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Abstract: This paper proposes an energy-based solution for estimating the dynamic 25 

impedance of a single pile in radially weakened soil. To do so, the surrounding soil is 26 

divided into discrete annular zones, in which the soil deformation is assumed to be the 27 

product of a series of decay functions related to the pile shaft displacement. Hamilton’s 28 

energy principle and variation method are implemented to obtain the governing 29 

equations. Fixed-point iteration with Stifensen’s technique is applied to maximise 30 

computational efficiency. A novel type of radial distribution based on Bessel functions 31 

is proposed to better match the soil property changes reported in experimental studies. 32 

The effect of three types of soil shear modulus radial distributions on pile stiffness and 33 



damping are studied. The results show the proposed approach improves low-frequency 34 

prediction by mitigating the influence of boundary wave reflection. It is also found that 35 

the depth of soil degradation effects pile impedance, particularly for short piles in soft 36 

soil. 37 

Keywords: Geotechnical piles; Pile dynamic impedance; Soil/structure interaction; 38 

Radially disturbed soil; Soil mechanics. 39 

 40 

1 Introduction 41 

Pile foundations are used to improve bearing capacity and reduce the settlement of 42 

engineered structures. Determining the vertical dynamic impedance is important for the 43 

optimal design of piles near near earthquake fault-lines, blasts, or other sources of 44 

repeated dynamic loading. Dynamic pile interaction studies have received increasing 45 

attention in recent years (El Naggar, 2000; Anoyatis and Mylonakis, 2012; Zheng et al., 46 

2017; Wu et al., 2022; Qu et al., 2023; Anoyatis et al., 2023). Three types of theoretical 47 

methods have been developed. The first type is the plane strain model benchmarked by 48 

Novak (1974) which ignored changes in vertical soil strain. The approach can obtain 49 

satisfactory results at high frequencies while often underestimates pile impedance at 50 

low frequencies. The second type is a Winkler model where the surrounding soil is 51 

simulated using distributed springs and dashpots, which is an extension of static Q-z 52 

model. The accuracy of the Winkler model usually requires model simplification or 53 

cumbersome experimental calibration (Gazetas et al.,1993). Moreover, it has 54 

limitations when considering vibration attenuation in the soil, or simulating radially 55 

disturbed soil. The third type is a three-dimensional continuum model that accounts for 56 

wave propagation in surrounding soil (Zheng et al., 2015; Gupta and Basu, 2018; Gan 57 

et al., 2020). Its potential for improved accuracy and flexibility means it has been 58 

frequenctly used for pile-soil interaction study (Militano and Rajapakse, 1999, Li et al., 59 

2017; Li and Gao, 2019; Yang et al., 2023; Anoyatis et al., 2023).  60 



Most past research has focused on the initial design piles, often neglecting soil 61 

degradation over time. However, during the operational stage, stiffness reduction may 62 

occur in the surrounding soil due to dynamic loading such as repeated railway 63 

vibrations, strong seismic forces and freeze-thaw cycles. In these cases, a radially 64 

weakened soil profile can develop, potentially compromising the service performance 65 

of the piles and the corresponding superstructure (Han, 1997; Yang et al., 2009; Dai et 66 

al., 2019). When modelling a reduced soil shear modulus near the pile, consideration 67 

must be made to prevent the wave reflections between the outermost annular zone and 68 

the inner adjacent zone (Han, 1997; Kanellopoulos and Gazetas, 2020). Techniques that 69 

neglect the mass of the boundary zone, and continuous variation with exponentially 70 

increasing shear modulus have proven effective in yielding smooth results. For example, 71 

using a plane strain model, El Naggar (2000) studied vertical and torsional soil reactions 72 

by defining an inner region that has concentric annual zones with increasing shear 73 

modulus and outer region that has constant modulus. Using the Winkler model and El 74 

Naggar’s radial distribution of shear nodulus, Cai et al. (2020) studied the influence of 75 

construction disturbance and underlying soil stiffness on pile head impedance. An 76 

alternative model was also developed Yang et al. (2009) by treating the lateral soil as a 77 

continuum while modelling the underlying soil using winker springs. Further, 78 

considering radial soil displacement, Dai et al. (2019) proposed a three-dimensional 79 

continuum for the vertical vibration of an end-bearing pile embedded in radially 80 

disturbed viscoelastic soil. It was found that pile dynamic impedances were mainly 81 

influenced by the soil closest to the pile.  82 

These previous contributions adopted a hypothetical distribution of shear modulus 83 

and the disturbed range was assumed to be very limited (within one diameter from the 84 

pile edge). However, according to the results reported in Michaelides et al. (1987), 85 



