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Abstract: Ultra-high-performance concrete (UHPC) has been following economic and
environmental trends for the past two decades. Limited research has been conducted on the
significance of superplasticizers in UHPC products, despite the high costs they entail for
projects. The current study assesses UHPC based on rheological properties and mechanical
characteristics considering different factors. In this study, the effects of different levels of
superplasticizer derived from sulfonated naphthalene formaldehyde (SNF: 0.7%, 0.8%, and
0.9%), silica fume (SF: 15%, 20%, and 25%), and the water-to-binder ratio (w/b: 0.18, 0.20,
and 0.22) were examined. Fresh tests such as slump flow, Vicat needle, and squeezing, as
well as hardened tests like compressive strength, flexural strength, and electrical resistivity,
were conducted. In the analysis, an artificial neural network (ANN) model and a fuzzy
logic (FL) model were employed to forecast compressive strength results at 7 and 28 days.
The results indicated that a higher SF dosage reduced slump flow and set time, whereas
the opposite was observed for SNF and the w/b ratio. Three distinct behaviors were
identified in the squeezing flow test findings: (1) specific elastic behavior and low plasticity,
(2) extensive plastic behavior and significant dilatancy, and (3) heightened responsiveness
to compressive flow rate and material ratio. SNF demonstrated promise in enhancing
compressive, flexural, and electrical strength. The prediction models suggested that the
FL (error range 3.18±4.36%) and ANN (0.74±1.03%) models performed well in predicting
compressive strength at 7 and 28 days. The encouraging findings from this study set the
stage for further sustainable and cost-effective construction methods.

Keywords: ultra-high-performance concrete; superplasticizers; squeeze flow; mechanical
properties; artificial neural networks; fuzzy logic

1. Introduction

Ultra-high-performance concrete (UHPC) stands out among construction materials
as an extraordinary marvel that surpasses conventional constraints [1]. UHPC has key
characteristics like a high particle packing density (0.825±0.855), a low water-to-binder
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ratio (0.15±0.25), steel fiber content exceeding 2%, and suitable chemical admixtures [2].
In this respect, UHPC has transformed the construction sector by offering attributes like
outstanding strength, excellent durability, acceptable ductility, and crack resistance, en-
abling the construction of lighter, more flexible, and visually appealing structures [1,3]. The
outstanding performance of UHPC has resulted in its use in various construction projects,
ranging from bridges and high-rise buildings to architectural marvels [4±6]. Over the
past three decades, UHPC has undergone four phases of evolution [2]: (1) laboratory-only
production with vacuum mixing and heat curing (before the 1980s), (2) the use of MDF and
DSP cement to reach a compressive strength of 200 to 345 MPa (in the early 1980s), (3) the
addition of steel fibers to reduce the fragility of this kind of concrete (in the mid-1980s),
and (4) the introduction of superplasticizers and the creation of RPC, which marked a
significant advancement for UHPC (in the 1990s). The production of UHPC has shown a
new trend since 2000, which includes reducing CO2 emissions and reducing initial costs.

The rheological properties of UHPC, such as viscosity and yield stress, are critical to its
performance and are often evaluated using methods like the squeeze flow test. This test is
particularly effective for assessing mortars under compression, with studies demonstrating
strong correlations between squeeze flow and rotational rheometry results [7,8]. Because of
the low water-to-binder (w/c) ratio and the high quantity of fine particles like silica fume,
quartz sand, and fibers, UHPC is more viscous than normal concrete [9]. This makes the par-
ticles stickier and more resistant to flow, resulting in a stiffer and less fluid mixture [10]. The
high viscosity can have negative effects on the workability, fiber distribution, and curing of
UHPC, so it is essential to use appropriate additives, such as superplasticizers, to make
the mixture more fluid and dispersed [11]. Superplasticizers are generally classified into
four groups based on their chemical structure [12]: (1) lignosulfonates (SP), (2) sulfonated
naphthalene formaldehyde condensate (SNF), (3) sulfonated melamine formaldehyde con-
densate (SMF), and (4) polycarboxylates (PCE). Figure 1 depicts details on the mechanism
of action, chemical structure, and generation of each Superplasticizer. Beyond superplasti-
cizers, advancements in material scienceÐsuch as nano-absorbers for electromagnetic wave
shielding [13±15] and sustainable low-carbon composites [16,17]Ðhighlight the broader
potential of tailored material design in enhancing UHPC performance.
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Figure 1. Types of superplasticizers based on chemical structure.
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The tests used to assess concrete’s mechanical properties can be problematic due to
their time-consuming nature, high costs, and reliance on laborious, intensive work [18±20].
Moreover, the results might be uncertain because of varying laboratory conditions or
human error [18,21]. In this regard, to more precisely assess the mechanical properties of
concrete, the focus has been placed on techniques like artificial neural networks (ANNs)
and fuzzy logic (FL). Various researchers have demonstrated the effectiveness of ANNs
and FL in studying the mechanical properties of UHPC [22±24].

ANN, inspired by the biological nervous system, aims to process information similarly
to the human brain [25±29]. ANN allows the modeling of nonlinear relationships between
input and output [30]. The three layers of ANN are the input layer, the hidden layer, and
the output layer [30]. In the ANN modeling process, determining the number of hidden
layers and neurons is a crucial stage. A high number of hidden layers increases training
duration, whereas a low count (insufficient) results in the model lacking resources to tackle
intricate, nonlinear issues [30]. Figure 2a illustrates an ANN structure.
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Figure 2. Structure of ANN and FL. (a) Artificial Neural Network. (b) Fuzzy Logic.

The concept of fuzzy sets was initially introduced by Professor Lotfi A. Zadeh [31]. In
contrast to Aristotelian logic, which operates with binary values of 0 or 1, FL allows for the
selection of values ranging between 0 and 1 for a given variable [32±35]. Data ambiguity,
statistical variance, inadequate data, statistical inference, and limited understanding of
variable relationships in a field are some of the factors that highlight the importance of
fuzzy logic. Since the inception of FL, this concept has evolved and remains widely utilized
across various engineering disciplines. FL effectively represents human knowledge and
experience through mathematical equations, enabling the analysis of intricate real-world
issues. It operates on ‘if-then’ rules to facilitate communication between input and output
variables [18,36]. FL is mainly used in situations that involve uncertainty. To create fuzzy
inference systems, fuzzy implication operators and a combination of fuzzy relations are
used. The application of this method in predicting problems related to UHPC has been
repeatedly investigated, and positive results have been obtained [22,23,37]. Figure 2b
illustrates a schematic comparison between Aristotelian logic and fuzzy logic.
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2. Literature Review

2.1. Literature on Superplasticizers

Researchers are currently analyzing how superplasticizers interact with various com-
ponents of UHPC to address potential challenges arising from inadequate interaction.
This includes studying the behavior of superplasticizers concerning cement particles, fine
aggregates, and other additives. Most research on superplasticizer use in UHPC focuses
on third-generation products. Second-generation products have been overshadowed by
third-generation ones, leading to less attention on their potential. Lowering costs and
meeting regulatory requirements with second-generation products are positive signs for
incorporating UHPC as a target.

