
Algorithmica
https://doi.org/10.1007/s00453-025-01315-x

Bandwidth Parameterized by Cluster Vertex Deletion
Number

Tatsuya Gima1 · Eun Jung Kim2,3,4 · Noleen Köhler5 ·
Nikolaos Melissinos6 ·Manolis Vasilakis7

Received: 12 March 2024 / Accepted: 9 April 2025
© The Author(s) 2025

Abstract
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection π

from V (G) to {1, . . . , |V (G)|} such that max{u,v}∈E(G) |π(u) − π(v)| ≤ b. This is a
classical NP-complete problem, known to remainNP-complete even on very restricted
classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length
3. In the realm of parameterized complexity, these results imply that the problem
remains NP-hard on graphs of bounded pathwidth, while it is additionally known to
be W[1]-hard when parameterized by the tree-depth of the input graph. In contrast,
the problem does become FPT when parameterized by the vertex cover number. In
this paper we make progress in understanding the parameterized (in)tractability of
Bandwidth. We first show that it is FPT when parameterized by the cluster vertex
deletion number cvd plus the clique number ω, thus significantly strengthening the
previously mentioned result for vertex cover number. On the other hand, we show that
Bandwidth is W[1]-hard when parameterized only by cvd. Our results develop and
generalize some of the methods of argumentation of the previous results and narrow
some of the complexity gaps.

Keywords Bandwidth · Clique number · Cluster vertex deletion number ·
Parameterized complexity

1 Introduction

Given an undirected graphG and an integer b,Bandwidth asks whether there exists a
bijection π : V (G) → {1, . . . , |V (G)|} of the vertices of G (called an ordering) such
that max{u,v}∈E(G)|π(u) − π(v)| ≤ b. The main motivation behind its study dates
back to over half a century; a closely related problem in the field of matrix theory was
first studied in the 1950’s, while in the 1960’s it was formulated as a graph problem,
finding applications in minimizing (average) absolute error in codes, and has been
extensively studied ever since [7, 12–14, 19, 20, 25, 33, 35].

An extended abstract of this work was presented at the 18th International Symposium on Parameterized
and Exact Computation (IPEC 2023) [32].

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-025-01315-x&domain=pdf
https://orcid.org/0000-0003-2815-5699
https://orcid.org/0000-0002-6824-0516
https://orcid.org/0000-0002-1023-6530
https://orcid.org/0000-0002-0864-9803
https://orcid.org/0000-0001-6505-2977

Algorithmica

Bandwidth is long known to be NP-complete [7, 49]; as a matter of fact, that is the
case even on very restricted classes of graphs, such as trees of maximum degree 3 [30],
caterpillars of hair length 3 [46], and cyclic caterpillars of hair length 1 [47]. Consider-
ing these NP-hardness results, in this paper we focus on the problem’s parameterized
complexity. When parameterized by the natural parameter b, Bandwidth is known
to be in XP [34, 50], whilst it is XNLP-complete even when the input graph is a tree
[3, 4], which implies W[t]-hardness for all positive integers t . In fact, Bandwidth
cannot be solved in time f (b)no(b) even on trees of pathwidth at most two unless the
Exponential Time Hypothesis fails [18], rendering the known 2O(b)nb+1 algorithm
essentially optimal [50]. Regarding structural parameterizations, the previously men-
tioned results imply that Bandwidth is para-NP-complete when parameterized by
the pathwidth or the treewidth plus the maximum degree of the input graph; the latter
implies NP-completeness also on graphs of constant tree-cut width [29]. Moreover, it
is known to be W[1]-hard parameterized by the tree-depth of the input graph [31]. In
contrast, the problem does become fixed-parameter tractable (FPT) when parameter-
ized by the vertex cover number [23], the neighborhood diversity [1], or the max-leaf
number [22].

In the last few years, a plethora of structural parameters have been introduced in
an attempt to precisely determine the limits of tractability of algorithmic problems
that are FPT parameterized by vertex cover number, yet become W[1]-hard when
parameterized by more general parameters, such as treewidth or clique-width. Some
of the most well-studied such parameters are vertex integrity [31], tree-depth [48],
twin cover number [27], cluster vertex deletion number [17], shrub-depth [28], neigh-
borhood diversity [41], and modular-width [26]. The tractability of Bandwidth with
respect to those parameters has remained largely unexplored, with the exception of
neighborhood diversity [1] and tree-depth [31].

Cluster vertex deletion number lies between clique-width and vertex cover number
(more precisely twin cover number) and is defined as the minimum size of a set
of vertices whose removal induces a cluster graph, i.e., a disjoint union of cliques.
Computing the cluster vertex deletion number of a graph is known to lie in FPT [5,
36, 51] and it was first considered as a structural parameter in [17], while it has been
used to show parameterized (in)tractability results in multiple occasions ever since [2,
6, 8, 9, 39, 40, 44]. Notice that Bandwidth is trivial on cluster graphs; it suffices to
check whether the clique number is at most b + 1, as there exists an optimal ordering
that places the vertices of every clique consecutively, for some ordering of the cliques.
Therefore, its tractability when parameterized by the cluster vertex deletion number
of the input graph poses a very natural question.
Our contribution. In the current work, we present both tractability and intractabil-
ity results for Bandwidth when cluster vertex deletion number is a parameter of
the problem (see Fig. 1 for an overview of our results and the relationships between
the structural parameters mentioned). We first prove that Bandwidth is FPT when
parameterized by cvd+ω, where cvd and ω denote the cluster vertex deletion number
and clique number of the input graph respectively. This significantly strengthens the
tractability result for vertex cover number of [23], and follows the same idea of encod-
ing the problem as an integer linear program (ILP) of a small number of variables.
Solving said ILP, one can verify whether there exists any ordering π of the vertices of

123

Algorithmica

Fig. 1 Our results and hierarchy of some related structural graph parameters, where ω and � denote the
clique number and the maximum degree of the input graph, respectively. Arrows between parameters
indicate generalization relations, that is, for any graph, if the parameter at the tail of an arrow is a constant
then the parameter at the head of the arrow is also a constant. The reverse does not hold in this figure.
The framed green, frameless orange, and double framed red rectangles indicate fixed-parameter tractable,
W[∗]-hard, and NP-complete cases, respectively

G such that (a) |π(v) − π(u)| ≤ b for all {u, v} ∈ E(G), and (b) π is “nice”, where
an ordering is nice if it has some specific properties. Proving that there exists a nice
ordering π that minimizes max{u,v}∈E(G) |π(v) − π(u)| then yields the stated result.

A natural question that arises from the previous result is whether it is necessary for
both cvd and ω to be parameters of the problem in order to assure fixed-parameter
tractability. Notice that Bandwidth is NP-complete even when ω ≤ 2, since that is
the case for trees. Therefore, we proceed by studying the problem’s tractability when
parameterized only by cvd. In this setting, we show that Bandwidth is W[1]-hard
via a reduction from Unary Bin Packing, thus positively answering the previous
question.
Related work. Bandwidth is one of the so-called graph layout problems (see the
survey of [15]). As far as the structural parameterized complexity of such problems is
concerned, Fellows, Lokshtanov, Misra, Rosamond, and Saurabh [23] were the first
to prove FPT results for a multitude of them when parameterized by the vertex cover
number of the input graph, making use of ILP formulations. Since then, not much
progress has been made on that front, with a notable exception being Imbalance,
which was shown to be FPT when parameterized by twin cover number plus ω [45],
vertex integrity [31], or tree-cut width [29], while it belongs to XP when parame-
terized by twin cover [45]. Minimum Linear Arrangement is known to be FPT
parameterized by max-leaf number, or edge clique number of the input graph [21], as
well as by the vertex cover number [43]. Lastly, as far as Cutwidth is concerned, a

123

Algorithmica

2O(vc)nO(1) time algorithmwas presented in [11], improving over the ILP formulation
of [23], where vc denotes the vertex cover number.
Organization. In Sect. 2 we discuss the general preliminaries, followed by the FPT-
algorithm in Sect. 3 and the hardness result in Sect. 4. Lastly, in Sect. 5 we present the
conclusion as well as some directions for future research.

2 Preliminaries

Throughout the paper we use standard graph notation [16], and we assume familiarity
with the basic notions of parameterized complexity [10]. We assume that N is the set
of all non-negative integers. All graphs considered are undirected without loops. The
clique number of a graph G, denoted by ω(G), is the size of its largest induced clique.
For x, y ∈ Z, let [x, y] = {z ∈ Z : x ≤ z ≤ y}, while [x] = [1, x]. For Ii = [ai , bi],
we say that intervals I1, . . . , Ik partition interval I = [a, b] if I = ⋃

i∈[k] Ii and
Ii ∩ I j = ∅, for any 1 ≤ i < j ≤ k. Additionally, let Ii < I j if bi < a j . For a
function f : A → B and A′ ⊆ A, let f (A′) = { f (a) ∈ B : a ∈ A′}. Moreover, let
max(f (A′)) = max{ f (a) : a ∈ A′} and min(f (A′)) defined analogously.

Let G be a graph and π : V (G) → [n] an ordering of its vertices. We define the
stretch of an edge e = {u, v} ∈ E(G)with regard toπ as stretchπ (e) = |π(u)−π(v)|.
We define the stretch of π to be the maximum stretch of the edges of G with regard
to π , i.e., stretch(π) = maxe∈E(G) stretchπ (e). The bandwidth of G, denoted bw(G),
is the minimum stretch over all its possible vertex orderings, while Bandwidth asks,
given a graph G and an integer b, whether bw(G) ≤ b.

Remark 1 Note that the stretch of a vertex ordering is invariant under isomorphism,
which means in particular that stretch(π) = stretch(π ◦ f) for any vertex ordering
π : V (G) → [n] and any automorphism f : V (G) → V (G) of G.

A cluster deletion set of a graph G is a set S ⊆ V (G) such that every component
of G − S is a clique. If S is a cluster deletion set, we call the components of G − S
clusters. The cluster vertex deletion number of G, denoted cvd(G), is the size of its
minimum cluster deletion set.

The feasibility variant of integer linear programming (ILP) is to decide, given a set
X of variables and a set C of linear constraints (i.e., inequalities) over the variables in
X with integer coefficients, whether there is an assignment α : X → Z of the variables
satisfying all constraints in C . It is known that the feasibility of an instance of (ILP)
can be tested in O(p2.5p+o(p) · L) time, where p is the number of variables and L is
the size of the input [24, 38, 42]. In other words, computing the feasibility of an ILP
formula is FPT parameterized by the number of variables. Moreover, a solution can
be computed in the same time if it exists.

