adjacent to every vertex of𝐹 . If𝐹 ⧵ 𝐼 ′ lies entirely

in𝐴3, then𝐻[𝐴3]must contain a copy of𝐾
(𝓁−1)
𝑠1

—acontradiction, as by construction𝐻[𝐴3] is composed of vertex disjoint

subsets, each of which is 𝐾 (𝓁−1)
𝑠1

-free. Hence, there must be another vertex 𝑣 ∈ 𝐹 ⧵ 𝐼 ′ which is in 𝐵1 ∪ 𝐴2. Thus, 𝐵1 ∪ 𝐴2

contains at least one full part as well as an additional vertex from another part of 𝐾𝑠1,… ,𝑠𝓁
. As this additional vertex is

adjacent to 𝐼 ′ in 𝐵1 ∪ 𝐴2 and there are no edges between 𝐵1 and 𝐴2, all these vertices must belong exclusively to 𝐵1 or
exclusively to 𝐴2. If they belong to 𝐵1, then since the maximum degree of𝐻𝐵1

is 𝑠2 − 1 we have that the full part must be

of size 𝑠1. Furthermore, we have that𝐻𝐵1
is𝐾𝑠1,𝑠2−𝑠1+1

-free. Thus, if they belong to𝐵1,𝐻[𝐴3]must contain𝐾
(𝓁−1)
𝑠1

in order

to complete 𝐾𝑠1,… ,𝑠𝓁
, as there are 𝓁 − 1 parts missing at least 𝑠1 vertices, once again leading to contradiction. Finally, if

they belong to 𝐴2, then they should be split between different independent sets 𝐴
𝑖
2
and 𝐴𝑗

2
, but there are no vertices in 𝐴3

which are adjacent to both 𝐴𝑖
2
and 𝐴𝑗

2
in𝐻—a contradiction.

Let us now assume that 𝑉 (𝐹 ) ∩ 𝐴3 = ø and 𝑉 (𝐹 ) ∩ 𝐴2 ≠ ø. Set 𝐹 ∶= 𝑉 (𝐹 ) ∩ 𝐴2. Similarly to before, we may assume
that 𝑉 (𝐹 ) ∩ (𝐵1 ∪ 𝐴1) = ø, as otherwise 𝑉 (𝐹 ) ∩ 𝐵2 must contain 𝐾𝑠1,… ,𝑠𝓁−1

and in particular a vertex of degree 𝑠2, con-
tradicting the fact that every 𝑣 ∈ 𝐵 has degree at most 𝑠2 − 1 in 𝐻 . Since 𝐻[𝐴2] is 𝐾𝓁-free, then a full part of 𝐾𝑠1,… ,𝑠𝓁
must come from 𝐵2 and, as before, at least one additional vertex. This vertex is adjacent to all the vertices in the full
part, and thus, since every 𝑣 ∈ 𝐵 has degree at most 𝑠2 − 1 in 𝐻 , the full part must be of size 𝑠1. Moreover, there are
at most 𝑠2 − 𝑠1 vertices of 𝐹 in 𝐵2 that do not belong to this part of size 𝑠1 (otherwise, 𝐻[𝐵2], and in particular 𝐻[𝐵]

would contain a copy of 𝐾𝑠1,𝑠2−𝑠1+1
, contradicting the fact that the set of edges of𝐻[𝐵] is the set of edges of𝐻𝐵1

). There-

fore, each part of 𝐹 must contain at least 𝑠1 vertices, creating a copy of 𝐾
(𝓁−1)
𝑠1

—a contradiction to the fact that𝐻[𝐴2] is

𝐾 (𝓁−1)
𝑠1

-free.
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Suppose now that 𝑉 (𝐹 ) ∩ 𝐴3 = 𝑉 (𝐹 ) ∩ 𝐴2 = ø and 𝑉 (𝐹 ) ∩ 𝐴1 ≠ ø. Once again, by our assumptions on𝐻[𝐴1], we obtain
that there must be a full side and an additional vertex of 𝐹 in 𝐵. Since the degree of every 𝑣 ∈ 𝐵 in 𝐻 is at most 𝑠2 − 1,
we have that this side is of size 𝑠1. Since𝐻[𝐵] (whose set of edges is as the set of edges of𝐻𝐵1

) is𝐾𝑠1,𝑠2−𝑠1+1
-free, there are

at most 𝑠2 − 𝑠1 vertices of 𝐹 in 𝐵 that do not belong to this part of size 𝑠1. Thus, each part of 𝑉 (𝐹 ) ∩ 𝐴3 must contain at
least 𝑠1 vertices, creating a copy of 𝐾

(𝓁−1)
𝑠1

—a contradiction.

