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A review of computer vision for railways
Bryan Olivier, Feng Guo, Yu Qian, David P. Connolly

Abstract—Modern railways continue to strive for remote and
automated methods to improve the visual inspection procedures
of their assets. In some cases, these inspections provide new infor-
mation that could not previously be collected, while in other cases
they help them improve upon the quality control, safety, time
and costs associated with manual inspection. As such, computer
vision continues to find applications for visually inspecting the
track, earthworks, tunnels, overhead line equipment and rolling
stock. Considering the recent pace of computer vision related
developments, this paper seeks to review the state of the art of
the field for railways. First, the hardware and data requirements
are discussed, focusing on the unique challenges associated with
operating optical equipment in a railway environment, such as
contamination, power sources and lighting. This also discusses
the most common mounting arrangements for camera hardware,
including different types of vehicles, satellites and way-side cam-
eras. Next, image processing algorithms are discussed, comparing
classical approaches and more modern artificial intelligence
approaches, for example image segmentation. Then the most
common applications for computer vision in the rail industry are
then analysed. First the track is studied considering computer
vision analysis for the detection of different types of rail surface
defects on plain line and turnouts, fastener defects, concrete track
slab cracking and ballast particle characterisation. Next, the
overhead line equipment is considered with applications related
to detecting contact loss between pantograph and contact wire,
stagger behaviour and defective catenary components. This is
followed by discussion of other applications such as rail tunnelling
subsidence, tunnel inspection, level crossings, trespass and on-
track safety hazards. Finally, opportunities for future research
direction are discussed.

Index Terms—Railway Computer Vision, Unmanned Aerial
Vehicles UAV, Railway InSAR Satellite, YOLO, Overhead
Catenary Computer Vision, Vehicle-borne Camera Inspection,
Hyperspectral-Multispectral Imaging

I. INTRODUCTION

A railway is a complex system comprising multiple inter-

acting physical assets such as the trains, track, overhead lines,

earthworks and stations. Traditionally these assets and their
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sub-components were, and in many cases still are, visually

inspected by trained engineers to assess their physical con-

dition. This approach started in 1840 with the introduction

of ‘Inspecting Officers’ in response to safety incidents on the

first commercial passenger train service. In the early days of

inspections these involved rudimentary checks of the trains

and tracks; for example, ‘wheel-tappers’ [1] would strike each

train wheel with a hammer and depending upon the resulting

sound, consider reporting it for removal to check for signs

of stress or cracking. As railways became more complex and

linespeeds increased the standardisation of visual inspection

became commonplace. This often involved dedicated inspec-

tion tools and processes aimed at maximising safety and effi-

ciency. For example, visually checking crossings for evidence

of cracks or measuring track geometry using optical surveying

equipment. More recently the rail industry has been moving

towards replacing in-person visual inspection with remote

condition monitoring [2]. This is partly due to the desire

to: improve rail worker safety by removing them from live

railway environments, achieve improved repeatability and to

minimise the costs associated with regular manual inspections.

This has been helped by advances in camera technology, with

some of the assets and camera technologies currently used to

inspect them shown in Figure 1.

In the 1900’s the switch from steam to diesel and then

electrical locomotive power allowed easier access to electricity

for on-board camera systems. These have since been deployed,

for example on the front of in-service trains to record the

driver’s view, below the train to detect track component issues,

and above the train to monitor overhead line equipment. The

advantage of vehicle-borne camera’s is that the entire route can

be monitored using a small number of camera’s compared to

placing multiple in the wayside. However, the camera positions

are relatively fixed and cannot record all track angles/positions

of interest.

A promising area of development to overcome some of

the vehicle-borne camera limitations, is the use of aerial

photography. One of the first railway applications was in the

mid-1900’s, when human photographers on-board airplanes

and helicopters were shuttled back and forth along future

potential railway routes to take black-and-white aerial photos

of potential alignments. These individual photographs were

then pieced together to map the area and make route planning

decisions. Although helicopters are still used, more recently

unmanned aerial vehicles (UAV’s) have been introduced for

the visual inspection of existing rail assets. They are advanta-

geous because they can be remotely operated and have flexible

flightpaths thus allowing them to record images of the track

infrastructure that would otherwise be difficult to access (e.g.

0000–0000/00$00.00 © 2024 IEEE
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Fig. 1. Overview of camera mountings for railway applications.

overhead wires). Complimentary to UAV’s, satellite monitor-

ing is another promising field of aerial photography. This is

attractive because human operators are not required, and it

does not require any modification to the train or track systems.

Considering the rapid evolution of imaging technologies and

processing techniques, their deployment in the rail industry

is also ongoing at a fast pace. Therefore, this paper reviews

recent trends in the field. First, different camera types and

setups are discussed, such as wayside, train-borne, UAV and

satellite. Next the data requirements are discussed along with

practical considerations for using camera hardware in a railway

environment. Image processing algorithms are then discussed,

focusing on artificial intelligence and digital image correlation

approaches. Applications for differing camera monitoring so-

lutions are presented, including: pantograph/catenaries, track

components, tunnels, earthworks and stations. Finally, future

research trends are discussed.

II. CAMERA HARDWARE AND DATA REQUIREMENTS

A. General

When deploying a camera in a railway environment, hard-

ware suitability must be considered. In recent years digital

cameras have almost exclusively superseded film cameras in

engineering applications. These have electronic sensors that

react to light rather than photosensitive material meaning they

are easily digitised and readily processed. When considering

the choice of camera lens for a particular application, a variety

of variables should be considered, including:

• Focal length: dictates the angle of view so should be

tailored to capture the entire object under observation.

Smaller focal lengths give a wider-angle view while

longer lengths give a narrower view.

• Aperture size: dictates the size of the opening and thus

how much light can enter the lens. Smaller apertures

make more of an image in focus.

Typical consumer grade cameras use standard lenses with

focal lengths in the 35mm range. However, specialist lenses

are also available such as fish-eye lenses which are ultra-wide,

making them sometimes useful when a wide field of view is

needed, for example for counting passengers on a platform.

Alternatively, infrared lenses filter out all light waves except

infrared, making them useful for heat detection (e.g. lineside

cable faults).
Technology type: Several imaging related technologies are

commonly used in railways. The most common is a standard

image sensor collects and measures the reflected or refracted

light coming from the environment. In addition is lidar (Light

Detection and Ranging) which emits light and then measures

the differences between the emitted light and reflected light

coming back to the sensor to deduce distance information.

Also, classical image sensors may be used in combination with

lasers. For example, by operating a registration of the camera

with respect to the laser, it is possible to obtain pixel depth

information and also perform 3D image reconstruction.
Image sensor type: There are two main types of sensors

used in digital cameras, each one having its own characteristics

that may be useful for specific railway applications.

• Charge-Coupled Device (CCD) sensors are composed of

an array of capacitors connected in rows. Their charge

depends on the exposure time and light intensity. When

triggered, each capacitor transfers its charge to its neigh-
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bour in the row with the final one transferring its charge

into an amplifier to be converted into a voltage. CCD can

be designed in-line or as a full array of sensors. They are

well-suited to line scanning, making them useful for the

acquisition of long railway images such as the continuous

monitoring of rails and catenary wire.

• Complementary Metal-Oxide-Semiconductor (CMOS)

sensors comprise a matrix of photosensors, organized

in rows and columns, with each one having its own

amplifier. The difference compared to CCD is that the

photosensors do not communicate their charge with their

neighbours, but instead communicate directly with the

register. A region of interest (ROI) can then be specified

directly by selecting the relevant photosensors, leading

to an increased acquisition speed. This improved effi-

ciency and also reduced cost means CMOS have become

widespread in recent years. Regarding railway infrastruc-

ture monitoring, a high sensor framerate may be required.

Indeed, a certain number of discrete elements in track

superstructure or overhead line equipment such as cate-

nary components, fasteners or sleepers are checked with

vehicle-mounted cameras that perform image acquisition

adjusted to the vehicle speed.

Sensor spectral response: The spectral response of a cam-

era sensor describes its sensitivity to different wavelengths.

Classical sensors are usually more sensitive in the spectrum of

visible light while other sensors (e.g. lidar or thermal cameras)

are more sensitive in other ranges such as infrared. This is

advantageous for monitoring phenomenon not observable by

the human eye (heat changes for instance). Therefore, thermal

cameras have been used to provide information about the

condition of the vehicle and track. For example, the detection

of lineside cable faults which cause overheating. Further,

Chapman et al. [3] mounted a standalone thermal camera on a

personnel carrier to monitor the rail temperature and determine

the sections of the track which prone to buckling. Kim et al.

[4], [5] used thermal cameras to monitor the brake discs and

steel axles in railway vehicles.

Sampling frequency and pixel count: Data collected

from imaging devices can be sampled at different frequencies

and using a different number of pixels depending upon the

application. For example, monitoring level crossings may

use lower resolution cameras while the monitoring of tunnel

lining cracks may use much higher resolution. Although this

is related to the need to study cracks in fine detail, it is

also a function of the application processing requirements.

For example, level crossings require data to be processed

immediately to give real-time monitoring, meaning the volume

of data must be minimised. In contrast, tunnel lining analysis is

less time sensitive meaning the data can be stored on local hard

drives which are manually transported to an off-site location

for detailed investigation, potentially using a combination of

automated and trained expert analysis.

Calibration: Once the images are taken by the camera, two

different calibrations, intrinsic and extrinsic, are necessary to

allow taken images to represent the actual reality. While using

the usual pin-hole camera sensors with lenses, the intrinsic

calibration considers the intrinsic characteristics of the camera-

lens assembly such as the focal length, lens properties or

sensor resolution to correct the obtained images. Moreover,

the extrinsic calibration will correct the different types of

distortion of the images depending upon the position and

orientation of the camera with respect to the observed objects.

Usually, these calibrations are performed with a well-known

pattern such as a chessboard. Another calibration may be

performed when the camera provides colour images. Indeed, a

white balance is sometimes necessary when the colour of the

monitored object is relevant. When quantitative information

is retrieved from the images, these calibration steps are often

necessary. However, when qualitative information is observed

these calibration steps may be relaxed since the actual geom-

etry of the objects is not necessarily considered. For instance,

for some AI-based post-processing techniques, the network

can directly be fed with uncalibrated images.

Recording format: Firstly, the resolution of data is depen-

dent upon the desired use case. For example, ballast endoscope

technology will often be performed on a one-off type basis,

perhaps with the generation of a dedicated site-investigation

report. Therefore, the image format and decisions based upon

these maybe more suited to trained human analysis rather

than automated techniques. In contrast, track images recorded

using vehicle-mounted cameras are often recorded in a well-

defined and standardised format (e.g. in terms file format

and size), that allows machine learning algorithms to readily

operate upon it. For certain applications, a requirement of

data collection is that it can be integrated within the infras-

tructure operator’s existing database systems and application

programming interfaces (API’s). This is desirable because it

allows for alignment of datasets and potentially the mining of

multiple complimentary datasets to generate more powerful

conclusions.

Data storage: Railway monitoring can generate large

datasets that cause transmission and storage challenges. As

a solution, edge computing can perform the data analytics as

close to the monitoring data source as possible. For example,

instead of sending all data to a processing centre, edge devices

such as a smart camera can locally process the data on-

board for example using machine learning algorithms. Simple

alert signals can then be provided to the responsible asset

engineers and the related datasets sent to a data centre for

further investigation. In this way, the storage and processing

pressures on the data centre are reduced.

Image recording location: It’s important for imaging

systems to be able to automatically record the location of

each image. In the rail industry this is commonly performed

using GPS coordinates, and without this information it can be

difficult to align datasets along the route. However, railways

can often be located in remote areas and/or with topography

challenges that can make it difficult to obtain reliable GPS

data. Therefore, depending upon the route, alternatives may

need to be considered.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, MONTH YEAR 4

Region Of Interest (ROI): The region of interest is a

subset of an image in which the monitored phenomenon

(e.g. cracking) is expected to be located. The choice of this

region of interest is important to avoid confusion with non-

relevant phenomena happening elsewhere in the image. The

ROI can be a fixed region, meaning it’s location doesn’t change

during subsequent image frames, or alternatively assigned

dynamically, meaning it can shift between frames, as proposed

by Zhang et al. [6] to manage railway obstacle intrusions.
Data failsafes: For applications where image analysis is

important for safety critical operation (e.g. rail buckling mon-

itoring), hardware failures must be detectable and impacts

minimised. Regarding detection, if there is a hardware failure

(e.g. power failure) this can be detected for example using a

communication gateway. If instead there is a recording error,

this can be detected during data processing, and potentially

assisted by deploying pairs of complimentary cameras rather

than individual ones, thus allowing for consensus checking.

