
This is a repository copy of The MDENet education platform:zero-install directed activities
for learning MDE.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227877/

Version: Published Version

Article:

Zschaler, Steffen, Barnett, Will, Boronat, Artur et al. (2 more authors) (2025) The MDENet
education platform:zero-install directed activities for learning MDE. Software and Systems
Modeling. 102665. ISSN 1619-1366

https://doi.org/10.1007/s10270-025-01292-3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/s10270-025-01292-3
https://eprints.whiterose.ac.uk/id/eprint/227877/
https://eprints.whiterose.ac.uk/

Software and Systems Modeling

https://doi.org/10.1007/s10270-025-01292-3

TOOL PAPER

The MDENET education platform: zero-install directed activities for
learning MDE

Steffen Zschaler1 ·Will Barnett1 · Artur Boronat2 · Antonio Garcia-Dominguez3 · Dimitris Kolovos3

Received: 26 June 2024 / Revised: 31 January 2025 / Accepted: 3 April 2025

© The Author(s) 2025

Abstract

Setting up and configuring model-driven engineering (MDE) tools is not straightforward because the MDE tooling landscape is

highly fragmented and because many MDE tools are research prototypes with limited documentation. This creates significant

accidental complexity for learners of MDE, who have to overcome installation and configuration hurdles before they can even

begin to focus on the core MDE concepts they should be learning. This is further complicated by the complexity of modern

MDE tools, which can overwhelm new learners, making it difficult for them to work out what they should do next to achieve a

given goal. To address these challenges, we have developed a web-based playground platform that enables learners to engage

with MDE learning activities without the need to install anything. The playground metaphor allows teachers to expose only

those functionalities directly required for the completion of a particular learning activity. We present the general architecture

of the platform, our approach to the declarative integration of new MDE tools, and the way in which teachers can flexibly

and declaratively define new MDE learning activities. We have used our platform in a range of different contexts, from live

tutorials and 10-week university courses, to developing documentation webpages for MDE tools. We describe examples of

such uses, showcasing the flexible configurability of the platform for different types of activities and contexts.

Keywords MDE · Education · Online · No installation · Playground

1 Introduction

Model-driven engineering (MDE) [7] is a paradigm where

models play a central role in the development of a software

Communicated by Jordi Cabot and Sudipto Ghosh.

B Steffen Zschaler

szschaler@acm.org

Will Barnett

will.barnett@kcl.ac.uk

Artur Boronat

artur.boronat@leicester.ac.uk

Antonio Garcia-Dominguez

a.garcia-dominguez@york.ac.uk

Dimitris Kolovos

dimitris.kolovos@york.ac.uk

1 Department of Informatics, King’s College London, London,

UK

2 School of Computing and Mathematical Sciences, University

of Leicester, Leicester, UK

3 Department of Computer Science, University of York, York,

UK

system. Over the last couple of decades, MDE has been an

area of active research with advancements in techniques and

tools, and success stories in the real world [41]. In terms

of education, there is a consensus that MDE is a complex

subject to teach [14, 27].

A particular challenge comes from the complexity and

availability of suitable tools [8, 12, 14]. We focus on two

challenges in particular:

1. MDE tools are difficult to install and configure correctly.

Most MDE tools depend on a rich ecosystem of other

tools and frameworks, all of which need to come together

in the right versions and configurations for a given tool to

work. Installing multiple tools can easily lead to conflict-

ing demands for different versions of the same underlying

tool or framework. Tools are typically implemented in

Java and often as part of the Eclipse ecosystem. As a

result, learners of MDE first have to overcome a signifi-

cant hurdle in getting to a workable MDE tool installation

on their computer before they can even begin to learn

MDE concepts and techniques. This challenge has also

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-025-01292-3&domain=pdf
http://orcid.org/0000-0001-9062-6637

S. Zschaler et al.

previously been identified in surveys of learners of mod-

elling in UML [1].

2. MDE tools are too powerful for learners. Even when a

learner has successfully installed the MDE tools required

for a particular course, they can easily become over-

whelmed by the complexity of the tools themselves [38,

39]. Most MDE tools are integrated into an IDE, which

typically provides other capabilities, too. As a result, there

are usually hundreds of menu options and tool bar but-

tons to choose from. Picking the right one for a given task

quickly becomes challenging for novice MDE users. As

a result, learners of MDE have to first learn which func-

tionalities are relevant before they can focus on learning

MDE concepts and techniques. Note that, in the context

of teaching and learning programming, this challenge has

also been recognised and has been the foundation of the

development of bespoke education-focused tools [28, 29,

35]

These challenges create accidental complexity [25] for

learners of MDE. We want learners to encounter difficulties,

but these should be desirable difficulties [3] that enhance

their learning, such as guided practical engagement with the

relevant concepts. Ideally, learners would be able to focus on

the MDE concepts and techniques they are trying to under-

stand, rather than first having to overcome several accidental

challenges.

There are good reasons for the added complexity for pro-

duction MDE tools. Tools need to flexibly support a broad

range of use cases and functionalities. However, much of this

is not relevant for learners of MDE. We argue, therefore, that

there is a need for MDE tools specifically for the purpose of

learning MDE.

A recent workshop at MODELS 2023 identified a broad

range of requirements for such modelling tools for teach-

ing [27]. Here, we focus on a subset of these requirements.

More specifically, we aim to address the following require-

ments:

(R1) Learners should be able to undertake MDE learning activ-

ities without the need to install and configure MDE tools.

(R2) Learners should be able to engage in different types of

activities, such as typical model management activities

or the creation of new languages using language work-

benches.

(R3) Learners should be able to transition their MDE learning

activities easily to a real-world tool environment.

(R4) Teachers should be able to easily and collaboratively

define new learning activities.

(R5) Teachers should be able to control and constrain learners’

possible interactions with the MDE tools so that they

can guide learners and avoid overwhelming them with

complexity.

(R6) Teachers should be able to flexibly combine a range of

MDE tools.

(R7) Tool providers should be able to easily contribute a new

MDE tool for use in learning activities.

We address these requirements by providing an online

playground environment for MDE learning activities—the

MDENet Education Platform (EP in the rest of the paper).

The web-based nature of the playground means there is

no need to install anything beyond a basic web browser.

The playground metaphor means that learners will only be

exposed to a minimal interface focused on the files and func-

tions required for a given learning activity. We provide a

declarative language for flexibly defining learning activi-

ties. Learning activities are packaged as GitHub repositories,

enabling teacher–teacher collaboration as well as providing

learners with the ability to undertake the activities directly

in standard IDEs if desired. Modelling tools for teaching

should address requirements beyond the list above [27]. For

example, such tools should provide support for automated

assessment and rich feedback to learners. We do not cur-

rently address these further requirements in the EP. Note that

the EP uses GitHub repositories to store assignments. This

allows using GitHub Actions for auto-grading—for example

by using the popular GitHub Classroom1 service.

This paper extends a paper presented at the MODELS

Educators Symposium [2]. We extend that paper by giving

an updated account of the EP’s architecture and design, as

well as describing three case studies of how the EP has been

used in different learning contexts and with different tools

included in the learning activities. The EP already supports

a breadth of MDE tools, including Epsilon, Emfatic, OCL,

YAMTL, and Xtext, covering a spectrum of different installa-

tion requirements and user interactions, and the case studies

we present showcase how some of these are integrated into

learning activities.

The remainder of the paper is structured as follows: We

introduce the three types of stakeholders and their respec-

tive use cases in Sect. 2. Section 3 uses a running example

to illustrate an overview of the design of the EP. Section 4

describes three case studies of where the platform has been

used, demonstrating different aspects of how we address

the requirements above. Finally, after a brief discussion of

related work in Sect. 5, Sect. 6 summarises the paper, indi-

cates some future work, and provides information on how to

get involved.

1 https://classroom.github.com.

123

https://classroom.github.com

The MDENet education platform

Fig. 1 Stakeholders and key

usage scenarios for the EP.

2 Key platform users

Three types of key stakeholders are involved in teaching mod-

elling and model-driven engineering (cf. Fig. 1):

1. Learners access the platform to complete learning activ-

ities created by a Teacher.

2. Teachers create lessons to deliver to their learners as activ-

ities on the platform, and they make available the activity

files from a location accessible to their learners.

3. Tool providers create platform services for their existing

tools. Activities use these services to perform MDE func-

tions, such as model-to-model transformations, model

validations, etc.

We next describe typical use cases for each of the three

key stakeholders.

2.1 Learners

Learners are interested in working through learning activities

in order to improve their practical and conceptual under-

standing of MDE. Broadly, they are therefore interested to

complete learning activities (UC1). To do so, they access

the learning activity via their teaching organisation’s Virtual

Learning Environment (VLE) and work through the activity

in a guided fashion (R1). Teachers may get involved in this

– for example, by providing feedback or assessment of the

learner’s work.

Learners may not complete an activity in a single sitting.

They, therefore, need to be able to save their progress and

resume the learning activity (UC2) at a later stage.

Finally, learners will eventually want to be able to learn

about using real-world MDE tools, transitioning away from

the “safe space” of the EP (R3). To support this step, learners

need to be able to export the learning activity (UC3) in a

way that makes it accessible to standard tools – for example

by extracting a suitably formatted ZIP file or repository.

2.2 Teachers

Teachers create learning activities (UC4) (R4). They may

do so from scratch, and in this case are interested in being able

to succinctly describe their learning activity, incorporating

the most appropriate set of MDE tools (R6), including lan-

guage workbenches (R2), and then store the learning activity

so they can use it again and again in their teaching. In creat-

ing learning activities, teachers want to be able to constrain

what learners can do, to ensure learners focus on the task at

hand (R5)

To increase efficiency, teachers are also interested in

reusing existing learning activities (UC5). To this end,

learning activities should be stored in ways that can be eas-

ily shared with and accessed by other teachers. Of course,

direct reuse of a learning activity as is may not always be

appropriate. In those situations, teachers may wish to revise

or extend the learning activity (UC6).

2.3 Tool providers

A large community of researchers and practitioners develop

MDE tools for a wide range of model-management and lan-

guage engineering tasks. Tool providers are interested in

making their tools accessible to learners of MDE (R7). To

contribute a tool (UC7) to the EP, a tool provider needs

to identify the key functionality and features that a learner

needs to be able to access. They need to be able to package

these functionalities in individually accessible parts, so that

they can be appropriately combined in learning activities of

different complexity levels.

123

S. Zschaler et al.

3 Architecture and design of the EP

The EP builds on the Epsilon Playground [33] but generalises

the architecture to allow the declarative description of learn-

ing activities and the flexible integration of a wide range of

MDE tools. The EP also integrates with GitHub to provide

a way for learners to save their work and easily transition to

the use of real-world MDE tools and environments.

In this section, we give an overview of the key components

of the EP. First, we introduce an example learning activity,

which we will use throughout the further explanations. We

then start with a general overview of the architecture. Next,

we describe how activities are defined and executed by the

EP. We then describe how tools can be integrated with the

EP, and the implicit model-type conversion provided by the

EP to make tool integration easier. Finally, we briefly touch

on support available for teachers and tool providers to make

it easier to work with the EP.

3.1 Running example

To make the description of the design, implementation, and

use of the EPmore concrete, we introduce a running example,

to which we will refer as required. We reuse an example

from the Epsilon Playground [33] focusing on the validation

language EVL [31], which we have ported to the EP.2 The

EP is available on GitHub.3 The example can be directly

accessed on the publicly hosted version of the platform.4

Figure 2 shows the interface that learners see when com-

pleting the activity. In addition to a menu area (1) on the

left, there are five panels:

The contents of panel 2 are the constraints to check

against the model 3 and its meta-model 5 . Panel 4 dis-

plays the result of evaluating the constraints for the model.

The console 6 shows error messages.

Learners edit constraints in Panel 2 and then click on

the run button . This triggers the evaluation of the con-

straints the learner has provided. If there are errors in the

constraint definition (for example, errors in the EVL syn-

tax), these are reported in the console panel 6 . Otherwise,

the platform presents an annotated version of the model in

Panel 4 . In Fig. 2, the constraints were successfully evalu-

ated, and two violations were identified (one task is missing

a duration specification and “Charlie” is a person who is not

involved in any project task).