Zhang et al. [38] investigated the preferential adsorption of two superplasticizers
(one containing only carboxyl groups and one containing both carboxyl and phosphate
groups) on cement and silica fume. The research indicated that the carboxyl-containing
PCE demonstrated higher adsorption potential on the cement surface, influencing the flow
spread of the cement paste. Additionally, the carboxyl- and phosphate-containing PCE
showed a higher affinity for adsorption on silica fume at lower concentrations, while at
higher concentrations, it exhibited a strong adsorption capacity on both cement and silica
fume. Li et al. [39] reported that the dispersing efficacy of PCE-type superplasticizers was
intrinsically dependent on their chemical composition and justified the significant effect of
chemical structure on the rheological properties of the pastes by an exponential correlation.
They attributed the retardation effect (which affects concrete’s setting time) to two factors:
PCE molecules adsorbed onto cement particles and those within the aqueous phase. It was
reported that factors like the type and dosage of SP caused chemical shrinkage of paste
only in the initial 24 h. Wang et al. [40] found that enhancing the water-to-binder ratio and
superplasticizer dosage increased flowability in fresh cement mortar, resulting in reduced
yield stress. They noted that adjusting the superplasticizer dosage had no impact on plastic
viscosity. According to Teng et al. [41], combining PCE-SP with nano-clay resulted in
enhanced flexural toughness (by 45%), increased flexural strength (by 30%), a slight boost
in compressive strength, and decreased porosity in UHPC samples. Other studies, like
Yu et al. [42] and Tuan et al. [43], also found that rheological indices increased and free
water decreased when nano or micro silica was combined with a superplasticizer [44,45].
Murugesan et al. [46] evaluated the efficacy of three distinct superplasticizer variants
(namely SNF, SMF, and PCE) incorporated into UHPC at dosages of 0%, 0.5%, 1%, 1.5%, and
2%. The findings indicated that the mixtures containing PCE-SP outperformed those with
sulfonated superplasticizers in terms of water reduction capacity, retention of workability,
and mechanical strength.

2.2. Literature on Numerical Methods

ANNs and FL have gained significant popularity as innovative and effective tools in
scientific and engineering research, particularly in the analysis and prediction of concrete
behavior. Ramkumar et al. [47] investigated the application of ANNs in optimizing the mix
design of self-consolidating concrete (SCC). Their study focused on the properties of SCC,
particularly reinforcement with fibers and the utilization of agricultural and industrial
waste as partial cement replacements. The authors reported that some studies indicate a
confidence level of approximately 0.9995 for ANN predictions, with significantly lower
errors than linear regression. Balf et al. [48] explored the application of ANNs in conjunc-
tion with data envelopment analysis (DEA) for designing SCC mixes containing fly ash.
The ANN served as a comparative model to validate the DEA approach, which estimated
efficiency based on input parameters such as superplasticizers and aggregates. The study
indicated that the ANN model correlated well with the experimental results, enhancing the
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understanding and optimization of SCC mix design. Ly et al. [49] developed a deep neural
network (DNN) model to predict the compressive strength of rubber concrete. A compre-
hensive database was utilized, with input parameters related to binders and aggregates
and compressive strength as the output. They reported that DNN outperformed other
neural network architectures across various performance metrics, demonstrating superior
accuracy compared to existing machine learning methods. Liu and Zhang [50] compared
the performance of two ANN models in predicting explosive spalling in polypropylene
fiber-reinforced concrete subjected to elevated temperatures. One model was based on con-
crete mix proportions, while the other was based on concrete strength. The results, obtained
from training datasets of 306 and 300 tests, showed that both models achieved high predic-
tion accuracies, with ANN1 attaining 100% accuracy and ANN2 reaching 90%, indicating
the effectiveness of ANNs in assessing the risk of explosive spalling. Biswas et al. [51]
developed a hybrid ANN model to predict the compressive strength of SCC, considering
factors such as cement replacement and aggregate types. The ANN, optimized using the
Runge±Kutta optimization algorithm, achieved high prediction accuracy (R2 = 0.933 for
training and R2 = 0.9203 for testing), surpassing the performance of traditional models.
Feature importance and Taylor diagram analyses further supported the effectiveness of the
ANN as a predictive tool for the mechanical properties of SCC. Khan et al. [52] proposed
an ANN model optimized using the Levenberg±Marquardt backpropagation algorithm
to predict compressive strength in both normal and high-strength concrete. By evaluating
1637 samples with eight input variables, the study optimized the model’s architecture.
K-fold cross-validation confirmed its reliability, and the statistical results were promising.
The ANN demonstrated significant accuracy and efficiency, revealing that cement content
and superplasticizers had a notable impact on compressive strength. Shafaie et al. [53] intro-
duced an FL system to predict the shear bond strength of fiber-reinforced self-consolidating
concrete (FRSCC). They reported high prediction accuracy, with R2 values reaching up to
0.96 depending on the applied t-norms. The study highlighted the potential of FL in guiding
the precise selection of pozzolan and optimizing mechanical performance. Abbas et al. [54]
presented an FL numerical model designed to predict the complete stress±strain behavior of
hybrid fiber-reinforced concrete (HFRC). Using data from 27 mixes (including 18 self-made
and 9 collected from the literature), the FL model exhibited strong predictive capabilities
compared to existing equations. The model was particularly suitable for HFRC, with
strengths ranging from 60 to 90 MPa, encompassing both metallic and non-metallic fibers.
Demir [55] compared a fuzzy modeling approach with traditional methods for determining
the elastic modulus of normal and high-strength concrete. The study demonstrated that
the fuzzy modeling approach provides a simpler and more effective way to evaluate the
elastic modulus by combining multiple parameters. Al-Swaidani et al. [18] employed both
ANNs and FL to predict the efficiency factor (EF) and durability indicator (DI) of nano
natural pozzolana (NNP) as a cement replacement. Key input variables included the curing
time, NNP content, particle size, water/binder (w/b) ratio, and superplasticizer dosage.
They concluded that the ANN model exhibited higher accuracy than FL. For EF prediction via
ANN, they achieved R2 and mean absolute percentage error (MAPE) values of 0.992 and 18.5,
respectively, outperforming both FL and multiple linear regression (MLR). The application of
ANN and FL methods has shown great promise in improving our understanding of concrete
and driving significant performance gains. These techniques offer the potential for substantial
time and cost savings, as well as a reduced environmental impact.
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3. Significance of the Investigation

In recent years, being economically and environmentally friendly has become one of
the key requirements for UHPC. Hence, this study aimed to explore UHPC based on the
following aspects:

Economic aspect

• Superplasticizer is a crucial material in the production of UHPC. However, its high
cost in large projects has led to a search for more economically efficient approaches.
Research has primarily focused on evaluating third-generation superplasticizers,
while the potential of second-generation superplasticizers for UHPC has been largely
overlooked, with limited studies conducted.