123

Algorithmica

3 An FPT-Algorithm Parameterized by Cluster Vertex Deletion
Number Plus Clique Number

In this section we prove that Bandwidth is FPT parameterized by the cluster ver-
tex deletion number plus the clique number of the input graph. We first state the
main theorem of this section, followed by a short discussion regarding the considered
parameterization and a high-level overview of our proof.

Theorem 2 Bandwidth is fixed-parameter tractable when parameterized by cvd+ω,
where cvd and ω denote the cluster vertex deletion number and clique number of the
input graph respectively.

Parameterization by cvd+ω. Given a graph G and an integer k, it is known that one
can compute a cluster deletion set ofG of size atmost k in time 2O(k)nO(1), or correctly
determine that no such set exists [5, 36, 51]. Notice that one can use this algorithm in
order to determine, for a graphG and an integer k, whether cvd(G)+ω(G) ≤ k in time
2O(k)nO(1): (i) run the previouslymentioned algorithm for i = 1, . . . ,min{cvd(G), k}
to compute a minimum cluster deletion set S of size |S| = cvd(G), provided such a
set exists, (ii) compute ω(G) by guessing the subset S′ ⊆ S which is the intersection
of a maximum clique with S, and then consider for each cluster C of G − S the graph
induced by the vertices ofC and S′; the considered maximum clique is then composed
of S′ as well as the vertices of a cluster C that are adjacent to all the vertices of S′.
Proof overview. Our proof is a generalization of the FPT result for vertex cover
number from [23]. The general idea for obtaining an ILP encoding of Bandwidth
given a vertex cover S is to augment S by a small number (dependent only on the
vertex cover number) of representative vertices of every neighborhood-type. It can be
easily seen that we can modify any ordering π in such a way that the leftmost and
rightmost neighbor of any vertex in S is contained in this augmented set S′ without
increasing the stretch. For any ordering σ of S′ we can decide whether we can extend
σ to an ordering of V (G) of stretch at most b by encoding how vertices of certain
neighborhood-types are distributed into the gaps between the vertices of S′ into an
ILP. By ensuring that we distribute the vertices in such a way that the leftmost and
rightmost neighbor of any vertex in S is contained in S′ we can bound the stretch of
every edge by using one linear constraint for every edge in G[S′].

In our setting we can use the vertex cover approach to bound the stretch of all edges
incident to the deletion set. To gain control over the stretch of edges within clusters, we
show that we can convert any ordering into a nice one without increasing the stretch.
Here niceness intuitively means, that we can order the vertices in between any two
vertices of S′ in such a way that vertices of the same type appear consecutively, where
the type now depends on the isomorphism-type of the cluster union the deletion set.
This will allow us to bound the stretch of such edges by a linear constraint as well.

3.1 Types and Buckets

Throughout this subsection we let G be a graph and S a cluster deletion set of G of
size k. For any vertex v ∈ V (G − S), let NS(v) = N (v) ∩ S be its S-neighborhood.

123

Algorithmica

In the following we define types of clusters. Cluster-types capture the isomophism-
type of the union of a cluster with the deletion set S. As clusters of the same size are
isomorphic, our notion of type only needs to capture how the vertices of the cluster
interact with the deletion set. In particular, we define cluster-types to be vectors such
that each entry specifies the number of vertices in the cluster which have a particular
S-neighborhood; in that case, two clusters are of the same cluster-type if and only if
they agree on the number of their vertices with S-neighborhood N , for all N ⊆ S.
We define this formally as follows. Let K ⊆ N

2k be the set of non-negative integer
vectors κ with 2k entries for which ‖κ‖1 ≤ ω(G). 1 We assume that the entries of the
vectors in K are indexed by the subsets of S. We say that a cluster C has cluster-type
κ ∈ K if |{v ∈ V (C) : NS(v) = N }| = (κ)N for every N ⊆ S where (κ)N denotes
the entry of κ corresponding to N . We further let #κ denote the number of clusters of
cluster-type κ in G. We say that a set C of clusters is representative if it consists of
min{2|S|, #κ} distinct clusters of type κ for every cluster-type κ . We further say that
a set S′ is an extended deletion set if S′ = S ∪ ⋃

C∈C V (C) for a representative set C
of clusters.

Lemma 3 For every extended deletion set S′ there is an ordering π : V (G) → [n]
such that stretch(π) = bw(G) and for every s ∈ S, the set S′ contains vertices vsmin
and vsmax, where π(vsmin) = min(π(N (s))) and π(vsmax) = max(π(N (s))), i.e., S′
contains the leftmost and rightmost neighbor of s.

Proof Let S′ be an extended deletion set, where S′ = S ∪ ⋃
C∈C V (C) for some

representative cluster set C, and π an ordering of V (G) such that stretch(π) = bw(G).
Notice that since |{vsmin, v

s
max : s ∈ S}| ≤ 2|S|, it follows that there are at most 2|S|

vertices among them not belonging to S and belonging to clusters of the same cluster-
type.

Let s ∈ S and suppose thatvs ∈ {vsmin, v
s
max}does not belong to S′. LetC /∈ C denote

the cluster ofG−S′ that contains vs , and assume that it is of cluster-type κ . In that case,
it follows that #κ > 2|S| and that there exists a cluster C ′ ∈ C of cluster-type κ , such
that V (C ′) ∩ {vsmin, v

s
max : s ∈ S} = ∅. Exchanging the vertices of C with vertices of

C ′ respecting their S-neighborhood yields an automorphism f : V (G) → V (G). For
π ′ = π ◦ f , it holds that stretch(π ′) = bw(G) due to Remark 1, while vs ∈ S′. By
repeatedly applying the previous argument, the statement follows. �

We say that an ordering π : V (G) → [n] is S′-extremal if the second property in
Lemma 3 is satisfied for π .

Observation 4 Since there are at most ω(G)2|S|·ω(G) different cluster-types, it holds
that the size of any extended deletion set S′ is at most |S|+ 2|S|ω(G) ·ω(G)2|S|·ω(G).

Let C be a representative set of clusters, S′ = S∪⋃
C∈C V (C) the extended deletion

set containing vertices from C and S, and k′ = |S′|. A bucket distribution of S′ is a
partition B = (B0, . . . , Bk′) of the vertices of G − S′. Fix a bucket distribution
B = (B0, . . . , Bk′) of S′. We call the subsets Bi buckets of B.

1 Here ‖·‖1 denotes the 1-norm, i.e., the sum of the absolute values of the entries.

123

Algorithmica

Having fixed a bucket distribution, we define a more refined notion of types of
clusters. In this refined notion, which we call distribution-type, we specify how many
vertices of a cluster with a particular S-neighborhood are contained in a particular
bucket. We define this formally in the following. Let T ⊆ N

2k×(k′+1) be the set of
matrices τ with ‖τ‖1 ≤ ω(G). We assume that the rows of matrices are indexed with
subsets of S and the columns with [0, k′]. We say that a clusterC /∈ C has distribution-
type τ ∈ T in B if |{v ∈ V (C) ∩ Bi : NS(v) = N }| = (τ)N ,i for every N ⊆ S and
every i ∈ [0, k′]. For every κ ∈ K, let Tκ ⊆ T denote the set of distribution-types τ

such that
∑

i∈[0,k′](τ)N ,i = (κ)N for every N ⊆ S, i.e., the set of τ ∈ T such that
any cluster of distribution-type τ has cluster-type κ .

Observation 5 The number of distribution-types is at most ω(G)2
|S|·(|S′|+1) for any

extended deletion set S′.

Let σ : S′ → [k′] be an ordering of the vertices of S′. We say that a vertex ordering
π : V (G) → [n] is compatiblewith σ if for any s1, s2 ∈ S′ it holds that π(s1) < π(s2)
if and only if σ(s1) < σ(s2). We say that a vertex ordering π : V (G) → [n] is
compatible with σ and B if π is compatible with σ and B0 = {v ∈ V (G) : π(v) <

π(σ−1(1))}, Bk′ = {v ∈ V (G) : π(v) > π(σ−1(k′))} and Bi = {v ∈ V (G) :
π(σ−1(i)) < π(v) < π(σ−1(i + 1))} for i ∈ [k′ − 1].

3.2 Nice Orderings

Throughout this subsection we let G be a graph and S a cluster deletion set of G.
Furthermore, for this subsection we let C be a representative set of clusters, S′ =
S ∪ ⋃

C∈C V (C) the extended deletion set containing vertices from C and S, and
k′ = |S′|. Additionally, we fix a bucket distribution B = (B0, . . . , Bk′) of S′ and an
ordering σ : S′ → [k′].

To obtain our nice ordering we use a series of exchange arguments that will not
increase the stretch. We call an ordering nice if it has Properties (1), (2), and (3).
We will first give some intuition regarding the properties, before defining them for-
mally.

Assume that π : V (G) → [n] is an optimal ordering minimizing the number of
edges ofmaximum stretch and assume thatπ is compatiblewithσ andB. Furthermore,
let v ∈ V (C) be a vertexwhich is contained in an edge ofmaximum stretchwith regard
to π and the cluster C containing v is distributed over more than one bucket. In this
case, v must be either the leftmost or the rightmost vertex of C . Assuming v ∈ Bi
is the leftmost vertex of C (the other case is analogous), we can observe that every
vertex v′ ∈ Bi appearing further to the right than v must have a neighbor contained
in a bucket to the right of Bi and no neighbor to the left of v. Otherwise, we can
reduce the stretch of the edge containing v without increasing the stretch of any edge
incident to v′ (and hence reducing the number of edges of maximum stretch without
increasing the maximum stretch) by exchanging v and v′. Therefore, we can assume
that each bucket is partitioned into a left, a middle, and a right part and every vertex
having neighbors only to the buckets to the left (respectively, right) of Bi appears in

123

Algorithmica

the left (respectively, right) part. Additionally, this allows us to assume that within
each bucket the vertices of one cluster appear consecutively (Property (1)).

Now assume that {v,w} is an edge of maximum stretch as before (v appears left
of w in π) and {v′, w′} is another edge such that v′ appears in the same bucket as v

and w′ in the same bucket as w. If v′ appears before v then w′ has to appear before w

as {v,w} is of maximum stretch. On the other hand, if v′ appears after v then w′ must
appear after w as otherwise exchanging w and w′ either reduces the number of edges
of maximum stretch or reduces the maximum stretch itself. Hence, we can assume
that the relative order of the leftmost vertices of a set of clusters is the same as the
relative order of the rightmost vertices of the same clusters (Property (2)).

