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Abstract: Agent-based modelling (ABM) has revolutionised the simulation of complex

systems, finding applications in diverse fields such as economic markets and traffic man-

agement. By modelling individuals as autonomous agents within a dynamic environment,

ABM enables the exploration of system behaviours and the evaluation of interventions at

various spatiotemporal resolutions. However, the computational intensity of ABM, particu-

larly in large-scale simulations, remains a significant hurdle. This paper presents a novel

approach to addressing these challenges through the development of a GPU-accelerated

transport model, specifically applied to a road network. Utilising the FLAME-GPU frame-

work, the proposed model demonstrates enhanced scalability and efficiency compared

with traditional CPU-based simulations, such as Simulation of Urban MObility (SUMO).

Through rigorous comparative analysis, this study highlights significant improvements in

simulation speed and the capacity to manage larger vehicle populations. The research un-

derscores the transformative potential of GPU acceleration in mitigating computational con-

straints within ABM, offering a practical framework for simulating transport systems with

greater precision and depth. Extensive experimentation validates the model’s ability to re-

alistically simulate the vehicle population of the Isle of Wight, achieving a balance between

computational efficiency and the accurate representation of complex traffic dynamics.

Keywords: agent-based model; FLAME-GPU; traffic simulation; individual-based model;

data analytics

1. Introduction

This paper is an extended version of the conference paper [1] presented at the Interna-

tional Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS).

Agent-based modelling (ABM) has emerged as a pivotal tool for simulating complex

systems across various domains, enabling researchers to explore the dynamics of financial

markets [2–4], traffic systems [5–7], ecological systems [8–10], crime patterns [11–13], and

more. ABM encapsulates interactions between agents and their environments, facilitating

the examination of individual and collective behaviours within a controlled computational
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setting, allowing researchers to document and observe the complex interactions of a system

at various spatiotemporal resolutions.

Despite ABM’s versatility, its application, particularly in simulating large-scale or

emergent phenomena, is often constrained by a lack of computational resources. Simpli-

fications or reductions in agent characteristics or populations are common workarounds,

though they may compromise the model’s fidelity and outcomes [14–17]. This article

addresses these computational challenges, using the transportation domain as an exam-

ple. The proposed method leverages the computational resources of graphics processing

units (GPUs) to simulate traffic behaviour and interactions on the Isle of Wight in the

United Kingdom, showcasing the potential for GPU-accelerated ABM in capturing complex

transport dynamics.

The Isle of Wight, located off the south coast of England, was selected as the geo-

graphical focus for this study due to several factors. Firstly, its status as an island with a

self-contained and isolated street network makes it an ideal testbed for spatial modelling,

minimising external influences and enhancing the reliability of experimental outcomes. Sec-

ondly, the scale of its transportation infrastructure—comprising over 400 miles of roadway

and approximately 90,000 registered vehicles—offers a balance between complexity and

manageability, ensuring that computational demands remain feasible while still providing

a robust environment for model validation.

This research article presents the following:

• A scalable traffic simulation using the Flexible Large-scale Agent Modelling Environ-

ment (FLAME-GPU) framework [18], demonstrating the capability to model complex

vehicle behaviours at a large scale;

• Several simulation experiments utilising the Isle of Wight’s transport network, inte-

grating real-world geographic and traffic data to validate the model’s efficacy, where

these experiments compare the proposed method with a well-known traditional traffic

simulator, namely Simulation of Urban MObility (SUMO).

While limited, there are several studies in the past which have exploited FLAME-

GPU’s capabilities in modelling transport [19,20] and biological systems [21], evidencing

the architecture’s reach and accessbility. However, these studies often employed simplified

models or, in the case of transport systems, did not address the complexities of real-world

street networks. This gap highlights the necessity for a scalable ABM transport model that

harnesses the empirical characteristics of the complexities of road networks.

The experiments utilise the Isle of Wight’s road network, which ensures that the

FLAME-GPU can be benchmarked on a real-world street network, evaluating the proposed

model’s processing performance and scalability. Key performance metrics include the

real-time factor, simulation runtime, interaction rates, and vehicle insertion counts, with

comparisons drawn against SUMO.