We may thus assume that 𝑉 (𝐹 ) ⊆ 𝐵. However,𝐻[𝐵] is 𝐾𝑠1,𝑠2−𝑠1+1
-free and 𝐾𝑠1,𝑠2−𝑠1+1

⊆ 𝐾𝑠1,… ,𝑠𝓁
—a contradiction, thus

completing the proof. ◽

In conclusion,whp by Claim 4.5𝐻 is𝐾𝑠1,… ,𝑠𝓁
-free and by Claims 4.2 and 4.3𝐻 completes all but at most 𝑜(𝑛 ln 𝑛) of the

edges not induced by 𝐵2. Let us add each of these edges (not induced by 𝐵2) which do not close a copy of 𝐹 to 𝐻 until
none remain. By Claim 4.4, we have now thatwhp 𝑒(𝐻) = (1 + Θ(𝜖))𝑛 log𝜌 𝑛 + 𝑜(𝑛 ln 𝑛) = (1 + Θ(𝜖))𝑛 log𝜌 𝑛. We are thus
left with the edges of𝐺 induced by 𝐵2. Let us show that we can add each of these edges that do not close a copy of 𝐹 to𝐻
until none remain, and in doing so, add at most 𝑜(𝑛 log 𝑛) edges. As wemay choose 𝜖 arbitrarily small, we will then obtain
a graph𝐻 which is 𝐾𝑠1,… ,𝑠𝓁

-saturated with (1 + 𝑜(1))𝑛 log𝜌 𝑛 edges.

To the task at hand, recall that 𝐿 ∶= 𝐿
(
𝑠1, … , 𝑠𝓁

)
is a constant large enough with respect to 𝑠1, … , 𝑠𝓁 , and that |𝐴2| =

𝐿 log𝜌 𝑛. We may thus choose 𝐿 large enough such that whp every 𝑠2 + 1 vertices from 𝐵2 have at least
𝑎2𝑝

𝑠2+1

10
common

neighbors in 𝐴2 in𝐺. Indeed, for a fixed set of 𝑠2 + 1 vertices, the number of their common neighbors in 𝐴2 is distributed
according to 𝐵𝑖𝑛(|𝐴2|, 𝑝𝑠2+1). Lemma 2.1 together with a union bound on the less than 𝑛𝑠2+1 choices of such sets in 𝐵2,
completes this claim. Since𝐻[𝐴2] is (1∕ ln |𝐴2|)-dense with respect to𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

, these common neighbors in𝐴2 induce
a copy of 𝐾𝑠1−1,𝑠3,… ,𝑠𝓁

in𝐻[𝐴2]. Hence, there cannot be a copy of 𝐾1,𝑠2
in𝐻[𝐵2] (i.e., a vertex of degree 𝑠2 in𝐻[𝐵2]), as

it closes a copy of𝐾𝑠1,… ,𝑠𝓁
together with its common neighbors in 𝐴2. Now, as long as there are edges of 𝐺 induced by 𝐵2

which do not close a copy of 𝐾𝑠1,… ,𝑠𝓁
, we add them to𝐻 . We thus only added at most 𝑠2 ⋅ |𝐵2| = 𝑂(𝑛∕ log 𝑛) edges to𝐻

in this final step.

4.2 | Proof of Lemma 4.1

We build such a subgraph iteratively. In each iteration, we find a large matching in𝐺[𝐵1], which we add to the subgraph,
such that the matching satisfies the following:

1. The union of the previous matching together with this matching does not induce a copy of 𝐾𝑠1,𝑠2−𝑠1+1
; and,

2. the endpoints of every edge in the matching have a large common neighborhood in 𝐴1 in 𝐺.

Denote by Γ the auxiliary graph with vertex set 𝐵1 and the set of edges defined as follows. For every two vertices 𝑣 ≠ 𝑢

in 𝐵1,

{𝑢, 𝑣} ∈ 𝐸(Γ) ⇔ 𝑑𝐺(𝑢, 𝑣|𝐴1) ≥ (1 + (1 − 6𝛾)𝜖) log𝜌 𝑛

Set 𝑝′ = 1 − (1 − 𝑝)1∕(𝑠2−1). For every 𝑖 ∈ [𝑠2 − 1], denote by Γ𝑖 the subgraph of Γ obtained by retaining every edge inde-

pendently with probability 𝑝′. We have Γ𝑝 ∶= Γ ∩ 𝐺(𝑛, 𝑝). Note that Γ𝑝 has the same distribution as
⋃𝑠2−1

𝑖=1 Γ𝑖.

We will, in fact, prove the following equivalent lemma:

Lemma 4.6. Whp there exists𝐻𝐵1
⊆ Γ𝑝 which is𝐾𝑠1,𝑠2−𝑠1+1

-free, has maximum degree 𝑠2 − 1, and all but 𝑂
(

𝑛

log 𝑛

)
of its

vertices have degree 𝑠2 − 1.

We consider two cases separately. In the first case, we assume that 𝑝 =
1

2
. While some details will be different when 𝑝 > 1

2
,

we believe the key ideas—in particular the ball-covering technique (see Claim 4.9)—are clearer in this case. Afterwards,
we mention how to complete the proof for the range of 𝑝 > 1

2
, where, in particular, Claim 4.7 no longer necessarily holds.