The severity of impact of hardware faults can be mitigated

by designing the imaging hardware to be easily and quickly

replaced once a fault has been detected.
Data security: For safety critical applications it may be

necessary to consider cyber security. This may need to cover

both the transfer of data and storage. To do so it is common to

adhere to, ‘IEC 62443 - Industrial communication networks -

Network and system security’ and ‘ISO 27001 – Information

Security Management’. Depending upon national regulations,

data may also need to be maintained in a ‘forensic ready’ state

for a given period (e.g. 2 years). This allows for investigations

to study the records held in the event of asset and/or system

failures.

B. Hardware performance requirements

Railway environments present different conditions to labo-

ratory environments and any imaging hardware must be able

to operate under extreme conditions. For example:
Contaminates: Hardware placed within the aerodynamic

envelope of rolling stock is exposed to significant levels

of dust, dirt and contaminates. If these collect on the lens

the imaging ability can be degraded or possibly completely

obscured. Therefore, regular cleaning and maintenance must

be planned in advance. For certain applications a mechanical

stutter can be automatically opened and shut when required.
Lighting: Railways require monitoring during both day

and night meaning the image hardware may need to be self-

illuminating. Similarly, light intensity can quickly change over

short time periods, meaning the imaging solution must be

able to handle extreme lighting conditions. An example is

under-train camera technology, which can be subject to rapidly

changing lighting conditions (e.g. shadows) when the sun is

lying low in the sky, or in conditions when the sun is reflecting

off a highly reflective railhead.
Weather conditions: Hardware solutions must be capable

of performing their functions in the presence of extreme high

and low ambient temperatures. For example, to meet industry

standards, way-side systems may need to show acceptable

operation in a range depending upon typical atmospheric con-

ditions (e.g. -27 °C to +60 °C). They must also operate under

conditions of rapid temperature changes, such as 0.5 °C / min.

Additional weather conditions that may need to be considered

depending upon the location(s) of operation include: wind

which may cause camera movement, ice which may cover the

lens, solar radiation if the hardware is directly exposed to the

sun, and humidity which can cause condensation on the lens.
Mechanical/electrical interference: Camera hardware

must be capable of performing its function under typical en-

vironmental vibrations experienced in a rail setting and shock

loading. Further, the rail environment typically experiences

a range of electromagnetic conditions, for which the system

must be compatible.

Camera support

Satellite UAV Vehicle Infrastructure Handheld

Macro-scale Meso-scale Micro-scale

Image scale

Fig. 2. Different scales of the images taken for railway applications.

Power Supply: Imaging hardware typically has higher

power requirements compared to mechanical sensing methods

such as accelerometers. This is because its multidimensional

nature means it records and stores larger quantities of data.

Vehicle-borne imaging systems have the potential to use on-

board power, however way-side systems often lack the avail-

ability of a reliable power supply. Therefore, batteries are com-

monly relied upon, possibly combined with a remote charging

technology such as solar panels (or possibly even mechanical

energy harvesters in the future [7], [8]. However, current such

solutions, unless large, struggle to provide sufficient power to

record high resolution images at high frequency.
Deployment/Installation: The deployment of imaging sys-

tems should have minimal negative impact on the scheduling

of trains. For vehicle-borne systems installation can be per-

formed in depot’s and it is also not a concern for satellite

systems. However, for any semi-permanent wayside systems,

the installation and maintenance times should be low (e.g. <15

minutes) to minimise disruption to the lines, and achievable

under poor lighting conditions (i.e. at night when track access

is commonly available). Also, unless planned far in advance,

access to railway sites is often by foot with limited vehicu-

lar accessibility. Therefore, the hardware should be modular

where possible, with no individual parts weighing more than

Health and Safety regulations.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, MONTH YEAR 5

III. CAMERA SETUP TYPES

A variety of camera setups are used for railway imager

analysis. Depending on the application, cameras can be either

fixed, handheld or mounted on a vehicle. To distinguish these

camera setups, one way to classify them is the size of the

ROI. As illustrated in Figure 2, different scales of monitoring

can be identified: the macro-scale includes pictures in which

large zones (km2) are monitored, the micro-scale denotes the

monitoring of small phenomenon’s (mm2) while the meso-

scale contains all monitoring types that are comparable to the

human scale (m2). This section covers the major camera setup

types corresponding to this classification.

A. Vehicle-borne cameras

Vehicle-borne imaging is attractive because track access is

not required to setup way-side cameras, the entire route can

be monitored in a short timeframe using a small number of

cameras and the images are relatively repeatable. In Figure

2, vehicles are classified either in the meso and micro scales

since they can either be used to detect, as detailed further in

the paper, meter-centimeter scale defects such as low-ballast

heights or milimeter scale defects such as a crack in the rail.

Imaging systems can be installed on either existing passenger

trains rather or on a dedicated train. They must be configured

to be able to handle the harsh environment in the vicinity of the

running gear which contains contaminates that could obscure

the lens, and to handle greatly varying light conditions. An

example of this is show in Figure 3 (right), where the sleepers

on one side of the rail are well illuminated, the sleepers on

the other side are much darker. This indicates the presence of

a low hanging light source during measurement, compared to

Figure 3 (left) which was recorded when the sun was higher

in the sky.

Type of vehicle: Depending on the application, it is possible

to use different types of vehicles adapted to railways for

track monitoring. As illustrated in Figure 4, four example

categories are identified. The first category is in-service trains

[12] which are passenger vehicles, retrofitted with cameras.

However, since they are in-service, it provides a frequent

and low-cost way to collect data without having to schedule

train movements around the existing timetable. The second

category is dedicated measurement trains [13], [14] which

can be equipped with a wide range of sensors to monitor

the railway environment. However, a challenge is that their

scheduling needs fitting around existing train timetables. The

third category is self-propelled road-rail vehicles [15]–[17]

which use rubber tyres to arrive at the test site and position

themselves on the rails, using a secondary set of steel wheels

to traverse along the track. These vehicles are often used to

test and validate algorithms or methods developed to monitor

track components before being integrated into a completely

functional solution designed to be used with the first category

of vehicles. Trolleys are another category of vehicle [18]–[21].

Unlike the self-propelled vehicles, trolleys are not necessarily

self-propelled and may be manually operated. Other types of

vehicles and robots are were discussed by Jing et al. [22].

Fig. 3. The effect of lighting on track images recorded using vehicle-borne
measurement. Left: recorded during the middle of the day, Right: recorded
early in the morning.

Type of camera: Depending on the asset to be monitored

and the type of vehicle on which it is mounted, the type

of camera can vary. Most of the vehicle-borne inspection is

performed in a continuous manner, for example to inspect the

rails or catenary along the route. For the rails, a laser-scanning

camera-based system (different from regular laser-scanning

devices without cameras) is commonly used to project a laser

line on the surface of the rail. The reason of this is the

possibility to retrieve the 3D profile of the rail thanks to

the monitoring of the laser beam with the camera. Using a

camera alone would only provide a two-dimensional image of

the rail surface. Doing so, both top and side of the rail are

visible and reconstructed to detect possible surface defects.

For such applications the sampling rate must be carefully

considered with respect to the train speed. Also, it is noted

that other systems such as thermal cameras can be mounted on

the vehicle to monitor the heating condition of some internal

elements of the vehicle [4].

Location and number of cameras: Depending on the ap-
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Front Coupler
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Fig. 4. Categories of vehicles for track component monitoring. (a) Camera
equipped in-service train [9]. (b) Dedicated measurement train (Shinkansen’s
“Doctor Yellow”). (c) Self-propelled road-rail vehicles [10]. (d) Instrumented
trolley [11].

plication, the position of cameras on the vehicle is commonly

on the roof (e.g. overhead line equipment monitoring), the

under-carriage (e.g. track superstructure monitoring) or the

front of the vehicle (e.g. route monitoring). Further, for each

application the quantity and the way they are grouped and

attached may vary. The relative position of the cameras (and

their laser beams) is also important to avoid any blind spots.

For example, Figure 5 shows the arrangement of multiple cam-

eras and lasers attached on the under-carriage. In this example

both sides of the measurement device (for the imaging of both

rails) are coupled in an all-in-one device. Alternative devices

also exist for which both sides of the track are inspected using

independent cameras whose fixation is independent rather

than via a common beam. The Figure depicts camera-based

laser scanning devices meaning that the camera captures the

image of the rail on which a laser-beam is projected. Again,

depending on the application, accelerometers, gyroscopes or

other sensors may be used with the cameras to retrieve

additional data such as the position of the cameras with respect

to the track. For instance, grinding check operations can be

independently operated by different devices on each side of

the track. Independant devices with several cameras are used

to control the fishplates and joint bars on both rails and even

rail corrugation detection. All-in-one device with one camera

on each side may be used for detection of gauge-side defects

on the head of the rail. Finally, the rail profile can be measured

using an all-in-one device with two cameras with their lasers

on each side. Cameras in the centre of all-in-one devices are

also used to detect defects on fastenings, sleepers and even

trackbed (e.g. [23]).

Datum and device registration: For most applications it

is required to precisely geolocate images to provide relevant

information to maintenance teams. This may be via curvilinear

abscissa along the track from a reference point or alternatively

GPS coordinates. In some cases, more advanced techniques

can be used (e.g. SnakeGrid [24]).

B. Unmanned aerial vehicle cameras

Unmanned aerial vehicles (UAV’s) have the potential to

provide flexible image recording of railways, both in terms

of positioning and orientation (Figure 6). For example, com-

pared to a vehicle-borne system, a UAV can capture images

while hovering at an almost arbitrary position. Compared to

satellites, UAV’s can also be used on arbitrary dates/times

unrelated to the earth’s movement. In Figure 2, UAV’s are

classified both in the macro and meso scales because their

monitoring range can vary with the height of the UAV as

well as the camera resolution. For example, tens of meters of

railway track length can be monitored for vegetation growth

analysis or alternatively centimetre-scale parts of the track can

be observed such as the overhead line equipment.

UAV’s are commonly used to perform ah-hoc track inspec-

tion. For example, to detect trespass, vegetation growth and

artefacts (e.g. leaves) on the line. They are also used for

surveying sites after incidents (e.g. landslips as shown in Fig-

ure 7) to determine the most appropriate response. They have

applications such as inspecting overhead wires and detecting

drainage problems (e.g. standing water and/or blocked drains).

However, there are challenges related to UAV inspection. For

example, they are negatively affected by weather conditions
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Common fixation beam
Camera
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Fig. 5. Illustration of camera-based laser-scanning devices for track superstructure inspection.

Track environment

monitoring

Track superstructure
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Fig. 6. Using a UAV to monitor the track environment.
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Fig. 7. Example landslip captured using UAV surveillance [25].

such as strong winds and have relatively short battery lives.

Also, aviation regulations can be complex, often confining

operation to visual-line-of-sight (VLOS) operation which can

be limited to circa 500m from the operator. Further, regulations

usually place restrictions on flying near airfields.

From an imaging perspective, UAV’s fly at low heights

which can cause challenges in post-processing. For example,

the images can be affected by camera lens aberration, while

the GPS location accuracy induces lateral and vertical error

positioning errors. To reduce certain types of errors, ground

sampling points can be used, however these require significant

additional time and effort in data collection. Further, ground

sampling distance must also be considered to ensure the

correct resolution is captured. If too high then adequate image

detail will not be obtained, while if too low then the processing

and storage time/cost of the data will increase. In an attempt to

overcome some of these post-processing challenges, Tong et

al. [26] developed an anchor-adaptive railway track detection

network, consisting of a dual-branch structure for the full-

angle railway track detection. A balanced transpose co-training

strategy and customised transposed consistency loss were used

to reduce the computational complexity.