Lastly, assume that C and C ′ are clusters of type τ ∈ T which are not contained in
just one bucket and appear next to each other (in their leftmost bucket). Assume B
 is
the bucket containing the leftmost vertex ofC andC ′ and Br the bucket containing the
rightmost vertex ofC andC ′. We can essentially exchange V (C)∩B
 with V (C ′)∩B

and at the same time V (C)∩ Br with V (C ′)∩ Br if certain properties about the size of
these sets hold. This allows us to order the buckets in such a way, that clusters whose
intersection with the leftmost (rightmost, respectively) bucket they intersect is of the
same size, appear consecutively (Property (3)).

To state Properties (1), (2), and (3) formally we use the following notation.
For a distribution-type τ ∈ T and i ∈ [0, k′], we write τi to denote the column of τ

which is indexed by i . We define LB(τ) to be the largest index i ∈ [0, k′] such that
‖τ j‖1 = 0 for any j ∈ [0, i−1], i.e., Bi is the leftmost bucket containing vertices from
clusters of type τ . We define RB(τ) analogously to be the minimum index i ∈ [0, k′]
such that ‖τ j‖1 = 0 for any j ∈ [i + 1, k′]. Additionally, we let #L(τ) be ‖τLB(τ)‖1
and #R(τ) be ‖τRB(τ)‖1. For every
 ≤ r ∈ [0, k′] and every nL , nR ∈ [0, ω(G)], we
define

T (
,r ,nL ,nR) = {τ ∈ T : LB(τ) =
, RB(τ) = r , #L(τ) = nL , #R(τ) = nR}.

Definition 6 (Property (1)) We say that an S′-extremal ordering π : V (G) → [n]
which is compatible with σ and B has Property (1) if for every i ∈ [0, k′]
1. the vertices of V (C) ∩ Bi appear consecutively in π for every cluster C /∈ C,
2. we can partition the intervalπ(Bi) into three (possibly empty) intervals I iR < I iM <

I iL such that for every τ ∈ T and every cluster C of distribution-type τ

– π(V (C) ∩ Bi) ⊆ I iR if LB(τ) �= i and RB(τ) = i ,
– π(V (C) ∩ Bi) ⊆ I iL if LB(τ) = i and RB(τ) �= i ,
– π(V (C)∩Bi) ⊆ I iM if either LB(τ) �= i and RB(τ) �= i , or LB(τ) = RB(τ) =
i .

Notice that while I iR contains the leftmost ordered vertices of Bi , we use the index R
since those vertices are the rightmost vertices of their corresponding cliques. Analo-
gously, we use I iL for the rightmost ordered vertices of Bi .

Lemma 7 Given an S′-extremal ordering π : V (G) → [n] which is compatible with
σ and B, there exists an S′-extremal ordering π ′ : V (G) → [n] with stretch(π ′) ≤
stretch(π) which is compatible with σ and B and has Property (1).

123

Algorithmica

Proof Let π : V (G) → [n] be an S′-extremal ordering of V (G) which is compatible
with σ and B. For every i ∈ [0, k′], let Ri ⊆ Bi contain the vertices that belong to
the clusters of distribution-type τ , for which it holds that LB(τ) �= i and RB(τ) = i .
Additionally, let Li ⊆ Bi contain the vertices that belong to the clusters of distribution-
type τ , forwhich it holds thatLB(τ) = i andRB(τ) �= i . Lastly, letMi = Bi\(Li∪Ri),
i.e., Mi contains the vertices of Bi that belong to the clusters of distribution-type τ ,
for which it holds that either LB(τ) �= i and RB(τ) �= i , or LB(τ) = RB(τ) = i .

Fix an i ∈ [0, k′], and for every cluster C with V (C) ∩ Bi �= ∅, let v
C,i
min and

v
C,i
max denote its leftmost and rightmost vertex in Bi on ordering π , i.e., π(v

C,i
min) =

min(π(V (C) ∩ Bi)) and π(v
C,i
max) = max(π(V (C) ∩ Bi)).

Wefirst define an ordering of the vertices of Ri . LetC1, . . . ,C
 denote the cliques of
G−S′ that have vertices in Ri , wheremax(π(V (C j)∩Ri)) < max(π(V (C j+1)∩Ri)),
for all j ∈ [
 − 1]. Then, define πRi : Ri → [|Ri |] as follows:
– πRi (V (C1) ∩ Ri) = [|C1|],
– for all j ∈ [2,
], letπRi (V (C j)∩Ri) = [∑ j−1

k=1 |V (Ck)∩Ri |+1,
∑ j

k=1 |V (Ck)∩
Ri |],

where the ordering of the vertices of clique C j in πRi is the same as in π , thus v
C j ,i
max

denotes the rightmost vertex of C j in πRi .
Next, we define an ordering of the vertices of Li . LetC1, . . . ,Cr denote the cliques

of G − S′ that have vertices in Li , where min(π(V (C j) ∩ Li)) < min(π(V (C j+1) ∩
Li)), for all j ∈ [
 − 1]. Then, define πLi : Li → [|Li |] as follows:
– πLi (V (C1) ∩ Li) = [|C1|],
– for all j ∈ [2, r], letπLi (V (C j)∩Li) = [∑ j−1

k=1 |V (Ck)∩Li |+1,
∑ j

k=1 |V (Ck)∩
Li |],

where the ordering of the vertices of clique C j in πLi is the same as in π , thus v
C j ,i
min

denotes the leftmost vertex of C j in πLi .
Intuitively, ordering πRi (respectively, πLi) is obtained by “sliding” all the non-

rightmost (respectively, non-leftmost) vertices of cliques next to the rightmost
(respectively, leftmost) vertex of the corresponding clique.

Lastly, define orderingπMi : Mi → [|Mi |] such that for every clique having vertices
in Mi , its vertices appear consecutively in πMi , for some arbitrary ordering of the
cliques.

Consider the ordering π ′ : V (G) → [|V (G)|], such that π ′(s) = π(s), for all
s ∈ S′, while for every i ∈ [0, k′] and every v ∈ Bi , it holds that

– π ′(v) = i + ∑i−1
j=0 |Bj | + πRi (v), if v ∈ Ri ,

– π ′(v) = i + ∑i−1
j=0 |Bj | + |Ri | + πMi (v), if v ∈ Mi ,

– π ′(v) = i + ∑i−1
j=0 |Bj | + |Ri | + |Mi | + πLi (v), if v ∈ Li .

LetC1 andC2 be cliques such that V (C1)∩Ri �= ∅while V (C2)∩Li �= ∅. Notice that
max(π ′(V (C1) ∩ Bi)) = π ′(vC1,i

max), while π ′(vC1,i
max) ≤ π(v

C1,i
max), since for any vertex

v ∈ Bi such that π ′(v) < π ′(vC1,i
max), it holds that π(v) < π(v

C1,i
max). In an analogous

way, it follows that min(π ′(V (C2) ∩ Bi)) = π ′(vC2,i
min), while π(v

C2,i
min) ≤ π ′(vC2,i

min),

since for any vertex v ∈ Bi such that π ′(vC2,i
min) < π ′(v), it holds that π(v

C2,i
min) < π(v).

123

Algorithmica

It holds that π ′ has Property (1), it is compatible with σ and B, and since π

is S′-extremal, that is also the case for π ′. It remains to argue that stretch(π ′) ≤
stretch(π). First, notice that since π ′ is S′-extremal, it suffices to argue about the
edges belonging to cliques of G − S′. Let C be a cluster of distribution-type τ , and let
e = {vC,i1

min , v
C,i2
max } ∈ E(C) denote the edge of E(C) of maximum stretch on ordering

π , for some i1, i2 ∈ [0, k′]. If all the vertices of C are contained in a single bucket,
then it holds that i1 = i2 = i , i.e., V (C) ⊆ Bi for some i ∈ [0, k′]. Since the vertices
of C appear consecutively in π ′, it follows that stretchπ ′(e) = |C | − 1, which is
minimum. Alternatively, notice that e is the edge of E(C) of maximum stretch also in
π ′, while v

C,i1
min ∈ Li1 and v

C,i2
max ∈ Ri2 . Then, stretchπ ′(e) = π ′(vC,i2

max) − π ′(vC,i1
min) ≤

π(v
C,i2
max) − π(v

C,i1
min) = stretchπ (e) follows. �

Definition 8 (Property (2)) We say that an S′-extremal ordering π : V (G) → [n]
which is compatible with σ and B has Property (2) if for any two distribution-types
τ, τ ′ ∈ T and any two clusters C and C ′ of distribution-type τ and τ ′ respectively, the
following holds.

– If either LB(τ) = LB(τ ′) or RB(τ) = RB(τ ′), then for any v ∈ V (C) ∩ BLB(τ),
v′ ∈ V (C ′) ∩ BLB(τ ′), w ∈ V (C) ∩ BRB(τ), w′ ∈ V (C ′) ∩ BRB(τ ′) we have that
π(v) < π(v′) if and only if π(w) < π(w′).

Lemma 9 Given an S′-extremal ordering π : V (G) → [n] which is compatible with
σ and B, there exists an S′-extremal ordering π ′ : V (G) → [n] with stretch(π ′) ≤
stretch(π) which is compatible with σ and B and has Properties (1) and (2).

Proof Let π : V (G) → [n] be an S′-extremal ordering of V (G) which is compatible
with σ and B. By Lemma 7 we can assume that π has Property (1). For every
clique C , let vCmin and vCmax denote its leftmost and rightmost vertex in ordering π , i.e.,
π(vCmin) = min(π(V (C))) and π(vCmax) = max(π(V (C))).

Fix an
 ∈ [0, k′] and let C and C ′ be two clusters of distribution-type τ and τ ′
respectively, such that

– LB(τ) = LB(τ ′) =
,
– π(V (C ′)∩B
) = [max(π(V (C)∩B
))+1,max(π(V (C)∩B
))+|V (C ′)∩B
|],
i.e., the vertices of V (C ′) ∩ B
 appear right after the vertices of V (C) ∩ B
 in the
ordering π ,

– π(V (C ′) ∩ BRB(τ ′)) < π(V (C) ∩ BRB(τ)).