4.2.1 | Proof of Lemma 4.1, P=0.5

Recall that we are seeking a subgraph of Γ𝑝 which is 𝐾𝑠1,𝑠2−𝑠1+1
-free, has maximum degree 𝑠2 − 1 and all but 𝑂

(
𝑛

log 𝑛

)
of

its vertices are of degree 𝑠2 − 1.
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As for the first requirement, note that a graph whose maximum degree is 𝑠2 − 1 and is 𝐶4-free, is 𝐾𝑠1,𝑠2−𝑠1+1
-free graph.

Indeed, if 𝑠1 = 𝑠2 or 𝑠1 = 1, we have that𝐾𝑠1,𝑠2−𝑠1+1
= 𝐾1,𝑠2

, and thus asking for the maximum degree to be 𝑠2 − 1 suffices.
Otherwise, 1 < 𝑠1 < 𝑠2 and we have that any copy of 𝐾𝑠1,𝑠2−𝑠1+1

contains 𝐾2,2, that is, 𝐶4.

As for the second requirement, our strategywill then be to find a sufficiently largematching𝑀𝑖 inΓ𝑖, for every 𝑖 ∈ [𝑠2 − 1],

such that there are no copies of 𝐶4 in𝑀 ∶=
⋃𝑠2−1

𝑖=1 𝑀𝑖. We will show that for every 𝑖 ∈ [𝑠2 − 1], there are at most 𝑂
(

𝑛

log 𝑛

)

vertices that are unmatched. Thus, the subgraph whose edges are the edges of 𝑀 would then be the desired subgraph
of Γ𝑝.

Fix 𝑖 ∈
{
2, … , 𝑠2 − 1

}
. Assume that there exist edge-disjoint matchings𝑀1 ⊆ Γ1, … ,𝑀𝑖−1 ⊆ Γ𝑖−1 such that

⋃𝑖−1
𝑗=1𝑀𝑗 is

𝐶4-free. We will find a matching𝑀𝑖 ⊆ Γ𝑖 such that
⋃𝑖

𝑗=1𝑀𝑗 is 𝐶4-free.

Recall that 𝐼 =
[
(1 + 𝜖) log𝜌 𝑛, (1 + (1 + 2𝛾)𝜖) log𝜌 𝑛

]
. Set

𝑊 = {𝑥 ⊆ 𝐴1 ∶ |𝑥| ∈ 𝐼}

Denote by 𝐺𝑊 the graph with vertex set𝑊 and the set of edges defined as follows. For every 𝑥 ≠ 𝑦 ∈ 𝑊 ,

{𝑥, 𝑦} ∈ 𝐸(𝐺𝑊 ) ⇔ |𝑥 ∩ 𝑦| ≥ (1 + (1 − 6𝛾)𝜖) log𝜌 𝑛 (7)

Define 𝜙 ∶ 𝑉 (Γ) → 𝑉 (𝐺𝑊 ) such that 𝜙(𝑣) = 𝑁𝐺(𝑣|𝐴1) for every 𝑣 ∈ 𝑉 (Γ). Note that this definition is valid since if 𝑣 ∈

𝑉 (Γ), then 𝑣 is 𝐴1-good and thus𝑁𝐺(𝑣|𝐴1) ∈ 𝑊 .

Claim 4.7. Whp 𝜙 is injective.

Proof. Fix 𝑢 ∈ 𝐵. If 𝑢 ∈ 𝑉 (Γ), then for every vertex 𝑣 ∈ 𝑉 (Γ), we have 𝜙(𝑢) = 𝜙(𝑣) if and only if𝑁𝐺(𝑣|𝐴1) = 𝑁𝐺(𝑢|𝐴1).
For every vertex 𝑣 ∈ 𝐵,

ℙ
(
𝑁𝐺(𝑣|𝐴1) = 𝑁𝐺(𝑢|𝐴1)

)
= 𝑝𝑑𝐺(𝑢|𝐴1)(1 − 𝑝)𝑎1−𝑑𝐺(𝑢|𝐴1) =

(
1

2

)𝑎1

=
(
1

2

) 1

𝑝
(1+(1+𝛾)𝜖) log2 𝑛

= 𝑜(1∕𝑛2)

Hence, by the union bound,whp there are no two vertices 𝑢 ≠ 𝑣 ∈ 𝑉 (Γ) such that 𝜙(𝑢) = 𝜙(𝑣). ◽

Set𝐺𝑊 = 𝐺𝑊 [𝜙(𝑉 (Γ))]. Denote by𝐺𝑊 (𝑝′) the random subgraph of𝐺𝑊 obtained by retaining every edge of𝐺𝑊 indepen-
dently with probability 𝑝′. By Claim 4.7, whp 𝜙 is injective. Therefore, 𝐺𝑊 ≅ Γ. Recall that we want to find a matching
in Γ𝑖. We will show thatwhp 𝛼(Γ𝑖) ≤

𝑛

log𝜌 𝑛
and later we will construct the desired matching. Since 𝐺𝑊 ≅ Γ, it suffices to

prove the following lemma.

