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Abstract
Global gridded temperature data sets (GGTDs) differ in data sources, quality control,
generation methods, and spatial-temporal resolution, introducing observational uncer-
tainty. This uncertainty is critical not only for studies on current climate conditions but
also for future climate change projections, where observational data sets are used for
bias correction and downscaling of global climate model (GCM) outputs. It is hence
essential to ensure that reference data sets accurately represent the true climate state
and span a sufficiently long period to filter out internal variability. The selection of appro-
priate GGTDs is hence a crucial yet often overlooked factor in research that examines
the impact of climate variability and change on vector-borne diseases such as yellow
fever (YF), a climate-sensitive arboviral disease endemic to tropical regions of Africa and
South America. In this study, we evaluated four GGTDs, namely the Berkeley Earth Sur-
face Temperatures (BEST), the Climatic Research Unit Time-Series (CRUTS), the fifth-
generation atmospheric reanalysis of the global climate from the European Centre for
Medium-Range Weather Forecasts (ECMWF), ERA5, and its land-focused derivative,
ERA5Land, for health-related impact research, specifically examining YF transmission
in South America. Each data set was evaluated via grid-based analysis and validated
against national weather station data, focusing on Brazil and Colombia, where YF out-
break risk remains. While reanalysis generally outperformed lower-resolution products,
ERA5 demonstrated a slight advantage over ERA5Land despite the latter’s higher spa-
tial resolution. Most importantly, our findings show that substantial differences among
GGTDs affected the spatial representation of climate change indices, bioclimatic vari-
ables, and spatially aggregated temperature estimates at the administrative (AD) unit
level, with substantial variations in the latter translating into markedly different estimates
of key disease transmission parameters. In Colombia, admin-level temperature inputs
differing by more than 6○C led to differences of about 0.2 in simulated reproduction num-
bers generated within a dynamic compartmental YF modeling framework.
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Introduction
Climate change has already aggravated the risk of various human pathogenic diseases,
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including vector-borne diseases (VBDs; please see S1 Glossary for a list of abbreviations and
acronyms), and could further increase these risks in the future [1–3]. To effectively assess the
impact of climate and, subsequently, future climate change on such diseases, it is essential
to use high-quality observational data that are homogeneous, meaning they represent cli-
mate records that accurately reflect variations caused by climate processes and harmonized
into a common format or standard. These data should also be continuous, have high spatial
and temporal resolution, and have extensive temporal coverage. Global and regional grid-
ded data sets are often used as alternatives to weather station data in disease-related climate
impact studies. This is particularly prevalent for studies in low- and middle-income coun-
tries (LMICs) where ground-based networks typically face challenges such as sparse spatial
and temporal coverage, limited documentation, inconsistent quality control, and restrictive
data-sharing policies [4–7]. These gridded data sets, developed from diverse sources such as
gauges, radar, satellite, and reanalysis, can help address these challenges but come with their
own limitations. Each data set has specific strengths and weaknesses depending on the main
applications for which it is designed, and all are susceptible to errors and biases, leading to
observational uncertainty [8–10]. In climate impact modeling, observational data sets serve as
inputs for data-driven models, and uncertainties in these data sources can significantly affect
the outcomes of impact models across various fields, such as hydrological and epidemiologi-
cal analysis, throughout the observation period [11–13]. Hence, the selection of observational
data is suspected to also influence the outcomes of the infectious disease transmission model.
Furthermore, the choice of observational data might strongly affect estimates of future sim-
ulated disease transmission, since uncertainties in observational data directly contribute to
uncertainties in climate change projections [14–17]. This is because observational data sets
serve as the reference climatology in climate change impact assessments, providing a baseline
for assessing future changes and post-processing outputs from global climate models (GCMs)
that are typically applied to model both current and future climate change effects.

GCMs are essential tools for understanding the climate system and projecting its evolu-
tion under different emissions scenarios. However, the output from GCMs remains coarse
compared to the high-resolution data required for most impact studies, and systematic model
errors introduce biases, observable as discrepancies between simulated and observed climate
conditions. As a result, bias correction and downscaling (BC&D) are essential for applying
GCM outputs to impact models. Downscaling methods can be broadly categorized into sta-
tistical and dynamical approaches. Statistical (bias correction) and downscaling techniques
rely on hydrometeorological observations over a historical reference period to adjust model
biases and refine the spatial resolution, ranging from simple methods accounting for changes
in the mean of the quantity of interest (e.g., delta change methods) to more sophisticated
approaches correcting biases in all quantiles of the distribution (e.g., quantile delta mapping)
[18–20]. Dynamical downscaling involves using the output of a GCM as boundary conditions
for a limited-area, higher-resolution regional climate model (RCM). RCM simulations are still
prone to regional biases that need to be adjusted for climate change impact studies [19,21].
Consequently, any deficiencies in the reference based on the chosen observational data source
are typically transferred to future climate change projections, regardless of the statistical or
dynamical BC&D methods applied.

While several previous studies have projected an increase in transmission suitability for
VBDs under future climate change [22–25], most have relied on simple statistical methods for
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the bias correction and downscaling of future climate change projections, such as linear scal-
ing and delta change approaches [18,19]. These methods, which are straightforward, easy-to-
implement, and widely adopted - for instance, by WorldClim [26,27] - primarily account for
changes in mean values, effectively capturing broad climate change signals. However, they are
too simplistic for modern climate impact studies as more comprehensive assessments, with
the utilization of more advanced BC&Dmethods, are needed to consider changes across the
full distribution of impact-driving climate variables, including extremes and shifts in season-
ality. This is critical because these factors often result in the most significant consequences
of climate change on VBDs and, therefore, are essential for research on future disease trans-
mission and burden [28–30]. This emphasizes the importance of selecting observational data
sets that accurately reflect the true state of the reference climate, including the distribution
tails of impact-relevant climate variables, and highlights the need to address observational
uncertainty in disease-related climate (change) impact modeling studies.

Therefore, observational data sets should be rigorously evaluated before being used as
input data for disease transmission models to simulate and project disease transmission.
This evaluation should ideally include comparative analyses, validation against weather sta-
tion data, and sensitivity assessments of the impact models to the choice of data set. Mov-
ing beyond grid cell-based analysis is crucial, as epidemiological data are typically attributed
to administrative (AD) units rather than regular grids. However, very few epidemiologi-
cal studies have compared global gridded data sets with weather station data in the context
of environmental epidemiology and climate-related health impact assessments [12,31] or
have moved beyond grid-scale analyses to consider geographical units, with existing research
focusing on high-income countries [32,33]. In this study, we assessed the utility and perfor-
mance of widely used global gridded temperature data sets (GGTDs), representing viable ref-
erence data sets for bias correcting (and downscaling) climate model outputs in impact stud-
ies, and explored the sensitivity of AD-level VBD transmission risk to input data in South
America. Our focus was on yellow fever (YF), a vaccine-preventable zoonotic arbovirus
endemic to tropical regions of the continent. We used key disease parameter estimates based
on a SEIR-type mechanistic dynamic model of yellow fever (YF) transmission [10], which is
applied within the Vaccine Impact Modelling Consortium (VIMC) aiming to provide high-
quality estimates of the public health impact of vaccination, to inform and improve policy and
decision-making [34,35]. This model has previously been applied to evaluate the effective-
ness of achieving vaccination coverage targets outlined in the World Health Organization’s
Eliminate Yellow Fever Epidemics (EYE) Strategy [36], a key international framework for YF
prevention and control. The model has also been adapted to account for the effects of weather
and climate (change) on the dynamics of YF transmission [25]. We here specifically examined
thermal conditions, as current and projected temperature has been identified as a key driver
of YF transmission intensity [25], and because most previous evaluations of gridded data sets
have primarily focused on precipitation [11,37,38]. We included an evaluation of the accu-
racy of GGTDs through comparisons with ground-based weather stations in Brazil (BRA)
and Colombia (COL) in our analysis. These two countries not only contain AD areas with
substantial differences in size, population distribution, orography, and climate, but are also
at high risk for YF, with Brazil having experienced one of the most pronounced YF epidemics
in recent years [39], with many YF cases emerging despite high vaccination coverage in some
areas. The significance of yellow fever (YF) risk assessment has been underscored by recent
epidemiological developments in 2025, with outbreaks resulting in 85 deaths (as of 16 May)
and confirmed cases across five countries in the Region of the Americas, including Brazil and
Colombia, prompting coordinated response efforts supported by the WHO [40].
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Our main contributions were twofold: (1) comprehensively compare and evaluate global
gridded temperature data sets with time series long enough to define baseline climate condi-
tions, and (2) assess how sensitive simulated yellow fever (YF) reproduction numbers are to
variations in temperature inputs at the first administrative level (AD1) by focusing on het-
erogeneous regions in Brazil and Colombia. Overall, our findings can inform recommenda-
tions on the utility of GGTDs, accounting for the regions of interest and their physiographic
characteristics, and offer guidance for future studies assessing the impact of climate change
on VBD transmission. Future research building on our work can enhance the evidence base
needed to inform the design and timing of yellow fever interventions like vaccination strate-
gies under evolving climatic conditions.