• The results of ANN and FL models were compared with the results of experimental
tests (which are costly and time-consuming)

Environmental aspect

• Various percentages (15%, 20%, and 25%) of silica fume were studied as a partial
substitute for cement.

Industrial application

• The key practical aspect of this study was the construction workshop for prefabri-
cated parts production. To efficiently create parts in the workshop, quick molding
and removal from the mold are essential. Speed (enhancing construction pace) and
cost reduction are crucial in such workshops. The second-generation superplasti-
cizer (naphthalene-based) holds promise, with a shorter processing time and lower
cost than the third-generation alternative (polycarboxylate-based), offering potential
time and cost savings.

Figure 3 delineates the methodological framework employed in the present study.
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4. Materials and Test Methods

4.1. Materials

The constituents utilized in this investigation comprised (1) cement, (2) aggregates,
(3) water, (4) superplasticizer, and (5) silica fume. Type II cement, sourced from the Heg-
matan Cement Factory (Hamadan, Iran) and conforming to the ASTM C150 [56] standard,
was utilized. The properties of the employed cement are delineated in Table 1. The silica
fume (SF) was produced by the Ferroalloys Company (Tehran, Iran) according to the ASTM
C1240 [57] standard. The specifications of the SF are presented in Table 2. River sand,
which was sieved through #30 mesh (finer than 600 microns) in compliance with ASTM
C778 [58], was utilized in the fabrication of the designated concrete. Table 3 delineates the
characteristics of the sand employed. The superplasticizer, denoted as M200R and manu-
factured by Shimisakhteman Company (Tehran, Iran), conformed to the ASTM C494 [59]
standard. The properties of the superplasticizer are listed in Table 4.

Table 1. Chemical and physical characteristics of the cement.

Chemical Properties Physical Properties

SiO2 21.27
Compressive strength

(MPa)

3 days 20.1

Al2O3 1.12 7 days 28.2

Fe2O3 4.03 28 days 40.3

CaO 62.95
Setting time (min)

Initial 154

MgO 1.55 Final 195

SO3 2.26 Longitudinal
expansion 1.5 mm-0.08%

Na2O 0.49

K2O 0.65 Specific surface
(cm2/gr) 2910

C3A 6.30

Table 2. Chemical and physical characteristics of the silica fume.

Chemical Properties Physical Properties

SiO2 89.26 Physical state amorphous

Al2O3 4.95

Fe2O3 1.8 Particle size (typical) <1 µm

CaO 0.87

MgO 1.1 Color Light gray

Na2O 0.5

K2O 0.66 Specific surface (cm2/gr) 21,000

Table 3. Sand grading.

Sieve Size
ASTM C778 [58] This Study

mm No.

1.18 16 100 100

0.6 30 100 96±100

0.425 40 67.5 65±75

0.3 50 28 20±30

0.15 100 3.5 0±4
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Table 4. Specifications of superplasticizer.

Technical Features

Generation 2

Physical State Liquid

Color Brown

Specific weight 1.2 ± 0.02 kg/lit

PH 8 ± 1

Chlorides (PPM) 500 max

Chemical Base Modified sodium naphthalene sulfonate compounds

4.2. Mix Designs

The UHPC mix designs employed in this study are presented in Table 5. To fulfill the
research objectives, the mix designs were categorized into two distinct groups, labeled A
and B. Group A’s focus was directed toward determining the optimal proportion of silica
fume (SF), while group B’s mixtures were analyzed to ascertain the influences of superplas-
ticizer (SNF) and the water-to-binder (w/b) ratio. For SF, three varying ratiosÐ20%, 25%,
and 30% (relative to the weight of cement)Ðwere examined. Concurrently, SNF-SP was
incorporated at 0.7%, 0.8%, and 0.9% (in terms of binder weight). Furthermore, the w/b
ratio was strategically varied at 0.18, 0.2, and 0.22 to evaluate its impact.

Table 5. UHPC mix designs.

Mix No. Group Design Code Cement
Silica Fume

Water w/b S.P. Aggregate Dry Unit Weight
(kg/m3)

Final Water
Absorption (%Wt.)(kg/m3) %

N1

A

1-SF15WB20N08 696 104 15 160 0.2 6.4 1479 2083 3.42

N2 1-SF20WB20N08 667 133 20 160 0.2 6.4 1463 2074 3.24

N3 1-SF25WB20N08 640 160 25 160 0.2 6.4 1448 2064 2.99

N4 2-SF15WB20N08 783 117 15 180 0.2 7.2 1333 2067 3.47

N5 2-SF20WB20N08 750 150 20 180 0.2 7.2 1315 2051 3.15

N6 2-SF25WB20N08 720 180 25 180 0.2 7.2 1298 2042 2.82

N7 3-SF15WB20N08 870 131 15 200 0.2 8.0 1185 2045 3.21

N8 3-SF20WB20N08 833 167 20 200 0.2 8.0 1166 2024 3.26

N9 3-SF15WB20N08 800 200 25 200 0.2 8.0 1148 2015 2.88

N10

B

1-SF15WB18N08 696 104 15 144 0.2 6.4 1522 2114 3.02

N11 1-SF15WB22N08 696 104 15 176 0.2 6.4 1437 2065 3.64

N12 1-SF15WB20N07 696 104 15 160 0.2 5.6 1481 2097 3.51

N13 1-SF15WB20N09 696 104 15 160 0.2 7.2 1477 2090 3.31

N14 2-SF20WB18N08 750 150 20 162 0.2 7.2 1362 2081 3.03

N15 2-SF20WB22N08 750 150 20 198 0.2 7.2 1267 2026 3.23

N16 2-SF20WB20N07 750 150 20 180 0.2 6.3 1317 2054 3.23

N17 2-SF20WB20N09 750 150 20 180 0.2 8.1 1312 2051 3.1

N18 3-SF15WB18N08 870 131 15 180 0.2 8.0 1238 2053 3.33

N19 3-SF15WB22N08 870 131 15 220 0.2 8.0 1132 2006 3.29

N20 3-SF15WB20N07 870 131 15 200 0.2 7.0 1188 2028 3.37

N21 3-SF15WB20N09 870 131 15 200 0.2 9.0 1183 2026 3.09

Note: A = silica fume optimization; B = SNF and w/b ratio study; and 1, 2, 3 = binder content (800, 900, and 1000 kg/m3).

The mix designs in this table are classified into three seriesÐseries 1, 2, and 3Ðwhich
present total binder contents of 800, 900, and 1000 kg/m3, respectively.
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4.3. Test Methods

This study employed various tests to evaluate the properties of the fresh and hardened
UHPC mixtures. Details regarding the specific tests conducted are presented in Table 6.

• The flowability of the fresh concrete was measured using a standard flow table
(ASTM C230 [60]) in accordance with the ASTM C1437 [61] standard.