Lemma 4.8. Whp

𝛼(𝐺𝑊 (𝑝′)) ≤
𝑛

log𝜌 𝑛

Before proving this lemma, let us outline how we shall use the notion of ball-covering in the proof. Let us recall that
𝑥, 𝑦 are not connected in 𝐺𝑊 if |𝑥 ∩ 𝑦| < (1 + (1 − 6𝛾)𝜖) log𝜌 𝑛. Consider a Hamming ball around 𝑥 ∈ 𝑊 , containing all
𝑦 ∈ 𝑊 such that |𝑥 ∩ 𝑦| is sufficiently large. If we can find 𝑚 vertices, such that the Hamming balls around them cover
all the vertices of𝑊 (and the respective edges are retained in 𝐺𝑊 (𝑝′)), then the independence number of the graph is at
most 𝑚—indeed, any set of more than 𝑚 vertices must have two vertices in the same Hamming ball, and thus there must
be an edge between them (here we will use the fact that for every 𝑣 ∈ 𝐵1, the number of neighbors of 𝑣 in 𝐴1 lies in 𝐼).
Let us proceed with the detailed proof.

Proof. For every 𝑥 ∈ 𝑊 , denote by 𝐵(𝑥) the following Hamming ball around 𝑥:

𝐵(𝑥) ∶= {𝑦 ∈ 𝑊 ∶ |𝑥 ∩ 𝑦| ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛}

Set 𝑚 ∶=
𝑛

log(𝑛)
and 𝑚′ ∶=

𝑛

log3𝑛
. Let 𝐵′ = {𝑦1, … , 𝑦𝑚′} ⊆ 𝑉 (Γ) be an arbitrary subset of size 𝑚′.
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Claim 4.9. Whp, for every 𝑥 ∈ 𝑊 , there exists a vertex 𝑣 ∈ 𝐵′ such that

𝑑𝐺(𝑣|𝑥) ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛
◽

Proof. For every 𝑥 ∈ 𝑊 , set

𝐵′(𝑥) = {𝑣 ∈ 𝐵′ ∶ 𝑑𝐺(𝑣|𝑥) ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛}

Fix 𝑥 ∈ 𝑊 . Since |𝐵′| ≥ 𝑛

log3𝑛
, by Lemma 2.2 the probability that 𝐵′(𝑥) = ø is at most exp

(
−𝑛0.5𝜖

)
. Note that |𝑊 | = 𝑛𝑂(1).

Thus, by the union bound over𝑊 , the probability that there exists a vertex 𝑥 ∈ 𝑊 such that 𝐵′(𝑥) = ø is at most

𝑛𝑂(1) ⋅ exp
(
−𝑛0.5𝜖

)
= 𝑜(1)

◽

Let be the event that for every 𝑥 ∈ 𝑊 , there exists a vertex 𝑣 ∈ 𝐵′ such that 𝑑𝐺(𝑣|𝑥) ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛. By Claim 4.9,
we have that ℙ() = 1 − 𝑜(1). In the following claim, we assume that holds deterministically.

Claim 4.10. For every 𝐽 = {𝑥1, … , 𝑥𝑚} ⊂ 𝑉 (𝐺𝑊 ), we have |𝐸(𝐺𝑊 [𝐽 ])| ≥ 0.25𝑛 log𝜌 𝑛. ◽

Proof. For every 𝑖 ∈ [𝑚′], set

𝑌𝑖 ∶= {𝑥 ∈ 𝐽 ∶ 𝑁𝐺(𝑦𝑖|𝐴1) ∈ 𝐵(𝑥)}

Note that by, we have that
⋃𝑚′

𝑖=1𝑌𝑖 = 𝐽 . Indeed, for every 𝑥 ∈ 𝐽 , there exists a vertex 𝑦 ∈ 𝐵′ such that𝑁𝐺(𝑦|𝐴1) ∈ 𝐵(𝑥)

and thus there exists 𝑖 ∈ [𝑚′] such that 𝑥 ∈ 𝑌𝑖.

We now show that𝐺𝑊 [𝑌𝑖] is a clique for every 𝑖 ∈ [𝑚′]. Fix 𝑖 ∈ [𝑚′] and two different vertices 𝑥, 𝑥′ ∈ 𝑌𝑖. By the definition
of 𝑌𝑖,

|𝑥 ∩𝑁𝐺(𝑦𝑖|𝐴1)| = |𝑁𝐺(𝑦𝑖|𝑥)| ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛

and

|𝑥′ ∩𝑁𝐺(𝑦𝑖|𝐴1)| = |𝑁𝐺(𝑦𝑖|𝑥′)| ≥ (1 + (1 − 𝛾)𝜖) log𝜌 𝑛

Recall that 𝑦𝑖 ∈ 𝐵1, so 𝑦𝑖 is 𝐴1-good and thus 𝑑𝐺(𝑦𝑖|𝐴1) ≤ (1 + (1 + 2𝛾)𝜖) log𝜌 𝑛. Then,