Another challenge relates to weather conditions. For exam-

ple, under conditions such as haze or fog, it can be difficult

for UAV’s to record images. Thus, Wu et al. [27] designed a

dehazing network for restoring the acquired inspection images.

Improved residual blocks were developed, aiming to perceive

features at different scales. A loss function considering struc-

tural similarity was proposed to preserve more information in

the image.

Most commonly UAV images are post-processed offline

from the drone, because UAV’s have limited on-board pro-

cessing power, however there are potential advantages of

performing processing on-board. For example, Tong et al. [28]

developed a deep fully decoupled residual convolutional net-

work with the aim of minimising the processing requirements

of the recorded images. The processing used three sequential

convolutions and a customised auxiliary line loss to reduce

the computational requirements. Similarly, Huang et al. [29]

developed an intrusion detection system for railways, using a

fused LSTM-convolutional block.

C. Helicopters

Compared to UAV’s, helicopters typically have longer op-

erating ranges and can stay airborne for longer periods of

time. Also, they are not bound by line-of-sight regulations

because they have a trained pilot on-board. Further, they are

less effected by adverse weather conditions (e.g. strong winds)

compared to UAV’s and are useful for surveying hilly or

mountainous terrain. Due to their size, they typically have high

performance camera systems. For example, a forward-looking

gyro-stabilised infra-red camera is shown in Figure 8, with

multiple changeable lenses, which provides high-definition

images.

Helicopters are commonly used for performing visual in-

spections over long lengths of track, for example, overhead

lines and earthworks. According to Figure 2, helicopters

would then be classified in meso and macro scales of moni-

toring. They are also well suited for inspecting assets which

are ample in number across a network, but often at large dis-

tances between them (e.g. heated points systems). Compared

to UAV’s they cannot be used for internal inspections (e.g.

tunnels) and are less frequently used for ad-hoc inspections

and incident response.

D. Satellite imaging cameras

Two families of satellite imaging techniques are predomi-

nantly used in railway monitoring. There are optical imagery

and radar imaging. Satellites like Sentinel-1 [30] are dedicated

to Synthetic Aperture Radar (SAR) imagery while satellites

like Sentinel-2 [31] or Pléiades [32] are dedicated to optical

imaging. The difference between them majorly comes from

the type of wavelengths used and their active or passive

characteristic as detailed below. Satellite imagery is usually

used to monitor large scale phenomenon and is therefore

classified in the macro-scale section of Figure 2.

Optical remote sensing techniques. These use optical

sensors to measure the light naturally emitted by a portion of

the earth [33]–[36] . This kind of sensing can be described

as passive since it is measuring the reflection of ambient

illumination or the reflection of the sun by the earth. The

resolution, that often depends on the wavelength ranges used

[31], of the provided images can vary from coarse to very

high. Previously, the IKONOS satellite [37] provided high

resolution images, however newer satellites can achieve so-

called Very High-Resolution imagery (VHR) (e.g. the Pléiades

Néo satellite [38]). Image data has been used for applications

such as assessing the risk of vegetation (e.g. trees and leaves)

falling on railway lines. For example, [36] used Sentinel-2

image data with a normalised vegetation index which included

factors such as tree type, height and distance from the railway

to determine the health of nearby vegetation. Some example

railway satellite images, overlaid with InSAR data (see below)

are shown in Figure 9, produced by Berhard et al. [39]

that conducted PS-InSAR analysis to evaluate the surface

deformations along railway tracks. A challenge with optical

imagery is that images are frequently obscured by cloud cover.

Therefore although a satellite revisit time might be quite
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Fig. 8. Left: Example of an helicopter equipped for railway monitoring, Right: the helicopter camera, a Star SAFIRE 380-HD camera [25].

regular, depending upon the climate of the region under study,

not all images will be suitable for analysis.

Fig. 9. Example of combining satellite imagery and PS-InSAR data. Repro-
duced from [39].

Synthetic Aperture Radar (SAR) imagery techniques.

Instead of using visible light wavelengths, these use specific

wavelengths of energy that can pass through objects such

as clouds [40]. The SAR sensor can be described as active

compared to classical optical satellite imagery because it emits

wave energy and then measures the reflection (backscatter)

produced by the earth. Each pixel represents a small portion

of the Earth’s surface using a complex number with amplitude

and phase. The working principle is the measurement of

the displacement of an object at the surface of the earth

using signal phase variation between two images taken by a

single satellite at different times [41]. Interferograms are the

difference between two SAR images taken at different times

coming either from multiple measurements in different points

of the same pass or from multiple measurements along the

same trajectory but for different passes. The interferogram,

containing the phase shift for each pixel of the image, is used

to determine the variation of the distance between the satellite

and the measured object. If enough temporal images are

available, it can be possible to achieve measurement accuracy

in the order of millimetres [40], [42]–[47]. Two sub-categories

of the InSAR methods are commonly used to monitor railway

infrastructures: persistent scatter (PS) [40], [42], [43], [45]

and small baseline subsets (SBAS). Persistent Scatter uses a

set of SAR interferograms of the same area captured from

different passes of the same satellite. It isolates pixels with

consistent high signal-to-noise ratio (called persistent scatters)

in all interferograms to compute the change in displacement

of these specific regions of the inspected area. It is com-

monly used in urban areas where persistent scatters are more

densely available and in cases where corner reflectors can be

installed. Alternatively, SBAS creates interferograms between

all image pairs which meet certain criteria (e.g. days between

recordings). It is commonly used for larger and non-urban

areas where the number of persistant scatters is minimal. It

is also possible to combine PS and SBAS, for example to

identify suitable pixels for analysis. Some applications include

detecting landslides along railway tracks [46], studying bridge

collapse [48], mapping earthwork subsidence over an entire

railway network [43] and studying rail embankments formed

from peat [49].

Qualitative or quantitative imaging: Wickramasinghe

et al. [34] studied the possibility of using high (2m res-

olution multispectral with several wavelengths bands) and

high-resolution (0.5m panchromatic, visible light wavelengths

range) images to monitor a railway construction project. In

their work, they used Computer-Aided Designs CAD models

as references to establish an approximation of the construction

locations. Their aim was qualitative inspection, meaning sub-

millimetre resolution was not necessarily required and classic

VHR images was sufficient. Another qualitative example of

the usage of passive optical satellite imagery was developed

by Kucera to monitor the threats of falling vegetation on

railway infrastructure [36]. The idea was not to measure

precisely any characteristics of the infrastructure, but to qualify

a threat index thanks to the satellite images. In certain cases,

quantitative measurements are performed and require a high

precision technique. For instance, Chang et al. [42] proposed a

method based on InSAR imagery to determine, with millimetre

precision, the creep of railway tracks in lateral and normal

directions.

Weather: Clouds and rain can negatively affect the accuracy

of InSAR because the refract the beam causing a phase
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delay. Because clouds and rain are closer to the ground than

the satellite, the phase shifts appear as surface deformation.

Weather models can be used to correct for these shifts.

Surface water, snow vegetation: SAR accuracy can be

affected by vegetation on the ground surface, which is likely

to be constantly growing and changing density. Also, if there

is even a thin film (e.g. several millimetres) of water on the

surface, for example after a rainfall event, this can also affect

accuracy. Similar is true for snowfall.

E. Handheld cameras

Types of devices: A wide variety of handheld devices have

been proposed for railway inspection, particularly for track

applications. For example, Digital Single Lens Reflex (DSLR)

cameras have been used to take high resolution 2D images of

track components such as ballast [50]. Alternatively, smart-

phones typically have on-board Global Positioning Systems

(GPS), inertial sensors and more recently lidar, all of which

can be used for railway inspections. For example, Zhang et al.

[51] monitored ballast condition. Moreover, smartphones have

the possibility to directly communicate with a cloud server,

through GPRS to 5G communication protocols, to perform

cloud computing for image post-processing. They have also

been fixed to the windshield of railway vehicles in order

to take pictures and videos of the environment when the

vehicle is moving (e.g. [52]). Alternatively, Bowness [53],

[54] used a portable webcam connected to a small telescope

to monitor rail movements. Instead of taking snapshots, a

video was taken and then split into images to allow post-

processing. While DSLR and smartphones can store images

in their internal memory, webcams usually require an external

device allowing local or cloud storage of the data. While

Bowness studied track deflection along track, Le Pen [55]

used the same technique, with a USB handheld camera, to

monitor track deflection of level crossings specifically. Wilson

[56] used an infrared camera to perform pulse eddy current

thermography of rail to detect surface defects. According

to Gartrell [57], US Army uses Electronic Rail Inspection

Data System (ERIDS) to perform track inspection as well

as defect detection. This kind of handheld devices combines

GPS and geographical software with a built-in camera which

provides photo documentation of track defects linked to their

exact geographic locations. Handheld 3D scanners can also

be used to study rail and wheel defects, using vertical-cavity

surface-emitting lasers (VCSEL) and white light to generate

3D point clouds. Mishra et al. [58] used an autonomous

dynamic penetrometer (PANDA) to monitor the conditions of

track substructure layers. It consisted of hollow metal rods

instrumented with strain gauges that computed, with the help

of a standardised hammer, the depth of penetration and the

energy input from each impact to drive the rods into the

ground. Then, geo-endoscopy was performed by inserting an

endoscope camera inside the hole the rods to monitor the

condition of the ballast and its sublayers. Other studies [59]–

[62] used the same device for track-bed maintenance and

characterisation purposes. Another method dedicated to ballast

sampling is Automatic Ballast Sampling (ABS), where heavy

duty metallic tubes are sunk into the trackbed up to several

meters’ depth using a hydraulic jack. Once the cores are

extracted, a transparent plastic sleeve containing the sample

is extracted from the metallic tube. Images are then taken and

studied to determine the depths of each trackbed layer and

ballast fouling characteristics. Considering these applications

and according to Figure 2, handheld cameras are mostly used

for meso and micro scale monitoring.
Datum and device registration: Compared to devices

mounted on vehicles or trolleys whose position references are

given by both rails, difficulties to register the local position

of the device with respect to the image taken which may lead

distance estimation problems. However, this is not necessarily

required for every application when a qualitative inspection is

performed instead of a quantitative one. Bowness [53], [54]

that used a portable webcam to monitor rail deflection chose

to provide an absolute datum to the webcam by attaching

it to a rod grouted into the bottom of a 20m deep hole.

Moreover, this hole was also located sufficiently far away

from the track to avoid any disturbance coming from the

ground-borne vibration generated by a running vehicle. For

measurements along long distances, the registration of the

data according to its position on earth becomes necessary to

localise precisely the defects that may arise along the track.

As stated by Zhang [51], the GPS position of images taken

along the track can be sent through network communication

to a cloud server. The position along track remains similar as

the problems encountered by vehicle-borne imagery.
Safety considerations: Monitoring track components using

handheld devices requires an operator to take either images or

videos and therefore implies the presence of a person on or

near the track. As stated by Rui [63], the current monitoring of

cracks in concrete sleepers may be performed using an optical

comparator or a handheld microscope. Replacing these devices

by trolley-mounted cameras with an automatic algorithm al-

lowing crack detection could lead to a safer monitoring of the

track.

Fig. 10. Way-side pantograph imaging. Cameras and illumination equipment
shown in red boxes. Reproduced from [64].

F. Way-side cameras

Way-side cameras are most commonly used for rolling-

stock monitoring or track monitoring. Regarding rolling-stock,
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high resolution camera systems can be placed in the way-

side to monitor aspects such as overheating ball bearings [65],

pantographs (e.g. chipped contact strip or missing horns) and

running gear (e.g. missing bolts or open ports). This can

be cost effective compared to fitting individual trains with

dedicated camera systems. The cameras and their illumination

equipment are typically supported by permanent structures

with dedicated steelwork. For example, using towers on either

side of the track, as shown in Figure 10, or even a portal frame

spanning over the railway with imaging equipment in the span

centre to capture high quality recordings. Commonly, due to

the expense of such structural modifications and the minimal

number of such camera systems required on a network, a

reliable power supply is routed to the system.