• The setting time was determined using the Vicat needle test (ASTM C191 [62]). The
test procedure involved pouring the concrete mix into a mold and smoothing the
surface. The Vicat needle was then introduced into the sample at predetermined
intervals (starting at 30 min after mixing) to measure the depth of penetration. The
initial setting time was recorded when the penetration depth fell below 25 mm, and the
test continued until the needle penetration reached zero, indicating the final setting.

• The squeezing test, adapted from the work of Cardoso et al. [63], was employed to
characterize the basic rheological properties of the fresh concrete. This test utilized
a universal testing machine equipped with two grooved steel disks (diameter: 6 cm)
positioned 21.5 cm apart within the clamps. An excess amount of concrete mix was
placed between the disks, ensuring a uniform distribution. Excess material around
the disks was removed with a spatula. Subsequently, the concrete was subjected to
constant loading rates of 30 mm/min and 3000 mm/min, and the resulting load±
displacement curve was recorded. A visual representation of the squeezing test setup
is presented in Figure 4.

• Dry unit weight and water absorption were determined in accordance with ASTM
C642 [64] on three specimens from each mixture.

• Electrical resistivity was measured at 28 days using the AASHTO TP119 [65] procedure
on three samples per mix.

• Compressive strength was assessed at 7 and 28 days on 5 cm × 5 cm × 5 cm cube
specimens following ASTM C109 [66].

• Flexural strength was determined at 28 days on 4 cm × 4 cm × 16 cm prism specimens,
as per ASTM C348 [67].

Table 6. Details of tests.

Hardened Test Fresh Test

Test Standard Curing Test Standard

Compressive
strength

ASTM C109 [66] 7, 28 Flow ASTM C1437 [61]

Electrical
Resistivity

AASHTO TP119 [65] 28 Vicat (Setting Time) ASTM C191 [62]

Dry Unit Weight ASTM C642 [64] 28 Squeezing Cardoso et al. [63]

Water
Absorption

ASTM C642 [64] 28 Cube Prism

Flexural strength ASTM C348 [67] 28
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Figure 4. The squeezing test: (a) filling the ring mold, (b) removing the mold, (c) squeezing a
high-viscosity mixture, and (d) squeezing a low-viscosity mixture.

5. Prediction Models

5.1. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are computational models inspired by the structure
and function of biological neural networks. ANNs excel at modeling non-linear relation-
ships between inputs and outputs, making them a valuable tool for predicting complex
phenomena in concrete material science. In this study, an artificial neural network featuring
a forward multi-layered perceptron structure was utilized. The backpropagation training al-
gorithm employed the Levenberg±Marquardt (LM) algorithm optimization method, along
with the scaled conjugate gradient (SCG) algorithm. The LM algorithm partitioned input
and output vectors into training, validation, and test datasets. The SCG algorithm, by elim-
inating the need for second derivative calculations, ensured convergence to the quadratic
function minimum, thus bypassing the time-intensive linear search process. The study’s in-
put variables included cement, silica fume, water, and naphthalene-based superplasticizer.
Table 7 presents a report on the characteristics of these input and output variables.

Table 7. Characteristics of the independent and dependent variables.

Independent variables (kg/m3)

Min. Max. Averg. SD.

Cement (C) 640 870 763 75.3

Silica fume (SF) 104 200 137.24 26.58

Water (W) 144 220 180 19.44

Sulphonated naphthalene formaldehyde (SNF) 6 9 7.2 0.832

Dependent variables (MPa)

Min Max Averg. SD.

Compressive strengthÐ7 days 52.08 81.60 70.76 29.1

Compressive strengthÐ28 days 115.07 145.44 132.05 9.13
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To determine the optimal number of layers and neurons in the hidden layer of an
artificial neural network, the learning and error method was utilized. The stop criterion for
network training was selected as the mean squared error (MSE) (Equation (1)), representing
the mean squared difference between the model’s predicted value (network output) and
the actual target value.

The R2 value indicates the extent and strength of the relationship and dependency
between the network’s output value and the target, always ranging between 1 and
−1 (Equation (2)). The closer the value is to 1, the stronger the relationship between
the network’s output and the target value. In this study, 10 neurons were chosen in the
hidden layer to forecast the compressive strength at 7 and 28 days. Thus, the neural net-
work’s configuration in this study is 4±10±2: 4 inputs, 10 neurons in the hidden layer, and
2 outputs. Figure 5 depicts the overall architecture of the artificial neural network modeled
in this study.

MSE =
∑ P

j=0∑ N
i=0

(

dij − yij

)2

N × P
, (1)

R2 = 1 −
∑ N

i=1(yi − ŷi)
2

∑ N
i=1(yi − yi)

2 , (2)

In Equations (1) and (2), the parameters are defined as follows: MSE (mean squared
error) measures the average squared difference between the predicted values (yij) and
the actual observed values (dij) across all samples, where N represents the total number
of samples and P denotes the number of predictors or observations per sample. On the
other hand, R2 (coefficient of determination) evaluates the proportion of variance in the
dependent variable (yi) that is predictable from the independent variables. In the numerator,

∑(yi − ŷi)2 captures the sum of squared residuals, while the denominator ∑(yi − Åyi)2

accounts for the total variance, with ŷi representing predicted values and Åyi denoting the
mean of observed values. Higher R2 values indicate better model performance, while lower
MSE corresponds to smaller prediction errors. Also, The R values indicate the extent and
strength of the relationship and dependency between the network’s output value and the
target, always ranging between 1 and −1 (Equation (2)). The closer the value is to 1, the
stronger the relationship between the network’s output and the target value.

                     
 

 

 

                             

       

                           
                     

                       
                         
                             

                             
                         

                           
                               

                             
                                 

                           
                             

                       
                           
                       
                             
                     

                       

       

   
     

     
     

     
     

     
     

   
     

     
     

   
     

     

Figure 5. Architecture of ANN models for prediction of compressive strength (7 and 28 days).
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5.2. Fuzzy Logic (FL)

Fuzzy logic (FL), as introduced in Section 2, provides a framework for reasoning
with imprecise or uncertain information. Unlike traditional Boolean logic, FL allows for
degrees of membership, enabling the representation of linguistic variables and the creation
of rule-based systems that mimic human decision-making. In this study, we leveraged FL
to predict the compressive strength of UHPC based on the mix design parameters. The FL
model used four input variables to predict the compressive strength values (7 and 28 days)
from experimental tests. Developed with the FL toolbox in MATLAB vR2024a, it utilized
a rule-based if-then form for prediction. Since there are no mathematical equations in
the FL model, the rule based on the elements expressed in the if-then form was used for
prediction. Mamdani’s inference system uses fuzzy sets as the result of the law, and the
output of each law is nonlinear and fuzzy. The inputs for the system are categorized into
four distinct groups: cement, silica fume, water, and NSF. These inputs were fuzzified
into four gradations: low (L), medium (M), high (H), and very high (VH). The outputs are
divided into two groups: 7-day compressive strength and 28-day compressive strength.
Table 8 shows the details of the inputs and outputs of the FL model. Triangular membership
functions, chosen for their simplicity, were constructed based on experience. The triangular
shape can be considered the easiest shape to implement compared to others [22]. Figure 6
shows a schematic view of the FL model for this study.