|𝑁𝐺(𝑦𝑖|𝐴1) ⧵ 𝑥| ≤ (3𝛾𝜖) log𝜌 𝑛 and |𝑁𝐺(𝑦𝑖|𝐴1) ⧵ 𝑥
′| ≤ (3𝛾𝜖) log𝜌 𝑛

Hence,

|𝑥 ∩ 𝑥′| ≥ |𝑥 ∩ 𝑥′ ∩𝑁𝐺(𝑦𝑖|𝐴1)|
≥ |𝑁𝐺(𝑦𝑖|𝐴1)| − |𝑁𝐺(𝑦𝑖|𝐴1) ⧵ 𝑥| − |𝑁𝐺(𝑦𝑖|𝐴1) ⧵ 𝑥

′|
≥ (1 + 𝜖 − 6𝛾𝜖) log𝜌 𝑛

where the last inequality is true since 𝑑𝐺(𝑦𝑖|𝐴1) ≥ (1 + 𝜖) log𝜌 𝑛 because 𝑦𝑖 is 𝐴1-good. Therefore, by (7), {𝑥, 𝑥
′} ∈ 𝐸(𝐺𝑊 )

implying that 𝐺𝑊 [𝑌𝑖] is indeed a clique.

For every 𝑖 ∈ [𝑚′], set

𝑌 ′
𝑖
∶=𝑌𝑖 ⧵

(
𝑖−1⋃
𝑗=1

𝑌𝑗

)

Since for every 𝑖 ∈ [𝑚′] we have that 𝐺𝑊 [𝑌𝑖] is a clique, 𝐺𝑊 [𝑌 ′
𝑖
] ⊆ 𝐺𝑊 [𝑌𝑖] is also a clique. Thus,
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|𝐸(𝐺𝑊 [𝐽 ])| ≥
𝑚′∑
𝑖=1

(|𝑌 ′
𝑖
|

2

)
≥ 𝑚′ ⋅

( 𝑚

𝑚′

2

)
≥ 𝑚′ ⋅

(
𝑚

2𝑚′

)2

=
𝑚2

4𝑚′
=
1

4
𝑛 log𝜌 𝑛

where the second inequality is true by Jensen’s inequality and the fact that 𝑚 = |𝐽 | = ∑𝑚′

𝑖=1|𝑌 ′
𝑖
|. ◽

By Claim 4.10,

ℙ𝑝′ (|𝐸(𝐺𝑊 (𝑝′)[𝐽 ])| = 0|) = (1 − 𝑝′)|𝐸(𝐺𝑊 [𝐽 ])| ≤ (1 − 𝑝′)0.25𝑛 log𝜌 𝑛

We have,

(|𝑊 |
𝑚

)
≤ |𝑊 |𝑚 = exp(Θ(𝑚 log 𝑛)) = exp(Θ(𝑛))

Therefore, by the union bound, the probability that there is an independent set in 𝐺𝑊 (𝑝′) of size 𝑚 is at most

ℙ(¬) +
(|𝑊 |

𝑚

)
(1 − 𝑝′)0.25𝑛 log𝜌 𝑛 = 𝑜(1)

◽

Recall that our goal is to find a matching𝑀𝑖 ⊆ Γ𝑖 ⧵ (∪
𝑖−1
𝑗=1𝑀𝑗) such that ∪

𝑖
𝑗=1𝑀𝑗 is 𝐶4-free. By Claim 4.8 and the fact that

𝐺𝑊 ≅ Γ,whp

𝛼(Γ𝑖) ≤
𝑛

log𝜌 𝑛

Let𝑀𝑖 ⊆ Γ𝑖 ⧵ (∪
𝑖−1
𝑗=1𝑀𝑗) be a matching of the maximum size such that

⋃𝑖

𝑗=1𝑀𝑗 is 𝐶4-free.

Let 𝑈 ⊆ 𝑉 (Γ𝑖) be the set of unmatched vertices. The next claim bounds the maximum degree Δ(Γ𝑖[𝑈 ]).

Claim 4.11. Δ(Γ𝑖[𝑈 ]) ≤ 𝑠3
2
.

Proof. Suppose towards contradiction that Δ(Γ𝑖[𝑈 ]) > 𝑠3
2
and take a vertex 𝑣 ∈ 𝑈 such that 𝑑Γ𝑖[𝑈 ](𝑣) > 𝑠3

2
.

Note that there are at most 𝑠3
2
many paths with three edges in

⋃𝑖

𝑗=1𝑀𝑗 which start with the vertex 𝑣. Thus, there
exists a vertex 𝑢 ∈ 𝑁Γ𝑖[𝑈 ](𝑣) such that 𝑢 is not adjacent to another endpoint of the above paths and thus {𝑢, 𝑣} does

not close a copy of 𝐶4 in
⋃𝑖

𝑗=1𝑀𝑗 . Hence, we can add {𝑢, 𝑣} to the matching 𝑀𝑖, a contradiction to the maximality
of𝑀𝑖. ◽

We finish with the following claim.