Regarding track monitoring, way-side cameras are sued for

applications which require semi-continuous monitoring over

longer timespans, for example, rail buckle detection, level-

crossing monitoring ( [66]–[68]) and trespass. Due to the need

for long-term deployment power supply can be a challenge. In

some locations photovoltaic cells can be used, however even

when using larger cells, resolution and framerate will likely be

constrained due to camera power consumption requirements.

Alternatively, in some strategic locations it can be possible

to connect to mains power, for example via a nearby sig-

nalling system. Another issue is the physical placement of

the hardware because cameras typically require some degree

of elevation to capture their surroundings. If they are self-

supporting then they must resist the vibrations induced by train

movement and wind, both of which can negatively affect image

quality. These can be similar to the structures used for rolling-

stock monitoring, however for many way-side applications

such cost is prohibitive. Alternatively, cameras can attempt to

take advantage of existing periodically spaced furniture along

the railway line. This may include fencing, electrical boxes

and uprights supporting overhead line equipment. Depending

upon the likely vibration expected from these structures, for

certain applications, it is possible to fix cameras to them.

IV. IMAGE PROCESSING ALGORITHMS

This section aims to provide general information about

the algorithms used for railway image post-processing. This

non-exhaustive list covers the some of the more common

algorithms used to perform object or defect detection.

A. Classical methods

Classical post-processing techniques are used to modify

images in such a way that the desired objects or defects are

more clearly visible. Most of these post-processing techniques

consist of a modification or filtering of the pixel information

within an image. The basics of these image processing algo-

rithms are listed below. Some examples of these algorithms

are illustrated in Figure 11, as applied to a railway crossing.

Grey histogram detection: Jie et al. [69] proposed a real-

time image processing method based on the grey histogram

variation on the columns of an image to monitor rail defects

along the track with a vehicle-borne camera. In this case, each

bar of the grey histogram represented the average value for a

rail section whose width corresponded to a pixel. By studying

this histogram, it is possible to study the position of defects

along the rail.

Image thresholding: Once an image is transformed into

its greyscale equivalent, thresholding can be performed. This

means that depending on the intensity of grey, each pixel will

be either set to either white or black, depending upon whether

it is above or below the specific threshold. While a constant

threshold across the entire image is the simplest thresholding

methodology, more complex variations exist. For instance, the

threshold may be set locally or there might be a threshold

for each RGB channel of a colour image. As an example,

an enhanced segmentation method was developed by Otsu

[70] consisting of a locally optimized intensity threshold for a

grey scale image. Further, Li et al. [71] developed a real-time

visual inspection system for discrete rail surface defects and

compared its efficiency with other thresholding methods such

as Otsu’s algorithm. Similarly, Aydin [72] used an algorithm

based upon Otsu’s thresholding method to detect pantograph

arcing that may occur with the catenary while they are nearly

in contact or when the contact is slightly disrupted.

Edge Detection: This technique is used to detect image

imperfections or discontinuities, often related to the presence

of an object in an image. For example, on a greyscale image,

edges are spotted by the computation of the gradient between

adjacent pixels. In the simplest form of edge detection algo-

rithms, the gradients can be computed either along the pixel

rows or the columns of the image. Therefore, two different

transformed images are obtained which provide information on

discontinuities with respect to the pixel rows and the columns.

More advanced techniques that use filters and convolution

operations are also available such as Sobel or Canny edge

detection algorithms. For instance, Min et al. [21] used Canny

edge detection to isolate defects on the rail surface. Shi et al.

[73] also used edge detection to monitor rail surface defects

but with either Sobel or their own enhanced Sobel detection

algorithm.

Hough Transform: The Hough Transform was initially

developed for line detection in images and is typically applied

after an image has already been transformed, for example

using Canny edge detection. The output resulting from the

Hough transformation of an image is no more an image, but a

graphical representation of the Hough matrix associated with

the image. This matrix can be displayed as a picture where

the x-axis corresponds to an angle and y-axis to a distance

(as depicted in Figure 11). These angles and distances are

representative of lines with gradient and distance from the

origin of the image, which are given by the distance/angle

couples of the Hough matrix. Landi et al. [74] used the

Hough transform of images taken by vehicle-borne cameras to

monitor the pantograph/catenary system under a thermal point

of view. The Hough transformation was used to detect straight

lines on the pantograph to determine the pantograph/catenary

contact point. As in Figure 11, Li et al. [17] used the

Hough transform to detect near-vertical lines in track images,

corresponding to vertical edges of sleepers, thus facilitating

their detection.

Gabor Filter: Initially introduced as a one-dimensional
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(a)
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Fig. 11. Example outputs of several raw image processing techniques applied for railway crossing analysis. (a) Original railway crossing. (b) Mean grey
histogram. (c) Canny edge detection. (d) Sobel edge detection. (e) Hough transform.

transform, the Gabor transform aims to study the local be-

haviour of harmonic functions by windowing them using a

Gaussian function. While generalised in two-dimensions to be

applied to an image, the Gabor filter is associated with an axis

going through the image to determine whether there is any

repeatable content along this specified direction. Mandriota

et al. [75] used the Gabor transform to detect repeated wear

patterns on the rail surface such as rail corrugation. Similarly,

Huber et al. [76] used the Gabor filter to analyse the surface

of the rail, combining it with 2D image texture and a 2.5D

analysis of surface disruption to detect rail surface defects.

Resendiz et al. [18] used the Gabor filter on the lateral and

top views of the track to detect periodically occurring objects

such as fastening systems and sleepers. Alternatively, Guclu et

al. [77] used the Gabor transform to detect the railway track

as an input to the trajectory control of a UAV.

Colour detection: Depending on the type of camera sensor,

the acquired images can either be grey-monochrome or colour

images. The pixels of monochrome images contain an intensity

which corresponds to light exposure of a physical sensor.

Using a filter composed of red, green and blue cells (or

Bayer pattern) on a monochrome image sensor, it is possible
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Fig. 12. The general workflow of object detection and semantic segmentation.

to retrieve an image with lower resolution, but with pixels

containing an exposure intensity corresponding to all red,

green and blue colours. While most classical post-processing

techniques operate on converted grey-scale images, it is also

possible to work with colour. For example, while searching

for pixels with a specific colour in an image, it is possible

to perform a thresholding on one of the three RGB image

channels. If the colour of the object is constant and known,

it is also possible to transform the RGB intensities into the

HSV representation which provides information on the hue,

saturation and value. Again, using thresholding on one of these

three parameters, it is possible to isolate certain details of an

image. For example, Marmo et al. [78] performed railway sign

detection and classification using classical image processing

techniques. They used RGB-HSV colour transformation after

the sign detection to determine the colour of the light included

in the sign. Tastimur [79] used a combination of YCbCr,

another colour representation of images, and other classical

image processing techniques such as edge detection and the

Hough transform to detect, from vehicle-borne cameras, level-

crossings in railway paths. In the same work, Tastimur also

used an RGB-HSV transformation as well as other image

processing techniques to perform on-track foreign object

recognition.

Change detection: If an analysis cannot be performed

on a single image, it is sometimes possible to work with a

comparison between two or more images. This comparison

results in a new image on which post-processing techniques

(e.g. edge detection) can be applied. For example, Sacchi et al.

[80] proposed a simple subtraction between the pixels of two

monochromatic images, one being the reference image and

the other one being the tested image. The aim was to develop

a method for detecting abandoned objects in certain railway

environments. Alternatively, Zheng et al. [81] developed a

methodology to monitor the rail track gauge using image

comparison to eliminate non-relevant information and objects

present on images.

Stereovision: When using multiple independent cameras to

take pictures of the same object, it is not really an image

transformation but more an image combination that leads to

a computation of the depth of the object in both images. A

3D point cloud can then be reconstructed for each pixel in a

specific zone covered by both cameras. For example, Niu et al.

[82] used this stereoscopic technique to reconstruct the surface

of the rail to deduce three-dimensional information about rail

surface defects.

Digital Image Correlation: This is the comparison between

images taken using the same camera position. It can be

performed either in 2 or 3 dimensions (for example using

stereovision with two fixed cameras). The change detection

compares only, pixel by pixel, the pixels of two or more images

in order to detect what changed exactly between a series of

images. The DIC however requires texture on the monitored

object to properly identify the regions that experience displace-

ment between two different images. Moreover, DIC focuses

on the determination of a displacement rather than the pixel

changes in the images. For example, Farahani et al. [83] used

3D-DIC to monitor the deformation of a printed model of a

railway tunnel. They added a black dot target near a region of

interest to allow for DIC analysis to be performed.

Independently, edge detection, Hough transforms, Gabor

Filters and colour detection are useful for the detection and

identification of an object in an image. Further, thresholding

and digital image correlation are useful for object change

detection. Other techniques such as grey histogram detection

or stereovision can be suitable for both. In any case, the

combination of multiple of these techniques oftens leads to

better results. As an example, Li et al. [17] first used the

Hough transform to detect a tie in an image and thus limited

the region of interest in the next step searching for the anchors.

Moreover, these classical processing techniques can be used

to post-process the images to prepare them for the use of AI-

based techniques for potential improvement of the detection

in terms of accuracy and/or efficiency. For instance, Emoto et

al. [84] used a combination of grayscale thresholding, canny

edge detection as well as Hough transform to prepare images

to be used within a YOLO algorithm to detect wheel surface

defects.

B. AI-based algorithms

In recent years, deep learning has shown to offer advantages

compared to the traditional image processing techniques used

for railway applications. There are two commonly adopted

deep learning-based approaches including the object detection

method and the semantic segmentation method which excel at

automatically learning features from raw image data without

the manual feature engineering and the learning process can

be executed in an end-to-end manner. Furthermore, these

sub-approaches have a superior scalability that can assist
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the developed model to be deployed on edge computing-

based devices with limited computing resources. The general

workflow of these two models can be found in Figure 12.

Besides, Vision Transformers apply the Transformer archi-

tecture which is originally developed from natural language

processing tasks to image or video data. They offer competitive

performance to CNN while providing superior capacity in

modelling long-range dependencies within images through

self-attention mechanisms.

Object detection-based methods: These detectors aim for

object features to be automatically learned and extracted from

raw data without the need for labelling or complex algorithm

configurations. They are commonly divided into either one-

stage or two-stage detectors. The major difference between

them is that the one-stage object detector executes the pre-

diction directly without generating potential regions or areas

within an image that are likely to contain objects of interest.

Alternatively, the two-stage object detector assigns categorical

labels to inputs as well as the refinement in the proposal

stage. In railway applications, the most used approaches for

identifying and locating multiple targets in a single image,

with classified categories and regressed location coordinates

in a bounding box, are Region-based Convolutional Neural

Network (R-CNN) and You Only Look Once (YOLO) detec-

tors. For instance, He et al. [85] developed a R-CNN model to

detect train obstacles through the adding of context extraction

module, content-aware reassembly of features module, and

the parallel design into the feature extraction network. In

addition, based on the basic YOLO network, Xu et al. [86]

proposed the AED-YOLO network to locate small components

in the catenary system with the improved bidirectional feature

pyramid network and the asymmetrically effective decoupled

head. Wang et al. [87] combined Swin Transformer with

Mask R-CNN for rail components diagnosis in railway system.

Along with the Swin Transformer, the target can be located

and detected. While with the Mask RCNN structure, the object

can be segmented. Gao et al. [88] developed Cas-VSwin Trans-

former for rail surface defect detection. A new window shift

scheme was developed to improve the feature transfer between

neighbour windows. Through the comprehensive tests, the

developed model achieves satisfying results on both of the

bounding box and the mask accuracies.

Semantic segmentation-based methods: Semantic seg-

mentation involves assigning a specific class label to every

pixel within a given image, effectively representing each pixel

according to its corresponding category. This process typically

uses three steps to perform segmentation. Firstly, classifica-

tion is used to recognise various categories present within

the image. Secondly, localisation is used to identify target

objects, often accompanied by the creation of bounding boxes.