Table 8. Range of input and output values and corresponding linguistic gradation.

Input Fuzzy MF Range

Cement (kg/m3)

ªLº (Low) 635±732

ªMº (Medium) 686±824

ªHº (High) 778±890

Silica fume (kg/m3)

ªLº (Low) 140±174

ªMº (Medium) 159±212

ªHº (High) 193±225

Water (kg/m3)

ªLº (Low) 140±174

ªMº (Medium) 159±212

ªHº (High) 193±225

NSF (kg/m3)

ªLº (Low) 4.5±7.1

ªMº (Medium) 6.6±8.4

ªHº (High) 7.8±9.5

Output Fuzzy MF Range

Compressive strength (MPa)Ð7 Days

ªLº (Low) 45±60

ªMº (Medium) 57±68

ªHº (High) 65±77

ªV.Hº (Very
High)

74±90

Compressive strength (MPa)Ð28 Days

ªLº (Low) 110±123

ªMº (Medium) 120±132

ªHº (High) 128±141

ªV.Hº (Very
High)

136±150
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Figure 6. Displaying inputs and outputs in the FL model.

6. Results and Discussion

6.1. Fresh Tests

6.1.1. Slump Flow Test

Figure 7 shows the results of the slump flow test. The slump flow test indicated
acceptable filling ability; the higher the slump flow, the greater the concrete’s ability to fill
the mold. Examining the mixtures of group A shows that the increase in SF substitution
caused a decrease in slump flow. A decrease in workability with an increase in SF content
has also been reported in other studies [68,69]. In series 1 mixtures, increasing SF from 15%
to 20% caused a decrease in slump flow by almost 3%, and increasing SF to 25% resulted
in a reduction of about 6%. Examining the mixtures of series 2 also shows a 2.92% and
5% decrease in slump flow when SF was increased to 20% and 25%, respectively. The
series 3 mixtures also experienced 3.32% and 5.62% reductions in slump flow when SF was
increased to 20% and 25%, respectively. SF, an exceptionally fine material (approximately
100 times smaller than cement particles) [70,71], effectively fills the voids between cement
grains and larger aggregates when its dosage is increased. This phenomenon enhances the
packing density of the concrete mix [70]. While this improvement translates to increased
strength and durability, it can also lead to a stiffer mix. Furthermore, SF undergoes a
chemical reaction with calcium hydroxide within the concrete matrix, resulting in the
formation of additional calcium silicate hydrate gel (C-S-H). This reaction consumes free
water in the mixture, potentially leading to a further reduction in slump flow [72±75].

Increasing the w/b ratio from 0.18 to 0.22 increased the slump flow. In this regard, the
comparison of the SF15WB18N08 and SF15WB22N08 mixtures showed that in the mixtures
of series 1, an increase in slump flow of about 11.9% was recorded; in the mixtures of series
2, an increase of about 13% was recorded; and in the mixtures of series 3, an increase of
about 9.4% was recorded. The presence of water in a mixture acts to diminish interparticle
friction, facilitating enhanced particle mobility [76]. This phenomenon translates to a
reduction in cohesiveness and an increase in fluidity, consequently resulting in a higher
slump flow value [76].
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Figure 7. Slump flow test results for series 1, 2, and 3 mixtures.

Increasing SNF from 0.7 to 0.9 increased the slump flow. Therefore, slump flow was
increased by 10.9%, 8.9%, and 8.6%, respectively, in the mixtures of series 1, 2, and 3 due
to the increase in SNF. Superplasticizers, a class of surface-active agents, are proficient
at dispersing cement particles. Their mechanism of action is twofold. First, due to their
inherent electrostatic charge, superplasticizers adsorb onto the surface of cement particles,
inducing electrostatic repulsion that hinders particle agglomeration [76±78]. Second, super-
plasticizers effectively reduce the surface tension of the water layer naturally surrounding
cement particles. This phenomenon facilitates enhanced particle mobility by minimizing
resistance to interparticle movement [76±78].

The main trends observed in the slump flow results indicate that increasing silica
fume (SF) content reduces workability across all mix series, with greater SF levels (20±25%)
leading to up to a 5±6% reduction in slump flow. Conversely, increasing the water-to-binder
ratio from 0.18 to 0.22 improved slump flow by up to 13%. Additionally, increasing the
superplasticizer dosage (SNF from 0.7% to 0.9%) led to an 8±11% rise in slump flow.

6.1.2. Vicat Needle Test (Setting Time)

As illustrated in Figure 8, increasing the dosage of SF from 15% to 20% led to a
corresponding decrease in setting time. This effect was quantified by reductions of 4.5%
and 19% in the initial and final setting times, respectively. Furthermore, increasing the SF
dosage from 15% to 25% resulted in a more pronounced reduction in setting time, ranging
from 13% to 33%. This phenomenon can be attributed to the acceleration of the hydration
process caused by the presence of SF due to its fineness, chemical reactivity, and ability to
enhance microstructural densification, all of which contribute to the faster setting of UHPC.
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Figure 8. Vicat needle test (setting time) results for series 1 mixtures.

An increase in the w/b ratio from 0.18 to 0.22 demonstrably extended the setting
times, as observed in the increased initial set time by 38% and final set time by more than
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90% (Figure 8). This phenomenon can be attributed to the dilution effect of a higher water
content. As the w/b ratio increases, the concentration of cement particles within the mix
is reduced. This translates into a decrease in the probability of contact between particles,
consequently slowing down the hydration reactions essential for setting. The hydration
process is a chemical reaction between water and cement that forms the binding com-
pounds responsible for concrete hardening. When the water content surpasses the binder
content (including cement and supplementary cementitious materials like silica fume),
the cement particles become more dispersed, hindering their interaction and subsequent
hydration [79±81].

As observed, increasing the SNF dosage from 0.7% to 0.9% resulted in corresponding
extensions of setting time, with increases of 52% and 74% in the initial set time and final set
time, respectively (Figure 8). This phenomenon can be ascribed to the multifaceted interplay
between chemical and physical processes induced by the incorporation of superplasticizers
within the concrete matrix. Expounding further, a higher dosage of superplasticizer pro-
motes superior dispersion of cement particles, thereby enhancing the workability of the mix.
However, this improved workability comes at the expense of a modified hydration process,
ultimately leading to a prolonged setting time for the concrete [82]. Superplasticizers,
particularly second-generation types like SNF, alter the hydration process by dispersing
cement particles and delaying their interaction with water. This dispersion reduces the rate
at which hydration products form, slowing the buildup of the initial structure needed for
setting. Additionally, by improving workability without adding extra water, superplasticiz-
ers reduce early particle clustering, which further delays the formation of calcium silicate
hydrate (C-S-H) gel, resulting in an extended setting time [83,84].