Michaelides et al. (1998), the disturbed distance may exceed 15 times diameter of the 86 

pile cross section. Moreover, past studies assumed that the depth of the disturb zone 87 

equals the pile length, which does not account for the influence of disturbed depth in 88 

the vertical direction. The effects the spatial distribution of the shear modulus that 89 

accounts the disturbed range on pile dynamic impedance remain insufficiently studied.  90 

In this paper, the vertical dynamic response of piles in radially weakened soil are 91 

studied with the aid of Hamilton’s Principle and the variation method. It is assumed the 92 

displacement of the pile-soil system is expressed as the product of pile displacement 93 

and multiple distinct decay functions, rather than relying on a single decay function for 94 

the entire surrounding soil, as was done in previous studies (Vallabhan and Mustafa, 95 

1996; Guo, 2000; Salgado et al., 2013; Qu et al., 2021). Stifensen’s technique is 96 

employed to expedite the process of fixed-point iteration (Traub, 1964; Moccari and 97 

Lotfi, 2018). A novel form of shear modulus distribution, expressed in terms of Bessel 98 

functions and dependent on radial distance is proposed to mitigate the wave reflections 99 

from the boundary zone. The evolution of the disturbed range is found to play a 100 

significant role in pile head impedance.     101 

2 Model description 102 

The main objective of this study is to analyze the effects of radially disturbed soil 103 

on the dynamic impedance of piles subjected to axial loads. Fig. 1 shows the 104 

computational model of a vertically loaded circular solid pile wrapped by a series of 105 

concentric annular layers in the radial direction. Both the pile and soil are treated as 106 

continuum medium. The soil columns that are below the pile tip are treated as parts of 107 

a fictitious soil pile, meaning their lateral deformation is neglected. The Young’s 108 

modulus, density, radius, cross-section area and the length of the pile are denoted by109 

pE , p , rp, Ap and L. The top and bottom depth of ith soil layer in vertical direction are 110 

denoted by Hi and Hi+1. The inner and outer radius of the kth soil ring in the radial 111 

direction are denoted by rk and rk+1. The pile-soil interface is in perfectly contact, and 112 

no physical slippage is allowed. The Young’s modulus, density, hysteretic damping ratio 113 



and Poisson’s ratio of the soil are denoted by skiE  , ski  , ki0  , and ski  . Young’s 114 

modulus, and Lame’s constants are expressed in complex form as: 115 

( )*

ski ski ki01 2iE E = + , ( )* *

ski ski ski[2 1 ]G E = + , and * *

ski ski ski ski ski[(1 )(1 2 )]E   = + − . A 116 

harmonic force i

0( ) tF t F e = is applied to the pile head, where 0F , , and t are the 117 

amplitude, frequency and time of the force. i denotes the imaginary unit.  118 

 119 

Fig. 1 Axially loaded circular pile embedded in disturbed soil 120 

 121 

3 Displacement model and Hamilton’s principle in a pile-soil system 122 

For the case of a vertically oscillating pile, the induced soil radial displacement ur 123 

and circumferential displacement uθ are insignificant and can be neglected. The vertical 124 

displacement zki ( , , )u r z t of the soil domain is assumed to have the following expression: 125 

  
zki i k( , , ) ( , ) ( )u r z t w z t r=  (1) 126 

where i ( , )w z t  is the axial displacement of pile shaft p ( , )w z t   and the vertical 127 

displacement of the fictitious soil pile s ( , )w z t  , when 0 z L    and when 128 

NL z H  , respectively.   129 

The dimensionless function k ( )r   is introduced to evaluate the displacement 130 

attenuation for the kth soil zone in the radial direction. The variation of soil displacement 131 

along the depth is assumed to be constant, which produces a type of depth-average 132 
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model. Empirically, the variation in pile displacement along its cross section ( pr r ) is 133 

very limited. Thus, a one-dimensional shaft assumption is employed for both the real 134 

pile and fictitious pile, which leads to the inherent boundary condition 
p1 0( ) 1r rr   = . 135 

k ( )r should decay into zero at the infinity from the pile axis, which has 
M ( ) 0rr → = .  136 