Notice that it holds that RB(τ) �=
 and RB(τ ′) �=
, since otherwise π does not have
Property (1). Let πC↔C ′ : V (G) → [|V (G)|] be the ordering obtained by “sliding”
the vertices of V (C ′) ∩ B
 to the left of the vertices of V (C) ∩ B
, i.e.,

– πC↔C ′(v) = π(v), for all v /∈ (V (C) ∪ V (C ′)) ∩ B
,
– πC↔C ′(v) = π(v) − #L(τ), for all v ∈ V (C ′) ∩ B
,
– πC↔C ′(v) = π(v) + #L(τ ′), for all v ∈ V (C) ∩ B
,

where the ordering of the vertices in every clique C remains as in π , thus for vCmin
and vCmax it holds that πC↔C ′(vCmin) = min(πC↔C ′(V (C))) and πC↔C ′(vCmax) =
max(πC↔C ′(V (C))). Notice that due to Property (1), for all vertices v for which

123

Algorithmica

πC↔C ′(v) �= π(v), it holds thatπ(v) ∈ I

L . It holds thatπC↔C ′ has Property (1), it is

compatible with σ and B, and since π is S′-extremal, that is also the case for πC↔C ′ .
We argue that stretch(πC↔C ′) ≤ stretch(π). Notice that it suffices to argue about
the stretches of edges in E(C) ∪ E(C ′). Let e = {vCmin, v

C
max} and e′ = {vC ′

min, v
C ′
max}

denote the edge of maximum stretch (in both orderings π and πC↔C ′) of E(C) and
E(C ′) respectively. Since π(vCmin) < πC↔C ′(vCmin), while π(vCmax) = πC↔C ′(vCmax),
it follows that stretchπC↔C ′ (e) < stretchπ (e). As for e′, it holds that πC↔C ′(vC

′
min) =

π(vCmin), while πC↔C ′(vC
′

max) < π(vCmax), therefore stretchπC↔C ′ (e′) < stretchπ (e)
follows.

In an analogous way, one can prove that for any pair of clusters C and C ′ of
distribution-type τ and τ ′ respectively, where
– RB(τ) = RB(τ ′) = r and
– the vertices of V (C ′) ∩ Br appear right after the vertices of V (C) ∩ Br ,

there exists an S′-extremal ordering that has Property (1), it is compatible with σ

and B, is of no bigger stretch, reorders only vertices v for which π(v) ∈ I rR , and the
vertices of V (C) ∩ BLB(τ) appear before those of V (C ′) ∩ BLB(τ ′).

By exhaustively applying both arguments, and due to the transitivity of <, the
statement follows. �
Lastly, we want the buckets to be ordered by distribution-types which will enable
us to express the stretch within clusters by linear constraints. To achieve this, we
define two orderings of distribution-types, dictating in which order (in a nice, optimal
vertex ordering) cliques of a certain type will appear within a bucket. First, let T i

R =
⋃

∈[0,i−1],
nL ,nR∈[ω(G)]

T (
,i,nL ,nR) and define the ordering ρi : T i
R → [|T i

R |] in the following

way. For any τ ∈ T (
,i,nL ,nR), τ ′ ∈ T (
′,i,n′
L ,n′

R), we have that ρi (τ) < ρi (τ
′) if either

•
 <
′ or
•
 =
′, nL ≥ nR and n′

L < n′
R or

•
 =
′, nL ≥ nR , n′
L ≥ n′

R and nR < n′
R or

•
 =
′, nL < nR , n′
L < n′

R and nL > n′
L or

•
 =
′, nL ≥ nR , n′
L ≥ n′

R , nR = n′
R and τ ≤lex τ ′ or

•
 =
′, nL < nR , n′
L < n′

R , nL = n′
L and τ ≤lex τ ′.

Here ≤lex refers to the lexicographic order on matrices in T where we read the
entries by lines top to bottom. However, we can replace this by any total ordering
(≤lex is an arbitrary choice).

Moreover, let T i
L = ⋃

r∈[i+1,k′],
nL ,nR∈[ω(G)]

T (i,r ,nL ,nR) and define the ordering λi : T i
L →

[|T i
L |] by letting λi (τ) < λi (τ

′) for any τ ∈ T (i,r ,nL ,nR), τ ′ ∈ T (i,r ′,n′
L ,n′

R) if either

– r < r ′ or
– r = r ′ and ρi (τ) < ρi (τ

′).

Remark 10 Note that we can compute all ρi and λi in time quadratic in the size of T .

Definition 11 (Property (3)) We say that an S′-extremal ordering π : V (G) → [n]
which is compatible with σ and B has Property (3) if for every i ∈ [0, k′] we can

123

Algorithmica

partition the interval π(Bi) into (possibly empty) intervals

J (i,1)
R < · · · < J

(i,|T i
R |)

R < J iM < J (i,1)
L < · · · < J

(i,|T i
L |)

L

such that for every distribution-type τ ∈ T and every cluster C of type τ and every
j ∈ [|T i

R |], j ′ ∈ [|T i
L |],

• π(V (C) ∩ Bi) ⊆ J (i, j)
R if ρi (τ) = j and

• π(V (C) ∩ Bi) ⊆ J (i, j ′)
L if λi (τ) = j ′.

Lemma 12 Given an S′-extremal ordering π : V (G) → [n] which is compatible with
σ and B, there exists an S′-extremal ordering π ′ : V (G) → [n] with stretch(π ′) ≤
stretch(π)which is compatible with σ andB and has Properties (1), (2), and (3).

Proof Let π : V (G) → [n] be an S′-extremal ordering which is compatible with σ

and B. By Lemma 9 we can assume that π has Properties (1) and (2). For every
i ∈ [0, k′] let I iR < I iM < I iL be the partition of π(Bi) as in Property (1). Since π

has Property (2) it holds that for any fixed i ∈ [0, k′] we can partition the interval
I iR into intervals I (i,0)

R < · · · < I (i,i−1)
R such that π(V (C) ∩ Bi) ⊆ I (i, j)

R if C is of
distribution-type τ , RB(τ) = i , and LB(τ) = j . Equivalently, we can partition I iL
into intervals I (i,i+1)

L < · · · < I (i,k′)
L such that π(V (C) ∩ Bi) ⊆ I (i, j)

L if C is of
distribution-type τ , LB(τ) = i , and RB(τ) = j .

Fix any
 < r ∈ [0, k′] and let τ, τ ′ be two distribution-types with LB(τ) =
LB(τ ′) =
 and RB(τ) = RB(τ ′) = r . We further let C be a cluster of distribution-
type τ and C ′ a cluster of distribution-type τ ′. We say that C directly precedes C ′ if
π(V (C) ∩ B
) < π(V (C ′) ∩ B
) and π(V (C) ∩ B
) ∪ π(V (C ′) ∩ B
) is an interval.
Note that if π(V (C) ∩ B
) ∪ π(V (C ′) ∩ B
) is an interval then so is π(V (C) ∩ Br) ∪
π(V (C ′)∩ Br), due to Property (2). Moreover, note that π(V (C)∩ Bi) is an interval
for every clique C and i ∈ [0, k′] as π has Property (1). If C directly precedes C ′
we define a new ordering πC↔C ′ : V (G) → [n] which corresponds to exchanging C
and C ′ in B
 and Br as follows.

• πC↔C ′(v) = π(v) − #L(τ) for v ∈ V (C ′) ∩ B
,
• πC↔C ′(v) = π(v) + #L(τ ′) for v ∈ V (C) ∩ B
,
• πC↔C ′(v) = π(v) − #R(τ) for v ∈ V (C ′) ∩ Br ,
• πC↔C ′(v) = π(v) + #R(τ ′) for v ∈ V (C) ∩ Br , and
• πC↔C ′(v) = π(v) for any vertex v /∈ (V (C) ∪ V (C ′)) ∩ (B
 ∪ Br).

Claim 13 identifies when exchanging C and C ′ cannot increase the stretch.

Claim 13 If one of the following holds, then stretch(πC↔C ′) ≤ stretch(π).

1. #L(τ) ≤ #R(τ) and #L(τ ′) ≥ #R(τ ′).
2. #L(τ) ≥ #R(τ), #L(τ ′) ≥ #R(τ ′), and #R(τ) ≥ #R(τ ′).
3. #L(τ) ≤ #R(τ), #L(τ ′) ≤ #R(τ ′), and #L(τ) ≤ #L(τ ′).

123

Algorithmica

Fig. 2 Exchange arguments used in Claim 13

Proof First note that stretchπ (e) = stretchπC↔C ′ (e) for any edge e /∈ E(C) ∪
E(C ′). Let vCmin (respectively, vCmax) denote the leftmost (respectively, rightmost)
vertex of V (C) with regard to πC↔C ′ , that is, π(vCmin) = min(πC↔C ′(V (C)))

and π(vCmax) = max(πC↔C ′(V (C))). Define vC
′

min and vC
′

max analogously. Note that
π(vCmin) = min(π(V (C))), π(vCmax) = max(π(V (C))), π(vC

′
min) = min(π(V (C ′))),

and π(vC
′

max) = max(π(V (C ′))) as the order of vertices withinC andC ′ is the same in
π and in πC↔C ′ . Note that stretchπC↔C ′ (e) ≤ stretchπC↔C ′ ({vCmin, v

C
max}) for any edge

e ∈ E(C) and stretchπC↔C ′ (e′) ≤ stretchπC↔C ′ ({vC ′
min, v

C ′
max}) for any edge e′ ∈ E(C ′).

Hence, we only consider the stretch of the two edges {vCmin, v
C
max} and {vC ′

min, v
C ′
max}.

Consider how the stretch of the edge {vCmin, v
C
max} is affected by the exchange of C

and C ′. Prior to the exchange, all #L(τ ′) vertices of V (C ′) ∩ B
 contributed to the
stretch of {vCmin, v

C
max} while after the exchange they do not. On the other hand, after

the exchange of C and C ′ all #R(τ ′) vertices in V (C ′) ∩ Br contribute to the stretch
of {vCmin, v

C
max} but prior to the exchange they did not. Other than that, the stretch of

{vCmin, v
C
max} is not affected by the exchange (see Fig. 2 for an illustration). Hence,

the difference between the stretch of {vCmin, v
C
max} before and after the exchange is

#L(τ ′) − #R(τ ′). In a very similar way, we can determine the difference between the
stretch of edges before and after the exchange of C and C ′ to obtain the following:

(i) stretchπ ({vCmin, v
C
max}) − stretchπC↔C ′ ({vCmin, v

C
max}) = #L(τ ′) − #R(τ ′),

(ii) stretchπ ({vC ′
min, v

C ′
max}) − stretchπC↔C ′ ({vC ′

min, v
C ′
max}) = #R(τ) − #L(τ),

(iii) stretchπ ({vCmin, v
C
max}) − stretchπC↔C ′ ({vC ′

min, v
C ′
max}) = #R(τ) − #R(τ ′), and

(iv) stretchπ ({vC ′
min, v

C ′
max}) − stretchπC↔C ′ ({vCmin, v

C
max}) = #L(τ ′) − #L(τ).