Materials and methods
Study domain
We focused our work on the South American domain between 40○S and 15○N, as this domain
is particularly relevant for VBD research, encompassing all 13 main countries with endemic
YF zones, where the disease remains a significant public health concern and all countries are
considered to be at high risk [36]. These countries include the Pluri-national State of Bolivia,
Brazil, Colombia, Ecuador, French Guiana, Guyana, Panama, Peru, Suriname, Trinidad and
Tobago, and the Bolivarian Republic of Venezuela. Specifically, both Colombia and Brazil
have reported YF cases in recent years and remain at risk for outbreaks [39,40].

Fig 1 illustrates the selected study domain in South America with respective country bor-
ders (in gray) and presents the geographical distribution of the population in 2010 (A), eleva-
tion (B) as well as the multi-year monthly mean temperature (C), and temperature seasonal-
ity (BCV4, D) derived from ERA5Land over the base period across South America (for fur-
ther details please refer to Results). Panels C and D also highlight the locations of the weather

Fig 1. The South American study domain. A: Population distribution in 2010 [inhabitants per grid cell based on a 2.5 arc-minute resolution] [41]. B: Elevation [meters]
[42]. C: Multi-year mean monthly temperature based on ERA5Land [○Celsius] [43]. D: Temperature seasonality [-] based on bioclimatic variable 4 (BCV4). Panels C
and D refer to for the base period (1991-2020) and additionally show the locations of all selected weather stations (totaling 216 in Brazil and 20 in Colombia), collected
form the Brazilian National Institute of Meteorology (INMET, [44]) and the Colombian Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM, con-
tacto@ideam.gov.co), and ValAr-P (4 in Brazil and 2 in Colombia), respectively. The boundaries of all areas are based on the Database of Global Administrative Areas,
GADM (version 4.1) [45]. All maps display values across the chosen study domain in South America (north of 40○ South).

https://doi.org/10.1371/journal.pclm.0000601.g001
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stations (C) and six selected administrative (AD1) areas (D), marked by red dots and purple
boundaries, respectively. The boundaries for Brazil and Colombia, used for country level and
first level administrative (AD1) areas, were extracted from the Global Administrative Area
Database (GADM), version 4.1 [45]. To illustrate the geographical distribution of popula-
tion and elevation across both countries and South America, we used the Gridded Popula-
tion of the World, Version 4 (GPWv4, Revision 11) for the year 2010 at a resolution of 2.5 arc-
minutes (approximately 5 km) [41] and acquired elevation data in meters (m) with a spatial
resolution of 0.1○ using the R package elevatr [46].

Global gridded temperature data sets
We first present GGTDs, highlighting their diverse sources, properties, and spatial aggre-
gation. Additionally, we introduce temperature extreme indices and bioclimatic vari-
ables (BCVs), which are widely used in climate change and species distribution modeling
studies.

Data sources and aggregation. Table 1 provides a summary of the main characteristics of
the selected observational GGTDs. We selected global information from reanalysis data sets,
specifically ERA5 [47] and ERA5Land [43], as well as two additional gridded global data sets
for air temperature, namely the Climatic Research Unit Time-Series (CRUTS) (version 4.07)
[48,49] and Berkeley Earth Surface Temperatures (BEST) data sets [50,51]. These products
were chosen because they represent three (excluding ERA5Land) of the five main global data
sets for air temperature in the Intergovernmental Panel on Climate Change (IPCC) Atlas [52].
The IPCC Atlas emphasizes the importance of assessing observational uncertainty when eval-
uating and attributing historical trends, and it highlights that climate change impact assess-
ments should rely on integrated analyses from multiple data sets. We chose not to include
either W5E5 [53], which is based on the bias-adjusted ERA5 reanalysis over land (WATCH
Forcing Data applied to ERA5, WFDE5), or the Hadley Centre Climate Research Unit ver-
sion 5 data set (HadCRUT5) from the Climate Research Unit of the University of East Anglia

Table 1. Summary of the selected global gridded temperature data sets (GGTDs). All data sets were downloaded at their native resolution and with a (sub-)
daily time resolution, except for Climatic Research Unit Time-Series data set (CRUTS), for which only monthly data were available. All data sets were accessed
and extracted in 2023.
Product Provider &

Version
Native
Resolution &
Coverage

Further Details Main
Reference

BEST Berkeley Earth
Global Daily Land

1○ × 1○
Land-only

BEST reconstructs global mean land-surface temperatures using a mathematical
framework that integrates around 39000 spatially and temporally divers weather
station records of varying quality. The framework employs a weighting process to
assess the quality and consistency of temperature station networks, enabling short,
fragmented timeseries to be incorporated into the model.

[50]

CRUTS University of East
Anglia
Climatic Research
Unit
v.4.07

0.5○ × 0.5○
Land-only

CRUTS is produced by interpolating monthly climate anomalies from a large network
of weather stations using angular-distance weighting. Incorporating data from over
4000 weather stations, the data set is formatted consistently, though it is not entirely
homogeneous despite efforts to homogenize many inputs.

[48]

ERA5 European Centre
for Medium-Range
Weather Forecasts

0.25○ × 0.25○ ERA5 is generated using a four-dimensional variational data assimilation system,
which combines model forecasts with observational data to produce gridded historical
estimates of atmospheric conditions across the globe.

[47]

ERA5Land European Centre
for Medium-Range
Weather Forecasts

0.1○ × 0.1○
Land-only

ERA5Land is an enhanced version of ERA5 that focuses on land surfaces, providing a
higher resolution reprocessing of the land component. It uses ERA5 as input but with
improvements in the land surface model to better capture processes specific to land
areas.

[43]

https://doi.org/10.1371/journal.pclm.0000601.t001
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[54]. This decision was made because we aimed to focus on data sets that are as independent
as possible and derived from different sources. However, ERA5Land from the European Cen-
tre for Medium-Range Weather Forecasts, which covers only land surfaces and is an enhanced
reprocessing of the land component using a higher resolution model version, with ERA5
as an input, was included to evaluate the impact of changing spatial resolution in reanaly-
sis. Similarly, we harmonized and re-gridded the original data sets to match a medium res-
olution of 0.5○. This approach was implemented to avoid unfairly penalizing low-resolution
data sets and, more importantly, to systematically account for the impact of spatial resolu-
tion changes in our analysis of observational uncertainty. All chosen data sets are regularly
updated, well-established, and widely used in climate and environmental sciences.