Stress in a viscoelastic soil medium is written as: 137 
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 (2) 138 

Expressing the strain in the terms of displacement and calculating the strain energy 139 

density soilJ of the soil produces the following: 140 

 ( )
soil zz zz rr rr θ θ rz rz zθ zθ rθ rθ

2 2

* * * 2s
s s s s

( ) / 2

1
2

2

J

w d
G G w

z dr

           

 

= + + + + +

    = + +        

  (4) 141 

Similarly, the strain energy density in pile pileJ  can be written as: 142 
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  (5) 143 

For an oscillating pile-soil system, the total energy ( J  ) that is composed of 144 

kinematics energy T, potential energy U and external work W is given by the following: 145 
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 (6) 146 

where subscripts i and j represent the horizontal soil layer while subscript k represents 147 

the radial soil ring. Based on the Hamilton variational principle of a mechanical system, 148 

the energy function J  from time t1 to t2 approaches the equilibrium state only when its 149 

variation sets the minimum value, which is: 150 
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where ( )  is the variational operator. Substituting the steady vibration condition 152 

iωt( , ) ( )ew z t w z=  into Eq. (6), and Eq. (7), produces the following equation:   153 
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   (8) 155 

4 Governing equations and solving process 156 

4.1 Pile and the soil column beneath the pile tip 157 

Collecting the coefficients involved with iw  (including piw  and siw , see Eq. (2)) 158 

from the variational formula in Eq. (8), the governing equation for the axially loaded 159 

pile can be obtained in the frequency domain as follows:   160 

 ( )
2

2i
i i i i i p i2

+ ( ) =0
d w

E A t k A w
dz

   − − +   (9) 161 

where 
iE  denotes the equivalent elastic modulus of the ith horizontal layer, and is 162 

identical to pE   for 0 z L   and * *

si si2G +   for NL z H   . i  is identical to p  163 



for 0 z L   and s   for NL z H   . Coefficients ik  , it  , i  are related to soil 164 

inhomogeneity and shear stress at the pile-soil interface, which can be calculated as: 165 
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Derived from Eq. (9), the general solution of displacement wi(z) and axial force 
i ( )Q z  169 

in the ith-layered pile shaft are given by: 170 

 i i

i i i( ) , 1
z z

w z B e C e i N
 −= +    (11) 171 

 ( ) i ii
i i i i i i i( ) 2 , 1

z zdw
Q z E A t B e C e i N
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where i and i are temporary variables that can be calculated as: 173 
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A total of 22N  boundary conditions can be integrated using the continuity of 176 

displacement and axial force between any two adjacent layers, force equilibrium at pile 177 

head, and deformation constraint at the interface between fictitious pile and rigid rock: 178 

 i i i i i+1 i i+1 i

i i i+1 i+1 2- - 0,  (1 1)
H H H H

e B e C e B e C i N
   − −+ =   −   (15a) 179 

 i i i i i+1 i i+1 i

i i i i i+1 i+1 i+1 i+1 2+ - 0,  (1 1)
H H H H

B e C e e B e C i N
      − −− + =   −   (15b) 180 

 1 1

1 1 1 1 0

z z
B e C e F

   −− + =  (15c) 181 

 2 2 2

2

2 N NHN

N

B
e

C

−= −   (15d) 182 



The impedance transfer method, Qu et al. (2021), is applied to find the analytical 183 

solution of 
iB  and 

iC  for all soil layers:  184 
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Finally, the dynamic impedance at the pile head can be obtained by: 188 
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 (17) 189 