Assuming #L(τ) ≤ #R(τ) and #L(τ ′) ≥ #R(τ ′), Equalities (i) and (ii) imply
that stretch(πC↔C ′) ≤ stretch(π). Assuming #L(τ) ≥ #R(τ), #L(τ ′) ≥ #R(τ ′), and
#R(τ) ≥ #R(τ ′)weobtain the statement using Equalities (i) and (iii). Lastly, assuming
#L(τ) ≤ #R(τ), #L(τ ′) ≤ #R(τ ′), and #L(τ) ≤ #L(τ ′) we get the desired bound on
the stretch using Equalities (ii) and (iv). For an illustration of the different cases see
Fig. 2. �

We now successively exchange clusters C of distribution-type τ with clusters C ′
of distribution-type τ ′ for any τ, τ ′ ∈ T with LB(τ) = LB(τ ′) =
 and RB(τ) =
RB(τ ′) = r wheneverC is directly precedingC ′ andρ
(τ

′) < ρ
(τ). Call the resulting

123

Algorithmica

ordering π ′ and note that in each step, the stretch does not increase by Claim 13 and
hence stretch(π ′) ≤ stretch(π). Furthermore, since any exchange maintains B, the
ordering π ′ is compatible with σ and B. Even more so, the exchanges maintain the

partition of intervals I (i,0)
R < · · · < I (i,i−1)

R < I iM < I (i,i+1)
L < · · · < I (i,k′)

L . By our

exchange strategy we obtain a partition of I (i,
)
R for every i ∈ [0, k′],
 ∈ [0, i−1] into

intervals J (i,ρi (τ))
R for every τ ∈ ⋃

nL ,nR∈[ω(G)] T (
,i,nL ,nR) such that π(V (C)∩ Bi) ⊆
J (i,ρi (τ))
R if C is of type τ . Similarly, for every i ∈ [0, k′], r ∈ [i + 1, k′] we obtain a

partition of I (i,r)
L into intervals J (i,λi (τ))

L for every τ ∈ ⋃
nL ,nR∈[ω(G)] T (i,r ,nL ,nR) such

that π(V (C) ∩ Bi) ⊆ J (i,λi (τ))
L if C is of type τ . Furthermore, the exchange strategy

guaranties that J (i,
)
R < J (i,
′)

R and J (i,r)
L < J (i,r ′)

L for
 ≤
′, r ≤ r ′. �

3.3 ILP Formulation

Throughout this subsection we let G be a graph and S a cluster deletion set of G with
k = |S|. Furthermore, for the remainder of this subsection we fix C to be a representa-
tive set of clusters, S′ = S∪⋃

C∈C V (C) the extended deletion set containing vertices
from C and S, and k′ = |S′|.

For every ordering σ : S′ → [k′], we will use an ILP to determine whether there is
an S′-extremal ordering π : V (G) → [n] of stretch at most bwhich is compatible with
σ . The ILP has two variables xτ , yτ for every distribution-type τ ∈ T . The variable
xτ expresses how many clusters of G − S′ have distribution-type τ in an optimal S′-
extremal ordering compatible with σ . The variable yτ is an indicator variable which
is 1 if and only if xτ > 0 and 0 otherwise. We further use zi for i ∈ [0, k′] in our ILP
formulation as a placeholder for the expression

∑
τ∈T (xτ · ‖τi‖1)which expresses the

number of vertices in bucket i . For an assignment α : {xτ , yτ : τ ∈ T } → N of the
variables of our ILP, we write α(zi) to stand for the expression

∑
τ∈T (α(xτ) · ‖τi‖1).

We further need the leftmost and rightmost neighbor of any vertex of S in S′, thus
define vsmin,σ , vsmax,σ ∈ S′ such that σ(vsmin,σ) = min(σ (N (s))) and σ(vsmax,σ) =
max(σ (N (s))), for every ordering σ : S′ → [k′] and s ∈ S. Note that by choosing S
to be minimum, we can assume that S contains no vertex with no neighbors in G − S
and hence vsmin,σ and vsmax,σ are well-defined.

For a fixed ordering σ : S′ → [k′], we can now formulate our set of linear con-
straints. The first three constraints ensure that we choose the number of clusters that
have a certain distribution-type in a feasible way. That is, (T1) ensures that the quanti-
ties of distribution-types corresponding to an assignment of the variables xτ correspond
to a valid choice of allocating each available cluster in the input graphG a distribution-
type.As for (T2), it ensures that vsmin,σ is indeed the leftmost neighbor of s while vsmax,σ
is the rightmost neighbor of s for every s ∈ S by ensuring that any distribution-type
placing a neighbor of s in a bucket left of vsmin,σ or right of vsmax,σ does not occur.
Finally, (T3) guarantees that yτ indeed indicates whether or not distribution-type τ is
used in the solution.

123

Algorithmica

(T1) For every κ ∈ K,

#κ = min{#κ, 2k} +
∑

τ∈Tκ

xτ .

(T2) For every s ∈ S and every τ ∈ T for which τN ,i > 0 for some N � s and
i ∈ [0, σ (vsmin,σ) − 1] ∪ [σ(vsmax,σ), k′],

xτ = 0.

(T3) xτ · (1 − yτ) = 0 and (1 − xτ) · yτ ≤ 0 for every τ ∈ T .

The purpose of all remaining constraints is to ensure that for the assignment of
variables, which essentially corresponds to choosing a bucket distribution B, there is
an S′-extremal ordering π : V (G) → [n]which is compatible with σ and B for which
stretch(π) ≤ b. (DS) expresses that the stretch of edges in G[S′] is bounded by b.

(DS) For every s, s′ ∈ S′ with {s, s′} ∈ E(G), σ(s) < σ(s′),

b ≥ σ(s′) − σ(s) +
∑

i∈[σ(s),σ (s′)−1]
zi .

The last three constraints deal with bounding the stretch of edges within clusters.
For this we assume that the S′-extremal ordering which is consistent with σ and B is
nice, i.e., has Properties (1), (2), and (3). The first constraint (C1) is necessary
to bound the stretch of clusters that are fully contained in one bucket. To bound the
stretch of clusters contained in multiple buckets, we have one constraint for every
distribution-type τ ∈ T (
,r ,nL ,nR) for any
 < r ∈ [0, k′], nL , nR ∈ [ω(G)]. By
Property (3) we know that there are intervals J (
,λ
(τ))

L containing all vertices from

B
 ∩ V (C) and J (r ,ρr (τ))
R containing all vertices Br ∩ V (C) for every cluster C of

distribution-type τ . The trick now is to observe that if nL ≥ nR then the first cluster
appearing in J (
,λ
(τ))

L observes the maximum stretch while if nL < nR it is the last
clique. Using this we can express with constraints (C2) and (C3) that the stretch of
every cluster of distribution-type τ is bounded by b.

(C1) b ≥ ω(G) − 1.
(C2) For every
 < r ∈ [0, k′], nL ≥ nR ∈ [ω(G)], and τ ∈ T (
,r ,nL ,nR),

b ≥ yτ ·
(∑

τ ′∈λ−1

(
[λ
(τ),|T

L |]
)
#L(τ ′) · xτ ′ +

∑

<i<r

zi + (r −
)

+
∑

τ ′∈ρ−1
r

(
[1,ρr (τ)−1]

)
#R(τ ′) · xτ ′ + nR − 1

)

.

123

Algorithmica

(C3) For every
 < r ∈ [0, k′], nL < nR ∈ [ω(G)], and τ ∈ T (
,r ,nL ,nR),

b ≥ yτ ·
(

nL +
∑

τ ′∈λ−1

(
[λ
(τ)+1,|T

L |]
)
#L(τ ′) · xτ ′ +

∑

<i<r

zi + (r −
)

+
∑

τ ′∈ρ−1
r

(
[1,ρr (τ)]

)
#R(τ ′) · xτ ′ − 1

)

.

Lemma 14 For any ordering σ : S′ → [k′], there is an S′-extremal ordering
π : V (G) → [n] of stretch at most b which is compatible with σ if and only if the
system of linear equation (T1, T2, T3, DS, C1, C2, C3) for σ admits a solution.

Proof Towards showing the forward direction, assume that there is an S′-extremal
ordering π : V (G) → [n] which is compatible with σ and stretch(π) ≤ b. Let
B = (B0, . . . , Bk′) be the bucket distribution associated to π , i.e., B0 = {v ∈ V (G) :
π(v) < π(σ−1(1))}, Bk′ = {v ∈ V (G) : π(v) > π(σ−1(k′))}, and Bi = {v ∈
V (G) : π(σ−1(i)) < π(v) < π(σ−1(i + 1))} for i ∈ [k′ − 1]. By Lemma 12 there is
an S′-extremal ordering π ′ : V (G) → [n] with stretch(π ′) ≤ stretch(π) ≤ b which
is compatible with σ and B and has Properties (1), (2), and (3).

We now describe how to obtain an assignment α : {xτ , yτ : τ ∈ T } → N which
yields a solution to the system of linear equations (T1, T2, T3, DS, C1, C2, C3). For
every τ ∈ T we set α(xτ) to be the number of clusters inG− S′ that have distribution-
type τ in B while we set α(yτ) = 0 if α(xτ) = 0 and α(yτ) = 1 otherwise. We will
argue in the following that this yields the desired solution.

Firstly, (T1) is satisfied since min{#κ, 2k} is counting the clusters of cluster-type κ

that are in C while by choice of α(xτ) the sum
∑

τ∈Tκ
α(xτ) is counting all clusters

of cluster-type κ that are not contained in C.
If (T2) was not satisfied then there is s ∈ S, N � s, i ∈ [0, σ (vsmin,σ) − 1] ∪

[σ(vsmax,σ), k′], and τ ∈ T such that τN ,i > 0 and α(xτ) > 0. Hence there is a
cluster C of distribution-type τ . Because τN ,i > 0 there is a vertex c ∈ V (C) which
is adjacent to s such that c ∈ Bi . But since i ∈ [0, σ (vsmin,σ) − 1] ∪ [σ(vsmax,σ), k′]
we get that either π(c) < min(π(N (s) ∩ S′)) or π(c) > max(π(N (s) ∩ S′)), which
is a contradiction since π is S′-extremal. Hence (T2) is satisfied.