2 This primarily required creating declarative specifications of the activ-

ities and the Epsilon tools in the format required by the EP

3 https://github.com/mdenet/educationplatform-docker.

4 https://tinyurl.com/epEpsilon.

3.2 Platform architecture

The EP is a single-page web application, with most of the

functionality running directly in the learner’s browser. Fig-

ure 3 gives a high-level overview of the key components of

the EP. The Platform Server provides the HTML and

JavaScript to be executed in the learner’s browser. It also

runs the Token Server, which provides authentication

services for access to GitHub repositories (see below).

Three key components run in the learner’s browser:

1. The MDENet Education Platform provides the

main entry point. It is responsible for reading activity

specifications and activity files and setting up the user

interface.

2. The Activity Manager is responsible for pars-

ing and validating activity descriptions (see Sect. 3.3),

enabling the EP to configure the appropriate user inter-

face.

3. The Tool Manager keeps track of the tool services in

use by the current learning activity. Tool Services

implement wrappers around MDE tools to make them

accessible to the EP (see Sect. 3.4). They are implemented

(and typically hosted) by tool providers.

We implement a simple token server [15] to manage

GitHub OAuth authentication tokens, which works together

with a GitHub App5 and enables read and write access to

the repository underlying a learning activity (assuming this

is compatible with the learner’s access rights on GitHub).

This means learners can easily save the current state of work

as a commit to the underlying repository; the EP supports

this directly through a “Save” button in the left-hand menu.

Learners can then resume the activity at a later time (UC2).

3.3 Defining activities

Learning activities are stored in GitHub repositories. Two

types of files have to be provided:

1. A YAML [17] or JSON [20] file declaratively describing

the configuration of the EP for the learning activity.

2. Any other files required for the learning activity—for

example, models, language grammars, meta-models etc.

Learning activities are provided as a complete repository.

This means teachers can include arbitrary files and folder

structures beyond the files directly required for the learning

activity. As a result, learners can transition to using regular

IDEs and MDE tools if the repository contents have been

5 https://docs.github.com/en/apps.

123

https://github.com/mdenet/educationplatform-docker
https://tinyurl.com/epEpsilon
https://docs.github.com/en/apps

The MDENet education platform

Fig. 2 The Epsilon EVL example in the EP. Numbered circles indicate different parts referenced from the text.

Fig. 3 High-level architecture

of the EP.

set up so that it works directly with regular tools, and the

learning activity definition only picks out those files directly

required for the task at hand (R3). Learners can then checkout

the repository to their computer outside of the EP to access it

through regular tools and can even go back and forth between

both modes of access at will.

3.3.1 Activity configuration

A learning activity is presented to the learner as a single web

page with a collection of panels (2 – 6 in Fig. 2). Teach-

ers provide activity-configuration files to define the panels

and functionalities available to the learner. An activity-

configuration file may define multiple activities; these are

shown as separate links in the left-hand side menu of the EP.

In our running example, this menu can be seen in 1 in Fig. 2

and contains 3 activities, one of which is currently shown in

the main platform space.

To describe the set of learning activities available (UC4),

a teacher uses a domain-specific language (R4), currently

encoded as a JSON schema [26] (and, thus, also accessible via

YAML [17]). We provide a graphical overview of the abstract

syntax of the activity-specification language in meta-model

notation in Fig. 4.6

In the following, we introduce the language step by step

by walking through an example using the YAML notation.

Two kinds of common attributes used throughout the

activity-configuration files are id and name (sometimes

title). An id uniquely identifies the object that it is an

6 Note this is an approximation of the JSON schema adjusted for read-

ability as a meta-model. A transformation creating instances of the

meta-model from JSON files will be presented in Sect. 4.3.2

123

S. Zschaler et al.

Fig. 4 Meta-model of the activity-specification language.

1 activities:
2 - id: evl
3 title: Validate Project Plan
4 icon: evl
5 tools:
6 - http ://127.0.0.1:8070/ tools #

Epsilon
7 - http ://127.0.0.1:8071/

emfatic_tool.json # Emfatic
8 panels:
9 # Listing 2

10 layout:
11 # Listing 3

12 actions:
13 # Listing 4

Listing 1 Basic activities definition

attribute of and can be used in cross-references. A name or

title is the text to display in user interfaces for the object.

Listing 1 shows the start of the top-level structure of the

activity-configuration file for our running example (showing

only one of the three defined activities). We have already

described the id and title attributes. The icon attribute

specifies the name of an icon defined in the images css static

resource file for the icon in the activity menu (see 1 in

Fig. 2).

The tools array provides a list of URLs of the tool ser-

vices for the MDE tools used in the activity. We support lim-

ited rewriting of these URLs. Specifically, a teacher can use

the form {{ID-<panel-id>}} (where <panel-id> is

the identifier of a panel in the current activity) which will be

replaced by a URL for a tool service that has been generated

as part of the completion of another activity. We will discuss

this in more detail when we discuss language-workbench

activities in Sect. 3.3.2. A complete example can be found in

Sect. 4.2.3 on Page 26.

Tools can be deployed in arbitrary locations, which is why

the tools array accepts fully specified URLs to identify the

location of any tools. In Listing 1, the URLs we show are

those used when hosting a local version of the EP, including

the Epsilon tools and support for Emfatic [16]. For tools

hosted with the platform, the EP is able to rewrite URLs

using the notation {{BASE-URL}}:<port> followed by

the name of a JSON/YAML file with the tool description.

This is translated (based on a registry of port numbers) into

appropriate paths at the base URL where the EP has been

deployed. The two tool URLs from Listing 1 can then also

be written as

6 - {{BASE -URL }}:8070/ tools #
Epsilon

7 - {{BASE -URL }}:8071/ emfatic_tool.
json

This notation will work regardless of whether the activity is

executed on the publicly hosted EP, on a developer’s personal

PC, or on a different server.

An activity definition further includes the definition of

panels, their visual layout, and actions available to the learner.

123

The MDENet education platform

1 - id: panel -evl
2 name: Constraints (EVL)
3 ref: evl
4 file: psl.evl

Listing 2 Activity configuration panels

We will first consider the definition of panels and layouts,

which specify what the learner can see in the browser.

An activity can define multiple panels. Each panel defi-

nition has id and name attributes as discussed above; the

name is shown as the title bar of the panel on the platform. The

ref attribute is used to identify the type of panel. Each tool

can contribute new panel types, specifying syntax highlight-

ing rules for text panels, panel icons, and buttons available by

default. In addition, the EP defines some stock panel types; in

particular, the console and composite panel types are defined

directly by the EP. The ref attribute is also used to identify

the type of the panel’s contents. This will become impor-

tant when we discuss how the EP automatically transforms

between types of contents when invoking functionality from

different tools (cf. Section 3.5).

The file attribute is used to identify the file to be shown

in the panel. This can be an arbitrary URL, but is normally

a path relative to the path of the activity-configuration file in

the containing GitHub repository. If so, the EP will commit

any changes to the panel contents back to that file when the

learner chooses to save their work (UC2). Panels, thus, allow

teachers to focus learners’ attention on just the files they

require for the current activity (R5).

Listing 2 shows the definition of the EVL panel for our

running example. This assumes that the repository contains

a file called psl.evl in the same folder as the activity-

configuration file. The contents of that file will be shown in

the panel and any changes will be committed back to that file

when the learner chooses to save. The panel makes reference

to the evl panel type, which is provided by the Epsilon tool

previously referenced by its URL.

Two types of panels are worth discussing separately:

1. Editor definition panels. A key type of learning activity is

about how to define new modelling languages and tools.

This requires learners to go through a two-stage process

where they first define a language and then try it out. The

EP provides some special notation to couple these stages

and we will discuss these in detail in Sect. 3.3.2 when

discussing “language-workbench activities” in general.

2. Composite panels. At times, different perspectives on the

same artefact are useful, but there may not be enough

space on the screen to show them all simultaneously.

For this purpose, the EP provides the option of defining

composite panels, which contain other panels themselves.

This is done by setting the ref attribute to composite.

1 layout:
2 area:
3 - [panel -evl , panel -model ,

panel -problems]
4 - [panel -console , panel -mm ,

]

Listing 3 Activity configuration layout

Special “toggle” buttons can be defined as part of the com-

posite panel to allow learners to show and hide individual

sub-panels. Composite panels can, in principle, be nested

arbitrarily deeply. In practice, we have not yet found the

need to define more than one level of nesting.

Panels can define buttons that the learner can use to trig-

ger specific actions. Tool providers typically define default

buttons for the panel types they contribute. These buttons can

be overridden by teachers by providing a separate array of

buttons in a panel specification (R5). Each element in such

an array can either be a reference to one of the default but-

tons defined by the tool provider or a full separate button

definition. We will describe button definitions in more detail

in Sect. 3.4.

Once panels have been defined, the teacher needs to spec-

ify how these will be displayed. Note that it is possible to

define panels that will not be shown. This can be a useful

way of loading files required for certain functions without

exposing the learner to the additional complexity. We will

see examples of this in some of the case studies described in

Sect. 4. Panels are shown by including them in the layout

two-dimensional array. This has one element for each row

of panels. Where arrays are of uneven lengths, panels will

be resized to cover multiple rows automatically. Listing 3

shows the layout definition for our running example. Note

how the panel-problems panel (Panel 4 in Fig. 2) is

automatically expanded to fill both rows.

The final component of an activity definition is the defi-

nition of actions. These are used to define what happens

when a learner clicks on a button on one of the panels. There

are two parts to this:

1. Tool providers define web-based API endpoints (called

functions) through which specific tool functionality is

exposed. These have a name and a set of formal param-

eters. Buttons are associated with functions in the button

definition. We discuss these in more detail in Sect. 3.4.

2. For a specific learning activity, an action specifies

which panels provide the values for the various parameters

(alternatively, values can be provided directly) and which

panel will be used to display the output from the tool func-

tion. An action can also reference a separate console

123

S. Zschaler et al.

1 actions:
2 - source: panel -evl
3 sourceButton: action -button
4 parameters:
5 program: panel -evl
6 flexmi: panel -model
7 emfatic: panel -mm
8 output: panel -problems

Listing 4 Activity configuration actions

which can be used to display stdout/stderr output

to the learner in addition to the actual function result.

Listing 4 shows an example action definition for our

running example. This defines what happens when the

learner clicks on the action-button button in the

panel-evl panel (the button with on it). The

tool provider has already defined this button to invoke

a tool function that evaluates the EVL code over a

model and meta-model. Here, we define where the

EVL code (program) comes from (panel panel-evl)

and what the model (panel-model) and meta-model

(panel-mm) are for which the constraints are to be

evaluated. Finally, we state that the result of the func-

tion invocation should be shown to the learner in panel

panel-problems.

3.3.2 Language-workbench activities

A key aspect of MDE is the development of new, typi-

cally domain-specific, modelling languages. Therefore, the

EP needs to be able to support learning activities that require

learners to develop their own modelling languages (R2). Such

activities take two steps:

1. Learners create a description of their modelling language.

This may be a meta-model, a grammar, a specification of

the graphical syntax, a code generator template, validation

code, etc.

2. Learners use the language they have defined. They can

see how their language description has been translated

into editors and other tools for their language.

By defining a new language, learners effectively create

a new tool. In fact, many existing MDE tools define their

own language; typically, these are packaged as plugins for

IDEs such as Eclipse, IntelliJ, or VSCode. Thus, learners

temporarily act as tool providers.

To hide the details of how MDE tools are integrated

into the EP from learners, we allow activities to be coupled

dynamically within an activity-configuration file. With this

capability, teachers define language-workbench activities by

1 activities:
2 - id: activity -xtext
3 panels:
4 - id: panel -xtext
5 name: Grammar
6 ref: xtext -grammar
7 file: Turtles.xtext
8 editorActivity: activity -

editor
9 editorPanel: panel -editor

10 - …
11 …
12 - id: activity -editor
13 tools: [{{ID -panel -editor }}/

editor_tool.json , …]
14 panels:
15 - id: panel -editor
16 …

Listing 5 Configuring language-workbench activities

1. defining an activity for learners to provide relevant

descriptions of their new language. A button in this activ-

ity triggers a tool function provided by the creator of the

language workbench to generate a new MDE tool encom-

passing the learner’s new language.