4.2 Attenuation function k  190 

The energy portion aJ  involved with the attenuation can be expressed as: 191 
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Collecting the coefficients of k  from the variational formula in Eq. (18) and 193 

considering the definition of a Bessel function, the governing equation of k and its 194 

corresponding general solution can be obtained:   195 
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where I0 and K0 are the modified Bessel functions of the first and second kind of 203 

zero order, respectively. The displacement and shear stress of adjacent annular soil 204 

zones at the same depth are identical, which produces the following: 205 
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where k=1, 2, … M-1. Based on the transfer of shear stiffness, the relationship between  208 

k k
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  (24) 211 

Eq. (24) can be computed once the value of M M

1 2/c c  is known. The inherent boundary 212 



conditions of the decay function in section 3 can be expressed as: 213 
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Transforming Eq. (23b) produces the following recursion formula between 2

kc  216 

and k+1

2c : 217 
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The attenuation functions in different concentric soil zones will differ from one another 219 

when radial soil inhomogeneity occurs. Considering the situation of a single pile 220 

surrounded by two concentric soil zones, the expressions of 1 2

2 2 0 1 p1/ K ( )c c r= =  and 221 

1 2

1 1 0c c= =  satisfy the equations of Eq. (23)-Eq. (26). In contrast with the coefficients 222 

in radially homogeneous soil as reported by Qu et al. (2021), the multiple attenuation 223 

functions in radially inhomogeneous soil can degrade into a single attenuation function 224 

in homogeneous soil.  225 

 226 

5 Solution technique 227 

  Substituting Eq. (20) into Eq. (10) produces the direct expressions of ik , it  and i : 228 
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 represents MeijerG–Function. There are 5k+3 234 

undetermined coefficients including ik  , it  , i  , skm  , s1kn  , s2kn  , k  and k  that can be 235 



solved through the corresponding 5k+3 equations. However, the undetermined 236 

coefficients are intercoupled in Eq. (20), Eq. (21), Eq. (22a), Eq. (22b), Eq. (22c) Eq. 237 

(27a), Eq. (27b), and Eq. (27c), which makes an explicit solution inconvenient. It is 238 

observed that once the value k is known, the others can be readily solved. Here the 239 

fixed-point iteration is applied to implement a rapid solution. A similar iterative 240 

procedure was also reported in Vallabhan and Mustafa (1996) and in Gupta and Basu 241 

et al. (2018). To speed up the process, Steffensen's method is employed in this study. 242 

The flowchart is plotted in Fig. 2. Finally, the pile-head dynamic impedance can be 243 

calculated through Eq. (17). 244 

 245 

Fig. 2 Flowchart of the Steffensen’s iteration method 246 

 247 

6 Comparison and validation with existing analytical solutions 248 

6.1 Degenerate solution without radial soil inhomogeneity 249 

In Fig. 3, the present solution is compared with the analytical results for the dynamic 250 

impedance of end-bearing piles obtained by Zheng et al. (2015), Guta and Basu (2018), 251 

and Novak’s plane strain method. In this case, L/rp=20, Ep/Gs=2500,
0  =0.02, 252 



s p/ 0.88  = , 
s =0.3. To apply the present model, a soil profile with two horizontal 253 

layers is chosen. For simulating the rigid base, the soil modulus of the lower soil layer 254 

is taken as 104Es. Fig. 3 shows that the present solution agrees well with Guta et al. 255 

(2018), which is understandable because the radial soil displacement is also restricted 256 

in their studies. Compared with the rigorous solution proposed by Zheng et al. (2015), 257 

the present solution is capable of predicting one cut-off frequency, and the accuracy of 258 

dynamic impedance is generally achieved in most engineering applications.     259 
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(a) Dynamic stiffness      (b) Dynamic damping 261 

Fig. 3 Dynamic impedance of piles resting on a rigid base 262 

 263 

Furthermore, Fig. 4 compares the dynamic pile head impedance in a two-layered 264 

ground against the solution from Qu et al. (2021), and Gan et al. (2020). The present 265 

method provides almost the same results with Qu et al. (2021) since both of them adopt 266 

the energy-based variation method. Essentially, this present method is a natural 267 

extension of Qu et al. (2021), while Gan et al. (2020) employs Hankel transformation 268 

to solve elastodynamic governing equations. The results show that the pile impedances 269 

calculated by the present study and Gan et al. (2020) agree very well for a>0.5. Mild 270 

differences in the low frequency range of 0<a<0.5, can be attributed to the independent 271 



thin layer assumption for the surrounding soil in Gan et al. (2020). The aforementioned 272 

degenerate solutions confirm the effectiveness of the present method for layered soil 273 

without radial inhomogeneity. 274 
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Fig. 4 Dynamic pile head impedance in a two-layered soil 276 

6.2 Comparison with existing solution considering radial soil inhomogeneity 277 

Dai et al. (2019) derived a solution for an end-bearing pile in a radially disturbed soil. 278 