Claim 4.12. Whp |𝑈 | ≤ (𝑠3
2
+ 1) 𝑛

log𝜌 𝑛
.

Proof. Suppose towards contradiction that |𝑈 | > (𝑠3
2
+ 1) 𝑛

log𝜌 𝑛
. By Claim 4.11, Δ(Γ𝑖[𝑈 ]) ≤ 𝑠3

2
. Hence,

𝛼
(
Γ𝑖[𝑈 ]

)
≥

|𝑈 |
Δ(Γ𝑖[𝑈 ]) + 1

>
𝑛

log𝜌 𝑛

a contradiction to Lemma 4.8. ◽

The desired subgraph in Lemma 4.1 is the subgraph𝐻𝐵1
with its edges from ∪

𝑠2−1
𝑖=1 𝑀𝑖—indeed, note that by Claim 4.12,

there are at most 𝑂
(

𝑛

log 𝑛

)
unmatched vertices at each round, and thus at most 𝑂

(
𝑛

log 𝑛

)
vertices of degree at

most 𝑠2 − 1.
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4.2.2 | Proof of Lemma 4.1, 𝒑 > 0.5

Let us now explain how to complete the proof for 𝑝 > 0.5. Indeed, note that Claim 4.7 is not necessarily true, and hence
we require a more delicate treatment to overcome the lack of isomorphism. Recall that our main goal is to show that
𝛼(Γ𝑖) ≤

𝑛

log𝜌 𝑛
. We prove this with the following series of relatively short claims and lemmas, where the key idea is that one

can consider equivalence classes under 𝜙, and show thatwhp either all such classes are of bounded order, or polynomial
order (Claim 4.13).

For every 𝑣, 𝑢 ∈ 𝑉 (Γ), we say that 𝑣 ∼ 𝑢 if and only if 𝜙(𝑣) = 𝜙(𝑢). Let 𝐶1, … , 𝐶𝓁 be the equivalence classes under this
relation. With a slight abuse of notation, given 𝐶𝑗 = {𝑣1, … , 𝑣𝑘} we write 𝜙(𝐶𝑗) ∶= 𝜙(𝑣1).

Claim 4.13. Whp one of the following holds.

1. There exists a constant 𝐶 such that
|𝐶𝑗| ≤ 𝐶, ∀𝑗 ∈ [𝓁]

2. There exists 𝛽 > 0 such that
|𝐶𝑗| ≥ 𝑛𝛽 , ∀𝑗 ∈ [𝓁]

Proof. For every 𝑣 ∈ [𝑛] ⧵ 𝐴1, set 𝑋𝑣 = 0 if 𝑣 is 𝐴1-bad and 𝑋𝑣 to be the number of vertices 𝑢 ∼ 𝑣 otherwise. Fix 𝑣 ∈

[𝑛] ⧵ 𝐴1 and consider the random variable 𝜖′ = 𝜖′(𝑣) such that |𝑁𝐺(𝑛,𝑝)(𝑣) ∩ 𝐴1| = (1 + 𝜖′) log𝜌 𝑛. Note that if 𝑣 is 𝐴1-good,
then 𝜖′ ∈ [𝜖, (1 + 2𝛾)𝜖]. We have

𝔼[𝑋𝑣|𝑁𝐺(𝑛,𝑝)(𝑣) ∩ 𝐴1 and 𝑣 is 𝐴1 − good] = (1 + 𝑜(1))𝑛𝑝|𝑁𝐺(𝑛,𝑝)(𝑣)∩𝐴1|(1 − 𝑝)|𝐴1|−|𝑁𝐺(𝑛,𝑝)(𝑣)∩𝐴1|

= (1 + 𝑜(1))𝑛𝑝(1+𝜖
′) log𝜌 𝑛(1 − 𝑝)

1+(1+𝛾)𝜖

𝑝
log𝜌 𝑛−(1+𝜖

′) log𝜌 𝑛

= (1 + 𝑜(1))𝑛(1 − 𝑝)(log1−𝑝 𝑝)(1+𝜖
′) log𝜌 𝑛(1 − 𝑝)

1+(1+𝛾)𝜖

𝑝
log𝜌 𝑛−(1+𝜖

′) log𝜌 𝑛

= (1 + 𝑜(1))𝑛
1−(1+𝜖′)(log1−𝑝 𝑝)−

1+(1+𝛾)𝜖

𝑝
+1+𝜖′

= (1 + 𝑜(1))𝑛
2−log1−𝑝 𝑝−

1

𝑝
+𝜖′−𝜖′ log1−𝑝 𝑝−

(1+𝛾)𝜖

𝑝

Set𝑓 (𝑥) ∶= 2 − log1−𝑥(𝑥) −
1

𝑥
. Let𝑥′ be in (0, 1) such that𝑓 (𝑥′) = 0, noting that𝑓 (𝑥) is increasing in𝑥 ∈ (0, 1) and𝑓 (𝑥) = 0

around 𝑥 ≈ 0.64.We then have that for 𝜖 small enough and for some constant 𝑐 > 0, 𝜖′ − 𝜖′ log1−𝑥′ 𝑥
′ −