The remainder of this article is structured as follows. Section 2 reviews existing trans-

port models, comparing and contrasting them against our contributions. Section 3 outlines

the FLAME-GPU framework, the proposed model’s architecture, and the experiment set-up.

Section 4 presents the experimental findings, and Section 5 concludes with an assessment

of the proposed approach, limitations, and future research directions.

2. Literature Review

2.1. Agent-Based Modelling of Transport Systems

Agent-based modelling (ABM) has been instrumental in simulating complex systems

at various spatiotemporal resolutions. One prominent example is that of the complex

interactions of vehicle driver behaviours within street networks, leading to novel insights

into individual-level decision making and its ramifications on traffic flow and conges-
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tion [22–24]. Despite the wealth of contributions, these models encounter hurdles regarding

high-level computing, scalability, and in some cases a lack of empirical geographic data,

such as real-world street networks. Notable efforts have integrated empirical city data to

refine traffic signal controls [25], explored multi-modal transportation navigation [24,26,27],

and sought to estimate and optimise emissions produced from vehicle activity [28].

There are several agent-based models that attempt to model the behaviours of in-

dividual vehicle drivers in complex street networks, such as those in [7,23,24]. While

these models often lead to useful insights, such as the relationship between speeding and

collisions and the impact of demographics on vehicle usage, they experience computational

complexity issues, and thus simplified characteristics are selected. While some articles ex-

plicitly highlight this to be the issue, others may also suggest other reasons for simplifying

their models and sometimes opt for a toy world representation [29,30].

Agent-based models (ABMs) are widely adopted for studying complex systems due

to their ability to capture intricate interactions at an individual level. However, researchers

often face the challenge of making their models sufficiently detailed while keeping compu-

tational demands manageable [29]. To address computational complexity, one approach

involves partitioning the simulation environment into smaller, manageable sections. While

this method can enhance computational efficiency, it necessitates a deeper understanding of

parallelisation and introduces challenges such as spatial and temporal desynchronisation of

the results, which may arise due to bottlenecks in the execution of partitioned simulations.

Additionally, the exchange of information between partitioned components must be robust

to prevent biases or inaccuracies in the outcomes. Thus, achieving a balance between

empirical validity and computational feasibility is essential for the development of realistic

ABMs. Our proposed method aims to address this balance effectively, contributing to the

advancement of the field.

In the following subsection, a popular road transport model is described, this method

will be benchmarked against by comparing the proposed methodology to other models to

demonstrate how the gaps in the current literature can be overcome.

2.2. Road Transportation and the Role of SUMO

Simulation of Urban MObility (SUMO) [31] is a prominent open-source modelling

framework for microscopic traffic simulation. Introduced in the early 2000s, SUMO has

become a staple in transportation research, offering versatile modelling capabilities, vi-

sualisation tools, and auxiliary features like emission calculation and route planning. By

utilising microscopic car-following models, SUMO simulates individual vehicle movements

and interactions based on dynamic road conditions and traffic regulations [32], employing

a modified version of Krauss’s car-following model [33] by default. SUMO benefits from

a large developer community that maintains it by updating its features. This makes it a

robust method for simulating comprehensive characteristics of traffic systems, thus making

it suitable to benchmark against.

One of the key reasons for selecting SUMO as a benchmark tool is its extensive use in

the research community, as evidenced by the large number of publications that deployed

it. For instance, it has been utilised in the development of traffic management systems

(TMSs) to test tree search algorithms for identifying time-saving routes [34]. However, the

authors emphasised the importance of applying such systems to real-world use cases by

integrating real-time data. Similarly, SUMO has been employed to evaluate traffic flow

and test algorithms in real-world locations. For example, the authors of [35] used the city

of Wuhan, China as a case study, integrating OpenStreetMap (OSM) data, which are also

utilised in this research. The authors focused on a subregion within Wuhan, Jianghan, due

to its high population density and significant traffic volume compared with other areas.
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In contrast, our proposed method leverages the entire street network of the Isle of Wight

in the United Kingdom, simulating tens of thousands of vehicles. Additionally, SUMO

has been adopted as a foundational resource for building driving simulators. For instance,

the authors of [36] demonstrated the challenges and feasibility of coupling SUMO with

SILAB to synchronise data between the two tools. Their findings underscore the need for

faster processing architectures to address the challenges of maintaining synchronicity in

such simulations.