2. defining a separate activity that is configured to use the

language tool dynamically generated from the learner’s

language description.

Listing 5 shows an excerpt from a learning activity where

learners produce an Xtext grammar [23] and then try out the

generated editor. There are two activities here.

1. activity-xtext defines a panel where the learner

can create the grammar. This panel uses the xtext-

grammar panel type provided by the Xtext tool, which

includes a button to trigger the generation of Xtext

artefacts from the grammar. In addition to the usual

panel attributes, panel-xtext uses two attributes

editorActivity and editorPanel. These refer to

the second activity activity-editor and a panel in

that activity (panel-editor).

2. activity-editor is the activity learners use to try

out their new language. Because the activity is refer-

enced from a panel in the first activity, the EP only makes

activity-editor available through the menu if the

generation action in the first activity has been used by

the learner and has produced an editor. The API endpoint

associated with this action is expected to return a URL

pointing to where the newly generated tool is available.

This URL is made available to the learning activity via

the {{ID-panel-editor}} variable, which is used

to load the generated tool in the second activity.

123

The MDENet education platform

1 tool:
2 id: epsilon
3 name: Epsilon
4 functions:
5 # Listing 7
6 panelDefs:
7 # Listing 8

Listing 6 Tool configuration top-level structure

3.4 ContributingMDE tools

Tool services provide the functionality that the installed tools

on a developer’s local machine environment would normally

provide—for example, model-to-model transformation, text

generation, or model validation. They make up the back-end

of the EP, providing a wrapper around an existing MDE tool.

A tool service comprises a (set of) tool function(s) and static

resources.

The tool function provides a web-based API endpoint

that conforms to the tool interface specification. The static

resources a tool provider must create (UC7) include: a tool

configuration file, highlighting rules, and icons. Tools are

provided independently of learning activities. They may be

hosted on the same infrastructure as the EP, but they may

also be hosted on separate infrastructure—for example, con-

trolled by the tool provider (R7). Teachers reference tools by

their URL to use them in an activity they are creating.

3.4.1 Tool configuration

A tool-configuration file defines the tool functions and the

panels that are available for a learning activity to use.

Figure 5 provides an overview of the concepts used in tool-

configuration files.

Listing 6 shows the top-level structure of a tool configu-

ration using the example of the Epsilon tool, which provides

access to the various tools in the Epsilon suite [30]. Tool con-

figurations have an id and a name. They then define two key

contributions: functions and panelDefs (panel defini-

tions).

A tool can declare multiple functions. Each function

declaration has an id and an explanatory name. The path

attribute is a URL that the EP will send a POST request to

invoke the function. It is up to the tool service (see below) how

to implement this API endpoint. The function declaration

further declares the formal parameters of the function

and indicates its returnType.

Listing 7 shows the EVL tool configuration function

declaration for our example. As can be seen, parameter dec-

larations normally have a name and a type. The latter is

used to support a limited degree of automatic type conversion

(cf. Section 3.5). The model parameter has an additional

1 functions:
2 - id: function -evl
3 name: evl
4 parameters:
5 - name: program
6 type: evl
7 - name: metamodel
8 type: emfatic
9 - name: model

10 type: flexmi
11 instanceOf: metamodel
12 - name: language
13 type: text
14 returnType: text
15 path: {{BASE -URL}}/ services/

epsilon

Listing 7 Tool configuration function definition for EVL tool

instanceOf attribute, indicating that whatever is passed

in through this parameter is expected to be a model that is

an instance of the meta-model passed in via the parameter

named metamodel.

The path uses the special {{BASE-URL}} rewrite rule,

which the EP will replace with the location from which the

tool configuration file was loaded. This allows tools to be

hosted in different locations without the need to change their

specifications.

A tool further defines multiple panel definitions

(panelDefs) to be instantiated by the panels of activ-

ity configurations using the tool. Each panel definition has

an id, a name, and an icon (referencing an image pro-

vided via a separate CSS file). The panelclass attribute

identifies one of a fixed set of base panel types: consoles

(ConsolePanel), text editors with syntax highlighting

and other IDE functionality (ProgramPanel) based on

the ACE editor framework7 and configured via a JavaScript

module separately provided by the tool service, and output

panels that can show code or diagrams (OutputPanel).

The language attribute provides a string uniquely identi-

fying the type of the contents of a panel. This will be used

together with the type attributes of function parameters to

ensure correct input is provided to tool functions. It is also

used to select the correct set of highlighting rules from the

rules provided separately by the tool. Listing 8 shows the

EVL panel definition.

Panel definitions may optionally define an array of

buttons. Each button can either be an action button (allow-

ing learners to trigger a specific tool function) or a help button

(linking to additional material learners can use to learn more

about the contents of that specific panel). Listing 8 shows

examples of each type of button.

7 https://ace.c9.io/

123

https://ace.c9.io/

S. Zschaler et al.

Fig. 5 Tool configuration

meta-model.

1 panelDefs:
2 - id: evl
3 name: evl
4 panelclass: ProgramPanel
5 icon: evl
6 language: evl
7 buttons:
8 - id: action -button
9 icon: run

10 actionfunction: function -evl
11 hint: Run the program
12 - id: help -button
13 icon: info
14 url:

https://www.eclipse.org/epsilon/doc/evl/
15 hint: EVL Language Reference

Listing 8 Panel definition for the EVL panel

3.4.2 Tool service

A tool’s functionality is provided by a tool service through

web API endpoints. These can be implemented in a variety

of ways. For many tools, the services will be implemented

as stateless functions-as-a-service, but some tools (e.g. lan-

guage workbenches like Xtext) will use a stateful server as

the tool service. Requests and responses use standard JSON

encoding for parameters and result data.

3.5 Dynamic invocation of MDE tool functions

As learners progress through learning activities, they edit the

contents of panels and click on the buttons available. Action

buttons are linked to tool-service functions as described in

Sect. 3.4.1. When the learner clicks on such a button, the

EP evaluates the linked action definition (cf. Listing 4)

to identify the panels whose contents is to be provided as

parameter values to the tool-service function.

Tool-service functions expect parameters to be of partic-

ular types. In particular, models provided are expected to be

instances of a particular meta-model and to be presented in

a specific concrete syntax.

As different tools are combined in the same learning activ-

ity (R6), information will not always be available in the

precise type expected by tool-service functions. Rather than

requiring tools to provide variants of tool-service functions

for a wide range of input types (and type combinations)—

which would not scale—the EP provides support for limited

implicit type conversion when invoking tool-service func-

tions.

To achieve this, the EP:

1. Includes type information in ToolFunction

Parameter specifications to document the type of infor-

mation expected by the tool-service function.

2. Includes type information in panel definitions (provided

by tool configurations) indicating the type of information

in a particular panel.

3. Allows tools to register conversion functions from one

type to another. These are defined similarly to action

functions and are also implemented via a web-based API

endpoint.

4. Compares input value types against the expected tool-

service function types.

123

The MDENet education platform

Algorithm 1 Pseudocode representation of tool-service func-

tion parameter type conversion

1: params: map of activity action parameters to their type and value

2: tf : object describing a tool function

3: for all p in params do

4: tfp ← tf .getParam(p)

5: if p.type �= tfp.type then

6: if ¬tfp.hasMetamodel() then

7: cr ← convert(p.value, p.type, tfp.type)

8: else

9: mm ← params[p.instanceOf]

10: cr ← convertIncludingMetamodel(

p.value, p.type,

mm.value, mm.type, tfp.type)

11: end if

12: requestData[p.name] ← cr

13: else

14: requestData[p.name] ← p.value

15: end if

16: end for

17: call(tf .id, requestData)

5. Identifies suitable conversion functions to translate pro-

vided types to required types and calls them.

6. Calls the requested tool function.

Types are represented by strings. Type equality is simply

string equality; the EP does not currently provide support for

type hierarchies or other advanced features.

The pseudocode in Algorithm 1 shows how the EP han-

dles type conversion when a tool function is triggered by a

user clicking on an action button. When an action button is

pressed, a params object is created using the corresponding

button’s action from the activity-configuration file. The

params object maps function names to a value and type.

The value is the input to the tool function and is the contents

of a displayed panel that is specified by the configuration

file’s activity parameter to panel mapping.

For each of the parameters in params, Line 3, the EP

checks to see if the parameter type matches the corresponding

tool function’s parameter type, Line 5, to determine whether

any type conversion is necessary. If the types match, the value

params is inserted into the request Data array on Line 14.

If the types do not match, the EP tries to convert the input

value to a type that matches the tool function’s parameter

type using a conversion function.

To convert a model, the meta-model is required by the

conversion function. Converting the format in which meta-

models are represented does not require additional reference

to an explicit meta-meta-model. The EP handles each of these

cases separately. On Line 6 the parameter is checked for a

meta-model dependency. If such a dependency exists, this

will be captured by the instanceOf element’s presence in

the parameter definition (cf. Listing 7), which is extracted on

Line 9.

If there is no meta-model dependency, the EP con-

verts the input parameter using the convert() function. If

there is a dependency, the EP converts the input parameter

using the convert I ncludingMetamodel() function. This

function has five parameters: input value, input type, meta-

model value, meta-model type, and target type. Note that

convert I ncludingMetamodel() may only be able to do

the conversion by first converting the meta-model itself to a

format that can be accepted by an available conversion func-

tion.

The result of either conversion is assigned to cr on Lines 7

or 10, which is inserted into the request Data array on

Line 12. Following all the parameters in params being pro-

cessed, the request Data variable holds the inputs to the

tool function with the types it expects. The tool function is

finally called by the call() function on Line 17. The call()

has two parameters: the id of the tool function, and an array

containing the parameters and their values.

Conversion functions are identified from the tool con-

figurations referenced by the activity. To minimise the

complexity of the type conversion, only direct conversions

using a single function are considered; conversions are not

chained. If no suitable direct conversion can be found, the

EP reports a configuration error. The EP currently does not

perform conversions on tool-service function results, but we

plan to introduce this in the future.

3.6 Support available for teachers and tool
providers

To support teachers in defining activities (R4) and tool

providers in contributing tools to the EP (R7), the abstract

syntax of the activity-configuration and tool-configuration

languages has been captured in a set of JSON schema defini-

tions [26]. These are used by a VSCode [40] plugin8 which

provides a degree of validation and code-completion sup-

port for teachers creating new learning activities and tool

providers contributing new MDE tools. There is also a reposi-

tory of example activities9 that can serve as starting points for

teachers to extend and refine, as well as a template repository

that can be used as a starting point for new tool definitions.10

JSON schemas do not provide support for well-formedness

constraints beyond syntactic and multiplicity constraints.

When loading a configuration file, the EP provides more

detailed validation feedback if required. We plan to trans-

late the current JSON schemas into full DSMLs, which will

provide more powerful validation and feedback to teachers

and tool providers before loading activities into the EP.

8 https://github.com/mdenet/educationplatform-vscode/

9 https://github.com/mdenet/educationplatform-examples/

10 https://github.com/mdenet/educationplatform-tooltemplate

123

https://github.com/mdenet/educationplatform-vscode/
https://github.com/mdenet/educationplatform-examples/
https://github.com/mdenet/educationplatform-tooltemplate

S. Zschaler et al.

4 Case studies

In this section, we present three case studies of different uses

of the EP. Each of these demonstrates how different require-

ments established in Sect. 1 have been addressed by the EP.

To structure the case studies, we formulated three exploratory

research questions:

(RQ1) How can the EP reduce entry barriers for learners and

provide a practical, scalable, and supportive learning

environment?

(RQ2) How effectively does the EP empower educators to

design, manage, and control tailored learning activi-

ties in MDE education?

(RQ3) What mechanisms and processes enable the EP to

accommodate contributions from diverse stakehold-

ers, including tool providers, to extend its applicabil-

ity and utility?

Following the recommendations in [45], the case studies

are structured to address these questions by focusing on their

real-world context, integrating multiple sources of evidence,

and maintaining a clear chain of evidence. Each case study

highlights how specific aspects of the platform were used to

address one or more of the requirements outlined in Sect. 1,

ensuring a thorough and exploratory approach to understand-

ing the EP’s impact and capabilities.