Lastly, segmentation is used to group pixels with matching

categories. In applications within transportation infrastructure

and surface defect inspection, popular semantic segmentation

models like SegNet, UNet and DeepLab are commonly em-

ployed. For example, Chen et al. [104] developed the ERTNet

for railway track region segmentation aiming to detect the

intrusion behaviour in a real-time manner. With depthwise con-

volution, channel shuffle, and feature-matching-based cross-

fusion decoder, ERTNet attempts to achieve a balance with

respect to segmentation accuracy and computational efficiency.

In addition, Feng et al. [105] developed a lightweight, yet

efficient railway region segmentation module based on the

encoder-decoder structure. Based on the self-correcting feature

fusion module and the cascade structure, context and spatial

information was extracted. Wan et al. [106] developed a

awo-stream Swin Transformer Network (TSSTNet) for salient

detection of no-service rail surface defects. From the design

of a two-stream encoder and a three-stream decoder, the

defect features can be effectively extracted and fused. With

the addition of the Swin Transformer, the global information

of defect can be captured.

Concerning railway image analysis methods, a timeline of

the methods and a classification of them is proposed in Fig-

ure 13. Chronologically speaking, they are mainly subdivided

into three categories, classical image processing, machine

learning and deep-learning.

C. Decision making

Computer vision methods can detect abnormalities and can

be incorporated within warning systems. However, their role

in the decision-making process related to actioning appropriate

remedial steps needs careful consideration. For example, rail-
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Overhead Line Equipment (OLE):

• Isoelectric lines

• Swivel clevis

• Contact wire

• Droppers

• Brackets

• Registration arms

• . . .

Track superstructure and substructure:

• Rail

• Fasteners

• Sleepers

• Ballast

• Track slabs

• . . .

Earthworks:

• Ground deformation or settlement

• Tunnel subsidence

• . . .

Fig. 14. Railway components commonly used for image inspection

way safety is typically governed using Safety Integrity Levels

(SIL) which indicate the relative risk reduction provided by

a safety function of a device. The SIL must be determined

for each application, with a score of 1 being the lowest

level of safety protection and a score of 4 being the highest.

For example, a camera system for detecting missing track

components might require a higher SIL compared to detecting

slab track cracking.

Secondly, the choice of real-time or delayed decision-

making needs consideration. Delayed processing is typically

performed off-site with the assistance of engineers trained to

look for signs of specific defects. This can be effective for

applications where the decision-making process is not time

sensitive and remedial action is not urgent. It can also be

applicable for images which are complex, the application is

safety critical or there are high costs associated with an adverse

decision.

In contrast, real-time decision making is usually performed

on-board the camera system hardware and is thus capable of

signalling decisions autonomously and instantly. This elimi-

nates the disjointed stages of data handling, from collection,

transmission, to centralised processing, data storage manage-

ment and potential data loss, associated with transferring

the data off-site. It also eliminates the expertise required

for technicians to interpret the images, and the associated

experience/training needed to do so. Further, it eliminates

the probability of human error. For example, Li et al. [17]

developed a real-time automatic vision-based rail inspection

system and using the Hough transform, which inspected ties

and tie plates at a frame rate of 20 fps while moving at

16 km/h. Further, Tastimur et al. [107] designed a real-

time interface for the vision inspection of rail components.

Using preprocessing, morphological feature extraction, fault

and deficiency detection, missing rail components and rail sur-

face faults were determined. Extending this, Guo et al. [108]

showed the ability to perform real-time instance segmentation

with high accuracy using a single GPU, exceeding 30 frames

per second (FPS). This was further extended using AI-based

track inspection methodologies to reach an inference speed of

nearly 100 FPS, using edge-computing devices characterised

by their limited power and computational resources [109],

[110].

V. RAILWAY APPLICATIONS

There are, as summarized in Table I, a wide variety of

components that comprise the railway system (Figure 14).

Different types of cameras and processing algorithms are suit-

able for each [111]. Therefore, this section discusses the main

railway applications for imaging analysis, considering both

AI and classical image analysis approaches. First, applications

related to the track are discussed, followed by the overhead

line equipment and finally several miscellaneous applications

are explored.

A. Track applications

1) Track components detection: One of the most important

tasks in a computer vision algorithm is the detection of the
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TABLE I
COMMON USES FOR COMPUTER VISION IN RAILWAYS

Track applications Overhead-line applications Other applications

Track component detection Pantograph arcing Earthworks shrink-swelling
Rail surface defect detection Pantograph/catenary contact point Tunnel subsidence
Crossing nose monitoring Pantograph stagger Tunnel inspection
Wheel profile monitoring Catenary components detection On-track safety hazard monitoring
Wheel-rail contact position detection Catenary failure Level-crossing monitoring
Clip/fastener absence/condition detection Vegetation management
Track slab defect detection Station monitoring
Ballast particle characterisation
Track deflection monitoring
Wet-bed detection
Ballast depth and profile

Gap-size Spalling Corrugation

Rolling fatigue Squat Crushing

Fig. 15. Example surface rail defects.

objects within an image. For example, Resendiz et al. [18]

developed a methodology able to detect, and post-process

these track components. The algorithm uses the periodicity

of the occurrence of these track components, such as the tie,

tie plate, rail, anchor or fastening components, to perform the

detection on trolley-borne images. The images are processed

firstly with a Gabor filter and are then combined within a

one-dimensional signal to be analysed by a multiple signal

classification algorithm.

2) Rail surface defects: Railway wheels roll, slip and

slide along the rail inducing a range of rail defects, such

as corrugation, squats and cracking. Figure 15 illustrates a

non-exhaustive list of rail surface defects and their typical

appearance on the rail surface.
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Fig. 16. Rail squat images. (a) small squats; (b) medium squats; (c) larger squats. Reproduced from [113].

To detect these, Mandriota et al. [75] developed a technique

able to detect the rail corrugation using a line-scanning camera

mounted on a maintenance trolley. If surface defects are

located on the top of the rail head, a two-dimensional image

can be used to detect them since the camera can focus on the

top without monitoring the sides of the rail head. However,

due to the rail profile geometry and conical wheel profiles,

wheel/rail contact is usually not a straight line on the rail head

surface. Therefore, to detect three-dimensional wear (defects

can be located on the top and on the corners of the rail head

simultaneously), Alippi et al. [112] proposed a laser-scanning

technique in which a CCD camera takes images of the track

illuminated by a laser beam. While the beam is perpendicular

to the track and illuminates the rail section, the camera has

a different angle that gives visibility of the intersection of

the rail and the laser beam. Then the profile is reconstructed

using a neural network and the images are post-processed with

classical techniques to isolate the region of interest.
Alternatively, Jie et al. [69] developed a methodology to

detect defects while examining the grey-scale histogram mean

from images taken using a laser-scanning camera located

below the vehicle, aimed at the head of the rail. To do so, the

rail was divided into pixels rows perpendicular to the rail. The

difference between these was used to determine wear. A more

recent classical technique was developed by Zhang et al. [114]

and consists of an automatic vision-based inspection system

able to detect surface rail defects. The system is composed of

a line-scan camera mounted on a trolley. This provides long

images of the rail whose segments of interest are extracted

and analysed to locate the defects. The segmentation process

is primarily based on classical image analysis approaches

such as grey-scale histogram monitoring, grey equalisation and

filtering.
A challenge with classical image processing techniques is

that they tend to have a high computational cost, with some

even requiring trained human input. Thus, to improve the

detection efficiency, Qi et al. [95] developed the MYOLOv3-

Tiny model which combined YOLOv3-tiny detection head.

The backbone which can extract a feature map from the input

image was designed with a linear bottleneck and inverted

residuals which reversed the convolutional blocks to reduce

the parameters. In this way, the computational complexity was

reduced, indicating real-time inference was possible. Alterna-

tively, Feng et al. [115] proposed detection networks using

MobileNetv2 and MobileNetv3 to ensemble with YOLOv3.

The MobileNetv2 bottleneck was divided into two branches

while the MobileNetv3 bottleneck was embedded in the

squeeze-and-excite module. Based on the test results, rail sur-

face defects were detected and localized in real time. Further,

Zhang et al. [113] established a multi-modal rail surface defect

detection model named MRSDI-CNN, which included the

improved single shot multibox detector and YOLOv3. Rail

squats were classified into small, medium, and large based on

their radii (Figure 16). Using the proposed a multi-model ap-

proach, the rail surface defect detection efficiency was largely

improved. Similarly, a pyramid feature-based lightweight CNN

(PFCNN) containing a pyramid feature extraction module

(PFEM) was also designed for rail surface defect detection

in real-time [116].

To further improve the detection accuracy of rail surface

defects, multilevel or multitask learning approaches were

developed. For example, Yang et al. [117] established a mul-

tilevel rail surface defect detection network. Taking advantage

of differential box-counting and the GrabCut [118] algorithm,

Gaussian model parameter identification and defect segmen-

tation were executed. YOLOv2 was adopted for locating

and detection of rail surface defects. However, based on the

experimental results, rail surface defects were not classified,

and the rail position was not accurately localised. Therefore,

Meng et al. [119] developed a multitask learning architecture

(MtlrNet) to detect surface defects. The characteristics of rail

cracks were first analyzed, and the crack features were fused

using the attention fusion module. The training loss functions

used four parts which were rail defect segmentation loss,

rail object detection loss, sharing loss, and omission loss. To

reduce the computational cost and avoid the interruption with

the other features in the image (such as rail surface back-

ground), partial residual blocks were shared and kept. Jin et

al. [120] developed a deep multi-model rail inspection system

(DM-RIS) to detect rail surface defects with the constrained

Gaussian mixture model and Faster RCNN. In the first step,

the improved Gaussian mixture model (GMM) [121] was used

for defect edge segmentation. In the second step, the Faster
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(a)

(b)

(c)

Fig. 17. Changes in a crossing over time using train-borne cameras. (a) Initial crossing. (b) Crossing after six months. (c) Change detection analysis.

RCNN [122] was used to learn non-defect features such as

weak illumination, external noise, rust, etc. In this manner

DM-RIS performed rail surface defect detection under varied

environmental conditions.

Using an alternative approach, Wu et al. [123] considered

the impact of image depth (referring to the distance to the

camera of its corresponding RGB pixel) with the aim of

improving rail surface defect detection accuracy. To do so

a depth repeated-enhancement RGB network (DRER-Net)

[123] was developed, where the depth and RGB information

were considered using an encoder-decoder structure. With the

encoder design, cross-modality fusion was conducted using

the novel cross modality enhancement fusion module. In the

decoder design, a multimodality complementation module was

used to refine the prediction results. Further, combining the

advantages of rail defect detection on a block level (i.e.

processing groups of pixels organized in square blocks) and

pixel level, Guo et al. [98] fine-tuned an instance segmentation

mode (Mask R-CNN) for inspecting rail surface defects using

a customised dataset.

3) Crossing nose damage: Railway crossings (frogs) enable

trains to change lines. They are characterised by a disconti-

nuity of rail and thus the wheel is unsupported as it moves

from nose to wing rail. This results in high impact forces

and wear along the crossing. Thus, crossings typically have

a reduced lifespan compared to plain line rail. To detect

changes/defects in the running band under-carriage cameras

can be used. For example, Figure 17 (upper 2 sub-figures)

shows changes to a crossing nose over a multi-month period.

When performing image comparison, it’s important that the

images being compared have been recorded by a camera at

a fixed position from the rail. This can be challenging for

vehicle-borne cameras attempting to precisely monitor the

track because the conical wheel profiles of different trains lead

to slightly different rolling paths along the rail, particularly at

crossings where wheel-rail interaction is complex. However,

if the positions are similar enough then change detection

methods can be used. Figure 17 also shows an example of

this, where a heatmap indicates the absolute square difference

between the images. It’s seen that the changes are located

primarily on the running band and in the zone closest to

the nose, which is where the wheel impact loads occur. The

nose shape has changed, becoming flattened which is likely to

reduce running quality.