Their study considered radial soil displacement and thus predicted two cut-off 279 

frequencies. Considering the same parameters adopted in Dai et al. (2019)  (Ep/Es=217, 280 

υ=0.25, L/rp=25, ρs/ρp=0.72, 
1 M/ 0.5G G = ,

1 M/ 1D D = ), the pile head impedance from 281 

this present solution is compared with Dai et al.’s method (2019) and the plane strain 282 

method in Fig. 5. The disturbed zone is divided into four ranges:(rp, 1.1rp), (1.1rp, 1.2rp), 283 

(1.2rp, 1.3rp), (1.4rp, 1.5rp). The soil within each range is assumed to be homogeneous, 284 

and the shear modulus values in the four ranges follow a quadratic function. This 285 

method demonstrates an ability to predict trends that align closely with the alternative 286 

solution. Furthermore, the precision of this method is not significantly compromised, 287 

even when only one cut-off frequency is used. Compared with Dai et al. (2019), the 288 

present solution releases the constraint preventing deformation at pile tips, which 289 

allows the consideration for a floating pile. Additional advantages of this present 290 

solution include a more accurate representation of soil property variation and will be 291 



discussed in the following sections.   292 
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(a) Dynamic stiffness      (b) Dynamic damping 294 

Fig. 5 Comparison with existing solutions for pile head impedance in disturbed soil. 295 

7. Effects of radial distribution on dynamic impedance  296 

Increasing the shear strain will reduce soil stiffness and increase soil damping. 297 

Determining the radial distribution of soil shear modulus around a pile is important for 298 

estimating the damage in the surrounding soil. Thus, in this section, the limitations of 299 

two existing types of radial distribution are summarized and a novel type proposed.  300 

Model 1:  301 

pI denotes the soil plastic index and   denotes the fitting parameter for the non-302 

linear variation of shear modulus in Michaelides et al (1997).   is loading intensity 303 

factor that is a function of the induced cyclic shear stress amplitude c0 , divided by the 304 

frictional capacity of the soil-pile interface: 305 

 p1.4( / )c0
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2700 10
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 − =  (29) 306 

Michaelides et al (1997) proposed an approximate equation to connect the dynamic 307 

shear modulus and shear stress amplitude: 308 
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where 0( , )f a r  is dependent on the soil stress amplitude and is a function of frequency 310 

and radial distance. As reported in Michaelides et al. (1997) and Michaelides et al. 311 

(1998), the value of function 0( , )f a r  in Eq. (28) is approximately 1.0 for a soil 312 

experiencing low frequency loading. Fig. 6 is the typical radial distribution of shear 313 

modulus G=G(r) when the loading intensity factor  is constant. 314 
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Fig. 6 Typical radial distribution of shear modulus G=G(r) with radial distance from 316 

the pile (Michaelides et al., 1997) 317 

In the model by Michaelides et al. (1997), the soil shear modulus sharply increases 318 

near the pile and then slowly increases until the soil degradation effect tapers out. The 319 

whole damage zone exceeds 30rp and the variation is fastest within 2rp. Michaelides et 320 

al. (1998) used an inhomogeneous four-ring model to characterize the variation of the 321 

shear modulus.  322 
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where it has: 324 

 
k k 1 k k 1 klog( / ) / log( / ), 1,2,3m G G r r k+ += =  (31a) 325 

  20.025 p

k k 40.3 (0.6 0.4 ) 1 0.77 /ID e G G−=  + −  (31b) 326 

The values of kG  and kD  in Eq. (30) are obtained from curve fitting based on 327 



dynamic soil properties. Empirical relationships exists between shear modulus Gk and 328 

dynamic damping Dk from experimental data. In each angular zone, an exponential 329 

function with three parameters is used, which indicates that at least 6 extra parameters 330 

( kG , km , k=1, 2, 3) are necessary for determining the exact variation except for the 331 

shear modulus and damping of the undisturbed soil G4, D4, and m4. Introducing the 332 

following there are still 6 parameters remaining.  333 

Model 2: 334 

EI Naggar (2000) proposed two power functions 
G ( )f r and 

D ( )f r  for describing 335 

the shear modulus and damping in radially inhomogeneous soil (Eq. (32)). This model 336 

introduces the concept of disturbed range (rM) that assumes the soil zones r≥ rM are 337 

undisturbed. Let 
1 M/G G denote the extent of shear modulus disturbance at the pile-soil 338 

interface compared with that in the undisturbed zone; 
1 M/D D   denotes the 339 

amplification extent of the damping ratio at the pile-soil interface and at the undisturbed 340 

zone. An additional three parameters m , n , rM control the shape of the radial variation.  341 
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Model 3 (proposed in this study): 345 