4.1 Epsilon andMDE DevOps

One of the authors (Garcia-Dominguez) presented a tutorial

titled “Managing your models as part of a DevOps pipeline”

at the 2023 MDENet Annual Symposium.11 The tutorial was

dedicated to showcasing how model-driven approaches could

be combined with DevOps practices: whether by executing

model management workflows from continuous integration

processes, or by having model management operations sup-

port DevOps tasks like interacting with APIs to produce

artefacts (e.g. release notes based on the GitHub issues API).

In order to allow attendees (a mixed audience from indus-

try and academia) to interactively try out the examples in

the tutorial without having to install and set up an entire

development environment, the EP was adopted. This section

discusses how workspaces were automatically provisioned

for each attendee via the EP and GitHub, and the design and

implementation of the various EP activities that were part of

the tutorial.

11 Materials available from: https://github.com/agarciadom/mdenet-

mde-ci-tutorial

4.1.1 Automated provisioning of attendee workspaces via

GitHub

The tutorial materials were set up as a GitHub template repos-

itory, allowing attendees to launch the EP in different ways

depending on their needs (R1) (R3). If the participant did not

need to save their changes, they could launch the EP directly

on the tutorial materials by following a link in the repository’s

README file. This did not require a GitHub account.

On the other hand, if the participant wanted to persist

their changes (e.g. to see the automated execution of the

CI pipelines after experimenting with the examples), they

needed to have their own repository with a copy of the materi-

als. Participants could use existing GitHub facilities to create

a repository using the tutorial materials as a template, but

they would also need to install the MDENet GitHub applica-

tion into their GitHub account, so the EP could commit their

changes on their behalf.

To avoid this complexity, a GitHub Classroom organisa-

tion was created for the tutorial, with the MDENet GitHub

application pre-installed into it. A Classroom assignment was

created using the template repository as a starting point, and

attendees were given an invitation link to have GitHub cre-

ate a repository within the organisation, which they could use

from the EP.

Having created a repository and given the MDENet

GitHub application access to it, the next task was telling the

EP to open their repository. This required following a link

which included the address of the repository. Rather than

requiring participants to manually construct the appropri-

ate URL (which would be prone to mistakes), the repository

automatically updated its own links in theREADMEby using a

GitHub create workflow. Participants only needed to wait

briefly for the workflow to complete after creating the Class-

room repository, and from then on they only had to follow

the updated link.

In general, the attendees did not require assistance with

this automated setup (R1), which closely mirrored what

would be typically used in an MDE course (UC1–2).

4.1.2 Model-driven development of Java state machines

The first group of activities that attendees are walked through

is the model-driven development of a Java program that

implements a state machine. These include:

The above activities reused the tools available from

the Epsilon Playground mostly as-is, except for minor

changes (R7): adding the JSON metadata needed to describe

them as EP tools, and a repackaging as a Micronaut applica-

tion in order to produce a compact Docker image.12

12 The Micronaut application with the Epsilon tools for the EP is avail-

able from: https://github.com/epsilonlabs/playground-micronaut.

123

https://github.com/agarciadom/mdenet-mde-ci-tutorial
https://github.com/agarciadom/mdenet-mde-ci-tutorial
https://github.com/epsilonlabs/playground-micronaut

The MDENet education platform

The Epsilon scripts being edited from the activities are

exercised in two ways:

• From the EP activities, they are executed independently

from each other: while in AV and AT the participant edits

the source state machine model and the EVL/ETL scripts,

in AG the participant edits the EGL and EGX scripts and

an example Java abstract syntax model which is unre-

lated to the state machine model. The use of a separate

Java abstract syntax model is to avoid overwhelming the

participant with an overly complex model while learning

about EGL and EGX.

• When the participants save their changes, they are com-

mitted and pushed by the EP to GitHub, which triggers a

CI workflow previously prepared in the repository. The

CI workflow uses an existing GitHub action13 to run a

model management workflow that runs the entire chain

of EVL, ETL, and EGL/EGX scripts to generate the final

Java code of the state machine, and build it with Gradle.

In combination, this set of activities show how it is possi-

ble to showcase various model management languages from

the EP and then have the scripts edited by the participants

integrate with the existing GitHub CI infrastructure and pop-

ular build tools (Gradle) (R3). The use of CI also makes it

possible to deliver automated feedback on the edits made

by the participants: in an educational setting, this capability

could be used to deliver immediate formative feedback.

4.1.3 Generation of release notes from GitHub issues API

Besides executing model management operations from CI

pipelines, the tutorial included an activity where model man-

agement technologies were used to consume information

from an existing API, which is more typical of a DevOps

environment. The EP activity (shown in Fig. 6) allows partic-

ipants to experiment with the transformation of the JSON

output from the GitHub issues API14 2 to a Markdown

document 3 , using an EGL template 1 . Rather than intro-

ducing a new model management language, this activity was

intended to show attendees that JSON documents could also

be used by Epsilon as a model, where its meta-model was

implied by the JSON document structure rather than explic-

itly defined as in EMF models.

Similarly to the AG activity in Sect. 4.1.2, the activity

operates from a JSON document in the repository, but the

EGL script itself is later used on live responses from the

GitHub issues API from a GitHub Actions workflow. This

13 The GitHub action used to run Epsilon workflows is available from:

https://github.com/committed-consulting/epsilon-ci-action

14 https://docs.github.com/en/rest/issues?apiVersion=2022-11-28

workflow is configured to run periodically, using the exist-

ing facilities from GitHub Actions, and upload the resulting

Markdown as a build artefact.

4.1.4 Transitioning to an IDE

As a last detail, the repository was designed so that partici-

pants could at any time transition from the EP to an IDE (R3):

in this case, the Eclipse IDE, since the most mature tooling

for the Epsilon languages is Eclipse-based. The repository

is already a combination of a generic Eclipse project and a

Gradle project, which are both directly usable from Eclipse

if Epsilon is installed.

This shows an important contrast with the Epsilon Play-

ground: whereas in the Epsilon Playground the examples are

entirely self-contained and can be exported in an executable

form from their Download button, the MDENet EP expects

the teacher to have prepared the repository in advance to

make it usable from a desktop IDE. While this requires more

preparation from the teacher, it also avoids any assumptions

from the web-based environment, allowing the teacher to

integrate with the IDE and/or build system that better suits

their requirements.

4.1.5 Analysis of research questions

The case study has provided the following answers to the

above research questions:

RQ1: How can the EP reduce entry barriers for learners

and provide a practical, scalable, and supportive learning

environment?

Prior to the EP, learners would have needed to down-

load and unpack the starting code for the tutorial, install a

recent version of the Eclipse Modelling Tools distribution,

set it up with the appropriate plugins from third-party update

sites (specifically, Epsilon), import the starting code into their

IDE, and resolve any technical issues around their Java envi-

ronment. The EP simplified this (R1) to one click if they

did not want to save their changes (following a link in the

README), and only a few more clicks if they did want to

save them (creating a repository via GitHub Classroom, wait-

ing for a few seconds, then following a link). An alternative

might have been to deliver the learning activities through a

prepackaged environment—for example, using Docker. This

would have required learners to have the appropriate run-time

infrastructure (Docker) available on their machines already,

or would have incurred effort for installing such infrastruc-

ture. Experience in other learning contexts (see Sect. 4.2)

shows that this can be a significant hurdle for some learners.

Likewise, any UI elements that were not needed for the

learning experience but which would be part of a full-featured

IDE were avoided by using the EP, allowing them to focus on

the core topic instead of having to deal with the steep learning

123

https://github.com/committed-consulting/epsilon-ci-action
https://docs.github.com/en/rest/issues?apiVersion=2022-11-28

S. Zschaler et al.

Fig. 6 Screenshot of the Github Issues JSON EP activity. Numbered circles indicate different parts referenced from the text.

curve of a full IDE (R5). Once the learners were comfortable

with the concepts, they could transition their work (R3) to the

same fully-featured IDE that they would use in a professional

setting, by simply cloning their repository and setting it up

in the IDE as usual.

RQ2: How effectively does the EP empower educators to

design, manage, and control tailored learning activities in

MDE education?

This case study allowed the teacher to cover every stage of

a model-driven continuous integration and delivery pipeline

(R2)(R4), from the modelling of the state machine to the com-

pilation of the generated code and its packaging as a library.

Learners could practice with each stage of the pipeline inde-

pendently without having to learn the specifics of running

each type of Epsilon script, and the CI/CD configuration was

already done for them in the starting code (which they would

have had to learn to do from scratch otherwise). Teachers

were able to easily direct learners’ focus on the appropri-

ate files and actions for each step with minimum effort by

providing a declarative specification of the activities.

The compatibility with GitHub Classroom also opens up

new opportunities for monitoring the progress of the expe-

rience, e.g. by using the reporting tools in GitHub, and

regularly inspecting the current state of the various learn-

ers’ repositories. Excluding the test repository created by the

teacher, there were another 11 repositories created within

the GitHub Classroom organisation created for this tutorial.

This excludes attendees who simply followed the link in the

README without creating their own repository (as they

were happy to try out the EP without saving their changes).

RQ3: What mechanisms and processes enable the EP

to accommodate contributions from diverse stakeholders,

including tool providers, to extend its applicability and util-

ity?

This tutorial was initially based on the Eclipse Epsilon

tool server that was adapted by the EP developers from the

first version of the Epsilon Playground, which was based on

Google Cloud Functions. The Epsilon developers have con-

tributed a new version of the Epsilon tool server, based on a

new framework (Micronaut) with significant improvements

in performance and space savings. Since the only require-

ment is to maintain compatibility with the EP tool API, it has

been trivial to swap out the old Epsilon tool server with this

new one (R7) without impacting any of the existing teaching

materials.

4.2 Developing DSMLs in Xtext

In this section, we describe how the EP was used as part of a

course on MDE taught to third-year undergraduate students

and master’s students at King’s College London. Through

this, we demonstrate how new tools can be easily contributed

to the EP (R7) and how they can be combined with exist-

ing tools to provide rich learning activities to learners of

MDE (R6). The learning activity teaches the use of language

workbenches (R2).

123

The MDENet education platform

We begin by briefly summarising the context in which

these activities were introduced, before describing the new

Xtext tool service we have implemented. We then show two

example learning activities demonstrating the basic use of the

Xtext tool service and its combination with existing Epsilon

tools.

4.2.1 Context: teaching MDE at King’s

At King’s, we teach a course on MDE to third-year under-

graduate students and to master’s students. The focus of

this course is on developing domain-specific modelling lan-

guages (DSMLs), validations, transformations, and other

model-management tools. Learning outcomes include under-

standing core principles of MDE, including constituent

elements of language definition in different formalisms, and

concepts and technologies for model transformation and code

generation, as well as abilities to develop a DSML and sup-

port tooling (transformations, code generators, validators). A

large part of the practical work in the course uses Xtext [23]

to create DSMLs and their supporting infrastructure, but we

also use Epsilon tools, and students get some exposure to

other approaches for developing DSMLs. The course is taken

by between 60 and 100 students each year, comprising both

3rd-year BSc students and MSc students.

A recurring challenge for our students was the installation

and use of Eclipse and the various tools required. There is lim-

ited TA support to help students resolve technical challenges.

Each year, this has caused a significant number of students

to struggle to work on the actual learning tasks, because they

ran into problems with Eclipse or the tools. In the 2023/24

academic year, we introduced the EP as an optional alterna-

tive to reduce the need for students to struggle with Eclipse

directly.

4.2.2 Xtext tool service: integrating a language workbench

Xtext is a language workbench [22]. This means there are

two distinct phases that Xtext learning activities need to be

able to support:

1. language definition, where learners define (parts of) their

DSML using the relevant Xtext concepts

2. language use, where learners experiment with their new

DSML in an editor with error feedback, code completion,

etc., but also by integrating with further tools, such as

model transformations.

It is important that learners clearly understand the dis-

tinction between these phases, as they will be undertaken

by different roles in real-world DSML projects: language

engineers will define languages and language users will use

them. We have chosen to represent each phase by separate,

but linked, learning activities:

1. In a first activity, learners define aspects of their language.

They then select an action button, which sends their def-

initions to the Xtext tool services, which generates the

full set of Xtext artefacts. For each learner, the Xtext tool

service generates a tool service providing a panel for edit-

ing models in the learner-defined DSML and makes this

available via a unique URL.