4) Wheel profiles: Due to wheel-rail contact, the wheel can

also develop defects that negatively affect structural integrity

or reduce ride quality (e.g. wheel-flats). To study wheel

defects, Zhang et al. [124] used a CCD camera as well as

two laser beams fixed to the track to monitor wheel state

when the vehicle passed through the measurement device.

Specific attention was paid to the flange height and thickness.

After calibration of the system, submillimeter precision of

detection was achieved. Further, Sun et al. [125] used a camera

coupled with multiple parallel laser beams to reconstruct
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3D profiles of wheels. A technique was developed to work

even if the lasers and the camera were not perfectly normal

to the monitored wheel. Also, Emoto et al. [84] developed

an algorithm combining images taken by a camera sensor

with the 3D reconstruction of the wheel profile, performed

with lasers, to perform wheel surface defect detection using

an AI-based YOLOv5 algorithm enhanced by classical post-

processing computer vision techniques.
5) Wheel-rail contact position: Trains are self-steering due

to the use of rigid axles and a wheel conicity compatible with

the rail profile. This results in the wheel constantly shuffling

along the rail surface, particularly in curves. The wheel flange

is a safety feature and should not regularly experience contact

with the rail. Monitoring the motion of the wheel on the rail

and the contact point(s) is of value for monitoring ride quality,

detecting hunting and measuring track geometry. To measure

this, Shi et al. [126] used stereo cameras below in-service

vehicles trained on the wheel-rail contact location (Figure 18).

The images were processed using: 1) automatic calibration

to detect the region of interest, 2) virtual point detection

using a deep convolutional neural network, and 3) a domain-

knowledge based rule engine to track the contact point over

subsequent frames.

Fig. 18. Wheel-rail contact monitoring showing 3 points of interest. Left:
idealised system, Right: in-situ monitoring image [126].

6) Clip/fastener absence: Railway clips connect the rail and

sleeper (and railpad), and due to vibration of the track during

train passage, can loosen and fall away from the track. This

results in reduced track resistance to horizontal and vertical

forces. Under-carriage cameras can be used to view the track

super-structure and identify missing clips.
Due to rail industry safety requirements, track super-

structure anomalies were traditionally checked by qualified

engineers who determine an appropriate course of action.

However, considering typical sleeper spacing is 0.6-0.7m,

along an entire route this equates to many clips that require

checking. Therefore, it is more practical for computer vision

to either shortlist track locations for detailed review or assist

with maintenance decisions. For example, early methods in-

volved classical image analysis techniques to detect fasteners.

Aytekin et al. [92] proposed a real-time fastener detection and

inspection algorithm for railway tracks using a combined sheet

of light technique with a high-speed, 3D and laser-range finder

camera. This involved projecting a laser line on the rail while

taking pictures of the laser line with an adapted camera. Pixel

similarity and histogram similarity techniques were used to

detect fasteners.
More recently, AI techniques have been proposed to im-

prove speed and flexibility of detection. For example, Wei

et al. [94] trained VGG16 for the detection and recognition

of broken/missing fasteners, however the inference speed was

slow. Alternatively, Liu et al. [96] developed a hierarchical

learning approach to detect fasteners. In the first step, a multi-

scale feature-based deep detection network (MSF-DDN) was

constructed. In the second step, a region classification network

was built to detect the type of key sub-regions including

fasteners. In the last step, fastener detection was achieved

using a decision tree. Another approach was used by Zhuang

et al. [127] who proposed a deep learning powered two stage

method for automatic inspection of railroad components. In

the first stage, YOLOv3 was developed to generate the initial

detection results. In the second stage, a domain-logic based

hybrid model (DLHM) was proposed to improve detection

performance.

Kim et al. [128] developed a deep anomaly detection system

for rail fasteners. In the first step, a U-Net model, which was

composed of segmentation and denoising routines, was trained.

In the second step, a deep-learning based method was adopted

using the feature map obtained from the U-Net encoder. Using

the hierarchical design of U-Net, the features of different rail

fasteners can be extracted. However, since the inference is at

the pixel level, it is difficult to achieve real-time detection in

the field. Wang et al. [129] developed an attention-powered

deep convolutional network (AttConv-net) for the detection of

the rail, clips, and bolts. Three components including a deep

convolutional neural network (DCNN), cascading attention

blocks (CAB) and two feed forward networks (FFN) were

used to ensemble AttConv-net [129]. The effectiveness of the

proposed network was validated using one real dataset and

another synthesised dataset. It was found that the training

process was time-consuming due to the heavy computational

cost of the attention-based module.

To develop these types of deep learning-based approaches

requires a large database of image data. These images then

require manual labelling of each fastener, which is time

consuming and introduces the possibility of human error. To

overcome this pre-processing issue Liu et al. [130] developed a

key component detection (KCD) method which took advantage

of the key components of normal fasteners to determine the

existence of abnormalities as depicted in Figure 19. Further,

Liu et al. [131] proposed a vision-based fastener inspection

system which applied ‘few-shot’ learning to acquire and label

fasteners. Liu et al. [132] discussed the limitations of this

method which needs high quality training procedures and can

have issues with robustness. Thus, a sample generation method

was proposed by producing failure samples with UNet to

achieve the training data augmentation. However, since the

failure modes of the generated samples were different from

the real failures, detection performance was challenging.

Although these approaches are useful for reducing the

need for a qualified engineer input to detect anomalies, they

are challenging to use in real-time with on-board in-service

vehicle cameras. This is because they use multiple steps in

model design and implementation. For example, the fastener

requires locating and then a decision tree or logic-based

model is applied to quantify fastener state. This can require

considerable computational requirements, meaning real-time
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(a) (b) (c)

(d) (e) (f)

Fig. 19. Abnormal states of the railway fasteners [97]. (a) Non-defective. (b)
Fractured. (c) Missing. (d), (e) and (f) Rotated.

defection challenging, possibly requiring off-site processing.

Thus, to increase inference speed, Tu et al. [133] proposed

a real-time detection of track components framework. The

proposed cascade defect detection network was lightweight

and therefore the defect detection inference speed allowed real-

time detection. Alternatively, Guo et al. [98], [99] developed

real-time rail track component detection models based on

real-time object detection and instance semantic segmentation

techniques. The impacts of different activation and loss func-

tions were discussed and compared. Using a parallel network

structure, the proposed instance segmentation network was

able to locate rail track components and display their shapes

in real-time.

7) Track slab defects: Concrete slab tracks are commonly

used for high-speed lines and for lower speed lines where

ballasted track is undesirable (e.g. in tunnels where high

track fixity is vital for maintaining clearances). A potential

challenge with slab tracks compared to ballast is that they

can be susceptible to defects at the slab joints and cracking

(e.g. due to subgrade settlement, earthwork shrink-swelling

and freeze-thaw cycles). An example of cracking is shown in

Figure 20.

To detect slab track cracking, Ye et al. [135] used crack

images from both hand-held cameras and UAV’s to develop

a deep learning-based network based upon dilated convolu-

tion. Compared to ResNet50 [136] and VGG16 [137], the

approach achieved higher accuracy and required lower compu-

tational cost. Then, expanding upon this work, Ye et al. [138]

aggregated multi-scale information to extract crack feature

morphology. Alternatively, Wang et al. [139] compared the

classification accuracy of different networks for slab track

cracking severity. The status of the slab track was classified

according to crack severity, depending upon whether the

crack was larger or smaller than 0.2mm. Considering recent

advances in camera technology, vehicles-borne cameras can

(a)

(b)

Fig. 20. Slab track surface cracking [134]. (a) Birds eye view between rail
seats. (b) Side view along concrete slab.

also now detect cracking.

Leveraging the dilated convolution, STCNet I [135] was

developed to detect high speed railway concrete slab cracks.

The watershed algorithm was then proposed to locate the

detected crack and execute crack segmentation operation. A

total of 1,496 images containing concrete slab cracks with

high resolutions were acquired to perform model training,

validation, and testing.

8) Ballast: Railway ballast comprises a volume of individ-

ual stones which support the sleepers. The lateral resistance

provided by the ballast is a key factor in preventing rail

buckling, for example on warms days on continuously welded

track. Therefore it is common to visually inspect that ballast

shoulder heights are sufficient and that the ballast surrounding

each sleeper is at a height at least level with the sleeper upper

surface. These checks can be performed using computer vision

from vehicle-borne cameras, as shown in Fig X (left).

Further, when first laid, the body of railway ballast must

meet particle size distribution requirements, and the parti-

cles should also meet requirements related to angularity and

texture. However, over time the stress cycles induced during

train loading cause ballast degradation. For example, abrasion

between individual stones can cause a loss of angularity or

breakage, leading to an increased number of smaller diam-

eter particles. Similarly, cohesive particles and contaminates

can infiltrate the ballast due to mud-pumping, thus effecting

drainage. The ballast then no longer meets requirements,
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(a)

(b)

Fig. 21. Example of ballast monitoring. (a) Photogrammetry of an individual
ballast particle [140]. (b) Example ballast layer image segmentation using
Mask R-CNN [141].

resulting in degraded performance, for example in terms of

differential settlement, particularly in wet conditions. This

differential settlement can result in the generation of voids

between the sleeper bottom and ballast top. These unsupported

sleepers hang from the rail when the track is unloaded and

when excited during train passage, they cause high frequency

impact on the ballast surface. This can result in accelerated

abrasion of both the ballast and concrete sleepers. Fig X

(right) shows an example where where dust abraded from

unsupported concrete sleepers is present on the track surface

and has been detected using computer vision.

To simulate the discrete behaviour of ballast particles, a

common analysis technique is the Discrete Element Modelling

method. This involves the numerical simulation of the be-

haviour of a body of individual ballast particles. To model

realistic geometries, textures and size distributions, it is com-

mon to construct ballast particle libraries. To do so, individual

ballast particles are measured under laboratory conditions and

digitally reconstructed in 3D. To measure the particles, laser

scanning is common, however this can be expensive and

does not provide surface colour details. An alternative is to

use photogrammetry, which can be more cost effective and

records the surface colours. For example, Moaveni et al. [50]

used a single DLSR camera and segmentation techniques to

capture 3D ballast particle geometries. Further, as depicted in

Figure 21, Paixao et al. [140] digitally reconstructed ballast

particles using both photogrammetry and lasers and found

photogrammetry to produce models of equivalent or higher

quality.

Rather than imaging individual railway ballast particles for

the purpose of numerical modelling, the ballast layer can also

be imaged directly for the purpose of determining ballast

condition. This can be done for example using a mobile phone

as proposed by Zhang et al. [51], where in-situ mobile images

are uploaded to a cloud server for processing. Alternatively,

using under-train cameras, foreign objects on the ballast can be

detected. For example, Mazzeo et al. [142] used a multilayer

perceptron network with an edge histogram to detect object

such as broken bottles and aerosol cans on the track.

To assess ballast condition, Kumara et al. [143] proposed

the use of image analysis to quantify the level of sand fouling

in ballast. It was shown possible to calculate particle gradation

curves from images in a lab setting, however for in-situ ballast

the technique is challenging because most of the destructive

particle movement occurs below the surface, with minimal

evidence except near sleepers [144]. This, coupled with the

fact fouled particles that have small diameters compared to

ballast and thus likely to settle towards the bottom of the bal-

last layer, means surface camera’s struggle to capture images

of fouling unless the problem is severe. One notable exception

is the presence of sleeper voiding which due to ballast-sleeper

abrasion can evidence itself as a white-ish powder on the

ballast surface.

Traditionally, to gain understanding of ballast condition with

depth required techniques such as visual inspection, sieve

analysis or automated ballast sampling. Ground penetrating

radar has more recently been introduced; however, accuracy

can be affected by fluctuations in moisture content. Alternative

image techniques have also been proposed, including the work

of Clark et al. [145] and Tan et al. [146] who used thermal

and infrared imaging to investigate ballast fouling. It was

found clean and fouled ballast had different thermal properties

thus evidencing the potential of the approach. Invasive camera

methods have also been proposed, for example by inserting

endoscope cameras into the ballast and monitoring condition.

Alternatively, if environmental dust can be minimised, imaging

can be performed during periods when the ballast is exposed,

for example shoulder cleaning, skimming and undercutting.