We temporally aggregated hourly temperature observations for reanalysis data and cal-
culated daily mean temperatures for all grid cells across the South American domain. Next,
we temporally aggregated gridded daily observations from BEST, ERA5Land, and ERA5 to
obtain gridded monthly averages. Additionally, we extracted or generated gridded daily min-
imum and maximum temperatures (TN and TX) for BEST and reanalysis, respectively. We
spatially aggregated and estimated mean values across the grid-specific daily mean temper-
atures of grid cells within or intersecting the boundaries of the corresponding AD1 areas
in Brazil and Colombia. As these area-level temperature averages were calculated using
data from a regular latitude-longitude grid, we applied latitude-based weights (using the
cosine of latitude) to account for meridian convergence at higher latitudes. Overall, we pro-
duced eight daily temperature timeseries for each AD1 area, corresponding to each selected
GGTDs, available both at their native resolutions and on a common 0.5○ grid. We subse-
quently also temporally aggregated the daily area-level temperature timeseries (BEST and
reanalysis) into monthly timeseries data, which serves as the primary temporal focus of our
analysis. For GGTD-only analyses, we defined a 30-year base period spanning from 1991 to
2020.

Extreme indices and bioclimatic variables. We used established extreme indices to assess
how uncertainties in GGTDs affect the derivation and detection of temperature extreme
events, such as the frequency of summer days or tropical nights. These indices were gener-
ated based on daily minimum and maximum temperature data (excluding CRUTS), follow-
ing the definitions provided by the Expert Team on Climate Change Detection and Indices
(ETCCDI) [55,56]. Additionally, we used a selection of bioclimatic variables, calculated from
climatological monthly means of temperature, which are physiologically important and have
been frequently used for species distribution modeling and in VBD research [57,58]. Please
refer to Table 2 for further details. We used the Climate Data Operators (CDO) software [59]
to derive ETCCDI and the function BIOVARS from the R package dismo to produce BCV
estimates.

Weather station data
Temperature data at daily resolution were obtained from the Brazilian National Institute of
Meteorology (INMET, available online at [44]). The Colombian Institute of Hydrology, Mete-
orology, and Environmental Studies (IDEAM) originally reported and provided temperature
data at (sub-)hourly resolution (contacto@ideam.gov.co). Data for Brazil were directly down-
loaded from publicly available sources via the official INMET website, with documentation
provided in English. In contrast, data for Colombia were obtained through direct communi-
cation with IDEAM.The Brazilian data set included a greater number of stations, consistently
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Table 2. Definitions and calculations of temperature extremes, based on the Expert Team on Climate Change Detection and Indices (ETCCDI), and of biocli-
matic variables (BCVs). ETCCDI calculations utilized daily maximum (TX) and minimum (TN) temperature timeseries; therefore, only data sets with daily
resolution were selected (excluding Climatic Research Unit Time-Series data set, CRUTS). BCVs were calculated frommonthly climatological averages and
hence include all data sets. Indices and variables were computed using the global gridded temperature data sets at their native spatial resolutions as well as on
a common 0.5○ grid to account for uncertainties across different data sets.
Abbreviation Full Name Unit Further Details
DTR Daily temperature range ○C Monthly mean difference between TX and TN. Here, the climatological monthly means averaged

across the base period were considered. The DTR is exemplarily shown for January and July.
SU Summer days index per time period - The number of summer days of a timeseries of daily TX. Days with TX > 25.00○C were counted.
TR Tropical nights index per time period - The number of tropical nights of a timeseries of daily TN. Days with TN > 20.00○C were counted.
BCV1 Mean annual temperature ○C
BCV2 Mean diurnal range ○C Mean of maximum temperature – minimum temperature.
BCV3 Isothermality - (BCV2 / BCV7) × 100.
BCV4 Temperature seasonality - Standard deviation × 100.
BCV5 Maximum temperature of

warmest month
○C

BCV6 Minimum temperature of
coldest month

○C

BCV7 Temperature annual range ○C BCV5 - BCV6.
BCV10 Mean temperature of warmest

quarter
○C A quarter is defined as any consecutive 3 months.

BCV11 Mean temperature of coldest
quarter

○C A quarter is defined as any consecutive 3 months.

https://doi.org/10.1371/journal.pclm.0000601.t002

reporting both temperature and precipitation, with records already aggregated at a daily tem-
poral scale. In Colombia, fewer stations were provided, and the records were available at sub-
daily scales. The availability of temperature and precipitation data was not consistent across
Colombian stations, with some only providing information for one of the two variables. We
standardized the data for both countries into a uniform format, removing unreliable measure-
ments based on extreme outliers (e.g., daily values above 55.00○C), and verifying date avail-
ability and completeness. For certain stations, especially those along the coast, some GGTDs,
in particularly ERA5Land, did not provide grid-based information at native resolutions, lead-
ing to the exclusion of stations to address discrepancies between station locations and grid
points. To construct reliable daily timeseries for Colombia, we aggregated (sub-)hourly data
into daily values, requiring a minimum of 70% data availability per day. To reduce the impact
of missing values, we selected only stations with over 70% daily coverage per month during
the evaluation period from 2011 to 2020 for both Brazil and Colombia. This evaluation period
was chosen to ensure consistent and adequate data coverage across the study domain, and
only stations with data available for each year within this period were included in the analysis.

Yellow fever data and model
We utilized a previously described dynamic model of YF transmission estimated from rele-
vant epidemiological data sources [10]. The model is a dynamic compartmental model of YF
transmission in humans assuming both a risk of infection through spillover (parametrized by
the spillover force of infection or FOI) and a risk of infection through the ‘urban’ cycle char-
acterized through a human-human reproduction number, mediated by mosquitoes. These
epidemiological parameters are assumed to depend on environmental covariates such as a)
Ae. aegypti occurrence, b) middle infrared reflectance, c) non-human primate species rich-
ness, d) Human population size, e) Temperature suitability index (developed from Gaythorpe
et al. 2021 [25]), and f) the type of land cover. To estimate reproduction number, Fraser et al.
used available seroprevalence, case notification and death notification data within a Bayesian

PLOS Climate https://doi.org/10.1371/journal.pclm.0000601 June 25, 2025 7/ 27

https://doi.org/10.1371/journal.pclm.0000601.t002
https://doi.org/10.1371/journal.pclm.0000601


ID: pclm.0000601 — 2025/6/20 — page 8 — #8

PLOS CLIMATE Evaluating the role of observational uncertainty in climate impact assessments

framework. This characterized the relationship between epidemiological parameters and
environmental inputs.

In order to project time-varying values of reproduction number for this analysis, we
replaced the time-invariant temperature suitability index in the original analysis with time-
varying values calculated from temperature data derived from each GGTD (see next section,
specifically Temperature-yellow fever associations, for details).

Validation areas
A GADM AD1 unit was designated as a validation area (ValAr) if it contained at least one
selected weather station. The evaluation of GGTDs, comparison of aggregated area-level
estimates, and assessment of YF human-to-human transmission were conducted in selected
ValAr in Brazil and Colombia, referred to as primary validation areas (ValAr-P). These ValAr-
P were selected based on specific criteria. We prioritized regions with available weather sta-
tion data that represented diverse climatic zones and landscapes. Additionally, the ValAr
exhibited a range of behaviors in terms of seasonality, observational data set uncertainty, and
reproduction number. The ValAr-P included regions where the estimated reproduction num-
ber is consistently higher than 1.00 (giving the potential for self-sustaining outbreaks), regions
where the estimated reproduction number is consistently below 1.00, and regions where the
estimated reproduction number fluctuates above and below 1.00 depending on time of year,
data source, and/or parameter set.

Evaluation methods and metrics
Themost common approach to compare ground-based observations with gridded data prod-
ucts, such as satellite-based estimates and climate model outputs, is a station-to-grid cell com-
parison. Accordingly, we compared individual station timeseries with corresponding grid cell
values by applying three standard statistical methods, namely the Pearson correlation coeffi-
cient (PCC), the mean absolute error (MAE), and the root mean square error (RMSE). PCC
was reported only when statistically significant at the 95% confidence level. Additional details
on the metrics can be found in S1 Methods in the Supplement.