2. This dynamically generated tool service is then used by

learners in a second activity, where they can test their new

language.

Note that this requires a stateful tool service that can main-

tain generated Xtext artefacts for each learner. The service

implements a single tool-service function that accepts an

Xtext grammar and, optionally, a scope provider, a valida-

tion implementation, and a code-generator implementation,

each using the relevant Xtext interfaces. The tool service

function sets up an Xtext project structure and copies in the

provided files, before triggering the Xtext generation process.

As part of this, Xtext is requested to generate web support,15

which is then used as the basis for the dynamically generated

tool service. Generated tool services are removed from the

server every 24 h to manage memory usage on the server. In

the future, we may implement more sophisticated resource

management.

The Xtext tool service uses code generation to produce a

tool service implementation that is specifically adapted for

the language defined by the learners and that contributes the

following:

(a) a panel for editing models in the new DSML, including

code completion and error markers

(b) a conversion function for converting models in the DSML

into plain XMI for use with other tools

(c) an action function for converting models to a diagram-

matic representation as an object diagram to allow

learners to explore parse results

(d) an action function for triggering the Xtext code generator.

4.2.3 Examples

The first activity learners engage with asks them to create a

simple Xtext grammar, generate the language infrastructure,

and then experiment with their new language in a simple

editor. Similar to the activities presented in Sect. 4.1.2, we

distribute learning activities using GitHub Classroom, pro-

viding repositories with full Eclipse projects so learners can

use them both from the EP and directly from Eclipse (R3).

15 https://eclipse.dev/Xtext/documentation/330_web_support.html

123

https://eclipse.dev/Xtext/documentation/330_web_support.html

S. Zschaler et al.

To further support learners, we provide GitHub actions that

automatically run tests for every change and allow learners

to understand what part of the language they are still missing

in their grammar.

Figure 7 shows the first activity, where learners define a

grammar (Panel 1) and generate the Xtext artefacts (But-

ton). As the generation process runs, learners will receive

feedback in the console panel 2 ; this is the same feedback

they would receive when generating Xtext artefacts in Eclipse

and will include error information if there are problems with

the grammar defined. Note that the menu 3 currently only

shows one activity; this will be updated as soon as an Xtext

editor has been successfully generated from the learner’s

grammar.

Listing 9 shows the corresponding activity configuration.

This is fairly straightforward (R4), but note:

(a) the use of the publicly hosted EP (Line 7)

(b) the reference to a second activity and panel on Lines 14–

15, indicating the activity that uses the generated Xtext

editor

(c) the use of the Xtext action function from the action

defined on Lines 26–34.

Fig. 8 shows a screenshot of the second learning activ-

ity, where learners can explore the DSML they have defined.

Panel 1 shows an editor using the syntax highlighting and

code completion generated from the grammar. Panel 2

shows the meta-model generated by Xtext, allowing learners

to improve their understanding of Xtext meta-model infer-

ence. They can view the meta-model textually (using the

Ecore XML rendering) or graphically as a class diagram.

When learners click on the button in Panel 1 , they can see

a graphical representation of their current model as an object

diagram in Panel 3 . This helps conceptualise the result of

parsing the model text into the internal representation used

for validation, code generation and model transformation.

Listing 10 shows the definition of this second activity.

Note the use of the {{ID-panel-turtles}} rewriting

on Line 10 to load the definition of the tool service dynami-

cally generated for the learner. We use the same mechanism

again on Line 26 to load the Xtext-generated meta-model. We

use theemfgraphpanel type provided by theemf_tool to

show the model diagrams. This type of panel is able to show

an arbitrary SVG diagram. We generate the SVG using an

action function (not shown here) that runs an EGL script [43]

generating a PlantUML16 specification, from which we then

generate a SVG.

Finally, we briefly present in Fig. 9 an advanced activity

combining Xtext and ETL [32] (R6). Panel 1 is the gener-

ated Xtext editor, but in Panel 2 learners are able to define an

16 https://plantuml.com/

1 activities:
2 - id: edit -grammar
3 title: Create the Xtext grammar
4 icon: xtext
5

6 tools:
7 - https://ep.mde-network.org/

tools/xtext/xtext_tool.json
8

9 panels:
10 - id: panel -xtext
11 name: Grammar
12 ref: xtext -grammar
13 file: uk.ac.kcl.inf.mdd1.

turtles/src/uk/ac/kcl/
inf/mdd1/Turtles.xtext

14 editorPanel: panel -turtles
15 editorActivity: turtles -

editor
16

17 - id: panel -console
18 name: Console
19 ref: console
20

21 layout:
22 area:
23 - [panel -xtext],
24 - [panel -console]
25

26 actions:
27 - source: panel -xtext
28 sourceButton: action -button
29 parameters:
30 languageName: uk.ac.kcl.

inf.mdd1.Turtles
31 baseName: uk.ac.kcl.inf.

mdd1.turtles
32 extension: turtles
33 grammar: panel -xtext
34 output: panel -console

Listing 9 Xtext activity definition: enabling grammar specification

ETL transformation for models in their newly defined DSML.

They can then execute the transformation, which presents a

visualisation of the resulting model in Panel 5 as well as

any additional output in the console 3 . Panel 4 can be used

to visualise the current model or the Xtext-generated meta-

model. The activity also uses a hidden panel that loads the

Xtext-generated meta-model, making it available to be visu-

alised via the button in the top-right corner of Panel 4 .

Key to the integration of tools in this activity (R6) is the

EP’s ability to automatically convert model types. This allows

the contents of the Xtext editor panel to be directly pro-

vided to the ETL tool, even though the ETL tool does not

know the learner-defined DSML. The dynamically gener-

ated Xtext tool service provides a conversion function from

DSML models to XMI, ETL can accept XMI input, and the

EP automatically recognises that it can apply this conversion.

123

https://plantuml.com/

The MDENet education platform

Fig. 7 Basic Xtext activity: defining the grammar.

Fig. 8 Basic Xtext activity: exploring the language.

4.2.4 Analysis of research questions

The following analysis examines how the Xtext case study

demonstrates the EP’s effectiveness in addressing key chal-

lenges in MDE education, focusing on learner accessibility,

educator empowerment, and stakeholder contributions:

RQ1: How can the EP reduce entry barriers for learners

and provide a practical, scalable, and supportive learning

environment? Outside the EP, developing new languages with

Xtext introduces significant accidental complexity. Learners

must:

(a) install Eclipse and Xtext, ensuring the use of match-

ing versions (b) learn how to generate a new set of Xtext

plugin projects in their Eclipse workspace (c) learn how to

define an Xtext grammar for their language (d) learn how to

trigger the generation process from the Xtext grammar (e)

learn how to run a second Eclipse instance with their new

language installed (f) learn how to set up a project and file

123

S. Zschaler et al.

Fig. 9 Advanced Xtext activity, combining a learner-defined Xtext editor with an ETL transformation.

configured for using their new language (g) use the Xtext

editor to interact with their new language.

Using the EP, learners only need to do Steps (c) and (g),

significantly reducing the entry barriers and allowing learners

to focus on MDE concepts rather than the accidental com-

plexity of the tooling (R1). Once learners have understood the

key MDE concepts, they are still able to clone the repository

underlying the activity and explore it directly in Eclipse (R3).

We asked students for feedback and received three

responses—the platform was an optional part of the mod-

ule and not all students engaged with it at this point—the

number of responses is thus too low to allow robust analysis.

However, informal student feedback (including via the feed-

back button on the hosted platform) indicates that students

found the platform ‘intuitive’ (e.g. “I liked how easy it was

to visualise the meta-model”) and useful. We hope to be able

to collect more structured feedback in future instalments of

this course.

RQ2: How effectively does the EP empower educators to

design, manage, and control tailored learning activities in

MDE education? In this case study, we have shown how

teachers can define learning activities (R4) focused on the

definition of new languages (R2) – specifically using Xtext.

As shown in Fig. 9, teachers are able to combine the defi-

nition of new languages with standard model-management

activities such as model transformations (R2) by combin-

ing a very diverse set of tools such as Xtext and ETL (R6).

This would create additional accidental complexity if done

directly in Eclipse: learners would need to also learn how to

configure ETL to be able to read a model expressed in their

new language. The EP removes this complexity and enables

teachers to guide learners by limiting what they can do to a

single button for executing the ETL script on the current

model without the need for learners to configure the ETL

engine first (R5).

RQ3: What mechanisms and processes enable the EP

to accommodate contributions from diverse stakeholders,

including tool providers, to extend its applicability and util-

ity? This case study has shown (cf. Sect. 4.2.2) how a new

tool (Xtext) can be easily added to the EP (R7) by (a) imple-

menting a simple server wrapping the tool and providing

a web API; and (b) describing the tool capabilities in a

JSON/YAML tool specification.

4.3 YAMTL playground and analysis with the EP

Yet Another Model Transformation Language (YAMTL) [4,

5] is an expressive model-to-model transformation language

that is offered as an internal domain-specific language (DSL)

of JVM languages, including Java, Xtend, Groovy and

Kotlin. YAMTL is a model-to-model transformation tool

available independently of any IDE, where models can be

123

The MDENet education platform

1 activities:
2 - id: edit -grammar
3 Listing 9

4

5 - id: turtles -editor
6 title: Turtles Editor
7 icon: xtext
8

9 tools:
10 - {{ID -panel -turtles }}/ editor

_tool.json
11 - https ://ep.mde -network.org

/\pg{\ break}tools/emf/emf\
_tool.json

12

13 panels:
14 - id: panel -turtles ,
15 name: Try out your language

here
16 ref: xtext -editor
17 file: example/test.turtles
18 extension: turtles
19 - id: panel -mm -composite
20 name: The meta -model

generated by Xtext
21 ref: composite
22 childPanels:
23 - id: panel -mm
24 name: XMI text format
25 ref: ecore
26 file: {{ID -panel -

turtles }}/xtext -
resources/generated/
meta -model.ecore

27 - id: panel -diagram
28 name: Metamodel Diagram
29 ref: emfgraph
30 - id: panel -model -diagram
31 name: Model Diagram
32 ref: emfgraph
33 …

Listing 10 Xtext activity definition: using the DSML

typed with meta-models or can be imported from semi-

structured data using flexible models [6]. YAMTL model

transformations can be used to define model queries by using

pattern matching, out-place model transformations by map-

ping an input model into a new output model, or in-place

model transformations by rewriting a given model.17

In this case study, we show how the EP has been instan-

tiated to create an interactive playground for the YAMTL

Groovy dialect, which is used within YAMTL’s documen-

tation, for showcasing examples to YAMTL learners (R1).

Additionally, we demonstrate how the experience garnered

during the definition of the YAMTL playground and docu-

mentation highlighted common problems, which we address

17 See the language reference at https://yamtl.github.io for further infor-

mation.

by deploying a collaborative tool that facilitates the inspec-

tion of activity configurations for the EP (UC5–6), show-

casing how to analyse YAML/JSON configuration files with

activity/tool specifications using YAMTL.

4.3.1 YAMTL playground and documentation

An out-place transformation in YAMTL consists of a header

declaration specifying the input and output meta-model,

rules defining the transformation logic and helpers defining

reusable logic across rules. Rules consist of an input object

pattern that is used to match a graph of objects in the input

model, and an output pattern that determines the graph of

objects to be created in the output model. Post-rule operations

can also be specified in each rule, defining additional logic

at end of the rule application. Helpers can be used to define

attribute values, static operations or contextual operations,

and their evaluation is cached, speeding up computations.

The YAMTL playground, shown in Fig. 10, enables

the development of YAMTL model-to-model transforma-

tions using Groovy. The playground displays the model

transformation definition 1 in a Groovy editor, the source

meta-model 2 and the target meta-model 3 in Emfatic

or XMI notation, while the source model 5 is provided in

XMI notation. The execution of the transformation produces

an output model 6 and transformation execution run-time

statistics in the output console 4 . All meta-models and mod-

els are presented in composite panels that show the models in

textual format and can render them in class diagram notation

for meta-models and object diagram notation for models. The

playground allows for interactive modifications of transfor-

mations, meta-models, or models. A number of predefined

model transformations are given as examples in the left-hand-

side panel 7 .