Alternatively, trial holes can be dug. The advantage of these

approaches is that a potentially wide area and thus representa-

tive sample of the ballast layer can be imaged. This approach

was used by Luo et al. [147] who recorded ballast layer

images in the presence of a spherical target to determine scale.

It was then used in a vision transformer-based segmentation

framework to approximate ballast fouling index. The technique

was further extended to create a dedicated ballast scanning

vehicle [11].
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Fig. 22. Monitoring of rail deflection using targets during train passage.

9) Track deflection: The elastic deflection of the rail during

train passage must be kept within strict tolerances for safety

purposes. If too high, the track stiffness is not sufficient for

the axle loads. It is challenging to measure using vehicle-

borne sensors and thus can be performed using way-side

sensing. Recording sleeper bending and shape during track

loading, with the aim of detecting sleeper failures has been

attempted by Sabato et al. [148]. To do so, a 3D DIC

and pattern projection solution was proposed, and laboratory

tests showed the potential to detect bending. However, for

research purposes when attempting to study track stiffness,

rail deflection is commonly a primary variable of interest.

Although rail-mounted accelerometer and geophone solutions

have frequently been attempted, the mathematical integration

can introduce errors, thus making it difficult to obtain accurate

readings. This can be solved using camera-based monitoring

with DIC, which usually involves placing, as depicted in

Figure 22, a camera several meters from the track, trained on a

reflector/target glued to the rail web [54], [55]. The fixed frame

of reference then makes it more straightforward to choose

a datum. The camera needs to be carefully chosen to have

sufficient frame rate to capture the high-speed track deflection,

an adequate pixel count and suitable lens characteristics. The

pixel count and lens specification can be relaxed closer to those

of a consumer grade camera under favourable conditions, for

example if the site conditions allow the camera to be placed

close to the rail.

The camera’s vertical height of placement should be per-

pendicular with the rail to maximise accuracy. However, any

support platform/tripod must also be robust and insensitive

to the ground and air motion induced during train passage.

Therefore, it’s usually challenging to place it any closer than

the toe of the ballast. This means some sites (e.g. deep ballast

constructions) can require the construction of a temporary

platform to elevate the camera. Some approaches have also

used lasers encased in tubes to minimise lighting errors [149].

The complex setups and high-power requirements for this

type of way-side visual monitoring campaigns mean they

are typically performed over short time periods, usually for

research purposes, in the presence of trained operators and

the captured data is processed off-site.

B. Overhead line applications

Pantograph-catenary systems (PCS) provide power to the

rolling-stock on electrified lines (Figure 23). If the system is

defective, then train operation is put at risk. For example,

loose components can cause short circuits which cut train

power, while abnormal pantograph movement or a sagging

catenary can pull-down the catenary wires. Considering these

challenges, it has become common to put multiple camera

technologies on train roofs to continuously monitor both the

pantograph and overhead system. Further, way-side camera

systems are used to monitor the passes of rolling stock over

an individual location, thus allowing for the analysis of many

train pantographs on a network.

1) Pantograph: The pantograph draws power from the

catenary into the train. One aspect that has been proposed

for monitoring is arcing due to a loss of contact between

the pantograph and the catenary. This can occur for example

when both electrical elements are separated by a thin layer

of air. Then, due to the high voltage in the wires, a short

polarisation of the air arises, and the air briefly becomes an

electrical conductor. This creates an arc that can be spotted by

monitoring the contact zone. To monitor it, Aydin et al. [150]

proposed an algorithm to control the contact force applied by

the pantograph on the contact line to avoid contact loss or arc-

bursting that may damage the line by scraping matter from the

wire. To do so, they monitored the height of the contact point

by detecting the pantograph on images taken by a camera

located at the top of the vehicle. Taking advantage of the

pantograph being composed of several straight elements, they

used the Hough transform, Canny edge detection and other

filters to detect straight lines in the images. Having located
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Fig. 23. High-speed railway system: Monitoring of catenary and vehicle pantograph. The part depicting the isoelectric line is reproduced from [153] and the
one depicting the swivel clevis from [154].

the pantograph main elements, they were able to retrieve the

height of the top element of the pantograph.

Another aspect is the monitoring of pantograph stagger.

The pantograph contacts the catenary via a replaceable contact

strip, however, to prevent rapid wear at a single location on

the strip, the system uses lateral stagger to shift the contact lo-

cation during train movement. This contact strip may be mon-

itored as well to prevent any damage and plan its preventive

replacement. Cho et al. [151] proposed a methodology able to

assess the reliability of railway overhead power lines through

the measurement of the dynamic stagger of contact wires using

computer vision techniques. The considered images are taken

from a camera placed on the top of the train and they use the

Hough transform to detect the contact strip. Moreover, they

considered the tilting motion of the train, which leads to a

tilting motion of the pantograph, to enhance their detection

algorithm.

2) Overhead line: As an alternative to cameras located on

the rolling-stock roof, UAV’s can also be used. For example,

to monitor the static height and stagger of a high-speed

railway contact wire, a LiDAR-based detection framework was

developed by Geng et al. [152] using UAV collected point

clouds. A self-adaptive method was used to extract the features

associated with the contact wires, masts and other suspensions.

The height and stagger were computed based on the specific

geometric characteristics.

Object detection models have been developed to provide fast

and accurate localisation of catenary components. For exam-

ple, to detect joint components, Wang et al. [155] developed a

method using improved YOLOv3 and deeplabv3+ algorithms

to localise joint components and split pins (a fastening and

protective part of the catenary). To do so, a deblur module

was proposed to ensure the accuracy of semantic segmenta-

tion and classification. To address the issue of localisation

of the catenary insulator which is responsible for keeping

the insulation between the catenary and earth, Zhong et al.

[156] developed a novel two stage defect detection network.

A regression network and an external postprocess network

were developed in the TOL-Framework, while an adversarial

reconstruction model was adopted to reduce training data

requirements. Alternatively, Chen et al. [157] developed a

RetinaNet model by integrating a spatial attention map and

channel weight map to detect defects in the catenary carrying

ring which has a small size making it difficult to inspect

manually. The advantage of RetinaNet was that it can deal

with severe image data imbalances.

With respect to the inspection of swivel clevis components,

Gao et al. [154] proposed an adaptive deep learning-based net-

work for defect detection. A semantic segmentation network

and local operators were incorporated, while an unreliability

index was defined for monitoring the stability of the proposed

network. Regarding the issue of catenary clevis fracture, Han

et al. [158] developed a deep learning-based visual ensemble

method to detect it. The edge map of the clevis was produced

based on a region-scalable fitting model. Wavelet entropy

and morphological filtering were employed to complete the

fracture detection. Even though there were still several false

positives, the detection performance under different conditions

was stable. Additionally, Liu et al. [159] developed a novel

method to detect the loosening of catenary bracing wire.

Firstly, the raw images were enhanced using a deep CNN.

Secondly, dynamic anchor learning was developed to localise

the bracing line through an angle-based CNN. Finally, the

looseness of the catenary bracing was detected using the peak

distribution of Hough Transformation.

Treating catenary failure as an anomaly case, Lyu et al.

[160] developed a method combing deep CNN and generative

adversarial networks (GANs) to predict defects. DCNN was

responsible for localisation and GANs accounted for image

mapping between the image space and the high-dimensional
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feature space. An anomaly criterion was used to score the

image. To detect the loose strands of the isoelectric line

(see Figure 23), Liu et al. [153] proposed an automatic fault

detection system including three stages. In the first stage, the

isoelectric lines were detected with the Faster RCNN. In the

second stage, the Markov random field model was adopted

to conduct segmentation of the isoelectric line. In the final

stage, the fault state was determined via comparison with a

line without defects. Finally, other parts of the overhead line

may also be inspected such as the dropper that guarantee a

stable contact between the pantograph and the catenary wire

[161].

C. Other applications

1) Earthworks: Railway earthworks can fail due to a vari-

ety of causes. For example, scour and washout in the presence

of standing and moving water, collapse due to changes in soil

moisture deficit (earthworks with clay content). UAV’s can

be advantageous for monitoring earthworks because they can

assess site conditions, for example the present of standing

water, the blockage of drainage channels and evidence of

animal burrowing. They can also be used to detect slope move-

ment indicators such as curved tree-trunks, quantify vegetation

coverage and detect changes in images over time from more

flexible camera angles compared to satellite imagery. However,

UAV’s are typically suited for short surveys where pilot access

is available close to the site. For some applications this is

challenging, for example in hilly or mountainous terrain. This

is particularly true when attempting to survey sites for damage

immediately after extreme weather events because access may

prove particularly difficult. In these cases, helicopters can be

used to collect imagery, including thermal images.
Byrraju et al. [40] explored the use of Sentinel-1 satel-

lite and aerial imagery to survey railroad rights-of-way for

conditions that may act as precursors to landslides and other

geotechnical hazards. The research incorporated two Interfero-

metric Synthetic Aperture Radar (InSAR) methodologies: Dif-

ferential Interferometric Synthetic Aperture Radar (DInSAR)

and Persistent Scatterer Interferometric Synthetic Aperture

Radar (PS-InSAR). Case studies highlighted the capability of

current satellite technologies to detect both large and minor

ground shifts and variations in soil moisture with sufficient

resolution. Alternatively, Chang et al. [43] used Radarsat-

2 data to perform nationwide railway earthwork monitoring

in the Netherlands. A persistent scatter approach was used

considering a 50m wide buffer along the track and the defor-

mations plotted to create a risk map. More recently, Azadnejad

et al. [49] used multi-temporal InSAR analysis of Sentinel-1

data combined with Sentinel-2 images. In this study, the small

baseline approach was used rather than persistent scatter to

monitor, as seen in Figure 24, long-term settlement of the

peat earthworks supporting the track. Alternatively, Kim et al.

[162] used higher resolution TerraSAR-X data to study track

settlement. The persistent scatter method was again used and

to improve reflection intensity and coherence corner reflectors

were installed. The method was validated using on-site surveys

and shown to be useful for trend monitoring.

Fig. 24. Horizontal displacement rate map of the an embankment. Reproduced
from [49].

2) Vegetation management: On newer high speed railway

lines vegetation is typically well controlled. However, on older

intercity lines it can be common for heavy vegetation such as

tress to be located near the track. This is typically undesirable

because trees can pose risks to train operation. These in-

clude grass/weeds growing through the trackbed, leaves falling

on the track or even an entire tree collapsing on the line.

Therefore, computer vision can be used to monitor vegetation

growth and schedule vegetation maintenance. For example,

the Normalized Difference Vegetation Index (NVDI) can be

derived from multispectral satellite images to study the growth

of vegetation near the track over time [X]. Alternatively, from

a UAV perspective, drones can be used to identify the species

of different wayside trees [X]. Alternatively, [X] developed a

dedicated herbicide spraying vehicle with front facing vehicle

cameras to capture the presence of vegetation. In real-time,

when certain vegetation limits were exceeded, herbicide was

deployed depending upon the location it was detected.

3) Tunnel subsidence: During and after the construction of

a tunnel, the hydrological regime around the excavated area

may be perturbed [163]. Depending on the local geology,

this can lead to a tunnel subsidence which creates ground

settlement. Therefore Roccheggiani et al. [163] used Satellite

SAR interferometry to detect this motion of the heavily

urbanised ground surface above the excavated tunnel of Genoa

in Italy. Further, Wang et al. [164], used PSInSAR analysis to

detect and identify new subway tunnel lines in Shanghai. To do

so, the settlement of the ground located above the tunnels was

monitored over a period of time to detect changes. Ge et al.

[165] used the same PSInSAR technique to monitor subway

and high-speed railway tunnels in Beijing. They established

that the ground settlement depended upon tunnel construction

technique. Another study provided by Perissin et al. [166]

investigated ground subsidence created by recently excavated

tunnels in Shanghai using PSInSAR techniques.

Alternatively, Farahani et al. [83] proposed a DIC-based
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technique to determine the deformation of the surface of a

shallow railway tunnel whose construction consisted of drilling

and blasting rocks. To develop their methodology, they used

a previously 3D-scanned version of the actual tunnel with a

terrestrial laser scanner to reconstruct a 3D-printed and scaled

version of the tunnel that can be studied in a laboratory.