Although SUMO’s open-source nature and detailed simulation capabilities offer sig-

nificant advantages, several limitations hinder its broader applicability. These include a

steep learning curve, restricted flexibility in modifying agent behaviours, a lack of diverse

transportation profiles such as cars and buses [37], and most notably, its reliance on a serial

central processing unit (CPU) processing model, which limits scalability and performance.

This article focuses on the processing capabilities of computational models, particularly

the potential of graphics processing unit (GPU) architectures, compared with CPU-based

systems. GPUs are widely recognised as superior to CPUs in numerical tasks due to their

parallel processing architecture [38]. However, transitioning from serial to parallel process-

ing models to leverage the GPU’s capabilities requires significant software engineering

effort, presenting integration challenges with established frameworks like SUMO.

In response to these limitations, custom simulation frameworks such as CityFlow [39]

have been developed, claiming processing speeds up to 25 times faster than SUMO for

large-scale simulations. Despite these advancements, the development of GPU-accelerated

solutions capable of handling even larger and more complex network simulations remains

an open challenge. This gap highlights a critical area of research that warrants further

academic inquiry to achieve the next level of simulation performance and scalability. This

research article aims to bridge this gap by leveraging GPU-enhanced ABM within a micro-

simulation traffic model, proposing a scalable and complex traffic behaviour simulation

framework. By integrating ABM with micro-simulation on the FLAME-GPU platform, we

capitalise on GPU parallelism, assigning individual agent state updates to separate GPU

cores. This approach heralds a significant leap towards realising a computationally efficient,

parallelisable traffic simulator that surpasses the current state of the art.

2.3. GPU Frameworks for Traffic Simulations

As mentioned earlier, GPU-enhanced traffic simulation frameworks have emerged as a

pivotal approach to address the computational demands of large-scale simulations [20,40–48].

Several studies have explored this approach, leveraging frameworks such as CUDA [20,47]

and OpenCL [45] to achieve significant performance gains. Strippgen and Nagel [47] and

Heywood et al. [20] both utilized CUDA, with the former achieving a speedup of over

60 times by employing dynamic queues and ring buffers. Their approach demonstrated

the potential of CUDA for efficient memory management and parallel execution but faced

scalability challenges with increased agent counts. Heywood et al. [20] implemented

fine-grained data parallelism using CUDA, reporting a roughly 43× speedup in agent-

based microscopic simulations. This method adopted a graph-based traversal technique.

Some articles opted to use OpenCL, including studies by Xiao et al. [48] and Xu et al. [45].

Xiao et al. [48] explored both partial offloading and fully GPU-based execution schemes,

achieving up to a 28.7× speedup. Their study highlighted the trade-offs between main-

tainability and performance. In contrast, Xu et al. [45] combined CUDA and OpenCL

in a mesoscopic simulation, focusing on supply simulation with a boundary processing

method. They reported an 11.2× speedup but noted limitations in memory access latency

and generalisability.
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Our proposed approach leverages FLAME-GPU, which offers a flexible and scalable

environment for agent-based modelling. By utilizing the Isle of Wight’s real-world street

network, we demonstrate the capability to simulate complex vehicle behaviours at a large

scale. The key contributions of our approach include the following:

• Real-world data integration: Unlike many existing studies, our method integrates

real-world geographic and traffic data, ensuring empirical validity and providing a

robust environment for model validation.

• Scalability and performance: Our experiments showcase the ability to handle large-

scale simulations, with key performance metrics such as the real-time factor, simulation

runtime, interaction rates, and vehicle insertion counts.

• Comparison with SUMO: We benchmark our approach against SUMO, a well-

established traffic simulator, highlighting the advantages of GPU-accelerated ABM in

capturing complex transport dynamics.