In contrast, increasing silica fume (SF) content significantly reduced both initial and
final setting times. Raising the water-to-binder ratio (w/b) from 0.18 to 0.22 prolonged the
setting time markedly by up to 90% for final setting. Additionally, higher superplasticizer
(SNF) dosage also led to longer setting times, by up to 74%.

6.1.3. Squeezing Flow Test

According to prior research [63,85], the load±displacement curve schematic from the
squeezing test comprises three stages, as depicted in Figure 9. Consequently, the assessment
of various pastes in this study was conducted based on these three stages.
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Figure 9. Different stages of the load±displacement curve under the squeezing test.

Examining the Effect of w/b and SF

Figure 10 shows the behavior of series 1 (Figure 10a) and series 2 (Figure 10b) pastes
regarding the effect of the w/b ratio. According to Figure 10a, the analysis of the behavior of
the pastes during the squeezing flow test reveals that all pastes exhibit three stages (elastic



Appl. Sci. 2025, 15, 5133 16 of 30

deformation, plastic deformation, and strain hardening). Pastes with higher w/b ratios
are positioned lower than others, thus necessitating less compression load. Examining
pastes with higher w/b ratios reveals a broader plastic stage. Conversely, pastes with
lower w/b ratios (0.18) exhibit a shorter stage II due to drier conditions, advancing to
stage III more quickly. Increasing the amount of water in the paste increases the likelihood
of the dilatancy effect and results in a broader plastic phase [63,86±88]. Additionally,
the higher water content in the paste reduces fluid viscosity, impacting the interaction
between superplasticizer particles and plate gaps. Pastes with higher w/b ratios have a
shorter I phase, while pastes with lower w/b ratios exhibit a more pronounced I phase.
Additionally, increased water content in the paste reduces the likelihood of experiencing
stage III.
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Figure 10. Load±displacement curves for the squeeze flow testÐchecking the effect of w/b:
(a) series 1; (b) series 2.

According to Figure 10b, in series 2, pastes with higher water content have a broader
stage II and a shorter elastic stage. Pastes with a w/b ratio of 0.18 exhibit all three stages
but with a shorter plastic stage. Pastes with higher water content exhibit partial strain
hardening in a small portion of their plastic behavior.

A comparison between Figure 10a,b shows that the inclusion of SF in cement paste
results in a more consistent behavior and enhances flowability, thereby lowering the need
for compression force.

Examining the Effect of SNF and SF

Figure 11 illustrates the behavior of series 1 (Figure 11a) and 2 (Figure 11b) pastes
concerning the impact of SNF dosage. Based on Figure 11a, the analysis of pastes shows
that nearly all of them exhibit three stages. Lowering the SNF dosage appears to raise the
necessary compression load. Pastes with a higher SNF dosage lead to greater displacement.
The plastic stage (stage II) is broader in pastes with higher SNF doses. Conversely, pastes
with a lower SNF dose exhibit a distinct stage I. An increase in SNF results in higher liquidity
levels. The likelihood of encountering stage III decreases as the SNF dosage increases.

Based on Figure 11b, pastes with dosages below SNF undergo all three stages, but the
elastic stage is not visible in pastes with dosages of 0.8% or 0.9%. Additionally, pastes with
SNF dosage require more compression force and enter the hardening stage earlier than
other pastes. Mixtures with higher SNF dosages show a broader plastic paste.
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Figure 11. Load±displacement curves for the squeeze flow testÐchecking the effect of SNF: (a) Series 1;
(b) Series 2.

Comparing Figure 11a,b reveals that the rise in SF results in the relocation of the paste
curves to a lower position. Essentially, the presence of SF in cement paste enhances fluidity,
reducing the required compression force to reach the objective. In summary, the enhanced
performance of series 2 (with 20% SF) stems from optimized microstructural packing,
controlled water distribution, stronger early cohesion, and reduced internal friction, all
of which contribute to more uniform flow behavior and lower compression requirements
across varying SNF and w/b ratio conditions.

6.2. Hardened Tests

6.2.1. Electrical Resistivity

Figure 12 displays the results of electrical resistivity for various UHPC mixtures.
Increasing SF to more than 15% in series 1 mixtures led to a rise in electrical resistance.
Similarly, in series 2 and 3 mixtures, increasing SF enhanced electrical resistance. However,
it is noteworthy that the increasing electrical resistance trend contradicts compressive
resistance. Consequently, the authors undertook a more thorough investigation of this
issue, which was previously unexplored. The conflict between compressive resistance and
electrical resistivity, attributed to SF, may stem from two factors (to be elaborated on in the
subsequent text): (1) SF filling C-S-H layers and (2) the inherent structure of SF.

The optimal dose of SF in UHPC is generally considered to be around 15±20%, accord-
ing to previous studies. Exceeding this optimal dose results in a decrease in the expected
C-S-H value of the mixture. In UHPC, some of the cement exists as crystalline particles,
with only a small portion of real cement being hydrated to form C-S-H. Therefore, using
SF at higher doses increases the distance between particles, posing a challenge for C-S-H
formation and ultimately weakening resistance. Although using SF at a high dose reduces
resistance in UHPC, it also increases electrical resistance. The C-S-H structure consists of
layers with capillary paths between them that conduct and transmit a small electric current.
These capillary paths facilitate 3D spatial communication. Increasing SF fills these capillary
paths, reducing the distance between layers, disrupting the spatial communication, and
decreasing compressive strength due to reduced layer adhesion (Figure 13). As a result,
the concrete becomes more brittle, with a glass-like fracture pattern. Conversely, lower SF
percentages allow for more flexible layers in the UHPC structure, preventing glass fractures.
On the other hand, the filling between the layers increases the electrical resistance due to
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closed capillary paths and greatly increased density. However, this increase in density does
not necessarily strengthen the structure.
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Figure 12. Results of electrical resistivity for series 1, 2, and 3 mixtures.
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Figure 13. Mechanism of high-dose SF in UHPC.

Figure 12 reveals that increasing the w/b ratio from 0.18 to 0.22 (i.e., increasing water
content in the mixture) leads to a decrease in electrical resistance (consistent with the
compressive resistance trend). A higher w/b ratio results in more water in the mixture and
increases the volume of pores in the concrete after hydration. These pores serve as small
pathways for ion movement, aiding electricity flow and decreasing resistance [89±93].

The increase in SNF from 0.7% to 0.9% signifies a rise in density and an enhancement
in electrical resistance (Figure 12), aligning with the trend of compressive strength. When
superplasticizers are incorporated into concrete, they enhance workability by dispersing
cement particles, thereby decreasing the thickness of the water layer surrounding them.
This decrease boosts the packing density of the cement particles, resulting in a denser
microstructure. Consequently, the route of electric current within the concrete becomes
more circuitous, elevating electrical resistance. Furthermore, these additives can alter
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concrete’s pore structure, diminishing pore network connectivity and further elevating
electrical resistance [83,94,95].