Following the expression in Eq. 32(a), this study proposes a novel distribution by 346 

assuming functions fG and fD in Eq. 32(b) and Eq. 32(c) have the following expressions: 347 
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 350 

where parameters 1m%  and 1n% control the disturbed range and variation shape of the 351 

shear modulus while 2m% and 2n%control the soil damping ratio. 0a is nondimensional 352 

frequency that has 0 p s/a r V= . Due to the natural decay property of Bessel functions, 353 

Eq. (33) can automatically satisfy the boundary conditions at pile-soil interface and 354 

disturbed/undisturbed zone. Note also that Eq. (33) is inspired by the pile-induced soil 355 

vibration attenuation  on the plane strain condition, and has the following Bessel-type 356 

form:  357 
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Fig. 7 compares the radial distribution of dynamic properties in disturbed soil among 359 

Model 1, Model 2 and Model 3 (this present model) when a0=0.5. In Fig. 7(a) both 360 

shear modulus and damping ratio recovers faster as r increases when the value of 1m%361 

and 2m% increases. The disturbed range for shear modulus becomes narrower from 100 362 

rp to around 1.5 rp when 1m%  increases from 2 to 50. The exact variation of G(r) is 363 

between 1m% =2 and 1m% =5, while the exact variation of D(r) recovers slower than that 364 



at 2m% =1& 2n%=20. Note that the “exact” results are only from a special case when 0a365 

=0.5 and   =0.50 (refer to Michaelides et al, 1997). For other cases, the radial 366 

distribution may be different in terms of frequency and damage extent at the pile-soil 367 

interface. In Fig. 7(b), it can be seen that the variations of G(r) and D(r) produced by 368 

Model 2 differ from the exact results. The dynamic properties from Model 2 recover 369 

slower near the pile and faster in the far field, meaning the results intersect with those 370 

curves from rM=3rp to rM=101rp. The radial variation of shear modulus in Model 2 even 371 

becomes a concave curve when rM exceeds 6rp, which is the opposite from the exact 372 

results in Model 1. Model 2 can produce approximate shear modulus compared with 373 

Model 1 only in the narrow range of r<3rp. Besides that, the variation type in Model 2 374 

could not produce a smooth transition from the disturbed zone to the undisturbed zone. 375 

The results in Fig. 7(a) suggest that this present model can predict results comparable 376 

to Model 1.  377 
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(a) Comparison of Model 1 and Model 3 (b) Comparison between Model 1 and 379 

Model 2. 380 

Fig. 7 Radial distribution of shear modulus and damping ratio in disturbed soil. 381 

 382 

Fig. 8 and Fig. 9 show the influence of the disturbed range rM in Model 2 on the 383 

dynamic impedance of piles under floating and end-bearing conditions, respectively. 384 



1 2 2m m= =% % . The values of G1, Gm, and D1, Dm are identical for the disturbed cases. 385 

Evident fluctuation with frequency is observed in Fig. 8 for both the real part and 386 

imaginary part of dynamic impedance of the floating pile. Such types of fluctuation 387 

were also reported in Yang et al. (2009). For the disturbed cases, significant differences 388 

can be found among rM=5rp, rM=10rp, and rM=100rp when a0<2.5. As a0 continues to 389 

increase from 2.5, those differences tend to be insignificant. Furthermore, as the 390 

disturbed range increases from 2rp to 100rp, the magnitude of fluctuation becomes 391 

weaker. When rM>30rp, the influence of the disturbed range can be neglectable even 392 

when the frequency is very low. Another observation in Fig. 8(a) is that the pile stiffness 393 

for the disturbed case with rM=2rp increases by a minimum of 2.8% to a maximum of 394 