While existing studies have predominantly used CUDA and OpenCL, our use of

FLAME-GPU provides a more accessible and flexible platform for developing large-scale

agent-based simulations. Our focus on real-world street networks and empirical data

addresses a gap in the literature, where many studies rely on simplified or synthetic

networks. Our approach also achieves competitive speedups compared with existing

studies, demonstrating the potential of GPU-accelerated ABM for real-time or faster-than-

real-time simulations.

In conclusion, our approach builds on the foundations laid by existing GPU-enhanced

traffic simulation frameworks, offering a scalable and empirically validated approach to

capturing complex transport dynamics. By leveraging the FLAME-GPU framework and in-

tegrating real-world data, we address key limitations in the current literature and contribute

to the advancement of GPU-accelerated agent-based modelling in traffic simulations.

3. Methodology

3.1. FLAME-GPU

FLAME-GPU represents a high-performance agent-based simulation framework that

harnesses the parallel computing capabilities of modern GPUs to enhance the efficiency

and scalability of system simulations. The framework abstracts the complexities of GPU

programming, allowing researchers to concentrate on the conceptual design of their models

rather than the intricacies of algorithm implementation. This separation of concerns ensures

a clear distinction between model representation and execution, enabling the development

and simulation of large-scale models within practical timeframes. FLAME-GPU demon-

strates versatility across various domains, supporting applications ranging from pedestrian

dynamics [49] and road network simulations [19] to cellular biological systems [50]. Us-

ing FLAME-GPU requires mapping the system under study to an agent-based paradigm,

where agents represent entities with defined states. Messaging mechanisms enable indirect

interactions among agents via a global messaging pool, and the environment serves as a

repository for globally accessible data.

3.2. Traffic Simulation Model Overview

This section describes the proposed model’s approach to simulating vehicular traffic

on a microscopic scale within a real-world network, capturing individual vehicle dynamics

such as speed and position and incorporating road characteristics like lanes, intersections,

and traffic signals.

This article proposes a vehicle behaviour model which modifies the Krauss car-

following paradigm, which is utilised in SUMO’s simulation mechanics [51,52]. This

adaptation is encapsulated by
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vsa f e(t) = vl(t) +
g(t)− gdes(t)

τb + τ
,

vdes(t) = min[vmax, v(t) + a(v)∆t, vsa f e],

v(t + ∆t) = max[0, vdes(t)− η],

x(t + ∆t) = x(t) + v∆t,

(1)

where gdes = τvl(t) denotes the desired vehicle gap, with τ as the driver reaction time and

τb = v
b(v)

representing the braking time, influenced by the average velocity v and random

perturbation η of model deviations from ideal driving, while vsa f e(t) is the speed that

guarantees the model upholds its non-collision assumption at time t, and vdes(t) is the

desired speed at time t.

Lane changing and intersection navigation are guided by the principles outlined

in [53,54], respectively, with minor technical alterations in implementation that do not

affect the principle mechanics and only serve the purpose of better adapting to the

FLAME-GPU architecture.

The system of Equation (1) presented above incorporates lane-changing and intersection-

crossing rules, alongside additional rules required to update the state of the system. These

are expressed as a series of agent functions. The agent variables necessary to execute the

functions are stored and exchanged through a global messaging pool, a feature facilitated

by FLAME-GPU. The request to update the system’s state is fulfilled by launching function

kernels for all agents in the agent-state population. Each agent is represented by a thread,

and when a kernel is launched, a grid of threads is created. This grid is divided into blocks

which are then assigned for concurrent execution to available streaming multiprocessors

(SMs) within the GPU. If the total number of threads n exceeds the GPU’s maximum thread

capacity Nmax, then the kernel execution is divided into approximately c = n mod Nmax

steps. While this scheme does not fundamentally change the time complexity of the

algorithm, it ensures a smooth and efficient computational scaling process, effectively

leveraging the GPU’s parallel processing capabilities. Figure 1 describes the aforementioned

simulation process.