Furthermore, the constraint (T3) is clearly satisfied.
To show that (DS) is satisfied first observe that π ′(s) = σ(s) + ∑

i∈[0,σ (s)−1] zi
for every s ∈ S′ where zi = |Bi |, that is the position of s in σ plus the size of
all the buckets in between elements of S′ that appear before s in σ . Hence for any
s, s′ ∈ S with {s, s′} ∈ E(G) and σ(s) < σ(s′) it holds that stretchπ ′({s, s′}) =
|σ(s) − σ(s′)| + ∑

i∈[σ(s),σ (s′)−1] zi . Since stretch(π ′) ≤ b this immediately implies
(DS) is satisfied.

Next observe that (C1) is trivially satisfied as for any graph the bandwidth must be
at least its clique number.

To prove (C2) is satisfied we use the nice ordering properties of π ′. Let J (i,1)
R <

· · · < J
(i,|T i

R |)
R < J iM < J (i,1)

L < · · · < J
(i,|T i

L |)
L be the partition of π ′(Bi) for

123

Algorithmica

which we have Property (3). Fix some
 < r ∈ [0, k′], nL ≤ nR ∈ [ω(G)], and
τ ∈ T (
,r ,nL ,nR). If there is no cluster of distribution-type τ then α(xτ) = α(yτ) = 0
and (C2) is satisfied. Hence assume that there is at least one cluster of distribution-
type τ . For every cluster C of distribution-type τ we let vCmin, v

C
max ∈ V (C) be the

vertices such that π ′(vCmin) ≤ π ′(v) ≤ π ′(vCmax) for every v ∈ V (C). Note that
vCmin ∈ B
 and vCmax ∈ Br as C has distribution-type τ and LB(τ) =
, RB(τ) = r .
We let C be the cluster of distribution-type τ for which π ′(vCmin) < π ′(vC ′

min) for
any other cluster C ′ of distribution-type τ . We now let X be the set of all vertices
v ∈ V (G) such that π ′(vCmin) ≤ π ′(v) ≤ π ′(vCmax). By choice of C we know

that J (
,λ
(τ))
L ⊆ X as this includes all vertices V (C ′) ∩ B
 for every cluster C ′ of

distribution-type τ . Additionally, J (
, j)
L ⊆ X for all j ∈ [λ
(τ) + 1, |T

L |] according
to the ordering of intervals J (
, j)

L . Since |J (
,λ
(τ
′))

L | = #L(τ ′)xτ ′ we conclude that
|X ∩B
| ≥ ∑

τ ′∈λ−1

(
[λ
(τ),|T

L |]
) #L(τ ′) ·xτ ′ . On the other hand, X ∩Br contains every

interval J (r ,i)
R for which i ∈ [1, ρr (τ)−1] since these are all intervals of bucket r pre-

ceding J (r ,ρr (τ))
R . Additionally, X∩Br contains the nR vertices belonging toV (C)∩Br .

Hence, |X ∩ Br | ≥ ∑
τ ′∈ρ−1

r

(
[1,ρr (τ)−1]

) #R(τ ′) · xτ ′ + nR . Finally, X\(B
 ∪ Br) con-

sists of precisely the buckets and vertices from S′ residing in between B
 and Br . This
further gives us |X\(B
 ∪ Br)| = ∑

<i<r zi + (r −
). Since {vCmin, v
C
max} ∈ E(G)

and stretchπ ′({vCmin, v
C
max}) = |X | − 1 ≤ b the constraint (C2) is satisfied.

Validity of constraint (C3) can be shown with a symmetric argument in which
we choose C to be the cluster with π ′(vCmax) > π ′(vC ′

max) for any other cluster C ′ of
distribution-type τ and thenmirror the roles of the left and right bucket. This concludes
the proof that we indeed find a solution of the system of linear equations (T1, T2, T3,
DS, C1, C2, C3).

Towards showing the backwards direction, assume that the ILP admits a solution
and let α : {xτ , yτ : τ ∈ T } → N be an assignment to the variables satisfying all
constraints. We define an ordering π : V (G) → [n] in the following way. For every
κ ∈ Kwe pick arbitrarily a partition (Pτ)τ∈Tκ

of the set of clusters of type κ excluding
clusters in C such that |Pτ | = α(xτ). This is possible because (T1) is satisfied.We now
pick a bucket distribution B = (B0, . . . , Bk′) of S′ as follows. For every τ ∈ T and
every C ∈ Pτ we pick arbitrarily τN ,i vertices v of C with NS(v) = N and add them
to bucket i for every i ∈ [0, k′]. This is possible since any clique allocated to Pτ for
some τ ∈ Tκ has cluster-type κ and therefore contains precisely κN = ∑

i∈[0,k′] τN ,i

vertices v with NS(v) = N by definition of Tκ . Clearly, everyC ∈ Pτ has distribution-
type τ in the bucket-distributionB.We now obtainπ by choosing an arbitrary ordering
which is compatible with σ and B, i.e., we order the vertices of S′ as prescribed by σ

and place vertices in Bi in between vertex σ−1(i) and σ−1(i + 1) while ordering the
vertices in every Bi arbitrarily.

We first argue that the ordering π is S′-extremal. Recall that, for s ∈ S, vsmin,σ and
vsmax,σ denote the leftmost and rightmost neighbor of s ∈ S in S′, i.e., σ(vsmin,σ) =
min(σ (N (s) ∩ S′)) and σ(vsmax,σ) = max(σ (N (s) ∩ S′)). Assume that π is not S′-
extremal and let v ∈ V (G)\S′ be a vertex such that for some s ∈ S either π(v) =
min(π(N (s))) or π(v) = max(π(N (s))), which implies that either π(v) < π(vsmin,σ)

123

Algorithmica

orπ(v) > π(vsmax,σ) respectively. LetC be the cluster containing v, τ the distribution-
type ofC inB, and i ∈ [0, k′] for which v ∈ Bi . By definition the existence of v andC
of distribution-type τ implies that τNS(v),i > 0 and α(xτ) > 0. Since (T2) is satisfied
it follows that i ∈ [σ(vsmin,σ), σ (vsmax,σ) − 1]. Consequently, π(vsmin,σ) < π(v) <

π(vsmax,σ) since π is compatible with σ and B which yields a contradiction.
Note that the orderingπ does not necessarily have stretch(π) ≤ b. But byLemma12

we can obtain an S′-extremal ordering π ′ : V (G) → [n] which is compatible with
σ and B and has Properties (1), (2), and (3). We claim that π ′ satisfies that
stretch(π ′) ≤ b and hence is the desired ordering.

To argue that stretch(π ′) ≤ b we first consider any edge e = {v, s} for which
v ∈ V (G) and s ∈ S. Consider the case that π ′(v) < π ′(s) (the other case can be
argued in a symmetric way). Since π ′ is S′-extremal and v is adjacent to s we know
that π ′(vsmin,σ) ≤ π ′(v). Hence

stretchπ ′(e) ≤ stretchπ ′({vsmin,σ , s}) = |σ(s) − σ(vsmin,σ)| +
∑

i∈[σ(vsmin,σ),σ (s)−1]
zi ≤ b,

where the last inequality is due to (DS).
Now consider any edge e = {u, w} ∈ E(G) such that u, w /∈ S′. Since S′ ⊇ S,

where S is a cluster deletion set, there is a cluster C in G − S′ such that u, w ∈
V (C). Assume τ ∈ T is the distribution-type of C and additionally let
 = LB(τ),
r = RB(τ), nL = #L(τ), and nR = #R(τ). We let vCmin, v

C
max ∈ V (C) be the two

vertices with π ′(vCmin) ≤ π ′(v) ≤ π ′(vCmax) for every v ∈ V (C). Since stretchπ ′(e) ≤
stretchπ ′({vCmin, v

C
max}) it is sufficient to show that stretchπ ′({vCmin, v

C
max}) ≤ b. First

assume that
 = r , which implies that every vertex of C is contained in the same
bucket. Due to Property (1) it follows that all vertices of C appear consecutively
in π ′, therefore stretchπ ′({vCmin, v

C
max}) ≤ |C | − 1 ≤ ω(G) − 1 ≤ b, where the last

inequality follows from (C1).
Now consider the case where
 < r . We use Property (3) to obtain a bound on the

stretch. Therefore, for every i ∈ [0, k′] let J (i,1)
R < · · · < J

(i,|T i
R |)

R < J iM < J (i,1)
L <

· · · < J
(i,|T i

L |)
L be the partition of π ′(Bi) as in Property (3). We let X be the set of

all vertices v ∈ V (G) such that π ′(vCmin) ≤ π ′(v) ≤ π ′(vCmax).
We first assume that nL ≥ nR . Let Y be the set of vertices v such that v ∈ V (C ′)

for some cluster C ′ of type τ and π ′(v) < π ′(vCmin). Since π ′ has Property (1) we
know that there is a set of clusters CY such that Y = ⋃

C ′∈CY V (C ′)∩ B
. Since π ′ has
Property (2) we observe that X ∩ J (
,λ
(τ))

L = J (
,λ
(τ))
L \(⋃

C ′∈CY (V (C ′) ∩ B
)
)

while X ∩ J (r ,ρr (τ))
R = ⋃

C ′∈CY (V (C ′) ∩ Br) ∪ (V (C) ∩ Br). We further know that

X\(J (
,λ
(τ))
L ∪J (r ,ρr (τ))

R) consists of precisely the vertices in J (
,i)
L for every i > λ
(τ),

the vertices in Bi for
 < i < r , the vertices {s ∈ S′ :
 < σ(s) < r}, as well as the
vertices in J (r ,i)

R for every i < ρr (τ). We conclude that

X =
(
J (
,λ
(τ))
L \

⋃

C ′∈CY

(V (C ′) ∩ B
)
)

∪
⋃

i∈[λ
(τ)+1,|T i
L |]

J (
,i)
L

123

Algorithmica

∪
⋃

<i<r

Bi ∪ {s ∈ S′ :
 < σ(s) < r}

∪
⋃

i∈[1,ρr (τ)−1]
J (r ,i)
R ∪

⋃

C ′∈CY

(
V (C ′) ∩ Br

) ∪ (
V (C) ∩ Br

)
.