We assessed the overall performance and accuracy of each product across all ValAr by tak-
ing the mean of the results of multiple individual station-to-grid cell comparisons within each
ValAr, providing an evaluation of how well each product performed across the entire area
during the evaluation period. Additionally, we evaluated the monthly area-specific tempera-
ture distributions and the climatological annual temperature cycles derived from the aggre-
gated area-level timeseries for each GGTD in each ValAr-P. This GGTD-only analysis allowed
us to evaluate more in-depth data set biases, accounting for underlying climatological differ-
ences, and to determine whether these biases followed a specific seasonal pattern or remained
relatively constant throughout the year over the base period.

To assess the effect of different GGTDs on simulated YF transmission intensity, we used
the existing model for estimating YF reproduction number from environmental covariates
[10]. The time-varying (daily or monthly depending on data set) temperature values from the
GGTDs were substituted for the original mean temperature data set used when the model
parameters were estimated. These temperature values were used to calculate new values of
temperature suitability [25], from which time-varying values of YF reproduction number
were calculated using the model. Monthly values of reproduction number based on each
GGTD were then compared.
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Results
Observational data uncertainty
We present the results of our analysis of grid-based observational uncertainty. This included
assessing the variation among GGTDs in terms of the geographical distribution of tem-
perature and the derived ETCCDI and BCVs across the South American study domain.
Given that ERA5Land is often used in health-related climate impact assessments [12,60]
due to its enhanced spatial resolution for meteorological variables, it is used here as a ref-
erence when comparing the different GGTDs. The validation of GGTDs was conducted
through a comparison of grid cell and station-based temperature timeseries in Brazil and
Colombia.

Study setting and differences in GGTDs. Originally, INMET’s network included data
from over 600 meteorological stations, from which 216 were selected based on predefined
criteria and an evaluation period starting in 2011. In Colombia, although more than 340
records were available through IDEAM, only 20 stations met all selection criteria during
the evaluation period and were included in the analysis. Fig 1 shows the locations of the in
total 216 selected weather stations in Brazil and 20 in Colombia, corresponding to 23 and 12
ValAr regions, respectively. The selected ValAr-P include Amazonas (BRA4), Rio de Janeiro
(BRA19), Rio Grande do Sul (BRA21), and Sergipe (BRA26) in Brazil (BRA) as well as Boyacá
(COL7) and Magdalena (COL20) in Colombia (COL), highlighted (in purple) in panel D. The
figure reveals a clear pattern: weather stations are predominantly located in or near densely
populated areas, resulting in a bias in the analysis toward regions with higher population den-
sities in each country, which were also more relevant for our health-related context. In Brazil,
for example, stations tend to cluster along coastal regions, representing areas of elevated pop-
ulation density. This pattern strongly influenced the selection of ValAr. The figure also high-
lights the diverse environmental conditions across Brazil and Colombia, emphasizing the
importance of considering regional diversity in environmental factors when selecting ValAr.
The selected ValAr-P demonstrated considerable variation in both size and environmental
characteristics, as shown, e.g., by temperature seasonality (panel D).

S1 Fig provides a more detailed overview of the selected weather stations and ValAr-P in
Brazil and Colombia (A), also illustrating the variation in spatial resolution across all GGTDs
(B), using the example of the Brazilian ValAr-P, Rio de Janeiro (BRA19). Furthermore, the
clear influence of the land-sea mask on the selection of grid cells for BRA19 along the coast-
line in ERA5Land becomes evident, with a similar impact expected in all coastal AD areas.
Additionally, S1 Table in the Supplement provides an overview of all ValAr, including infor-
mation on average population, area size, elevation, and the number of grid cells selected for
spatial aggregation per GGTD for each ValAr, based on the respective gridded data sets. It
also includes details on the number of weather stations within each ValAr and the respec-
tive temperature characteristics, derived from the timeseries data averaged across all sta-
tions in each area. Station altitudes varied between about 2m and 1663m (mean 515m) across
Brazil and between 1m and 3510m (mean 1623m) across Colombia. In Colombia, the mean
of the stations’ average monthly temperature ranged from 8.38○C in Cundinamarca (1 sta-
tion), where temperatures varied between 3.01○C and 10.53○C, to 29.33○C in Cesar (2 sta-
tions), with temperatures ranging from 26.94○C to 31.62○C. In Brazil, the mean monthly
temperature across stations was between 18.57○C in Rio Grande do Sul (26 stations), where
the temperatures ranged from 11.35○C to 24.05○C, and 27.23○C in Piauí (3 stations), with
temperatures varying from 24.47○C to 30.71○C.

Differences in ETCCDI and BCVs. Differences in GGTDs might impact not only the
average temperature conditions but also the representation of spatial and temporal patterns
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and the calculation of extreme indices and bioclimatic variables. Fig 2 presents the clima-
tological mean annual temperature (BCV1) derived from ERA5Land, alongside the differ-
ences between ERA5Land and all other GGTDs, averaged over the base period (1991-2020),
across the South American study domain. To enable comparisons, the 0.5○ resolution ver-
sion of each data set was used. The figure reveals that GGTDs exhibited varying degrees of
temperature differences across data sets and study domain, with pronounced discrepancies
in coastal areas and regions with complex terrain, such as the Andes. Unsurprisingly, since
ERA5 is the forcing input for ERA5Land, the analysis generally showed smaller temperature
differences between these two model-based data sets. More specifically, BEST, and to a lesser
extent CRUTS, showed a warm bias across large parts of the study domain when compared
with ERA5Land, while colder climatological mean annual temperatures were observed in
southern areas, particularly Argentina, with a similar but less pronounced pattern in ERA5;
additionally, CRUTS displayed more patchy areas of colder temperatures in Brazil compared
to the other data sets.

Given that maximum and minimum temperatures (including night-time conditions)
are particularly important for mosquito survival [61], Figs 3 and 4 exemplarily illustrate
our findings for BCV6 (minimum temperature of the coldest month based on climatolog-
ical monthly means) and TR (tropical nights based on TN). For BCV6, differences among
GGTDs were more pronounced in BEST and CRUTS, with a warm bias when compared to
ERA5Land evident in the Andes-dominated regions. CRUTS showed a pronounced cold
bias over large parts of Brazil. Regarding tropical nights, differences in GGTDs in Fig 4 -
especially in BEST - highlight a strong underestimation (and some very localized overesti-
mation) of tropical nights during the base period. Inconsistencies across GGTDs affected
the spatial representation of all other BCVs and ETCCDI indices, also including those
focusing on maximum (daily) temperatures. For the visualization of respective results, see
S2 Fig.

Comparison against weather station data. Table 3 presents the statistical evaluation of
monthly temperature timeseries, showing averaged results from multiple station-to-grid cell
comparisons within each ValAr-P. Additionally, the table provides means calculated across
all 23 and 12 ValAR in Brazil and Colombia, respectively. Comparisons between station data

Fig 2. Bioclimatic variable 1 (BCV1). A: Mean annual temperature [○C] for ERA5Land. B-D: For all other global gridded temperature data sets (GGTDs), the difference
[○C] compared to ERA5Land is shown. All values represent averages over the base period (1991-2020). The maps are presented on a common 0.5○ grid.

https://doi.org/10.1371/journal.pclm.0000601.g002
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Fig 3. Bioclimatic variable 6 (BCV6). A: Minimum temperature of the coldest month [○C] for ERA5Land. B-D: For all other global gridded temperature data sets
(GGTDs), the difference [○C] compared to ERA5Land is shown. All values represent averages over the base period (1991-2020). The maps are presented on a common
0.5○ grid.

https://doi.org/10.1371/journal.pclm.0000601.g003

Fig 4. Tropical nights index per time period (TR). A: Number of tropical nights [-] for ERA5Land (TR). B-C: For all other global gridded temperature data sets
(GGTDs), the difference in number [-] compared to ERA5Land is shown. All values represent averages over the base period (1991-2020). The maps are presented on a
common 0.5○ grid. Note that the Climatic Research Unit Time-Series data set (CRUTS) was excluded from the analysis, as TR was calculated using daily values.

https://doi.org/10.1371/journal.pclm.0000601.g004

and GGTDs across ValAr were conducted using data sets at their native resolution and on a
common 0.5○ grid (values in brackets).