This first scan provided a point-cloud on which a surface

was reconstructed to design the 3D model to be printed. On

this scaled model a laser scanning technique was used based

on a camera and a circular laser to scan and reconstruct the

entire surface of the tunnel. Two other cameras were used to

analyse the deformation field of the tunnel using DIC analysis

on the acquired images of the deformed scaled tunnel when

subjected to a known constraint. The final objective was to

locate, with the camera/laser measurement system, possible

geometrical change of one part of a real tunnel.

4) Tunnel inspection: Zhou et al. [167] proposed a laser

scanning based inspection method for tunnel clearance inspec-

tion. As for other laser techniques, a mobile laser scanning sys-

tem placed on the top of a trolley has been used to monitor the

surface of tunnels. These tunnels are then reconstructed using

point cloud segments that are realigned using the alignment of

the rails. Therefore, a dynamic clearance coordinate system is

computed considering clearance restrictions.

Otherwise, for tunnels being used past their initially in-

tended lifetime, it is important to perform inspections to

prevent failure that could either reduce the safety of passengers

or delay traffic. Jenkins et al. [168] developed both hardware

and software to help perform the monitoring of railway tunnels

to detect structural degradation. Their system consisted of an

array of camera and lighting placed on a trolley. The aim was

to monitor and detect defaults of the tunnel lining such as

missing bricks, open joints, surface corrosion, cracks as well

as water ingress. The software reconstructed a 3D point cloud

and a mesh of the tunnel including the texture by stitching

the images taken by the array of cameras. A similar technique

was also proposed by Gavilan et al. [169] but with arrays of

laser cameras mounted on a track-modified truck that scanned

the tunnel at a relatively high speed to perform long tunnel

inspection on a regular basis.

Sometimes, UAVs are also used to perform tunnel inspection

such as in the PLUTO Project [170] in which a UAV carried

out the inspection of confined spaces such as tunnels for which

communication with the outside was not possible.

5) On-track safety hazards: Potential safety hazards (PSHs)

on the tracks, such as falling trees and other objects that

may foul the track, present risks to both railroad safety

and operational reliability, especially for high-speed railroads.

They require prompt attention to prevent the escalation of these

issues into more severe incidents or accidents. For example,

in China during 2021, foreign objects such as plastic tarps

obstructed HSR tracks on more than ten occasions, leading to

numerous service disruptions, cancellations, traffic delays and

economic losses.

As a result, regular inspections of track surroundings are

important. Traditional methods of PSH inspection, which

typically involve visual checks conducted by inspectors on

foot, are subjective and largely reliant on the personal expertise

and discretion of the inspectors. To address these challenges,

Wu et al. [171] developed YOLARC (You Only Look at Rail-

road Coefficients), an automated PSH detection framework.

YOLARC utilises Unmanned Aerial Vehicle (UAV) imagery

combined with AI-powered image processing to monitor HSR

tracks. Moreover, the system is equipped with a hazard level

evaluation (HLE) methodology that assesses the proximity of

detected objects to the tracks, thereby quantifying the level

of risk. Testing on UAV-acquired high-speed rail datasets

has demonstrated YOLARC can process UAV imagery into

actionable information, achieving high detection rates and fast

processing speeds.

6) Level-crossings: At-grade crossings (aka level crossings)

are junctions where railways and highways intersect. They are

a common source of accidents due to collisions. To access

traffic information at the crossing, Guo et al. [66] proposed an

improved YOLOv3 model to detect multiple traffic instances at

the grade crossing both during the day and night. The proposed

feature fusion module was validated to improve local feature

representation.

7) Trespass: Railway track trespass, either at a level-

crossing or elsewhere is one of the greatest sources of injury in

the industry. To improve safety, Zhang et al. [172] developed

an AI-aided analytic platform to automatically detect trespass-

ing based on surveillance video footage of a level-crossing

monitored by a fixed camera. Experiments demonstrated tres-

passing can be detected during both the day and night.

However, addressing pedestrian behaviour at railway crossings

presents significant challenges due to the nuanced differences

between normal and potentially hazardous actions. This was

studied by Jiang et al. [173] who proposed a deep learning

framework capable of detecting unusual pedestrian behaviours

through video analysis and skeleton tracking. Further progress

was made by Song et al. [174], who developed a GAN-

based framework for analysing pedestrian behaviour without

the need for location-specific adjustments, thereby enhancing

its applicability across various settings. However, dangers at

railway crossings extend beyond intentional or unintentional

pedestrian actions. Thus, responding to the need for broader

detection capabilities, Tang et al. [175] introduced the RC-

SAFE Network, a system designed to identify any foreign

object at crossings, extending beyond pedestrian monitoring

alone.

Alternatively, Zhang et al. [172] presented a computer vision

algorithm to detect trespass near misses using surveillance

video footage of railway-road grade crossings. This algorithm

was designed to be robust under changing lighting conditions

throughout the day-night cycle and performed well under

varying weather conditions. The same author also introduced

an improved AI-powered framework [6] to automatically de-

tect trespassing events on railroads. The deep learning tool

identified trespassing incidents, classified violators, created

video clips, and consolidated event data into a centralized

dataset. Further, Qin et al. [176] used a semantic segmentation

model (DeepLab) and an object detection model (YOLOv5)

to dynamically identify regions of interest, trespassers, and

obstacles, trained on over 10,000 images.
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VI. FUTURE RESEARCH DIRECTIONS

1) Data fusion: Combining imaging with additional

datasets, for example using a data-fusion approach, has the

potential to achieve more powerful insights. One example

relates to combining imaging and laser scanning to create 3D

scans with texture, which then has the potential to provide

even more detailed datasets for more advanced AI operations.

For example, Cui et al. [177] studied point cloud acquisition

to detect rail fasteners along a ballasted track. They used a

laser mounted on a trolley to scan the track and deep learning

techniques to detect the fasteners that can, in some cases,

be covered by the ballast. Farahani et al. [83] developed a

coupled system using 3D laser scanning and digital image

correlation to monitor the deformation of railway tunnels.

Hackel et al. [178] developed a technique to perform rail and

crossing detection along railway tracks using vehicle-borne

point clouds and associated images.

2) Hyperspectral/Multispectral imaging: While the human

eye sees colour in three bands (red, green and blue), hyper-

spectral imaging collects information across bands in the elec-

tromagnetic spectrum, many of which are beyond the visible

ranges. Rather than 2D images, this results in 3D data ‘cubes’,

with each location having its own spectral signature. These

signatures can be used to identify the materials that the imaged

object is comprised from. Although it is starting to gain

interest in fields such as highways [179], so far hyperspectral

imaging has received limited attention in the railway field.

This is perhaps due to the high cost of hyperspectral camera

systems and also the large datasets generated which require

processing.

3) Affordable and user-friendly monitoring solutions: The

goal is to craft compact, yet accurate, computer vision tech-

nologies that fit into budget-friendly edge-computing environ-

ments. Even though the market offers a variety of inspection

systems, uptake can be curtailed by steep prices and the need

for specialist training. A direction of new research may aim

to produce systems that are not only economical but also

easy to use, enhancing their appeal and functionality for those

managing railways. For example, Tang et al. [175] introduced

a streamlined light-weight approach for inspecting tracks, and

Tang and Qian [110] demonstrated the integration of this ap-

proach into a portable, power-efficient edge-computing device.

Additionally, wearable technology and augmented reality (e.g.

Apple Vision Pro and Microsoft HoloLens) continues to evolve

and leveraging these devices for inspection purposes may

become a key area for researchers in the future, particularly

for training and education.

4) Autonomous solutions: Track inspections can be de-

manding as they require personnel to manage several re-

sponsibilities and analyse various data simultaneously. By

creating technologies capable of independently performing

specific inspection activities, it may be possible to reduce the

burden on human inspectors. For example, using drones for

the real-time detection of rails and track centreline tracking

to navigate without relying on GPS, lays the groundwork

for future self-operating inspection systems [180]. The fusion

of lightweight inspection models, edge-computing technology,

and autonomous platforms presents an exciting direction for

upcoming research efforts.

5) Emerging technologies: Potential future technologies

that my benefit railroad computer vision are edge AI, genera-

tive models, and quantum computing. Edge AI enables on-site,

real-time detection of trespassers and obstacles by processing

data directly on devices placed on trains or trackside. Genera-

tive models, such as GANs or diffusion models, can contribute

by generating realistic synthetic training data to cover a

broad range of environmental scenarios (e.g. various weather

and lighting conditions), which can improve model robust-

ness. Meanwhile, quantum computing, though still emerging,

promises a step-change in speeding up data-intensive tasks,

such as processing large volumes of video data to detect

trespassing patterns in real time or optimizing model param-

eters efficiently. The convergence of these technologies could

ultimately produce a resilient, intelligent railroad industry,

where edge AI systems, continually enhanced by generative

models and quantum-accelerated data processing, operate as a

self-optimizing system for monitoring and responding to safety

risks with increased precision and adaptability.

6) Remaining challenges: Although the application of CV

for railways has advanced quickly in recent years, challenges

remain, particularly related to the railway environment. For

example, lighting and weather changes, from day-night cycles

to rain, snow, and fog, all significantly affect image quality,

requiring robust models to handle noise while maintaining ac-

curacy. Also, camera positioning further complicates detection:

fixed cameras may lack comprehensive angles, while mobile

cameras on trains face rapid perspective changes and field-

of-view limitations. For fixed wayside cameras there is also

the risk of theft which can limit the long-term deployment

of high-end camera technology. Further, the brief appearance

of trespassers or obstacles, combined with occlusions from

environmental features, demands high sensitivity to prevent

missed detections. Additionally, railroad operations produce

track vibrations and signal lights, which create image insta-

bility and visual noise that can confuse algorithms. Real-time

processing requirements, constrained by the limited compu-

tational power of edge devices, add pressure for optimized

models that balance speed and accuracy. These algorithms

must also generalize across varied rail settings, yet data

scarcity hampers training, as high-quality, labelled datasets

of rail-specific scenarios remain limited. Moreover, regulatory

standards mandate high system reliability, which requires CV

and AI models to minimize false positives that could disrupt

operations.

VII. CONCLUSIONS

Computer vision in the railway field has the potential to

provide new and enhanced methods for asset inspection com-

pared to traditional manual techniques. It offers the potential of

improved quality control, safety, time and cost, and therefore

it is a highly active research area. This paper has performed

a state-of-the-art review of the field, attempting to capture
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the current trends and future opportunities. To do so, first

camera hardware requirements were studied. This focused

on the unique challenges associated with operating optical

equipment in a railway environment, such as contamination,

power sources and lighting. Data requirements were also

discussed, delving into the challenges associated with storage,

transmission and security. In this section, rules of thumb as

well as practical orders of magnitudes were specified. Next, the

different types of camera mounting device were explored, in-

vestigating the differences between handheld, trolley, vehicle-

borne, drone and satellite technologies. Image processing was

then explored by dividing the main approaches into ‘classical’

and ‘AI’ based. Classical approaches such as edge detection,

Hough transforms, and Gabor filters were presented before

extending to machine learning algorithms such as YOLO.

Considering the hardware requirements and image processing

algorithms, the most common applications for computer vision

in the rail industry were studied. This included detection of rail

surface defects, missing fasteners, concrete slab track cracks,

ballast particle condition, earthworks movement, level cross-

ing blockage and overhead line equipment defects. Finally,

opportunities for future research direction were discussed.
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[36] M. Kučera and Z. Dobesova, “Analysis of the Degree of Threat to
Railway Infrastructure by Falling Tree Vegetation,” ISPRS Interna-

tional Journal of Geo-Information, vol. 10, p. 292, May 2021. doi:
10.3390/ijgi10050292.

[37] G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk,
“IKONOS satellite, imagery, and products,” Remote Sensing of Envi-

ronment, vol. 88, pp. 23–36, Nov. 2003. doi: 10.1016/j.rse.2003.08.014.
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