(1+𝛾)𝜖

𝑥′
< −𝑐𝜖. Thus,

if 𝑝 ≤ 𝑥′, we have that 𝔼[𝑋𝑣 | 𝑣is𝐴1 − good] ≤ 𝑛−𝑐𝜖 for every 𝑣 ∈ [𝑛] ⧵ 𝐴1, where we stress that 𝜖 can depend on 𝑝. By
Lemma 2.1 (2),

ℙ(𝑋𝑣 > 𝐶 | 𝑣 is 𝐴1 − good) ≤
⎛⎜⎜⎝

𝑒
𝐶

𝔼[𝑋𝑣]

⎞⎟⎟⎠

𝐶

≤ 𝑛−𝐶⋅𝑐𝜖 = 𝑜(1∕𝑛)

Hence, by the union bound over all 𝑣 ∈ [𝑛] ⧵ 𝐴1, whp 𝑋𝑣 ≤ 𝐶 for every 𝑣 ∈ 𝑉 (Γ), and thus the first item of the claim
holds.

If 𝑝 > 𝑥′, then wemay choose 𝜖 small enough such that 𝔼[𝑋𝑣|𝑣 is 𝐴1 − good] ≥ 𝑛𝛽 , for some 𝛽 > 0, for every 𝑣 ∈ [𝑛] ⧵ 𝐴1.
By Lemma 2.1 (1),

ℙ(𝑋𝑣 ≤ 0.5𝔼
[
𝑋𝑣|𝑣 is 𝐴1 − good

]|𝑣 is 𝐴1 − good) ≤ exp
(
−Θ(𝑛𝛽)

)

Hence, by the union bound over all 𝑣 ∈ 𝑉 (Γ), whp 𝑋𝑣 ≥ 0.5𝑛𝛽 for every 𝑣 ∈ [𝑛] ⧵ 𝐴1 which is 𝐴1-good, and thus the
second item of the claim holds as well. ◽

We complete the proof with the following two lemmas.

Lemma 4.14. If there exists a constant 𝐶 such that

|𝐶𝑗| ≤ 𝐶, ∀𝑗 ∈ [𝓁]

thenwhp 𝛼(Γ𝑖) ≤
𝑛

log𝜌 𝑛
.

18 of 20 Random Structures & Algorithms, 2025

 1
0
9
8
2
4
1
8
, 2

0
2
5
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/rsa.7

0
0
0
9
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 S

H
E

F
F

IE
L

D
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

7
/0

6
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



Proof. Set 𝐺𝑊 . Consider the following coupling (𝐺𝑊 (𝑝′),Γ𝑝′). Γ𝑝′ is obtained by retaining each edge independently in

Γ with probability 𝑝′. For every 𝑣, 𝑢 ∈ 𝑉 (𝐺𝑊 ), there is an edge {𝑢, 𝑣} in 𝐺𝑊 (𝑝′) if and only if in Γ𝑝′ there are all the edges
between 𝜙−1(𝑣) and 𝜙−1(𝑢). Note that

𝛼(Γ𝑝′ )

𝐶
≤ 𝛼(𝐺𝑊 (𝑝′))

Indeed, let 𝐼 be a maximum independent set in Γ𝑝′ . Assume that 𝐼 has vertices from 𝑚 different equivalence classes.

Observe that 𝑚 ≥
|𝐼|
𝐶
as otherwise, by the pigeonhole principle, we have an equivalence class larger than 𝐶 . Notice that

𝜙(𝐼) is also an independent set in 𝐺𝑊 (𝑝′) since, for every 𝑣, 𝑢 ∈ 𝐼 , there is at least one edge missing in Γ𝑝′ between the

equivalence classes of 𝑣 and 𝑢, and thus there is no edge between 𝜙(𝑣) and 𝜙(𝑢) in 𝐺𝑊 (𝑝′). Hence, 𝜙(𝐼) ≤ 𝛼(𝐺𝑊 (𝑝′))

and thus,
𝛼(Γ𝑝′ )

𝐶
≤ 𝑚 = |𝜙(𝐼)| ≤ 𝛼(𝐺𝑊 (𝑝′))

By the coupling above, every edge in𝐺𝑊 (𝑝′) appears with probability at least (𝑝′)𝐶
2
. Thus, it suffices to show thatwhp the

independence number of the binomial random subgraph of 𝐺𝑊 obtained by retaining every edge with probability (𝑝′)𝐶
2

is at most 𝑛

log𝜌 𝑛
. The rest of the proof is identical to the proof of Claim 4.8. ◽

Lemma 4.15. If there exists 𝛽 > 0 such that

|𝐶𝑗| ≥ 𝑛𝛽 , ∀𝑗 ∈ [𝓁]

thenwhp 𝛼(Γ𝑖) ≤
𝑛

log𝜌 𝑛
.