3.3. Mapping Traffic Model to FLAME-GPU

To map the transportation model onto the FLAME-GPU framework, a network-based

messaging approach was employed for agent communication. This approach enables

agents to operate within a static multi-lane network, leveraging the network structure

to query agents located on the same or adjacent edges and lanes. Both a compressed

sparse row (CSR) and compressed sparse column (CSC) representation of the network

were stored within the agent environment, facilitating efficient querying of upstream and

downstream edges. These network lookups are essential for calculating leader and follower

relationships, which are critical for vehicle traversal and junction entry. Additionally,

network communication supports key behaviours such as vehicle following, lane changing,

and vehicle insertion into the network. Within the FLAME-GPU implementation, vehicles

dynamically select lanes while relying on precomputed routes to reach their destinations.

This behaviour mirrors that observed in SUMO, where equivalent route files are generated

using SUMO’s routing tools.

In the FLAME-GPU model, agents are used to represent vehicles. Parameters and

distributions from the SUMO model are mapped directly to FLAME-GPU agent variables.

Vehicle agents transition between three distinct states. The default state, “driving”, involves

performing car following, lane changing, and junction traversal. The “pre-insertion” state

ensures safe entry onto road edges through gap acceptance, while the “pre-removal” state
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allows vehicles to persist within the simulation for data collection before being removed

from the network. Additional agents are utilized to represent sections of the road network,

enabling efficient data aggregation and collection. Traffic lights are also represented as

agents within the FLAME-GPU model, operating with fixed signal patterns.

Figure 1. Simplified state diagram of a single iteration of the FLAME-GPU model. Circular nodes

represent agent states, boxes represent agent functions responsible for behaviour, and green diagonal

boxes represent messages which create execution order dependencies between agents and functions.

While the proposed method, FLAME-GPU, successfully incorporates many of the

features found in SUMO, certain functionalities remain unsupported. These include vehicle

type restrictions, teleporting mechanisms for resolving deadlocks, and comprehensive

speed limit foresight. To ensure a balanced comparison between the two frameworks, these

features were deliberately disabled in SUMO during the evaluation process. By aligning

the functionalities of both models, this approach provides a fair basis for performance

assessment while highlighting the strengths and limitations of FLAME-GPU in handling

large-scale traffic simulations.

3.4. Experiment Motivation and Set-Up

The primary objective of this research is to evaluate the computational efficiency of

the proposed solution in simulating large-scale, agent-based models and demonstrate its
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applicability within the domain of traffic behaviour modelling. To facilitate a fair and

consistent comparison across methodologies, the real-time factor (RTF) was employed as

the evaluation metric. The RTF measures the ratio of the simulation time to the computation

time, where an RTF greater than one indicates a simulation running faster than real time

and an RTF less than one signifies a slower pace [55,56]. The experiments were designed to

benchmark the performance of the proposed model against the SUMO platform, a widely

adopted tool in traffic simulation research, with approximately 11,956 references in the

literature attesting to its utility [56].

The analysis was conducted using three experimental configurations: one based on a

real-world transportation network and two utilising synthetically generated grid networks.

Each configuration provides distinct advantages for evaluating the performance of the

proposed method. The real-world transportation network offers a complex and challenging

environment, showcasing the model’s ability to handle scalability and versatility under

realistic conditions. In contrast, the synthetically generated grid networks facilitate con-

trolled experimentation with seamless load scalability, allowing for a systematic assessment

of the method’s computational efficiency across varying network sizes.

3.4.1. Experiment Configuration: Real-World Network (Isle of Wight, UK)

The first experimental configuration leverages the Isle of Wight’s transportation net-

work, depicted in Figure 2a. The map was derived from OpenStreetMap (OSM) data and

processed as a left-hand drive network. To prepare the map, the Java OpenStreetMap

Editor (JOSM) was used for data cleaning, followed by SUMO’s textttnetconvert utility to

convert the map into the required net.xml format. Traffic flow simulation was generated

using SUMO’s randomTrips.py and duarouter utilities.

(a) (b)

Figure 2. The Isle of Wight road network as modelled in the proposed simulation configuration,

alongside a depiction of simulated traffic within the Newport area. (a) The Isle of Wight’s street

network. (b) Traffic simulation at various junctions.