7.1% compared to the undisturbed state when 0<a0<0.6. This seems to contradict the 395 

concept that disturbed status should reduce pile stiffness when the loading frequency is 396 

very low. In the given range of 0<a0<5, the maximum value of nondimentional stiffness 397 

for the disturbed case with rM=2rp, is 2.8-fold greater than that for the undisturbed case. 398 

The abrupt transition of shear modulus between the disturbed and undisturbed zones 399 

leads to significant wave reflections in Model 2, which causes energy concentration in 400 

the zones near pile.        401 
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(a) Dynamic stiffness      (b) Dynamic damping 403 

Fig. 8 Effects of disturbed zone on the dynamic impedance of floating pile in Model 404 



2. Ep/Es=250, L/rp=40, ρs/ρp=0.72, G1/GM=0.417, D1/DM=3.404. 405 

 406 

Similar unexpected wave fluctuation phenomenon can be found for the stiffness and 407 

damping of the end-bearing pile in Fig. 9. The peak values of nondimentional stiffness 408 

in the range 0<a0<5 for undisturbed case and the disturbed case with rM=2rp are around 409 

2.5 and 7.9, respectively. The results in Fig. 8 and Fig. 9 indicate that the wave 410 

refelection is caused by the lateral boundary instead of pile tip boundary. 411 
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(a) Dynamic stiffness      (b) Dynamic damping 413 

Fig. 9 Effects of disturbed zone on the dynamic impedance of end-bearing pile in 414 

Model 2. Ep/Es=250, L/rp=40, ρs/ρp=0.72. G1/GM =0.417, D1/DM=3.404. 415 

 416 

Fig. 10 shows the effect of disturbed zones on the dynamic impedance of a floating 417 

pile using the developed model. The parameters are
1 2 2n n= =% %  ,

1 2m m=% %  . It can be 418 

observed that the variations in dynamic stiffness and damping with frequency of the 419 

disturbed cases have similar shapes to the undisturbed case. The additional fluctuation 420 

phenomenon is invisible. Decreasing the value of 
1m%  or increasing disturbed range 421 

brings greater reduction of dynamic stiffness when the frequency is low (a0<0.2). This 422 

model also captures the detail that soil degeneration will slightly decrease the cut-off 423 

frequency. The aforementioned features indicate that this present model of radial 424 



distribution is able to obtain accurate results by suppressing wave reflection in the radial 425 

direction. It is also observed that a small disturbance for 
1m%  =50 (corresponding 426 

disturbed range is less than 0.2rp) results in a maxmimum reduction of 16.7% in pile 427 

stiffness within frequencies in the range of 0<a0<5.  428 
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(a) Dynamic stiffness      (b) Dynamic damping 430 

Fig. 10 Effects of disturbed zone on the dynamic impedance of floating pile in this 431 

model. Ep/Es=250, L/rp=40, ρs/ρp=0.72, G1/GM=0.417, D1/DM=3.404. 432 

 433 

Fig. 11 compares the pile dynamic impedances that are produced by the present 434 

model and the exact distribution. It shows that the results of the pile dynamic stiffness 435 

and damping from those two types of distributions generally align well for both the 436 

end-bearing pile and the floating pile. Minor differences arise due to slight variations 437 

in the two types of distributions of dynamic soil properties as shown in Fig. 7. Moreover, 438 

limited variation is observed between D1/Dm=3.4 and D1/Dm=1, which indicates the role 439 

of soil damping on pile dynamic impedance is less significant than shear modulus. 440 
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(a) Dynamic stiffness      (b) Dynamic damping 442 

Fig. 11 Comparisons on the pile dynamic impedance between this model and the 443 

exact distribution. Ep/Es=250, L/rp=40, ρs/ρp=0.72. G1/Gm=0.417. 444 

 445 

8 Effects of disturbed depth on dynamic impedance 446 

Soil degradation occurs with shear strain, which is influenced by external loading. 447 

The disturbed depth does not always extend along the entire length of the pile shaft. 448 