Although YAMTL does not require any specialised local

installation, the EP handles the execution of YAMTL trans-

formations from the browser, thus eliminating the need to

use an IDE or configure a Java project (R1). The back-

end service for YAMTL has been implemented using an

AWS lambda function18 for executing the transformation

engine (R7). Furthermore, models, meta-models, and trans-

formations are stored in a self-contained Git repository

configured as a Gradle project.19 This setup makes it easy to

reuse the software artefacts and execute them locally using

an IDE of choice. Users can seamlessly clone the repository,

ensuring that all necessary dependencies and configurations

are included, which simplifies the process of running the

examples locally and integrating them into other projects

or environments (R3). The activity configuration files in the

playground refer to the software artefacts contained in those

18 https://github.com/yamtl/yamtl-playground-backend-tool

19 https://github.com/yamtl/examples

123

https://yamtl.github.io
https://github.com/yamtl/yamtl-playground-backend-tool
https://github.com/yamtl/examples

S. Zschaler et al.

Fig. 10 YAMTL Playground.

Git repositories using URIs, allowing the configuration of

learning activities to be deployed elsewhere, provided that

all URIs correspond to accessible resources.

The playground is incorporated in YAMTL’s website as a

companion tool for a tutorial to learn the YAMTL language,

which contains three types of examples20 (R5):

• Reverse List21: A basic example showcasing the fun-

damental use of the language for reversing a list. This

example helps learners understand the basic syntax and

operational semantics of YAMTL, particularly focusing

on how to define transformation rules and apply them to

simple data structures.

• Workflow to HTML22: This example is centred around

converting flowchart elements into HTML elements,

which involves multiple small examples demonstrating

a range of YAMTL operations, supporting learners in

mastering different aspects of model transformation. Key

features covered include:

– Basic transformation logic: Learners begin by defin-

ing simple rules to transform flowchart elements

(such as nodes, actions, and transitions) into cor-

responding HTML elements. This helps in under-

20 Borrowed from https://mde-docs.github.io/.

21 https://yamtl.github.io/examples/linked-list-reversal-example.html

22 https://yamtl.github.io/examples/flowchart-to-html-example.html

standing the fundamental syntax and transformation

process of YAMTL.

– Rule inheritance: By implementing rule inheritance,

learners can create reusable transformation logic.

Abstract rules serve as templates that can be extended

by specialised rules, promoting modular and main-

tainable code.

– Lazy rules: The example introduces lazy rules, which

are executed after all non-lazy rules. This teaches

learners about different execution strategies within

YAMTL, showing how to use lazy rules for efficiency.

– Transient rules: These rules perform calculations or

updates without persisting their output in the target

model, helping learners understand how to manage

intermediate transformation steps effectively.

– Rule filtering and derived elements: Filtering allows

specific input objects to be transformed based on con-

ditions, while derived elements enable the use of con-

textually relevant objects within rules. These features

demonstrate how to create precise and context-aware

transformations.

– Multiple sources and targets: The example shows how

to handle multiple input objects and produce multiple

output objects within a single rule, showcasing the

flexibility of YAMTL in complex transformations.

– End of rule operations: This feature allows for addi-

tional operations after the main transformation logic

of a given rule, enabling additional side-effects.

123

https://mde-docs.github.io/
https://yamtl.github.io/examples/linked-list-reversal-example.html
https://yamtl.github.io/examples/flowchart-to-html-example.html

The MDENet education platform

– Rule priority: By setting rule priorities, learners can

control the execution order of rules, ensuring that

the transformation process follows a specific logical

sequence.

– Helpers: Static attributes, static operations, and con-

textual operations are introduced as helpers, provid-

ing reusable expressions and methods that simplify

the transformation logic.

Each feature is illustrated with practical examples,

ensuring that learners can see how theoretical con-

cepts are applied in real-world scenarios. This detailed

walkthrough not only enhances their understanding of

YAMTL’s capabilities but also equips them with the skills

to tackle complex transformation tasks independently.

• Fill-in-the-Gap Examples23: These examples allow

learners to practice the use of the language at different

levels of complexity. Tasks include:

– Creating an additional type of object in an output

model within a rule. This teaches learners how to

extend transformation logic to produce new types of

objects, enhancing their understanding of output pat-

tern specification.

– Specifying conditional application of rules. This

helps learners understand how to control the exe-

cution of transformation rules based on specific

conditions, emphasising the importance of guards in

rule application.

– Rule inheritance: This demonstrates how to reuse

and extend existing transformation logic by inher-

iting rules, promoting efficient rule management and

modular design.

– Defining several output elements in a rule to create a

complex graph of objects in the output pattern. This

example shows learners how to construct complex

output models from simpler input models, reinforc-

ing their skills in pattern matching and object graph

construction.

– Using lazy and non-lazy rules. This distinction is cru-

cial for learners to grasp the execution strategy of

YAMTL transformations, teaching them when and

how to use each type of rule for optimal performance.

– Resolving object references: This example focuses

on managing references between objects in the input

and output models, a key aspect of maintaining model

consistency during transformation.

– Using helpers. This emphasises the use of helper

operations to encapsulate reusable logic, promoting

code modularity and maintainability.

23 https://yamtl.github.io/exercises/flowchart-to-html-worksheet.html

Each of these examples is available on the interactive play-

ground and is accompanied by a solution and is available as a

Gradle project, making it easier for learners to validate their

work and understand the correct application of YAMTL con-

cepts in practical scenarios.

While developing the YAMTL playground and documen-

tation, we encountered issues with activity configurations

becoming lengthy and challenging to debug. This motivated

the development of a new tool within the EP to inspect and

analyse these configurations more efficiently, as explained in

the following subsection.

4.3.2 Analysis of activity and tool specifications

In the EP, activities are defined using YAML or JSON con-

figuration files that specify the layout of the front-end and

the examples used in the activities. Analysing these speci-

fications is crucial for ensuring that activities are correctly

configured and function as intended, especially when deal-

ing with complex configurations. This analysis helps identify

and resolve errors early, improving the overall reliability and

effectiveness of the configuration of learning activities.

During the development of the YAMTL playground,

we observed that these configuration files can become

lengthy and challenging to debug because they lack type

discipline−meaning they do not enforce strict types−and

specify references by name. This is further complicated when

multiple activities are included in the same configuration file,

displayed in the left-hand-side panel of the EP. Therefore,

thorough analysis and debugging of these files are essential

to maintain the integrity and functionality of the learning

activities.

To address these challenges, we used YAMTL to import

activity configurations, available as YAML or JSON files,

as flexible models [6]. These are then transformed into

models of the meta-model presented in Figs. 4 and 5, so

that they can be visualised and analysed. YAMTL model

queries24 are used to inspect them, aiding in both under-

standing and debugging. By leveraging YAMTL’s support for

flexible models, model transformations, and model queries,

users can efficiently examine and troubleshoot their learning

activities, ensuring they adhere to the intended structure and

behaviour ((R6) & (R7)). This tool has been configured as

an EP activity itself,25 making the inspection logic accessible

for any user to validate (and debug) new learning activities by

providing the specification of their activities and tools ((R2)

& (R4)), as explained in sections 3.3 and 3.4, respectively.

The activity, shown in Fig. 11, uses the YAML configura-

tion file 1 from the activity in Fig. 10 used to configure the

YAMTL playground in the previous subsection. This config-

24 https://yamtl.github.io/examples/query-dsl.html

25 https://yamtl.github.io/examples/ep-inspection.html

123

https://yamtl.github.io/exercises/flowchart-to-html-worksheet.html
https://yamtl.github.io/examples/query-dsl.html
https://yamtl.github.io/examples/ep-inspection.html

S. Zschaler et al.

Fig. 11 YAMTL inspection of activity configurations for the EP.

uration file may include the specifications of activities and,

optionally, the specifications of tools. The YAMTL model

transformation 3 converts the YAML/JSON file 1 into a

model 2 that conforms to the EP meta-models, transform-

ing references by name in the YAML configuration file to

references by value in the model. The benefit of this trans-

formation is that models can then be visualised as object

graphs using object diagram notation in the EP, as shown in

the composite panel 2 , facilitating inspection and analysis

of learning activities as explained next.

This activity uses another model query tool 6 for defin-

ing object-oriented queries over models built atop YAMTL

pattern matching facilities.26 Queries are defined as records,

resembling JSON documents, with the following fields: a

context type from the meta-model 5 ; a where Groovy

closure that specifies which objects from the model 2 are

affected by the query; and a query Groovy closure that tra-

verses the model from an instance of the context type,

printing the desired information in the output stream, which

is displayed on the console 4 . If, in addition to activity

specifications, tool specifications are provided in 1 , users

can perform full analysis over the complete specification of

an activity, which includes references to tool services.

The tool has been integrated by using an AWS lambda

function that takes a meta-model, a model and a query to per-

form the query. The output stream is captured while the query

is evaluated and returned as output so that it can be displayed

26 https://yamtl.github.io/examples/query-dsl.html

in the console 4 . In the lambda function, the context

type and the where clause are used to define a pattern in a

YAMTL rule with a single input element, while the query
closure is used as a post-rule operation27 (R7).

The query in the example finds out how the activity actions

prompt UI state changes, by listing the source-panel

containing the action, the button linked to the action, the argu-

ment binding for the parameters of the MDE tool linked to

the action, and the target-panel containing the results

of the tool and any additional output side effects, using

the format source-panel |-{button(parameter-

binding)}-> target-panel [output]. In this

query, when the button identifier cannot be resolved,

MISSING is diplayed to report an error. For the example pro-

vided in Fig. 11, the highlighed action in 1 is imported as an

instance of the Action class of the meta-model, shown in

5 , in 2 , via the transformation in 3 . The query 6 is then

used to validate that the sourceButton associated with

the action could be resolved to a button in a tool in 4 as it

displays the name of the buttonemfatic2cd-button and

not MISSING. Note that the query is obtaning the name of

the button using the expression it.sourceButton.id

where it is an Action, which requires the reference

Action.sourceButton to have been resolved correctly.

The use of the console and query DSL provides several

benefits:

27 For further information, see: https://yamtl.github.io/examples/

query-dsl.html

123

https://yamtl.github.io/examples/query-dsl.html
https://yamtl.github.io/examples/query-dsl.html
https://yamtl.github.io/examples/query-dsl.html

The MDENet education platform

• Improved debugging capabilities: The console allows

users to see real-time feedback on their queries, includ-

ing error messages and execution results. This immediate

feedback helps users quickly identify and correct issues

in the configuration of their learning activities. The query

DSL simplifies the process of writing and understanding

complex queries, making it easier to trace the flow of data

and logic, and thereby pinpoint and resolve errors.

• Enhanced interactivity: The interactive nature of the

playground enables users to experiment with differ-

ent analysis queries on-the-fly. This promotes a deeper

understanding of the underlying configuration models

by allowing users to iteratively define complex model

queries over the configuration of their learning activities

and find errors more easily.

• Efficiency in analysis and validation: By using the query

DSL, users can create reusable query definitions that

can be easily modified or extended for different analy-

sis tasks. The console’s ability to display query results

in a structured format helps users visualise the impact

of their queries, ensuring that the output conforms to the

expected format.

4.3.3 Analysis of research questions

The following analysis examines how the YAMTL case study

demonstrates the EP’s effectiveness in addressing key chal-

lenges in MDE education, focusing on learner accessibility,

educator empowerment, and stakeholder contributions:

RQ1: How can the EP reduce entry barriers for learners

and provide a practical, scalable, and supportive learn-

ing environment? The YAMTL playground, as described

in Sect. 4.3.1, eliminates installation and configuration bar-

riers by enabling the execution of model transformations

directly in the browser (R1). This design provides imme-

diate access to MDE activities, allowing learners to focus on

core tasks without technical overhead. The playground also

offers self-contained examples that can be downloaded and

executed locally, ensuring a seamless transition to real-world

environments (R3). Furthermore, the examples and fill-in-

the-gap exercises presented in the playground, as detailed in

Sect. 4.3.2, help scaffold learning, guiding learners in exper-

imenting with the language ((R4) & (R5)).