6.2.2. Flexural Strength

Figure 14 displays the flexural strength outcomes of the mixtures in group A (SF effect)
and group B (optimal SF-based, investigating w/b and SNF effects). In Figure 14a, it is
observed that as the SF content increases, the flexural strength of series 1 decreases. The
highest bending strength in series 1 was recorded in the mix with 15% SF (6.46 MPa).
Examining series 2 mixtures reveals that raising SF from 15% to 20% leads to a 13% increase
in flexural strength. In contrast, elevating SF from 15% to 25% caused a 23% decrease in
flexural strength. In series 3, increasing SF from 15% to 20% resulted in a 9% reduction
in flexural strength, and increasing SF from 15% to 25% resulted in an 11% reduction
in flexural strength. The reduction in bending strength due to higher SF doses can be
attributed to several factors [96±98]: (1) SF particles are extremely fine, leading to a high
specific surface area. This results in increased water demand. Insufficient water results in a
drier cement mix. (2) Higher SF content may reduce efficiency, making it harder to achieve
proper density. (3) Excessive SF can cause uneven particle distribution in the cement paste,
hindering the formation of calcium silicate hydrate (C-S-H) gel. (4) SF, by absorbing excess
water, may deplete the water available for concrete hydration, disrupting the process.
(5) Increasing SF dosage can weaken the interfacial transition zone (ITZ) between aggregate
and cement paste. For series 1, 2, and 3, the best SF percentages for achieving maximum
flexural strength are 15%, 20%, and 15%, respectively.
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Figure 14. Results of flexural strength (28 days): (a) effect of SF; (b) effect of w/b and SNF.

According to Figure 14b, the flexural strength of mixtures with increasing w/b ratios
(from 0.18 to 0.22) shows a decreasing trend. Therefore, the rise in the w/b ratio in
the mixtures of series 1, 2, and 3 led to 23%, 7.4%, and 10.4% reductions in flexural
strength, respectively. A higher water-to-binder ratio results in more water in the mixture,
potentially increasing porosity. Excess water also reduces the concentration of cement
particles, decreasing the level of hydration. Consequently, fewer cement particles are
accessible to create the robust bonds essential for achieving high flexural strength [99,100].

The increase in SNF from 0.7 to 0.9% enhanced bending strength (Figure 14b). Com-
paring SF15WB20N07 and SF15WB20N09 blends reveals a 17%, 4.8%, and 13% rise in
flexural strength in series 1, 2, and 3, respectively, attributed to the higher SNF dosage. The
improvement in flexural strength through SNF can be considered a result of the potential of
SNF to create better alignment of the concrete microstructure [46,101]. In other words, the
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complete hydration of cement particles is ensured by reducing water content, improving
particle dispersion, and providing optimal particle packing [46,101].

Figure 15 illustrates the impact of the w/b ratio and SNF on flexural strength. As
shown in Figure 15a, a rise in the w/b ratio from 0.18 to 0.22 resulted in a decrease in
flexural strength. Series 3 mixtures exhibited the highest flexural strength relative to the
w/b ratio. In Figure 15b, it is shown that as the SNF ratio increased from 0.7 to 0.9, the
flexural strength also increased. Series 3 mixtures exhibited the highest flexural strength
based on the SNF ratio.
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Figure 15. Flexural strength under the influence of (a) changes in the w/b ratio; (b) changes in the
dosage of SNF.

6.2.3. Compressive Strength

Figure 16 displays the average compressive strength results at 7 and 28 days for
group A mixtures (SF effect) and group B mixtures (optimized SF with varying w/b
ratios and SNF effects). Based on Figure 16a, the compressive strength decreased at 7 and
28 days with higher SF replacement. For series 1 mixtures, increasing SF from 15% to
20% resulted in approximately 11% and 5% decreases in compressive strength at 7 and
28 days, respectively. The decrease in compressive strength with the increase in SF from
15% to 25% was also shown in series 1 mixtures, resulting in a 7% decrease in strength at
28 days. In series 2 mixtures, as the SF substitution rose from 15% to 20%, the compressive
strength increased by 3% and 1% at 7 and 28 days, respectively. However, surpassing 20%
SF replacement led to a decrease in strength. Elevating SF substitution from 15% to 25%
resulted in a roughly 12% decrease in compressive strength at both 7 and 28 days. Series 3
mixtures showed a 6.5% strength reduction at 7 days and about 1.5% at 28 days when SF
substitution increased from 15% to 20%. Furthermore, raising SF substitution from 15%
to 25% in series 3 mixtures led to an 11% decrease in compressive strength. An excessive
concentration of SF in concrete can adversely affect its compressive strength through
multiple mechanisms. The incorporation of a high dosage of SF necessitates augmented
water content to preserve workability, engendering a dichotomy [102±105]: (1) the addition
of water elevates the w/b ratio, undermining the concrete’s integrity, and (2) the omission
of water compromises the mix’s efficiency, culminating in inadequate compaction and
increased porosity. Elevated levels of SF can induce heightened viscosity within the mix,
impeding cohesive properties and leading to the entrapment of air voids [106]. Although SF
is known to enhance the microstructural compactness of concrete, an overabundance may
result in over-densification, thereby obstructing the hydration process and the structural
evolution of the concrete, consequently diminishing its strength [107,108]. Based on the
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compressive strength (7 and 28 days) of mixtures in series 1, 2, and 3, the ideal SF dosages
were determined to be 15%, 20%, and 15%, respectively.
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Figure 16. Results of compressive strength (7 and 28 days): (a) effect of SF; (b) effect of w/b ratio and SNF.

Figure 16b depicts the compressive strength of the mixtures at 7 and 28 days, consid-
ering the effects of the w/b ratio and SNF. The efficacy of SF in enhancing compressive
strength is demonstrably linked to the w/b ratio. Generally, a lower w/b ratio translates
into higher strength. However, improper adjustment of the w/b ratio when incorporat-
ing SF can compromise its effectiveness, leading to reduced compressive strength [109].
Increasing the w/b ratio from 0.18 to 0.22 resulted in a decrease in compressive strength.
Comparing SF15WB18N08 and SF15WB22N08 mixtures revealed a reduction in compres-
sive strength of approximately 13% for series 1, around 8% for series 2, and about 5% for
series 3. Cement plays a crucial role in reacting with water to initiate a hydration reaction.
This process results in the formation of a robust network of C-S-H gel, essential for concrete
strength. A higher w/b ratio indicates more water relative to the binder (cement and other
pozzolans). Excess water dilutes the cement paste, reducing the material for the vital C-S-H
gel. With more water, not all cement particles may fully hydrate, leading to unreacted
cement and weaker bonds in the concrete structure [100].

Increasing the SNF dosage from 0.7% to 0.9% also increased compressive strength.
Comparing SF15WB20N07 and SF15WB20N09 mixtures reveals a 1.5 to 3.5% increase in
compressive strength due to higher SNF substitution. SNF acts in the cement mixture
by dispersing and separating cement particles and reducing internal friction. Also, SNF
improves the contact between cement particles and water, which provides the basis for
more complete hydration and results in a strong structure. On the other hand, the SNF
used can reduce segregation (where coarse aggregates are separated from the cement paste)
by creating more uniform areas in the concrete [94,110±113].