Proof. Let 𝐼 be a maximum independent set in Γ𝑖. For every 𝑗 ∈ [𝓁], set 𝐼𝑗 ∶= 𝐼 ∩ 𝐶𝑗 .

Notice that, for every 𝑗 ∈ [𝓁],𝐶𝑗 is a clique in Γ. The probability that there is an independent set in𝐺(𝑛, 𝑝) of size 𝑛
𝛽∕ log𝜌 𝑛

is at most
⎛⎜⎜⎝

𝑛
𝑛𝛽

log𝜌 𝑛

⎞⎟⎟⎠
(1 − 𝑝)

(
𝑛𝛽 ∕ log𝜌 𝑛

2

)
≤ exp

(
2𝑛𝛽 −

𝑝𝑛2𝛽

2ln2𝑛

)

There are at most 𝑛1−𝛽 many 𝐶𝑗s, and thus, by the union bound,whp 𝐼𝑗 ≤
𝑛𝛽

log𝜌 𝑛
, for every 𝑗 ∈ [𝓁]. Hence,

|𝐼| ≤ 𝑛1−𝛽 ⋅
𝑛𝛽

log𝜌 𝑛
=

𝑛

log𝜌 𝑛
◽

4.3 | Theorem 4

Let us first recall that since 𝐹 satisfies property (⋆), we may find an edge {𝑢, 𝑣} such that for every independent set 𝐼 ⊆

𝑉 (𝐹 ), 𝐹 [𝑉 ⧵ 𝐼] is non-𝐹 [𝑉 ⧵ {𝑢, 𝑣}]-degenerate. Let  ∶= {𝐼 ⊆ 𝑉 ∶ 𝐼 is an independent set of 𝐹 }, and let  ∶= {𝐹 [𝑉 ⧵

𝐼] ∶ 𝐼 ∈ }. By Lemma 1.6,whp there exists a graph which is  -free, and is 𝑛−𝛿-dense with respect to 𝐹 [𝑉 ⧵ {𝑢, 𝑣}].

The proof of Theorem 4 follows then from the construction given in the proof of Theorem 3, where 𝐵 is taken to be the
empty graph (similarly to [5]), and in 𝐴1 we take𝐻𝐴1

to be the graph guaranteed by Lemma 1.6, as detailed in the above
paragraph. Again, there can be a small, yet non-negligible amount of edges in 𝐺[𝐵] such that their endpoints have small
common degree in 𝐴1. For these edges, we define 𝐵2 to be the set of vertices which are not 𝐴1-good in 𝐵, and we use 𝐴2

and 𝐴3 in the same manner. We note that Lemma 4.1 is not relevant here.

5 | Discussion and Open Problems

In this paper, we present Conjecture 1.3 andmake progress towards resolving it, in particular obtaining a universal bound
of𝑂(𝑛 ln 𝑛) for the saturation number 𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) for all𝐹 (Theorem 1), and characterizing a family of graphs forwhich
the bound is linear in 𝑛 (Theorem 2). On the same matter, let us also iterate the question raised in the introduction:
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Question 5.1. Is it true that, for all constant 0 < 𝑝 < 1 and all graphs 𝐹 where every edge of 𝐹 is in a triangle, whp
𝑠𝑎𝑡(𝐺(𝑛, 𝑝), 𝐹 ) = (1 + 𝑜(1))𝑛 log 1

1−𝑝
𝑛?

For specific graph families, we answer positively. In particular, we extended the sharp asymptotics results of [5], both to
a wide family of graphs (Theorem 4), and to complete multipartite graphs when 𝑝 ≥

1

2
(Theorem 3). However, our proof

of Theorem 3 requires our graph to be dense enough, so that we may find a subgraph 𝐴 of an appropriate size and such
that the neighborhoods of the vertices outside this subgraph form a dense enough subset in a Hamming space with the
domain 𝐴. Unfortunately, this no longer holds when 𝑝 is a small constant (with the technicalities explicit in Lemma 2.2).
It would be interesting to know whether a similar construction, with different probabilistic or combinatorial tools, could
extend the result for 𝑝 < 1

2
.

Finally, let us reiterate that it was shown in Reference [9] that Lemma 1.6 is, in fact, tight, in the sense that the conditions
for it are both sufficient and necessary. This implies that the results that can be obtained by the construction given in
Reference [5], where 𝐵 is taken as an empty graph, are limited to those of Theorem 4. Indeed, already trying to extend
this result to complete multipartite graphs, which may not adhere to the conditions of Lemma 1.6, required a delicate
(and at times technical) treatment, utilizing a coupling with an auxiliary random graph in a Hamming space and proving
a tight bound for its independence number using a covering-balls argument.

Acknowledgments

The authors wish to thank the anonymous referees for their helpful comments, and in particular for their corrections in Section 4.2.2.
The authors further wish to thankMichael Krivelevich for helpful comments and suggestions, and Dor Elboim for fruitful discussions.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Endnotes

1With high probability, that is, with probability tending to 1 as 𝑛 tends to infinity.
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