To determine the size of X note that J (
,λ
(τ
′))

L = #L(τ ′) · α(xτ ′) and J (r ,ρr (τ ′))
R =

#R(τ ′) · α(xτ ′). Hence we obtain

stretchπ ′({vCmin, v
C
max}) = |X | − 1

=
∑

τ ′∈λ−1

(
[λ
(τ),|T i

L |]
)
#L(τ ′) · α(xτ ′) −

∑

C ′∈CY
nL

+
∑

<i<r

α(zi) + (r −
)

+
∑

τ ′∈ρ−1
r

(
[1,ρr (τ)−1]

)
#R(τ ′) · α(xτ ′) +

∑

C ′∈CY
nR + nR − 1

≤
∑

τ ′∈λ−1

(
[λ
(τ),|T i

L |]
)
#L(τ ′) · α(xτ ′) +

∑

<i<r

α(zi) + (r −
)

+
∑

τ ′∈ρ−1
r

(
[1,ρr (τ)−1]

)
#R(τ ′) · α(xτ ′) + nR − 1

≤ b,

where the first inequality follows due to the assumption that nL ≥ nR (thus∑
C ′∈CY nR−∑

C ′∈CY nL ≤ 0) and the last inequality follows due to (C2) asα(yτ) = 1
(as there exists some cluster of distribution-type τ).

In the case that nL < nR we can conclude that stretchπ ′({vCmin, v
C
max}) ≤ b by a

symmetric argument. Hence stretch(π ′) ≤ b concluding the proof of the statement. �
Using Lemma 14 we obtain an FPT-algorithm which computes S, #κ for every

cluster-type κ , and arbitrary picks an extended deletion set S′. Then, for every ordering
σ : S′ → [k′], the algorithm verifies whether the ILP admits a solution in which case
the input is a YES-instance of Bandwidth.

Proof of Theorem 2 Let (G, b) be an instance of Bandwidth, and let S ⊆ V (G) be
a cluster deletion set of G of size |S| = cvd(G) = k (such a set can be computed
in time 1.811knO(1) using the algorithm of [51]). Notice that one can compute #κ
for every cluster-type κ ∈ K in polynomial time, by checking the S-neighborhood of
every vertex in every clique of G − S. Moreover, the size of every clique of G − S
is at most ω(G). Let S′ = S ∪ ⋃

C∈C C be an extended deletion set of G, for some
representative clique set C. Due to Observation 5 and Remark 10, one can compute λi
and ρi for i ∈ [0, |S′|] in time FPT in cvd(G) + ω(G). Due to Lemma 3, there exists
an S′-extremal ordering π of V (G) such that stretch(π) = bw(G). Notice that π is
S′-extremal and compatible with σ , for some ordering σ of S′.

123

Algorithmica

Fix an ordering σ : S′ → [|S′|] of S′. Due to Lemma 14, one can verify whether
there exists an S′-extremal ordering of V (G) compatible with σ of stretch at most b
by solving the ILP. Notice that there are exactly |S′|! different orderings σ , thus one
can decide whether bw(G) ≤ b by solving an ILP for each such ordering.

Due to Observation 5 as well as the formulation of the ILP, it follows that both the
number of ILPs solved as well as the number of variables of the ILPs are bounded
by a function of cvd(G) + ω(G). Since ILP is FPT parameterized by the number of
variables, it follows that Bandwidth is FPT parameterized by cvd(G) + ω(G). �
Remark 15 Using aminimization ILP,we can in fact construct an ordering ofminimum
stretch (and not just argue about the existence of an ordering of stretch at most b),
since all the exchange arguments of Sect. 3.2 are constructive.

4 W[1]-Hardness Parameterized by Cluster Vertex Deletion Number

In this section we prove that Bandwidth is W[1]-hard when parameterized by the
cluster vertex deletion number of the input graph. In order to do so, we present a
parameterized reduction from Unary Bin Packing parameterized by the number
of bins, which is well-known to be W[1]-hard [37].

Instance: A multiset A = {a1, . . . , an} of integers in unary, as well as
k ∈ N.

Goal: Determine whether there is a partition of [n] into k subsets
I1, . . . , Ik , such that for all i ∈ [k], ∑ j∈Ii a j = ∑

j∈[n] a j/k.

Unary Bin Packing

Before we present the details of the construction, we first give some high-level
intuition. For an instance (A, k) of Unary Bin Packing we want to construct an
equivalent instance (G, b)ofBandwidth, such that cvd(G) = f (k) for some function
f . Roughly, the graph G consists of cliques representing the items of theUnary Bin
Packing instance and cliques that act as delimiters separating the items contained
in some bucket from the items contained in the next bucket. However, in order to
guarantee that the entirety of every item clique is placed in between two consecutive
delimiter cliques and that the values of the items in between two delimiter cliques
add up to B (the capacity of the bins in the Unary Bin Packing instance (A, k)),
some extra structure is needed. First we introduce two cliques of size b + 1 that will
be used as boundaries. By making each item clique and each delimiter clique of the
graph adjacent to some vertex in both of the boundary cliques, it follows that in any
ordering of stretch at most b, all item cliques and all delimiter cliques of the graph
will be positioned in between the two boundary cliques.

As the size of the deletion set cannot depend on the number or values of the items,
item cliques cannot be incident to individual deletion set vertices. This makes it tricky
to enforce that every vertex of an item clique is contained in between the same two
delimiter cliques as a majority of the item cliques would not be incident to any edge of
maximum stretch and therefore allow them a lot of freedom of movement. In order to

123

Algorithmica

Fig. 3 Part of G, showing only the boundary and the delimiter cliques. Rectangles denote cliques, brackets
denote number of vertices, and black vertices compose a cluster deletion set

cope with this issue, we introduce a perfect copy of the delimiter and item cliques, as
well as edges between the original cliques and their copies resulting in them becoming
twice as big consisting of a left part, the original vertices, and a right part, the copy
vertices. The left part of all cliques will be connected to the left boundary clique and
will therefore appear to the left of the right parts. The right part will be connected to
the right hand boundary cliques. The item cliques will now be kept in place by having
maximum stretch between the vertices of the left part and the vertices of the right part.

Theorem 16 Bandwidth isW[1]-hardwhen parameterized by the cluster vertex dele-
tion number of the input graph.

Construction. Let (A, k) be an instance of Unary Bin Packing, where A =
{a1, . . . , an}. Moreover, let B = ∑

j∈[n] a j/k be the capacity of every bin, where
B ∈ N, since otherwise this would have been a trivial instance. Set b = 2kB + B − 1.
We will construct an equivalent instance (G, b) of Bandwidth as follows.
Boundary cliques. First, we create two cliques X and Y , referred to as boundary
cliques, where V (X) = {x1, . . . , x2kB+B} and V (Y) = {y1, . . . , y2kB+B}. We con-
sider the following partition of the vertices of X : let X0 = {x1, . . . , xB+1} and
for every i ∈ [k − 1] we denote the set {x2i B−B+2, . . . , x2i B+B+1} by Xi , while

123

Algorithmica

Fig. 4 Rectangles denote cliques. Black vertices compose a cluster deletion set

Xk = {x2kB−B+2, . . . , x2kB+B}. Note that |X0| = B + 1, |Xk | = 2B − 1, and
|Xi | = 2B, for all i ∈ [k − 1]. Moreover, we partition the vertices of Y in a similar
but slightly asymmetric way: let Y 1 = {y1, . . . , y3B−1} and for every i ∈ [2, k] we
denote the set {y2i B−B, . . . , y2i B+B−1} by Y i , while Y k+1 = {y2kB+B}. Note that
|Y 1| = 3B − 1, |Y k+1| = 1, and |Y i | = 2B, for all i ∈ [2, k].
Delimiter cliques. For every i ∈ [k] we create a clique on vertex set {
i1, . . . ,
iB, r i1,
. . . , r iB} of size 2B. We denote the set {
i1, . . . ,
iB} by Li and the set {r i1, . . . , r iB} by
Ri . Moreover, let L = ⋃k

i=1 L
i and R = ⋃k

i=1 R
i . We add the following edges:

– For every i ∈ [k], x ∈ ⋃k
j=i X

j , we add the edge {
i1, x}.
– For every i ∈ [k − 1],
 ∈ Li , we add the edge {x2i B+B+1,
}. Moreover, we add
an edge between x2kB+B and every vertex of Lk .

– For every i ∈ [k], y ∈ ⋃i
j=1 Y

j , we add the edge {r iB, y}.
– For every i ∈ [2, k], r ∈ Ri , we add the edge {y2i B−B, r}. Moreover, we add an
edge between y1 and every vertex of R1.

For an illustration of the boundary and delimiter cliques, see Fig. 3.
Item cliques. For element ai ∈ A, we construct a clique Ai on vertex set {ai,Lj , ai,Rj :
j ∈ [ai]} of size 2ai . We denote the set of vertices {ai,Lj : j ∈ [ai]} by Ai,L and

the set of vertices {ai,Rj : j ∈ [ai]} by Ai,R . We add edges {x2kB+B, a} for every

a ∈ ⋃
i∈[k] Ai,L and edges {y1, a} for every a ∈ ⋃

i∈[k] Ai,R . For an illustration, see
Fig. 4.

This concludes the construction ofG. Figure5 illustrates an example of an ordering
of stretch b obtained by a YES-instance of Unary Bin Packing. In the following,
we prove the equivalence of (G, b) to the initial instance of Unary Bin Packing.

Lemma 17 If (A, k) is a YES-instance of Unary Bin Packing, then (G, b) is a
YES-instance of Bandwidth.

Proof Let (I1, . . . , Ik) be a partition of [n], where ∑
j∈Ii a j = B, for all i ∈ [k]. For

all i ∈ [k], set Si = ⋃
j∈Ii A

j,L and S ′
i = ⋃

j∈Ii A
j,R . Notice that |Si | = |S ′

i | = B,

since |A j,L | = |A j,R | = a j .