The evaluation revealed varying levels of agreement, with timeseries from individual sta-
tions in Colombia, in general characterized by the influence of the Andes and a low degree
of seasonality across the country, generally showing greater divergence from corresponding
GGTD grid cells compared to those in Brazil. When considering individual ValAr, agreement
between data sets showed relatively small variations in Brazil but varied noticeably in Colom-
bia. Overall, across the ValAr-P, weaker agreement was observed in remote areas, such as
Amazonas (BRA4) in Brazil, and in regions with complex topography, such as Boyacá (COL7)
in Colombia, where stronger differences between data sets were evident. Seasonality appeared
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Table 3. Statistical evaluation of monthly temperature timeseries from grid cells against ground observations.The
evaluation presents the Pearson correlation (PCC), the mean absolute error (MAE), and the root mean square error
(RMSE) during the period 2011-2020 for each global gridded temperature data set (GGTD), averaged across each
primary validation area (ValAr-P). Mean values represent averages across all validation areas (ValAr). Note that the
number of weather stations evaluated varies across the different ValAr, as detailed in Tables S1 Table in the Supple-
ment. Only stations with correlations statistically significant at the 95% confidence level were included in the analysis.
Results are provided for all GGTDs at their native spatial resolution and on a common 0.5○ grid (in brackets).
Country Primary Validation Area (ValAr-P) data set PCC MAE RMSE
Brazil Amazonas (BRA4) BEST 0.67 (0.68) 0.82 (0.83) 0.94 (0.95)

CRUTS 0.60 (0.61) 0.74 (0.74) 0.89 (0.89)
ERA5Land 0.67 (0.67) 1.11 (1.14) 1.20 (1.23)
ERA5 0.69 (0.69) 0.85 (0.86) 0.96 (0.97)

Rio de Janeiro (BRA19) BEST 0.98 (0.97) 1.75 (1.81) 1.85 (1.93)
CRUTS 0.98 (0.98) 1.91 (2.12) 2.00 (2.19)
ERA5Land 0.98 (0.98) 2.02 (2.35) 2.10 (2.42)
ERA5 0.98 (0.98) 1.85 (1.88) 1.94 (1.97)

Rio Grande do Sul (BRA21) BEST 0.99 (0.99) 1.59 (1.64) 1.74 (1.80)
CRUTS 0.99 (0.99) 1.51 (1.57) 1.66 (1.72)
ERA5Land 0.99 (0.99) 1.30 (1.30) 1.47 (1.47)
ERA5 0.99 (0.99) 1.36 (1.36) 1.52 (1.52)

Sergipe (BRA26) BEST 0.95 (0.95) 1.13 (1.14) 1.24 (1.24)
CRUTS 0.95 (0.94) 1.13 (1.14) 1.26 (1.28)
ERA5Land 0.98 (0.97) 1.11 (1.10) 1.19 (1.20)
ERA5 0.97 (0.98) 1.10 (1.11) 1.18 (1.18)

Mean BEST 0.88 (0.88) 1.50 (1.50) 1.64 (1.64)
CRUTS 0.86 (0.86) 1.46 (1.49) 1.60 (1.63)
ERA5Land 0.88 (0.88) 1.42 (1.44) 1.57 (1.59)
ERA5 0.89 (0.89) 1.36 (1.35) 1.49 (1.49)

Colombia Boyacá (COL7) BEST 0.56 (0.58) 8.21 (6.36) 8.35 (6.57)
CRUTS 0.68 (0.70) 5.86 (5.70) 6.11 (5.96)
ERA5Land 0.61 (0.60) 3.95 (4.65) 4.50 (4.97)
ERA5 0.66 (0.67) 4.44 (4.97) 4.78 (5.22)

Magdalena (COL20) BEST 0.77 (0.84) 0.58 (0.44) 0.72 (0.55)
CRUTS 0.83 (0.83) 1.07 (1.30) 1.19 (1.40)
ERA5Land 0.80 (0.83) 2.79 (2.94) 2.86 (3.00)
ERA5 0.84 (0.83) 1.80 (1.72) 1.87 (1.79)

Mean BEST 0.69 (0.70) 5.64 (5.29) 5.72 (5.38)
CRUTS 0.69 (0.69) 4.88 (4.86) 4.98 (4.96)
ERA5Land 0.72 (0.71) 4.91 (4.90) 5.01 (4.99)
ERA5 0.74 (0.74) 4.74 (4.77) 4.83 (4.85)

https://doi.org/10.1371/journal.pclm.0000601.t003

to have a lesser impact on the evaluation, as ValAr-P with greater temperature variability or
more extreme seasonal changes did not tend to show larger differences in metrics.

On average, across all ValAr in both Colombia and Brazil, the mean values for all metrics
indicated higher agreement between station data and grid cells in Brazil, with ERA5 emerg-
ing as the best-performing data set in both countries. Correlation values suggested a weaker
alignment in trends and patterns of temperature between station and grid cell values, while
RMSE and MAE metrics indicated more pronounced deviations of gridded data sets from
observed measurements for Colombia when compared to Brazil.

The influence of spatial resolution with GGTDs having coarser native resolutions tend-
ing to show improved agreement when re-gridded to a finer grid was only strongly evident
in Boyacá (COL7) across the ValAr-P, where GGTDs with finer native resolutions tended to
exhibit a slightly weaker performance when evaluated on a common 0.5○ grid. In contrast, the
impact of re-gridding was minimal in the ValAr-P of Brazil and, on average, across all ValAr
in both Brazil and Colombia, showing only minor changes in metrics.
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Fig 5 illustrates the spatial patterns of agreement between monthly station data and grid
cell-level estimates across Brazil and Colombia for ERA5Land. As expected, weaker agree-
ments between point and grid cell timeseries were more pronounced in Colombia, particu-
larly in terms of MAE and RMSE. Additionally, a few locations in Brazil displayed relatively
high MAE and RMSE values, while only a small number of locations exhibited low, and occa-
sionally negative, correlations. However, no distinct spatial patterns were evident in either
country.

Area-level temperature estimates and YF transmission
We now describe how the four GGTDs translated into varying spatially aggregated tempera-
ture estimates and demonstrate how these deviations led to substantial variations in simulated
area-level YF human-to-human transmission. Our analysis focused on ValAr-P.

Area-level temperature timeseries. For ValAR-P, we compared area-level temperature
estimates from GGTDs at their native resolution, see Figs 6 and 7, with those interpolated to
a common 0.5○ grid, see S3 Fig. We assessed differences in aggregated timeseries by examin-
ing monthly area-specific temperature distributions and corresponding climatological annual
cycles across the base period. These results should be interpreted within the context of each
country’s specific characteristics, including the varying sizes and locations of AD1 areas, as
illustrated in Fig 1 and S1 Table.