RQ2: How effectively does the EP empower educators to

design, manage, and control tailored learning activities in

MDE education? Prior to the EP, model management solu-

tions, such as model validation, were explained conceptually

in lectures and their implementation was demonstrated in lab

sessions using Groovy programs with internal DSLs. Prepar-

ing learning resources involved explaining where to retrieve

the code, how to import the project, where each software arte-

fact could be found, how additional tools (like EMF) worked,

and then presenting the exercise. The EP simplifies the pro-

cess by providing readily available examples that illustrate

the concepts from lectures, offering two key benefits (R5): a)

an online playground where learning activities can be config-

ured and accessed, and b) a significant reduction in cognitive

load, allowing educators to focus on the core concepts dis-

cussed in lectures, thus bridging the gap between theory and

practice. In particular, educators benefit from the flexible con-

figuration mechanisms provided by the EP, as discussed in

Sect. 3.4.

RQ3: What mechanisms and processes enable the EP

to accommodate contributions from diverse stakeholders,

including tool providers, to extend its applicability and

utility? This case study demonstrates how the platform

can be extended with additional functionality. Section 4.3.1

illustrates how to integrate the YAMTL model-to-model

transformation language, available as an internal DSL in

the Java ecosystem (with Groovy used in the examples),

where the back-end transformation engine is deployed on

AWS using a serverless model. This functionality is partic-

ularly useful for a teacher who illustrates MDE examples

using YAMTL (R5) and enables other stakeholders to reuse

YAMTL learning activities and tools within the EP. Sec-

tion 4.3.2 explains how the EP can be extended to enhance

the configuration and debugging of MDE learning activities.

JSON configurations are transformed into meta-model-based

models using YAMTL, enabling model analysis for collab-

orative debugging of activities (R4) using a query language

built on YAMTL, as well as model visualisation with third-

party tools (R6), an EP tool that renders EMF meta-models

and models as PlantUML diagrams (class diagrams and

object diagrams, resp.). The model analysis use case also

allows tool providers to collaboratively debug activity con-

figurations (R7), while helping them become more familiar

with the EP’s activity configuration language through the use

of queries to navigate and analyse specific activities (R2).

5 Related work

To the best of our knowledge, no other generic playground

solution for MDE exists. Playgrounds for specific tools do

exist. For example, the Epsilon Playground [33] enables web-

based use of the various tools and languages in Epsilon [30].

Its architecture makes use of Functions-as-a-Service (FaaS)

for its back-end functions, allowing on-demand scalability

and minimal running costs when the platform is not being

used.

As discussed in Sect. 3, the EP has been inspired by the

Epsilon Playground; however, it has a more elaborate and

flexible architecture to allow for declarative description of

learning activities (which are hard-coded in the Epsilon

Playground) and for integration of a wider range of MDE

123

S. Zschaler et al.

tools (the Epsilon Playground only supports languages of

the Epsilon platform).

Langium [44] also provides a bespoke playground service

for basic language-workbench functionalities. A web-based

platform for the MontiCore language workbench [34] based

on JupyterLab [13] has been used for teaching the tutorials

of a conference and lectures on the use and engineering of

Domain Specific Languages (DSL).

The relative scarcity of web-based MDE playgrounds can

be attributed to the niche adoption of MDE technologies,

as well as to the fact that most open-source model man-

agement technologies (e.g. ATL, Acceleo, Xtext, Xpand)

are implemented in Java. In the absence of a fully-featured,

freely-available and performant solution for transforming

Java source code or bytecode into JavaScript or WebAssem-

bly, running such a playground requires a client–server archi-

tecture. This approach, as demonstrated by the MDENet

Education Platform, incurs ongoing operational costs, which

can be an additional barrier.

In addition to web-based playgrounds, there are web-

based versions of IDEs such as Eclipse [18, 19] and Visual

Studio Code [40]. Some code repositories use such online

IDEs to provide direct access to repositories, including in

educational settings. For example, GitHub Classroom offers

access to CodeSpace IDEs (based on VSCode) for learners

undertaking activities provided through GitHub reposito-

ries [24].

Online MDE platforms have seen increasing interest

recently—examples include AToMPM [46], Freon [48], and

Gentleman [36]—though note that these tools have not been

developed specifically for educational purposes. Umple [37]

is an online modelling platform, focused on UML-style mod-

els and code generation from them. It is education-focused,

but only provides support for a fixed set of modelling lan-

guages and tools.

There is a lack of commercial tools available that have

an educational focus or offer easy installation and activity-

configuration options. We are aware that the desktop-based

commercial MetaEdit+ language workbench can be accessed

through a browser using a remote desktop service and inte-

grated with open-source model management tools [21]. This

probably comes closest to a no-install option that could be

used for teaching. However, its significant licensing costs

have so far prevented any of the authors from using it for

educational purposes.

Finally, PapyGame [9] is a Papyrus-based tool for gamify-

ing software modelling in an educational context. PapyGame

currently is desktop-based but the authors envision a web-

based version in the future to address installation and

configuration challenges.

There are no widespread web-based model formats for

online editing and interchange of models that can be used to

help integrate different tools of an education platform. An

Table 1 Mapping of requirements to case studies demonstrating how

they are addressed by the EP. � symbols in parentheses indicate partial

demonstration of a requirement. A detailed discussion is provided as a

subsection in each case-study description

Requirement Case Study 1 Case Study 2 Case Study 3

(R1) � � �

(R2) (�) � (�)

(R3) (�) (�) �

(R4) � � �

(R5) � � �

(R6) � �

(R7) � � �

early initiative includes LIonWeb [47]; however, it is in the

specification stage.

6 Conclusions and outlook

We have presented the MDENet Education Platform (EP),

an online playground platform for teaching model-driven

engineering. This allows learners to engage with MDE learn-

ing activities without having to install tools (R1), including

activities that require the definition of new modelling lan-

guages (R2). Learners are able to access the activities via

the browser, but also via standard tools (R3), as long as the

teacher has provided a suitably structured repository with the

activity. Teachers define new activities via a declarative spec-

ification in a GitHub repository (R4). The specification gives

them full control over what the learner can see and do (R5),

so that teachers can reduce the accidental complexity learn-

ers have to overcome. Teachers are able to combine several

different modelling tools into one learning activity (R6). New

tools can be contributed to the platform with relatively little

effort by wrapping them in a web-based API and providing

a declarative description of the functionality available (R7).

We have demonstrated the capabilities of the EP in three

case studies, which showcase how different sets of require-

ments are addressed by the platform. Table 1 summarises

which requirements are demonstrated in which case study.

Future work.

An important focus of our work is to make it even easier

for teachers to define learning activities. To this end, we are

working towards a DSML for activity specification, which

will provide improved capabilities for consistency checking

as well as for discovering capabilities while building activi-

ties.

We are also interested in empirical evaluation of the ben-

efits of the platform in diverse teaching contexts. We will

continue to develop the platform and use it in our teaching

of modelling and MDE. This will provide opportunities for

123

The MDENet education platform

obtaining more informal feedback from our students. We will

also organise formal evaluation experiments, which compare

learners using Eclipse and the EP for a range of learning activ-

ities.

At the moment, the EP does not yet support graphical mod-

elling languages. We plan to add capacity for such languages

in the future, as well as support for Language Server Protocol

(LSP).28 This will also help improve the validation support

for existing MDE tools. We are also exploring opportunities

for learners to engage with activities through other user inter-

faces, most importantly Visual Studio Code, which would

enable more seamless integration with GitHub Classroom.

The platform’s education focus also creates opportunities to

experiment with more powerful and interactive ways of pro-

viding feedback on learners’ attempts at completing MDE

assignments. Finally, we are working towards integrating

the EP with learning-pathway tools—like [10, 11]—so that

it can more fully serve as a platform for Open Educational

Resources (OERs) [42] in MDE.

Getting involved.

This is still a relatively new project, and we encourage the

community to get involved. We are very interested in learn-

ing from, and collaborating with, others who are trying the

platform in their own teaching. If you want to get involved,

check out the platform on GitHub29 and get in touch with the

authors. A publicly hosted version of the platform is avail-

able30 free of charge for reasonable use.

Acknowledgements Zschaler and Barnett’s contribution was partly

funded by the UK Engineering and Physical Sciences Research Coun-

cil (EPSRC) through the MDENet grant (EP/T030747/1). The work of

Kolovos and Garcia-Dominguez was partly funded by the SCHEME

InnovateUK project (#10065634)

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

28 https://microsoft.github.io/language-server-protocol/

29 https://github.com/mdenet/educationplatform/

30 https://ep.mde-network.org/

References

1. Luciane, T.W., Agner, Timothy C., Lethbridge, Inali W.: Student

experience with software modeling tools. Softw. Syst. Modeling

18(5), 3025–3047 (2019)

2. Barnett, W., Zschaler, S., Boronat, A., Garcia-Dominguez, A.,

Kolovos, D.: (2023) An online education platform for teaching

MDE. In Proc. Educators Symposium at MODELS 2023

3. Bjork, Elizabeth L., Bjork, Robert A.: Making things hard on your-

self, but in a good way: Creating desirable difficulties to enhance

learning. In: Gernsbacher, M.A., Pew, R.W., Hough, L.M., Pomer-

antz, J.R. (eds.) Psychology and the real world: Essays illustrating

fundamental contributions to society, pp. 56–64. Worth Publishers

(2011)

4. Boronat, A.: (2018) Expressive and efficient model transforma-

tion with an internal dsl of Xtend. In: Proceedings of the 21th

ACM/IEEE International Conference on MoDELS, pages 78–88.

ACM

5. Boronat, A.: Incremental execution of rule-based model transfor-

mation. Int. J. Softw. Tools Technol. Trans. 23, 289–311 (2020)

6. Boronat, A.: (2024) Exploring flexible models in agile mde. In

Proceedings of Agile MDE 2024, co-located with STAF 2024

7. Brambilla, M., Cabot, J., Wimmer, M., Baresi, L.: Model-Driven

Software Engineering in Practice. Morgan & Claypool Publishers,

= (2017)

8. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand

challenges in model-driven engineering: an analysis of the state

of the research. Softw. Syst. Modeling 19, 5–13 (2020)

9. Bucchiarone, A., Savary-Leblanc, M., Le Pallec, X., Cicchetti, A.,

Gérard, S., Bassanelli, S., Gini, F., Marconi, A.: Gamifying model-

based engineering: the PapyGame experience. Softw. Syst. Model.

22(4), 1–21 (2023)

10. Bucchiarone, A., Vazquez-Ingelmo, A., Schiavo, G., Barandoni, S.,

Garcia-Holgado, A., Garcia-Penalvo, F.J., Mosser, S., Pierantonio,

A., Zschaler, S., Barnett, W.: Towards personalized learning paths

to empower competency development in model driven engineering

through the ENCORE platform. In Proc. Educators Symposium at

MODELS 2023, (2023)

11. Bucchiarone, A., Vazquez-Ingelmo, A., Schiavo, G., Garcia-

Holgado, A., Garcia-Penalvo, F., Zschaler, S.: Designing learning

paths with open educational resources: A case study in model-

driven engineering. In: 18th Iberian Conference on Information

Systems and Technologies (2023)

12. Chakraborty, Shalini, Liebel, Grischa: We do not understand what

it says - studying student perceptions of software modelling. Empir-

ical Softw. Eng. 28(6), 149 (2023)

13. Charles, Joel Chuks, Jansen, Nico, Michael, Judith, Rumpe,

Bernhard: Teaching the use and engineering of DSLs with Jupyter-

Lab: Experiences and lessons learned. In: Riebisch, Matthias,

Tropmann-Frick, Marina (eds.) Modellierung 2022. Gesellschaft

für Informatik e.V (2022)

14. Ciccozzi, F., Famelis, M., Kappel, G., Lambers, L., Mosser, S.,

Paige, R.F.: Alfonso Pierantonio, Arend Rensink, Rick Salay, Gabi

Taentzer, Antonio Vallecillo, and Manuel Wimmer. How do we

teach modelling and model-driven engineering? a survey. In: Proc.