In contrast, increasing SF from 15% to higher levels generally led to reduced compres-
sive strength at both 7 and 28 days, particularly beyond the optimal dosage. While small
additions (up to 20%) may improve strength slightly in some series, excessive SF (25%) con-
sistently results in strength losses. The optimal SF content for maximum strength was found
to be 15% for series 1 and 3 and 20% for series 2. Raising the w/b ratio from 0.18 to 0.22
caused a notable decrease in compressive strength across all series. Furthermore, increasing
SNF from 0.7% to 0.9% resulted in modest strength gains (1.5±3.5%).
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Figure 17 illustrates the impact of the w/b ratio and SNF on compressive strength.
As shown in Figure 17a, as the w/b ratio rises from 0.18 to 0.22, compressive strength
decreases. Series 3 mixtures exhibit the highest bending strength relative to the w/b ratio.
According to Figure 17b, as the SNF ratio increases from 0.7 to 0.9, compressive strength
rises. Series 3 mixtures show the highest compressive strength concerning the SNF ratio.
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Figure 17. Compressive strength under the influence of (a) changes in the w/b ratio; (b) changes in
the dosage of SNF.

6.3. Analysis and Prediction of the Results with Artificial Neural Network (ANN) and Fuzzy Logic (FL)

Compressive strength at 7 and 28 days was assessed using ANN and FL models. After
training the ANN model with various algorithms (LM and SCG) and different types of
neuron arrangements in the hidden layer, the best neuron arrangement in the hidden layer
was determined for each algorithm. The LM algorithm with 10 neurons in the hidden layer
showed the highest correlation coefficient. Figure 18 illustrates the compressive strength
outcomes at 7 days (Figure 18a) and 28 days (Figure 18b), obtained through actual and
predicted results by the ANN and FL algorithms. The prediction error relative to the
real results is depicted in Figure 19 for the 7-day (Figure 19a) and 28-day (Figure 19b)
compressive strength.
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Figure 18. Comparison of compressive strength results from prediction models (ANN and FL) and
actual testing: (a) 7 days; (b) 28 days.
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Figure 19. Prediction error by ANN and FL models compared to reality: (a) 7 days; (b) 28 days.

The FL model had an average error rate of 4.36% for predicting 7-day compressive
strength and 3.18% for predicting 28-day compressive strength. On the other hand, the
average error in the ANN model was lower, suggesting that the results derived from the
ANN model are more closely aligned with reality. Specifically, the ANN model achieved
0.74% in 7-day compressive strength prediction and 1.03% in 28-day compressive strength
prediction (Figure 19). Figure 20 depicts the performance of the ANN model across training,
validation, testing, and all datasets. It demonstrates the strong predictive capability of
the ANN model in aligning with the experimental results, as indicated by the regression
coefficient (>0.95).
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Figure 20. Performance of the artificial neural network (ANN) model based on (a) training,
(b) validation, (c) test, and (d) all datasets.

Despite the satisfactory performance of both prediction models utilized in this study,
the perceptron neural network model of the LM algorithm with a 2±10±4 architecture
demonstrates superior performance compared to the FL model.
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7. Conclusions

This study evaluated the fresh and mechanical performance of ultra-high-performance
concrete (UHPC) mixtures incorporating varying replacement levels of silica fume (SF),
sodium naphthalene formaldehyde (SNF) as a second-generation superplasticizer, and
different water-to-binder (w/b) ratios. The key findings are summarized as follows:

Fresh Properties

• Increasing SF content from 15% to 25% led to reduced slump flow and shorter
setting times, mainly due to reduced free water and accelerated hydration. Con-
versely, increasing the w/b ratio improved slump flow and extended setting time
by enhancing particle mobility.

• A higher SNF dosage (from 0.7% to 0.9%) significantly improved both slump
flow and setting time, demonstrating effective dispersion of cement particles and
reduced agglomeration.

• Squeeze flow testing revealed three distinct paste behaviors:
• Low workability mixes with high stiffness and rapid transition to strain hardening;
• Highly flowable mixes exhibiting extended plastic phases and higher dilatancy;
• Transitional mixes highly sensitive to variables like flow rate and composition,

affecting displacement trends.

Mechanical characteristics

• Increasing the SF dose led to the closure of capillary paths and enhanced den-
sity, resulting in higher electrical resistance. The rise in the w/b ratio provided
a conducive substrate for ion movement, leading to reduced electrical resistance.
Higher SNF substitution enhanced cement particle packing density and raised
electrical resistance.

• Increasing SF dosage from 15% to 25% reduced compressive and flexural strength
due to uneven cement particle distribution, hydration disruption, and ITZ weaken-
ing. A higher w/b ratio also decreased strength by limiting the material for C-S-H
gel formation. However, raising the SNF dosage from 0.7% to 0.9% improved UHPC
strength by promoting complete hydration and reducing internal friction.

• The ANN model with 4-10-2 architecture presented an acceptable performance,
according to the regression coefficient of >0.98. Also, the good performance of the
FL model should not be overlooked. The error rate of the fuzzy logic model resulted
in a range of 3.18±4.36%, while the error rate recorded for the ANN model was
much lower (0.74±1.03%).

Benefits and Limitations of Second-Generation Superplasticizers

• Naphthalene-based superplasticizers have the potential to improve workability
without compromising strength while also improving particle dispersion for a
denser, more homogeneous microstructure. However, their limitations include
potential slump loss over time due to rapid adsorption on cement particles, reduced
effectiveness in low-temperature conditions, and incompatibility with some cement
types, which can lead to delayed setting or strength gain issues. Additionally,
they may not provide the same level of flow retention as newer polycarboxylate
ether (PCE)-based alternatives, making them less ideal for highly complex UHPC
applications requiring prolonged workability. Nevertheless, using this type of
economic superplasticizer for relatively expensive concrete mixtures like UHPC
may present a partial solution for further industrial application of this material.

Recommended Mix Design

Among the tested mixes, the most balanced performance was observed for:
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SF20WB20N09: 20% SF, w/b = 0.20, SNF = 0.9%.
This mixture exhibited high flexural and compressive strength, suitable setting time,
and adequate slump flow, making it the recommended formulation for UHPC in
practical applications.

Industrial perspective

• The study focused exclusively on second-generation SNF-based superplasticiz-
ers, and the conclusions remain within this scope. The results demonstrate that
optimized SNF dosages (0.9%) can produce UHPC mixes with satisfactory fresh
behavior and mechanical strength, suggesting the continued viability of SNF in
cost-sensitive or prefabrication settings where flowability and early strength are
critical. While third-generation superplasticizers offer enhanced performance, SNF
is still a cost-effective and functional alternative, especially for applications not
requiring extreme workability.
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