As expected, the boxplots and annual cycles reveal minimal temperature fluctuations and
seasonality for both Colombian ValAr-P, with a clear increase in temperature variability from
northern to southern areas across all selected ValAr-P in Brazil. While this trend is evident
in the rise of the interquartile range (IQR) shown in Fig 6, from the northernmost ValAr-P,
the Amazon region (BRA4) with an IQR of 0.84○C for ERA5Land (BEST: 0.81, CRUTS: 0.71,
ERA5: 0.82; in ○C), to the southernmost area, Rio Grande do Sul (BRA21) with an IQR of

Fig 5. Spatial maps of evaluation metrics. Comparison of grid cell and station values based on A: Pearson correlation coefficient (PCC). B: Mean absolute error (MAE).
C: Root mean square error (RMSE) between ERA5Land and ground-based observations at the corresponding station on a monthly time scale in Brazil and Colombia.

https://doi.org/10.1371/journal.pclm.0000601.g005
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Fig 6. Boxplots comparing the temperature distributions of monthly timeseries based on different global gridded temperature data sets
(GGTDs), averaged across each primary validation area (ValAr-P) in Brazil and Colombia, for the base period (1991-2020).The figures are
organized as follows: A: Amazonas (BRA4) B: Rio de Janeiro (BRA19) C: Rio Grande do Sul (BRA21) D: Sergipe (BRA26) E: Boyacá (COL7) F:
Magdalena (COL20) in Brazil (BRA) and Colombia (COL), respectively. These boxplots are based on area-level temperature timeseries derived from
GGTDs at their native spatial resolution.

https://doi.org/10.1371/journal.pclm.0000601.g006

7.22○C for ERA5Land (BEST: 7.22, CRUTS: 7.12, ERA5: 7.13; in ○C), it is particularly demon-
strated by the seasonal patterns depicted in Fig 7. Overall, all data sets, when compared to
ERA5Land, showed a tendency to shift towards warmer temperatures across all ValAr-P.

While area-level temperature timeseries for most ValAr-P areas in Brazil show strong
agreement across data sets, significant discrepancies were observed in Colombia, particu-
larly in the more mountainous region of Boyacá (COL7), and to a lesser extent in Magdalena
(COL20). Mean temperature values varied in Boyacá (COL7) from ERA5Land (15.81○C) to
BEST (22.56○C). In Brazil, aggregated temperature estimates were generally more consistent,
although slight differences were observed in the remote Amazon region (BRA4), despite it
being the largest Brazilian ValAr. Mean temperature values varied in BRA4 from ERA5Land
(25.53○C) to BEST (27.08○C). Notably, Sergipe (BRA26), the smallest ValAr-P, exhibited
minor differences between timeseries, mean temperature values varying from ERA5Land
(25.05○C) to BEST (25.90○C). Thus, the spatial extent over which the GGTDs were aggre-
gated was not a primary factor influencing the observed differences in GGTDs and hence the
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Fig 7. Climatological annual cycles of monthly temperature (○C) for the six primary validation areas (ValAr-P) selected across Brazil and
Colombia, calculated over the base period (1991-2020).The figures are organized as follows: A: Amazonas (BRA4) B: Rio de Janeiro (BRA19) C:
Rio Grande do Sul (BRA21) D: Sergipe (BRA26) E: Boyacá (COL7) F: Magdalena (COL20) in Brazil (BRA) and Colombia (COL), respectively. These
climatological annual cycles are based on area-level temperature timeseries derived from global gridded temperature data sets (GGTDs) at their native
spatial resolution.

https://doi.org/10.1371/journal.pclm.0000601.g007

associated observational uncertainty. However, temperature estimates derived from GGTDs
re-gridded to a common 0.5○ grid showed more consistent and closely aligned timeseries,
both in terms of monthly distributions and climatological annual cycles, in Boyacá (COL7).
This area also exhibited the most pronounced differences in our station-based evaluation of
GGTDs, with reanalysis showing the strongest agreement with station data (please refer to
section titled Comparison against weather station data).

Differences across data sets remained relatively consistent throughout the year for most
ValAr-P, with the strongest inconsistencies noted in Boyacá (COL7, Fig 6). Aggregated area-
level temperature estimates were thus largely unaffected or only negligibly impacted by sea-
sonality across the ValAr-P.

Temperature-yellow fever associations. Time-varying values of epidemiological parame-
ters (reproduction number) were calculated based on time-varying temperature data shown
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in Fig 6. This was done by converting temperature to temperature suitability[25] and re-
calculating parameter values using the method described in [10]. The results are shown in
Fig 8. The magnitude of seasonal variation in parameter values and the degree of difference
between GGTDs varies between the selected regions.

The reproduction number threshold of 1.00 is critical, delineating the boundary between
declining (reproduction number below 1.00) and sustained or expanding transmission (repro-
duction number above 1.00). The selected regions show different regimes in terms of how sea-
sonal variation affects the calculated reproduction number. One region (Amazonas in Brazil)
has the reproduction number consistently higher than 1.00, indicating that outbreaks can be
sustained all year round. Two other regions (Magdalena and Boyacá in Colombia) have the
reproduction number consistently below 1.00, indicating that outbreaks cannot be sustained

Fig 8. Calculated values of reproduction number (B) for the six primary validation areas (ValAr-P) selected across Brazil and Colombia, calculated over the base
period (1991-2020). Displayed values are monthly averages calculated from daily values calculated from environmental covariates listed in Yellow fever data and model,
with temperature suitability calculated from daily temperature values taken from the four GGTDs. For CRUTS, only monthly temperature values were available, so
reproduction number values were calculated directly on a monthly basis.

https://doi.org/10.1371/journal.pclm.0000601.g008
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at any time of the year. The remaining three regions show variation of the reproduction num-
ber between values below 1.00 and values close to or above 1.00 at different times of the year,
indicating that the sustainability of outbreaks in these regions may vary seasonally.

The numerically largest difference in epidemiological parameter values between GGTDs
is seen in Boyacá, due to that region having the largest temperature variation between data
sets. However, this difference is not substantial due to the low temperatures in the region -
the reproduction number is consistently the lowest among the selected regions and remains
consistently below 1.00.

Discussion
This study evaluated four GGTDs to serve as data inputs for impact models and as reference
data sets for bias correcting (and downscaling) climate model outputs to assess the impacts of
climate and climate change on YF transmission. We assessed whether differences in spatially
aggregated temperature estimates derived from the different GGTDs translated into variations
in the estimated YF reproduction number. Our analysis focused on Brazil and Colombia, not
only due to their diversity in size, population density, orography, and temperature patterns,
but also because both countries have a history of reported yellow fever cases.

Grid-based differences and station-based validation of GGTDs
While the GGTD-only analysis showed no clear seasonal pattern in differences between data
sets, similarly, seasonality did not strongly influence station-to-grid cell comparisons, as
ValAr-P, despite varying temperature variability throughout the year, did not show a clear and
consistent impact on differences in metrics. However, remote areas and regions with com-
plex terrain in both countries showed lower agreement between GGTDs and station data, as
well as between the data sets themselves. Spatial resolution proved crucial when validating
GGTDs, especially in areas with complex terrain.

Our grid-based analysis of geographic distributions, extreme temperature indices, and bio-
climatic variables revealed distinct regional variations in grid-based GGTD-estimated tem-
peratures, with pronounced differences in mean temperature patterns observed in Andes-
dominated and coastal areas. Regions with notable differences in ETCCDI and BCVs esti-
mates often coincided with areas of pronounced differences between GGTDs in mean tem-
perature patterns but also shifted or extended to other parts of South America. The observed
variations in GGTDs, such as differences of over 5.00○C in diurnal and annual temperature
ranges or in the number of tropical nights equivalent to over six years, could strongly impact
the simulated distribution and occurrence of disease-transmitting vectors.

Validation of GGTDs against weather station data confirmed that temperature is generally
more predictable than precipitation, as rainfall is well known to be highly variable due to its
dependence on complex atmospheric dynamics, local topography, and short-term weather
events. Hence, in contrast to rainfall, data set performance for temperature is more consis-
tent and more dependent on the spatial resolution of a GGTD. For instance, higher-resolution
GGTDs such as reanalysis, namely ERA5 and ERA5Land, consistently outperformed lower-
resolution ones such as CRUTS and BEST. Spatial interpolation of BEST did not notably
improve accuracy in most validated areas, as it failed to add meaningful spatial information
to improve data set precision. Re-gridded reanalysis data sets, with their initial finer native
spatial resolution and detail, showed minimal variations in metrics and consistently out-
performed lower-resolution GGTDs when compared with CRUTS and BEST on a 0.5○ grid.
However, in regions with complex terrain (Boyacá, COL7), where the temperature varied over
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smaller spatial scales, the increased resolution had a more pronounced impact on station-
to-grid cell validations (see Table 3). For instance, BEST, re-gridded to a 0.5○ grid, while not
adding new spatial information, showed especially increased MAE and RMSE values in these
areas, likely because it then better captured conditions near weather stations. Thus, there is
evidence that increasing spatial resolution enhanced performance for lower-resolution data
sets but slightly reduced it for higher-resolution ones, which still performed better. However,
the general observation that ERA5 (0.25○) slightly outperformed ERA5Land (0.1○) in our
station-to-grid cell analysis highlights the critical importance of data set accuracy over spatial
resolution, which must be carefully considered.