21st ACM/IEEE International Conference on Model Driven Engi-

neering Languages and Systems: Companion Proceedings, pages

122–129 (2018)

15. Curity. The Token Handler pattern for single page applica-

tions. Online: https://curity.io/resources/learn/the-token-handler-

pattern/, last accessed 12 (2024)

16. Chris Daly. Eclipse Emfatic. Online: https://eclipse.dev/emfatic/,

last visited 22 May 2004(2024)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://microsoft.github.io/language-server-protocol/
https://github.com/mdenet/educationplatform/
https://ep.mde-network.org/
https://curity.io/resources/learn/the-token-handler-pattern/
https://curity.io/resources/learn/the-token-handler-pattern/
https://eclipse.dev/emfatic/

S. Zschaler et al.

17. döt Net, I., Müller, T., Antoniou, P., Aro, E., Smith, T.: (2021) Yaml

ain’t markup language (yaml) revision 1.2.2. Online: https://yaml.

org/spec/1.2.2/, last visited 21 May 2024, 10

18. Foundation, Eclipse (2023) Inc. Theia – cloud and desktop IDE

platform. Online: https://theia-ide.org/, last accessed 10 July

19. Eclipse Foundation, Inc. Eclipse Orion. Online: https://projects.

eclipse.org/projects/ecd.orion, last accessed 10 July 2023, (2020)

20. Ecma. ECMA-404: The JSON data interchange syntax. Ecma Inter-

national – European Association for Standardizing Information and

Communication Systems, Geneva, Switzerland, December (2017)

21. EpsilonLabs. MetaEdit+ EMC Driver for Epsilon. Online: https://

github.com/epsilonlabs/emc-metaedit, (2019)

22. Erdweg, S., Storm, van der, T., Völter, M., Tratt, L., Bosman, R.,

Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, Alex, K.,

Gabriël, M., Pedro J., Palatnik, M., Pohjonen, R., Schindler, E.,

Schindler, K., Solmi, R., et al., (2015) Evaluating and compar-

ing language workbenches: Existing results and benchmarks for

the future. Computer Languages, Systems & Structures, 44:24–47,

2015. Special issue on the 6th and 7th Int’l Conf Software Lan-

guage Engineering (SLE 2013 and SLE 2014)

23. Eysholdt, Moritz, Behrens, Heiko (2010) Xtext: implement your

language faster than the quick and dirty way. In Companion Proc.

ACM Int’l Conf. Object Oriented Programming Systems Languages

and Applications (OOPSLA’10), OOSPLA’10. ACM, October

24. GitHub. Using GitHub Codespaces with GitHub Class-

room. Online: https://docs.github.com/en/education/manage-

coursework-with-github-classroom/integrate-github-classroom-

with-an-ide/using-github-codespaces-with-github-classroom,

last accessed 23 April 2024 (2024)

25. Essence and accidents of software engineering: Frederick P. Brooks

Jr. No silver bullet. IEEE Computer 20, 10–19 (1987)

26. JSON Community. JSON schema specification, version 2020-12.

Online: https://json-schema.org/specification, last visited 22 May

2024, December (2020)

27. Kienzle, J., Zschaler, S., Barnett, W., Sağlam, T., Bucchiarone, A.,

Abrahão, S., Syriani, E., Kolovos, D., Lethbridge, T., Mustafiz,

S., Meacham, S.: Requirements for modelling tools for teaching.

Software and Systems Modeling, (2024). To appear

28. Kölling, Michael: The problem of teaching object-oriented pro-

gramming, part 2: Environments. J. Object Oriented Program.

11(9), 6–12 (1999)

29. Kölling, Michael: Teaching object orientation with the Blue envi-

ronment. J. Object Oriented Program. 12(2), 12–23 (1999)

30. Kolovos, D., Paige, R., Rose, L., Polack, F.: (2009) The Epsilon

Book. Published on-line: http://www.eclipse.org/gmt/epsilon/doc/

book/

31. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the evolution of

OCL for capturing structural constraints in modelling languages.

In: Abrial, J.R., Glässer, U. (eds.) Rigorous Methods for Software

Construction and Analysis: Essays Dedicated to Egon Börger on

the Occasion of his 60th Birthday. Springer, Berlin (2009)

32. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon transfor-

mation language. In: Antonio Vallecillo, Jeff Gray, and Alfonso

Pierantonio, editors, Proc. 1st Int’l. Conf. on Theory and Practice

of Model Transformations (ICMT’08), volume 5063 of Lecture

Notes in Computer Science. Springer-Verlag, July (2008)

33. Kolovos, D., Garcia-Dominguez, A.: The Epsilon playground. In:

Proceedings of the 25th International Conference on Model Driven

Engineering Languages and Systems: Companion Proceedings,

pages 131–137. Association for Computing Machinery, (2022)

34. Krahn, Holger, Rumpe, Bernhard, Völkel, Steven: MontiCore:

a framework for compositional development of domain specific

languages. Int’l J. Softw. Tools Technol. Trans. (STTT) 12(5), 353–

372 (2010)

35. Kölling, M., Quig, B., Patterson, A., Rosenberg, J.: The BlueJ sys-

tem and its pedagogy. Comput. Sci. Educ. 13(4), 249–268 (2003)

36. Lafontant, L.E., Syriani, E.: (2020) Gentleman: a light-weight web-

based projectional editor generator. In: Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineer-

ing Languages and Systems: Companion Proceedings. Association

for Computing Machinery

37. Lethbridge, T.C., Forward, A., Badreddin, O., Brestovansky, D.,

Garzon, M., Aljamaan, H., Eid, S., Husseini Orabi, A., Husseini

Orabi, M., Abdelzad, V., Adesina, O., Alghamdi, A., Algablan,

A., Zakariapour, A.: Umple: model-driven development for open

source and education. Sci. Comput. Program. 208, 102665 (2021)

38. Liebel, G., Badreddin, O., Heldal, R.: (2017) Model driven soft-

ware engineering in education: A multi-case study on perception of

tools and uml. In: IEEE 30th Conference on Software Engineering

Education and Training (CSEE&T’17). IEEE, November

39. Liebel, G., Heldal, R., Steghofer, J.-P.: Impact of the use of

industrial modelling tools on modelling education. In IEEE 29th

International Conference on Software Engineering Education and

Training (CSEE&T’16). IEEE, April (2016)

40. Microsoft. Visual Studio Code for the Web. Online: https://code.

visualstudio.com/docs/editor/vscode-web, last accessed 10 July

2023, (2023)

41. Muñoz, Paula, Zschaler, Steffen, Paige, Richard F.: Preface to the

special issue on success stories in model driven engineering. Sci.

Comput. Program. 233, 103072 (2024)

42. OECD. Giving Knowledge for Free: The Emergence of Open Edu-

cational Resources. OECD Publishing, May (2007)

43. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: The Epsilon

generation language. In Ina Schieferdecker and Alan Hartman,

editors, Proc. 4th European Conf. on Model Driven Architecture

(ECMDA-FA’08), pages 1–16. Springer, (2008)

44. Rudolph, M.: The Langium playground - TypeFox blog. Online:

https://www.typefox.io/blog/langium-playground, last accessed

10 July 2023, 01 (2023)

45. Runeson, Per, Höst, Martin: Guidelines for conducting and report-

ing case study research in software engineering. Empir. Softw. Eng.

14(2), 131–164 (2009)

46. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,

Van Mierlo, S., Ergin, H.: AToMPM: A web-based modeling

environment. In: 16th International Conference on Model Driven

Engineering Languages and Systems (MODELS 2013): Compan-

ion proceedings, pages 21–25, (2013)

47. Tikhonova, U.: LionWeb – language interfaces on the web. In:

MODELS 2024 Industry Days (2024)

48. Warmer, J., Kleppe, A.: (2022) Freon: an open web native language

workbench. In: Proceedings of the 15th ACM SIGPLAN Inter-

national Conference on Software Language Engineering, pages

30–35

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://theia-ide.org/
https://projects.eclipse.org/projects/ecd.orion
https://projects.eclipse.org/projects/ecd.orion
https://github.com/epsilonlabs/emc-metaedit
https://github.com/epsilonlabs/emc-metaedit
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://json-schema.org/specification
http://www.eclipse.org/gmt/epsilon/doc/book/
http://www.eclipse.org/gmt/epsilon/doc/book/
https://code.visualstudio.com/docs/editor/vscode-web
https://code.visualstudio.com/docs/editor/vscode-web
https://www.typefox.io/blog/langium-playground

The MDENet education platform

Steffen Zschaler is a Reader in

Software Engineering at King’s

College London. His research inter-

ests are in model-driven engineer-

ing, focussing on modularity, opti-

misation, and the principled engi-

neering of simulations. He is the

director of MDENet, the expert

network in model-driven engineer-

ing, where he has led on the devel-

opment of the MDENet Education

Platform to improve the accessi-

bility of MDE tools to students.

More details about his research

and teaching can be found at www.

steffen-zschaler.de

Will Barnett is a systems soft-

ware engineer at Diamond Light

Source supporting beamline con-

trol systems based at the Har-

well Science and Innovation Cam-

pus in Oxfordshire. He has pre-

viously worked on applications of

MDE in robotics as part of the

RoboStar* centre of excellence at

the University of York and as the

main research software engineer

for the MDENet Education Plat-

form. More details about his research

can be found at www.wdbar.net.

Artur Boronat is Associate Pro-

fessor in the School of Computing

and Mathematical Sciences at the

University of Leicester, UK. He

holds a European PhD in Com-

puter Science (Doctor Cum Laude)

from the Technical University of

València, where he also completed

his MSc and BSc. He has held

visiting research positions at the

University of Illinois at Urbana-

Champaign and the Universitat

Politècnica de Catalunya. His

research focuses on model-driven

engineering (MDE), domain-specific

languages, and the integration of AI and formal methods in software

development. He is the creator of YAMTL and EMF-Syncer, and cur-

rently leads the informatics team in the UKSA/ESA-funded healthcare

project P-STEP.

Antonio Garcia-Dominguez is a

Senior Lecturer in Software Engi-

neering at the Department of Com-

puter Science of the University

of York, and a member of the

Automated Software Engineering

research group. Antonio’s main

research interests are model-driven

software engineering and software

testing. In addition to over 100

peer-reviewed publications in inter-

national conferences, journals, and

book chapters, Antonio is a core

contributor in several related open-

source projects. These include the

Eclipse Epsilon model management languages and tools, the Eclipse

Hawk model indexing framework, and the GAmera tool for evolution-

ary mutation testing.

Dimitris Kolovos is a Professor

of Software Engineering in the

Department of Computer Science

at the University of York, where

he researches and teaches auto-

mated and model-driven software

engineering. He is also an Eclipse

Foundation committer, leading the

development of the open-source

Epsilon model-driven software engi-

neering platform, and an editor of

the Software and Systems Mod-

elling journal. He has co-authored

more than 200 peer-reviewed papers

and his research has been sup-

ported by the European Commission, UK’s Engineering and Physical

Sciences Research Council (EPSRC), InnovateUK and by companies

such as Rolls-Royce and IBM.

123

www.steffen-zschaler.de
www.steffen-zschaler.de
www.wdbar.net

	The MDENet education platform: zero-install directed activities for learning MDE
	Abstract
	1 Introduction
	2 Key platform users
	2.1 Learners
	2.2 Teachers
	2.3 Tool providers

	3 Architecture and design of the EP
	3.1 Running example
	3.2 Platform architecture
	3.3 Defining activities
	3.3.1 Activity configuration
	3.3.2 Language-workbench activities

	3.4 Contributing MDE tools
	3.4.1 Tool configuration
	3.4.2 Tool service

	3.5 Dynamic invocation of MDE tool functions
	3.6 Support available for teachers and tool providers

	4 Case studies
	4.1 Epsilon and MDE DevOps
	4.1.1 Automated provisioning of attendee workspaces via GitHub
	4.1.2 Model-driven development of Java state machines
	4.1.3 Generation of release notes from GitHub issues API
	4.1.4 Transitioning to an IDE
	4.1.5 Analysis of research questions

	4.2 Developing DSMLs in Xtext
	4.2.1 Context: teaching MDE at King's
	4.2.2 Xtext tool service: integrating a language workbench
	4.2.3 Examples
	4.2.4 Analysis of research questions

	4.3 YAMTL playground and analysis with the EP
	4.3.1 YAMTL playground and documentation
	4.3.2 Analysis of activity and tool specifications
	4.3.3 Analysis of research questions

	5 Related work
	6 Conclusions and outlook
	Acknowledgements
	References