Fig. 12 and Fig. 13 show the effects of disturbed depth h on the dynamic impedances 449 

of piles in soft soil (Ep/Es=500) and hard soil (Ep/Es=100), respectively. Soil damping 450 

ratio is assumed to be constant in the radial direction. In Fig. 12(a), it is observed that 451 

the extension of disturbed zone with depth will impair pile stiffness for the low 452 

frequency for H=40rp. The reduction caused by soil degradation becomes more 453 

significant as a0 increases. At a0=1, the reduction exceeds 50% for H=40rp. The 454 

dynamic damping of pile impedance continues to increase consistently, with no 455 

significant reduction or amplification observed as the disturbed depth varies. When the 456 

pile length increases to H=80rp, greater pile stiffness and damping are observed. The 457 

reduction at a0=1 induced by soil degredation is approximately 20%, much less than 458 

that for H=40rp, which indicates that the shorter pile in soft soil appears to be more 459 

sensitive to the degradation of the surrounding soil.      460 
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(a) Dynamic stiffness      (b) Dynamic damping 462 

Fig. 12 Influences of disturbed depth on dynamic impedance for pile in soft soil 463 

(Ep/Es=500). ρs/ρp=0.72. G1/Gm=0.5, D1/Dm=1, 1 3m =% ,
1n%=1, 

2m% =1, 
2n%=20. 464 

 465 

In Fig. 13, it is observed that the increase in soil stiffness increases the pile 466 

impedance and its cut-off frequencies. For the case H=80rp, the evolution of disturbed 467 

depth leads to a sharp decrease of pile stiffness from h/H=0 to h/H =0.25 while only 468 

causing a slight variation from h/H =0.25 to h/H =1.0 at the given frequencies. Similar 469 

results can be also observed in Fig. 12, which indicates the soil degradation of shallow 470 

layers contributes more significantly to pile impedance. Compared with Fig. 12 and Fig. 471 

13, it can be found that the critical depth that affects the pile impedance tends to 472 

decrease as pile length and soil modulus increases. For the case of Ep/Es=500 and 473 

H=40rp, the value of the critical depth h exceeds 0.75H. The values are approximately 474 

0.25H for the cases Ep/Es=100 and H=80rp. In addition, the reduction induced by soil 475 

degredation for H=80rp is around 29% at a0=1 while that value is around 26% for 476 

H=40rp. Compared with the results between Fig. 12 and Fig. 13, it is found that the pile 477 

stiffness reduction effects induced by soil degredation are amplified for the long pile in 478 

hard soil while they are reduced for short piles in soft soil.  479 
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(a) Dynamic stiffness      (b) Dynamic damping 481 

Fig. 13 Influences of disturbed depth on dynamic impedance for pile in hard soil 482 

(Ep/Es=100). ρs/ρp=0.72. G1/Gm=0.5, D1/Dm=1, 1 3m =% ,
1n%=1, 

2m% =1, 
2n%=20. 483 

 484 

9 Discussion and conclusions 485 

This paper presents a continuum-based model for the dynamic response of a 486 

circular cross-section pile embedded in radially weakened soil. The vertical impedance 487 

of the pile is analyzed, taking into account the soil degeneration in both radial and 488 

vertical directions. The incorporation of multiple decay functions within the radial soil 489 

domain facilitates the quantitative representation of diverse disturbance patterns. 490 

Compared to the exact modulus degradation of the surrounding soil based on 491 

experimental data, a Bessel-type of distribution of shear modulus demonstrates a better 492 

fit than a power-type function. Further, the smooth transition of shear modulus in the 493 

radial direction can help suppress wave reflection.  494 

The proposed model provides a satisfactory approximation of the spatial effects of 495 

weakened soil on the dynamic response of both floating and end-bearing piles. Soil 496 

stiffness degradation may lead to a more pronounced reduction in the dynamic 497 

impedance of shorter floating piles in softer soil. The variation of dynamic shear 498 

modulus has a more significant role in pile dynamic impedance than the damping ratio. 499 



Even a minor disturbance can lead to a substantial reduction in pile stiffness at high 500 

frequencies.  501 

In essence, the present method employs the concept of the equivalent linear method 502 

to address the issue of dynamic soil-pile interaction. Limitations can be inferred from 503 

the continuity assumptions discussed in Section 3. The potential applications of this 504 

study can be categorized into two principal aspects: firstly, it aims to quantify the 505 

nonlinear variation in the stiffness of the surrounding soil in areas where piles are 506 

located, which is crucial for managing piled located in the vicinity of dynamic 507 

excitation sources. Secondly, it seeks to evaluate the impact of soil degradation on the 508 

behavior of superstructures under dynamic loading, a factor that is of significant 509 

importance for mitigating geotechnical risks. 510 
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