Translation into spatially aggregated area-level temperature estimates
Our findings regarding area-level temperature estimates aligned with our grid-based observa-
tional uncertainty analysis and showed that differences in GGTDs at the grid level translated
into spatially aggregated averages. The spatial resolution of data sets must be particularly con-
sidered in remote areas and regions with complex terrain, even when evaluating temperature
estimates spatially aggregated over extensive areas. The seasonality of the temperature and the
size of the AD unit had little effect on the deviations of the data set, as shown by the Brazilian
ValAr-P of varying seasonality and size, which did not consistently influence the differences
of the GGTD in unit-specific temperature estimates.

These conclusions were drawn from our main results, which demonstrated that while the
selection of GGTDs and their spatial resolution had minimal impact on aggregated time-
series in most ValAr-P, higher-resolution data sets were generally preferable in remote and
topographically complex regions. Similarly, for most ValAr-P, the comparison of timeseries
derived from GGTDs on a common 0.5○ grid or their native resolution exhibited negligi-
ble differences. However, in areas like the Andes-dominated mountainous region of Boyacá
(COL7), spatially aggregated temperature timeseries exhibited greater variability. In COL7,
where also the accuracy of both lower- and higher-resolution data sets varied with interpo-
lation to a higher or lower grid, a stronger alignment of timeseries data was observed when
comparing aggregated information derived from GGTDs on a common grid to those at their
native resolution.

Impact of observational uncertainty on simulated YF
reproduction number
Our findings showed that data set choice can have substantial impacts on YF reproduction
number estimates, particularly in regions with distinct characteristics, such as Amazonas
(BRA4) in Brazil and the ValAr-P in Colombia (COL7 and COL20), where noticeable dif-
ferences in spatially aggregated area-level temperature estimates were observed (see previ-
ous section). Notably, in Boyacá (COL7), pronounced variations in both the magnitude and
temporal variations of the reproduction number became evident. While reproduction num-
ber values in Colombia remained well below 1.00, our results suggest that in regions where
reproduction number approaches 1.00, data set differences could lead to substantial varia-
tions, with estimates shifting above or below the threshold depending on the selected GGTD.
The shown critical sensitivity of the reproduction number to data input is not only impor-
tant under current climate conditions but also in climate change impact studies assessing
future outbreak potential due to human-to-human transmission, as we are confident that the
underlying and observed mechanisms hold true for other regions with similar characteristics.
To provide an example, a regional temperature increase based on GCM outputs downscaled
using a simple delta change method might predict a higher reproduction number, potentially
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shifting from below 1.00 to above 1.00 in some areas when using BEST instead of ERA5Land,
if ERA5Land provides cooler estimates, as observed in northern areas of South America.

Observational uncertainty is particularly critical in climate change impact studies when it
matches or even exceeds uncertainties from other sources, such as variations among Repre-
sentative Concentration Pathways (RCPs) and BC&Dmethods. Most important, it is espe-
cially relevant when variability across multiple observational data sets is comparable to or
even surpasses that across GCMs. However, previous research suggests that observational
uncertainty tends to be more significant for precipitation than for temperature in the con-
text of future climate change projections [14,16,62,63]. For temperature, observational uncer-
tainty is often smaller compared to uncertainties arising from the choice of BC&D methods,
models, or scenarios. Nonetheless, we argue that observational uncertainty also in the con-
text of temperature is neither negligible nor inconsequential in climate change studies due to
the following reasons. First, it remains critical in applications such as the validation, ranking,
and selection of RCMs and GCMs. Second, while prior research on VBD transmission and
risk has often relied on oversimplified future climate change projections (see Introduction),
future studies must integrate advanced BC&Dmethods that account for the entire distribu-
tion of climate variables. Reassessing and understanding the differences between data sets is
essential, as we observed variations not only in mean responses but also in climate change-
relevant extreme indices and bioclimatic variables, which current research has yet to fully
explore in terms of their impact on the accuracy of both current and future VBD assessments.
Lastly, in this context, the importance of observational uncertainty might vary depending
on the specific research question or task at hand. For example, research on YF disease bur-
den might prioritize emergency preparedness and worst-case scenarios. This could involve
focusing on SSP585, a combination of the fossil-fueled development-based Shared Socioeco-
nomic Pathway (SSP5) and the high-emission scenario RCP8.5, while also selecting extreme
climate change scenarios based on disease-relevant indices or the tails of the temperature dis-
tribution. In such studies, areas where the reproduction number shifts, and whether future
levels fall below or above the critical threshold of 1.00, could strongly depend on the choice of
observational data source, leading to substantially different assessments of outbreak potential.

Implications for practitioners and real-world decision-making
In practical terms, the challenge facing practitioners is no longer the scarcity of observational
data or the availability of bias-corrected and downscaled climate projections. Rather, the criti-
cal issue lies in selecting an appropriate data set, rigorously assessing its credibility, and apply-
ing it judiciously. Often, data products are chosen based on availability, ease of use, or famil-
iarity with the data provider. However, this approach can inadvertently introduce unrecog-
nized biases into downstream analyses. To our knowledge, such biases have not been system-
atically evaluated in yellow fever (YF) SEIR modeling frameworks, which are increasingly
used to inform policy and decision-making [34,35]. These models are increasingly adapted
and extended to incorporate climate-related disease driving factors [64], underscoring the
importance of critically assessing the choice and impact of input data to ensure robust and
reliable simulations and projections of disease burden and transmission.

The underlying yellow fever (YF) modeling framework [10] used in this study integrates
multiple further covariates, such as human population size, land cover, and non-human pri-
mate richness, all sourced from data sets with their own uncertainties. These covariates were
held constant here to isolate and evaluate the impact of variability in temperature input data
derived from GGTDs. Although a comprehensive uncertainty analysis would ideally extend
to other environmental drivers, e.g., including the comparison of multiple land cover data
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sets beyond MODIS [65], such an approach was beyond the current scope, which explic-
itly focused on temperature-related data uncertainty and its influence on simulations of key
YF epidemiological parameters. This focus was specifically intended to support the devel-
opment and establishment of yellow fever modeling approaches that explicitly incorporate
temperature sensitivity under current and future warming scenarios.

Looking ahead, accurately assessing the impacts of long-term climate change, including
shifts in seasonality and occurrences of weather extremes, on disease projections and hence
intervention and vaccination strategies depends critically on the choice or generation of
appropriate climate change projection data sets. Advanced bias correction and downscaling
techniques are indispensable for capturing seasonality and extremes, but their performance is
highly sensitive to the reference data sets used, particularly for precipitation and extreme tem-
perature indices [66]. Biases inherent in these reference data sets are transferred to the bias-
adjusted and downscaled climate change projections, potentially amplifying errors in both
current simulations and future projections when used in disease transmission models that are
sensitive to driving data input. Raising awareness and utilizing the contributions identified
in this study are essential steps toward promoting responsible and informed research prac-
tices. A careful examination of the data set documentation is crucial for researchers to under-
stand its limitations, assumptions, and scope of application, guiding the decision on whether
a new data source is needed and ultimately supporting the development of more accurate and
reliable findings.