To scale the simulation, the vehicle insertion density parameter –insertion-density

in randomTrips.py was varied, starting at 60 vehicles per hour per kilometer of road

network length and increasing up to 600. The simulation duration parameter -e was

incremented in steps of 60 s, starting at 60 s and extending up to 360 s. Additionally, the

–validate parameter was enabled to account for potential network connectivity issues.

Using these configurations, the duarouter tool was employed to generate vehicle routes

for the simulation.

3.4.2. Experiment Configuration: SUMO-Generated Bidirectional Grid Network

The second experimental configuration used a synthetic network generated with

SUMO’s netgenerate tool. This set-up created a two-dimensional (2D) grid of roads

consisting of N × N rows and columns. Each road segment was bidirectional, and U-turns

were disabled. The grid size was scaled incrementally from 5 × 5 to 100 × 100, covering
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networks ranging from 40 bidirectional road sections with 9 junctions to 19,800 bidirectional

roads with 10,000 junctions.

Demand data for the network were generated using SUMO’s randomTrips.py and

duarouter utilities to create random, preplanned vehicle routes through the network. The

vehicle insertion density was fixed at 300 vehicles per hour per kilometer, with demand

generated during the first 360 s of the simulation. This resulted in an average of 30 vehicles

per kilometer being introduced into the network. The grid was configured to be multilane

using the netgenerate suite, specifying a maximum of three lanes per road segment. This

produced a network where each road segment had between 1 and 3 lanes.

3.4.3. Experiment Configuration: Fixed-Size Grid Network

The third experimental configuration involved performance measurements conducted

on a fixed-size grid network with varying vehicle insertion densities. The grid size was

fixed at 100 × 100, consisting of single-lane roads throughout. The initial vehicle density

was varied from 60 vehicles per hour per kilometer to 600, in increments of 60. This

configuration allowed for an evaluation of performance under varying levels of demand

within a network of a fixed size.

To ensure consistency across all configurations, the simulations were executed three

times for one hour. Furthermore, all three configurations were implemented on a worksta-

tion equipped with an Intel Core i7-5930K CPU, an NVIDIA GeForce RTX 3090 (24 GiB)

GPU, and 64 GB of system memory.

4. Results Analysis

In this section, the results from the three experiment configurations described earlier

are presented. Each experiment’s outcomes are illustrated in the corresponding figures. To

ensure a fair comparison, the same configurations were executed in SUMO for benchmark-

ing purposes.

Figure 3 presents the results of the first experiment configuration, which employed a

real-world, complex street network: the Isle of Wight in the United Kingdom. Next, Figure 4

depicts the outcomes from the second experiment configuration, utilising a synthetically

generated bidirectional grid network that incrementally increased in size. Finally, Figure 5

showcases the results of the third experiment configuration, which used a fixed-size grid

network with varying initial vehicle densities.

In Figure 3a, the real-time factor (RTF) is plotted on a logarithmic scale (y axis) to

compare the performance of FLAME-GPU with SUMO. As the number of vehicles in the

simulation increased, SUMO showed a significant drop in performance, whereas FLAME-

GPU maintained a consistently high RTF. By the end of the simulation, FLAME-GPU

achieved an average RTF of around 99, compared with SUMO’s 1.45. This demonstrates

that FLAME-GPU can handle a larger number of vehicles much faster than SUMO. Similar

results can be seen in Figures 4a and 5a.

Figure 3b provides further insight by showing the average simulation time (in seconds)

as the number of vehicles increased. For approximately 95,000 vehicles, SUMO took over

2481 s (around 41.35 min), whereas FLAME-GPU completed the simulation in roughly

36 s, achieving a speedup of roughly 68 times. Additionally, SUMO’s simulation time

increased linearly with the number of vehicles, while FLAME-GPU remained almost

constant, highlighting its ability to scale effectively.
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(a) (b)

(c) (d)

Figure 3. Benchmark results illustrating performance metrics for both the proposed traffic simulation

and SUMO conducted on the Isle of Wight. (a) Real-time factor compared with vehicles loaded into

simulation. (b) Average simulation runtime in seconds compared with vehicles loaded. (c) Simulation

state change per second compared with vehicles loaded. (d) Number of vehicles inserted into the

model compared with vehicles loaded.

Figure 3c examines the updates per second (UPS)—–the number of state changes

across all agents per second—–as the number of vehicles increased. In FLAME-GPU, the

number of updates grew linearly with the vehicle count, while SUMO maintained an

average of approximately 116,000 updates per second. At the largest scale (95,000 vehicles),

FLAME-GPU performed updates about 62 times faster than SUMO. This trend is also

evident in Figures 4c and 5c.

The final benchmark, shown in Figure 3d, evaluated how quickly the simulation could

calculate available spots on the street network for inserting new vehicles. In this test, SUMO

performed better, demonstrating higher efficiency in loading vehicles into the network. The

results also show that FLAME-GPU’s insertion rate decreased as the number of vehicles

increased. This reduction was likely caused by small differences in how congestion was

cleared over time. If vehicles join queues faster than they leave, then these small differences

can accumulate, reducing the number of available spots for inserting new vehicles. A

similar pattern can be observed in Figures 4d and 5d.

Overall, the results highlight the strengths and limitations of both approaches. SUMO

is more efficient at inserting new vehicles into the environment, but FLAME-GPU offers

significant improvements in overall performance, particularly for simulations involving

large vehicle populations. While SUMO’s performance is constrained by its reliance on

the CPU, FLAME-GPU benefits from GPU parallelism, allowing it to handle larger, more

complex simulations with consistent performance. This approach provides an opportunity
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to improve the accuracy and scale of large-scale simulations, without the need to simplify

or reduce agent representations.

(a) (b)

(c) (d)

Figure 4. Benchmark results illustrating performance metrics for both the proposed traffic simulation

and SUMO, conducted over a synthetic multilane grid. (a) Real-time factor compared with vehicles

loaded into simulation. (b) Average simulation runtime in seconds compared with vehicles loaded.

(c) Simulation state-change per second compared with vehicles loaded. (d) Number of vehicles

inserted into the model compared with vehicles loaded.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Benchmark results illustrating performance metrics for both the proposed traffic simulation

and SUMO, conducted over a synthetic fixed grid. (a) Real-time factor compared with vehicles

loaded into simulation. (b) Factor compared with vehicles loaded into simulation. (c) Simulation

state-change per second compared with vehicles loaded. (d) Number of vehicles inserted into the

model compared with vehicles loaded.

5. Conclusions

This article presents a GPU-accelerated framework for agent-based modelling de-

signed to address the computational challenges of simulating large-scale vehicle popula-

tions in transport networks. Our contributions are twofold: (1) the utilisation of a scalable

modelling framework and (2) its application to simulate vehicle dynamics across different

network structures, ranging from real-world street layouts to synthetic grid networks.

The results demonstrate significant performance improvements over traditional methods.

Comparative experiments with the SUMO transport simulator [57,58] show that FLAME-

GPU [18,59] achieved up to 68 times faster simulation speeds for equivalent scenarios.

Notably, our model simulated over 95,000 vehicles in just 36 s, compared with SUMO,

which required 2481 s. This efficiency enables the simulation of complex, large-scale

transport systems, such as the Isle of Wight, within practical timeframes.

The experiments demonstrate that the proposed approach remained highly efficient

even as the scale of the environment and vehicle population increased. Despite this growth,

our model remained 62 times faster than SUMO, highlighting its adaptability to larger and

more complex simulations.

However, certain features available in SUMO, such as vehicle teleportation and adap-

tive traffic lights, are not currently incorporated into our framework. This may limit the

realism and flexibility of the simulation in specific scenarios. Additionally, improvements

in handling roundabouts and speed limit transitions could enhance the accuracy of vehicle

behaviour representation.

Future work will focus on addressing these limitations by refining the model’s fidelity

and expanding its capabilities to incorporate emerging transport technologies, such as

electric vehicles. These developments will not only improve computational scalability but

also provide deeper insights into traffic dynamics and energy consumption, aligning with

broader environmental and policy objectives.
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