Limitations
We note and discuss several limitations that may have influenced our findings. Multiple
uncertainties exist regarding the grid-based evaluation, validation of GGTDs, and their spa-
tial aggregation. Furthermore, we recognize limitations in our YF modeling approach, which,
like any model, represents a simplification of real-world settings, with the current YF model
having certain assumptions, detailed in [10]. In the following, we outline how some results
may have been influenced by challenges in the study design, first concerning our station-
to-grid cell analysis and subsequently with respect to our aggregation. We also discuss the
limitations arising from the assumptions made with respect to the YF model.

Station-to-grid cell analysis
Weather station data is often included in the generation of various GGTDs, such as reanaly-
sis, although their inclusion is neither consistent over time nor uniform across all data sets.
Any overlap between our selected stations and those used to develop the GGTDs could limit
the independence and statistical validity of our analysis. In this context, we need to point out
that our findings might have been generally influenced by temporal and spatial inconsisten-
cies within the GGTDs, such as variations in the station data included over time in certain
data sets. We acknowledge these inconsistencies could affect the reliability and accuracy of
GGTDs, which are essential for long-term climate analysis and impact assessments.

Ground-based observations are limited to specific points in space and time, and data
set performance might vary in locations where site-specific information was unavailable.
Nonetheless, we argue that our focus on evaluating GGTD performance for health-related cli-
mate impact assessments, typically targeting inhabited regions, mitigated this issue. We lever-
aged the fact that weather stations in Brazil and Colombia were situated in or near densely
populated areas, thereby limiting the impact of uneven station distribution on the valid-
ity of our results. In this context, it is important to note that both ERA5 and ERA5Land are
known to underestimate temperature extremes in urban areas. This bias stems from the data
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assimilation schemes, which primarily rely on observations from official network stations.
These stations are often not directly installed in urban locations, leading to a reliance on data
from rural stations instead. This fact also needs to be considered when future research work
evaluates the impact of temperature extremes on VBDs.

It is important to note that, in general, the values of the evaluation metrics indicated com-
paratively lower agreement between GGTDs and station data when compared to similar anal-
yses conducted in high-income countries (similar findings have been reported in other stud-
ies, such as [12]), where station networks and data record-keeping are typically better main-
tained or have already been established over a longer period of time. In this context, we also
highlight the general differences between the national station networks of IDEAM (Colom-
bia) and INMET (Brazil), particularly with respect to the number of available stations, the
lengths of historical records, and the ease of data accessibility. Although we acknowledge that
both countries might differ in terms of infrastructure, historical development, and the insti-
tutional establishment of their meteorological services, we argue that global gridded data
sets typically rely on national station networks, whether through direct use of station data
for interpolation, blending with satellite-derived estimates, or integration via data assimi-
lation techniques, as is the case with reanalysis products. As a result, structural disparities
in national data infrastructure and meteorological networks are inherently reflected in the
GGTDs themselves, representing a broader limitation when conducting cross-country anal-
yses, particularly in the Global South. Despite applying consistent quality checks and data
preparation procedures, we recognize that the limitations of weather station data must be
taken into account when interpreting our findings. However, we argue that the differences
between Brazil and Colombia do not substantially impact the overall conclusions of our study,
since, for example, many of the structural discrepancies between the two countries are already
embedded in the GGTDs. Our evaluation of GGTDs performance under local conditions
revealed notable differences in accuracy, with stronger deviations observed in Colombia -
likely more attributable to its complex topography in comparison with Brazil.

Spatial aggregation
Spatial aggregation of GGTDs often involves averaging grid cells that may represent very
different conditions within AD areas, influenced by factors such as size, orography, and cli-
mate. As a result, averaging these cells may not provide meaningful interpretations and could
diminish the representativity and utility of the data. However, this method of spatial aggrega-
tion remains essential for certain applications, particularly in VBD research, which often relies
on area-level epidemiological data that lack the spatial resolution needed to align with precise,
more localized temperature information.

The impact of lakes and other water bodies was not evaluated, which is particularly rele-
vant in regions with mixed land and water surfaces; while ERA5 includes data over lakes and
water bodies, ERA5Land excludes them due to its land-sea mask, which considers only land
areas. However, in most health-related climate research studies, gridded data sets are down-
loaded and spatially aggregated without further processing or corrections. Therefore, we also
decided not to further account for respective differences.

Modeling approach
The underlying YF modeling framework integrates multiple inputs, including static pop-
ulation data and a suite of climatic and environmental covariates. Following the approach

PLOS Climate https://doi.org/10.1371/journal.pclm.0000601 June 25, 2025 21/ 27

https://doi.org/10.1371/journal.pclm.0000601


ID: pclm.0000601 — 2025/6/20 — page 22 — #22

PLOS CLIMATE Evaluating the role of observational uncertainty in climate impact assessments

detailed in prior work [67], a covariate selection process led to the exclusion of irrelevant vari-
ables, followed by clustering of remaining covariates and selection of the most representa-
tive from each cluster for stepwise model optimization based on the Bayesian Information
Criterion. The current model therefore has certain assumptions, detailed in [10]. For exam-
ple, while population data are incorporated, input remains static; dynamic processes such
as migration, population growth, and additional socioeconomic factors, including poverty
levels, are not represented. Furthermore, the distinct healthcare systems and organizational
structures of Brazil and Colombia might influence their public health responses, potentially
affecting the accuracy and completeness of disease and vaccination reporting. To better esti-
mate population immunity, the YF modeling approach incorporates a measure of vaccination
effectiveness that accounts for both vaccine efficacy and potential misclassifications or mis-
reporting of vaccination coverage data. In general, like any model, the YF model represents
a simplification of real-world conditions, with ongoing research needed to identify and, as
knowledge and confidence improve over time, mechanistically incorporate additional driving
factors where necessary.

Conclusion
This study evaluated the uncertainty associated with observational global gridded temper-
ature data sets, representing viable candidates for use as reference climatology for the bias
correction and downscaling of global climate model simulations. The study focused on their
impact on area-level temperature estimates and simulated yellow fever transmission. The
study highlights the critical need to account for differences in data sets, which vary across
contexts, time frames, and regions, and emphasize the sensitivity of yellow fever transmis-
sion to input data. Our findings underscore the need for careful evaluation and transparent
reporting of observational uncertainties and the importance of selecting appropriate data sets
to ensure robust climate (change) impact assessments in the context of disease transmission
and outbreak potential. By providing evidence and foundational work to assess these uncer-
tainties, this study offers guidance and raises awareness for policymakers, decision makers,
and researchers, enabling them to make more informed decisions based on available and cho-
sen data sources. Ultimately, improving the reliability of climate-informed disease risk assess-
ments will enhance the design and implementation of effective intervention and vaccination
strategies under current and changing climate conditions.
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on Climate Change Detection and Indices (ETCCDI).The results are shown for further
temperature-based BCVs (variables 2–-5, 7, and 10–-11) and indices defined by ETCCDI,
including the daily temperature range (DTR) and the summer days index for specific time
periods (SU). ERA5Land is used as the reference data set, and deviations are calculated for all
other global gridded temperature data sets (GGTDs).
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S3 Fig. Comparison of temperature distributions and climatological annual cycles across
primary validation areas (ValAr-P) in Brazil and Colombia.The comparison is based on
monthly timeseries from various global gridded temperature data sets (GGTDs). The ValAr-
P include Amazonas (BRA4), Rio de Janeiro (BRA19), Rio Grande do Sul (BRA21), Sergipe
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Pearson correlation coefficient (PCC), the mean absolute error (MAE), and the root mean
square error (RMSE), used to evaluate each individual global gridded temperature data set
(GGTD) based on grid cell-based values (P) against station observations (O), quantifying the
degree of deviation from the reference (weather stations serving as ground truth).
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S1 Table Overview of the validation areas (ValAr) in Brazil and Colombia, with primary
areas marked by an asterisk.The table provides additional details on the average population
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