123

Algorithmica

Fig. 5 For the instance ({a1, a2, a3}, 2) of Unary Bin Packing with a1 = 1, a2 = 2, and a3 = 1 the
figure shows the graph G from the corresponding instance (G, 9) of Bandwidth. Here the ordering of the
vertices of G with stretch 9 corresponds to the solution of ({a1, a2, a3}, 2) in which a1, a3 are placed in
the first bin and a2 in the second

For i ∈ [k], we define πSi : Si → [|Si |] to be an arbitrary ordering of Si and
πS ′

i
: S ′

i → [|S ′
i |] to be an arbitrary ordering of S ′

i . In order to define the ordering of
the vertices of the graph π : V (G) → [|V (G)|], we will make use of these orderings.
In particular, define π as follows:

– First, let π(xi) = i for all xi ∈ V (X).
– For every i ∈ [k], let

– π(v) = 2kB + B + (i − 1)2B + πSi (v) for every v ∈ Si ,
– π(
ij) = 2kB + 2B + (i − 1)2B + j = 2kB + 2i B + j , for every
ij ∈ Li ,
– π(v) = 4kB + B + (i − 1)2B + πS ′

i
(v) for every v ∈ S ′

i ,

– π(r ij) = 4kB + 2B + (i − 1)2B + j = 4kB + 2i B + j , for every r ij ∈ Ri .

– Lastly, let π(yi) = 6kB + B + i for all yi ∈ V (Y).

On a high level, we place first the vertices of X , then the vertices of S1, followed
by the vertices of L1, then of S2, and so on. After the vertices of Lk , we proceed in
an analogous way, by placing the vertices of S ′

1, followed by the vertices of R1, then
of S ′

2, and so on. After the vertices of R
k , we place the vertices of Y . The ordering of

the vertices within X ,Y , Li , and Ri is dictated by their index, whereas the ordering
of Si and S ′

i is dictated by their corresponding ordering πSi and πS ′
i
. See Fig. 5 for

an illustration of the ordering by means of a small example instance of Unary Bin
Packing.

It remains to show that stretchπ (e) ≤ b = 2kB + B − 1 for all e ∈ E(G). In order
to do so, we will consider all the possible cases regarding the endpoints of e.

We first consider the edges e ∈ E(X)∪E(Y). Notice that the vertices of each of the
cliques X and Y have been placed consecutively in π , thus any edge e ∈ E(X)∪E(Y)

has stretch at most equal to the size of these cliques minus one, therefore stretchπ (e) ≤
2kB + B − 1 = b.

Now we consider the edges e = {x,
}, where x ∈ V (X) and
 ∈ L . Notice that
π(x) < π(
). Suppose that x ∈ Xi for i ∈ [k], and set ximin and ximax such that
π(ximin) = min(π(Xi)) and π(ximax) = max(π(Xi)). Notice that it holds ximin =
x2i B−B+2. Moreover ximax = x2i B+B+1 if i �= k, otherwise xkmax = x2kB+B , and
π(ximax) ≥ 2i B+B for all i ∈ [k] follows.Notice that if x �= ximax, thenmax(π(N (x)∩
L)) = π(
i1), since then N (x) ∩ L = {
 j

1 : j ∈ [i]}. In that case, it holds that
π(
)−π(x) ≤ π(
i1)−π(ximin) = 2kB+2i B+1−(2i B−B+2) = 2kB+B−1 = b.

123

Algorithmica

Alternatively, if x = ximax, then notice that max(π(N (x) ∩ L)) = π(
iB), since then
N (X) ∩ L = ⋃i

j=1 L
j . In that case, it holds that π(
) − π(x) ≤ π(
iB) − π(x) ≤

2kB + 2i B + B − (2i B + B) = 2kB < b.
Next we consider the edges e = {y, r}, where y ∈ V (Y) and r ∈ R. Notice

that π(r) < π(y). Suppose that y ∈ Y i for i ∈ [k], and set yimax and yimin such
that π(yimax) = max(π(Y i)) and π(yimin) = min(π(Y i)). Notice that it holds that
yimax = y2i B+B−1. Moreover, yimin = y2i B−B if i �= 1, otherwise y1min = y1, and
π(yimin) ≤ 6kB + B + 2i B − B for all i ∈ [k] follows. Notice that if y �= yimin,

then min(π(N (y) ∩ R)) = π(r iB), since N (y) ∩ R = {r j
B : j ∈ [i, k]}. In that

case, it holds that π(y) − π(r) ≤ π(yimax) − π(r iB) = 6kB + B + 2i B + B − 1 −
(4kB + 2i B + B) = 2kB + B − 1 = b. Alternatively, if y = yimin, then notice that
min(π(N (y)∩R)) = π(r i1), since then N (y)∩R = ⋃k

j=i R
j . In that case, it holds that

π(y)−π(r) ≤ π(y)−π(r i1) ≤ 6kB+B+2i B−B−(4kB+2i B+1) = 2kB−1 < b.
Now we consider the edges e = {u, v} where u, v ∈ Li ∪ Ri for some i ∈ [k].

Notice that the single edge ofmaximum stretch out of those edges is {
i1, r iB}, therefore
stretchπ (e) ≤ π(r iB)−π(
i1) = 4kB+2i B+B−(2kB+2i B+1) = 2kB+B−1 = b.

Lastly, consider the edges that are incident to the vertices of A j for some j ∈ [n].
We consider three cases.

First, assume that both u, v ∈ V (A j). Then, notice that there exists i ∈ [k] such that
A j,L ⊆ Si and A j,R ⊆ S ′

j . In that case, stretchπ (e) ≤ max(π(S ′
j)) − min(π(Si)). It

holds thatmax(π(S ′
j)) = π(r i1)−1 = 4kB+2i B, whilemin(π(Si)) = π(
i−1

B)+1 =
2kB + 2i B − B + 1 if i �= 1 and min(π(S1)) = 2kB + B + 1 otherwise, i.e.,
min(π(Si)) = 2kB + 2i B − B + 1 for all i ∈ [k]. Consequently, it holds that
stretchπ (e) ≤ 4kB + 2i B − (2kB + 2i B − B + 1) = 2kB + B − 1 = b.

For the second case, assume that e = {u, x2kB+B}, where u ∈ A j,L for some
j ∈ [n]. Notice that then π(x2kB+B) < π(u), while π(u) ≤ π(
k1) − 1 = 4kB,
therefore stretchπ (e) = π(u) − π(x2kB+B) ≤ 4kB − (2kB + B) = 2kB − B < b.

Finally, assume that e = {u, y1}, where u ∈ A j,R for some j ∈ [n]. Notice
that then π(u) < π(y1), while π(u) ≥ π(
kB) + 1 = 4kB + B + 1, therefore
stretchπ (e) = π(y1) − π(u) ≤ 6kB + B + 1 − (4kB + B + 1) = 2kB < b.

Since it holds that stretchπ (e) ≤ b for all e ∈ E(G), it follows that (G, b) is a
YES-instance of Bandwidth. �
Lemma 18 If (G, b) is a YES-instance of Bandwidth, then (A, k) is a YES-instance
of Unary Bin Packing.

Proof Let π : V (G) → [|V (G)|] be an ordering of the vertices of G such that
stretchπ (e) ≤ b, for all e ∈ E(G). We first prove that the vertices of X and Y
appear at the start and the end of the ordering respectively, or vice versa.

Claim 19 One of the following holds:

– either π(V (X)) = [b + 1] and π(V (Y)) = [|V (G)| − b, |V (G)|],
– or π(V (Y)) = [b + 1] and π(V (X)) = [|V (G)| − b, |V (G)|].

Proof First, observe that since X (respectively, Y) is a clique of size b + 1, if its
vertices were not occupying b + 1 consecutive positions in π , there would exist an

123

Algorithmica

Fig. 6 Layout of X0, . . . , Xk , Y 1, . . . , Yk+1 in π , as derived in Claim 20

edge of stretch more than b, which is a contradiction. Consequently, the vertices of X
(respectively, Y) occupy b + 1 consecutive positions in π .

Now, assume that the vertices of Z ∈ {X ,Y } appear neither at the start nor at the
end of the ordering π . Then, there exist vertices placed in the ordering π both before
and after the positions occupied by the vertices of Z . Notice that G ′ = G − V (Z) is
connected, and let v1, v2 ∈ V (G ′) such that {v1, v2} ∈ E(G ′) and π(v1) < π(z) <

π(v2), for every z ∈ V (Z). Since |V (Z)| = b+ 1, it follows that π(v2) − π(v1) > b,
which is a contradiction. �

As a consequence of Claim 19, it follows that the remaining |V (G)| − 2(b + 1) =
2kB + 2

∑n
i=1 ai = 4kB vertices of the delimiter and item cliques are positioned

between the vertices of the boundary cliques in π . Without loss of generality, assume
that the first case of Claim 19 holds, thus the vertices of X appear at the start and the
vertices of Y at the end of ordering π (if that is not the case, all arguments made in
the following for π hold for the reverse ordering π ′(x) = |V (G)| + 1 − π(x) and
hence the statement follows using a symmetric argument). Next, we will prove that
the vertices of X0, X1, X2, . . . , Xk and of Y 1, . . . ,Y k,Y k+1 appear sequentially in
π , as depicted in Fig. 6. Moreover, we will specify the positions of vertices
i1 and r

i
B ,

for i ∈ [k].
Claim 20 Regarding the vertices of X and Y , the following hold:

– π(X0) = [B + 1],
– for every i ∈ [k], π(Xi) = [wX

i , wX
i + |Xi | − 1], where wX

i = B + 1 + (i −
1)2B + 1 = 2i B − B + 2,

– π(Y 1) = [6kB + B + 1, 6kB + 4B − 1],
– for every i ∈ [2, k + 1], π(Y i) = [wY

i , wY
i +|Y i |− 1], where wY

i = 6kB + 4B −
1 + (i − 2)2B + 1 = 6kB + 2i B.

Additionally, for all i ∈ [k], it holds that
– π(
i1) = min(π(Li)) = 2kB + B + B + 2B · (i − 1) + 1 = 2kB + 2i B + 1 and
– π(r iB) = max(π(Ri)) = 2kB + B + 2kB + i · 2B = 4kB + 2i B + B.

Proof Let for v1, v2 ∈ V (G), gπ (v1, v2) = |π(v1) − π(v2)| + 1 denote the number
of vertices positioned between π(v1) and π(v2) including v1 and v2. Notice that if
e = {v1, v2} ∈ E(G), then gπ (v1, v2) ≤ b + 1, since stretchπ (e) ≤ b.

Fix some i ∈ [k]. Moreover, let ximin be the vertex such that π(ximin) =
min(π(N (
i1) ∩ V (X))), i.e., ximin denotes the leftmost positioned neighbor of
i1.
Analogously, let yimax be the vertex such that π(yimax) = max(π(N (r iB)∩V (Y))), i.e.,
yimax denotes the rightmost positioned neighbor of r iB .

Notice that for
i1 it holds that N (
i1) ∩ V (X) = ⋃k
j=i X

j , therefore
i1 has exactly

(k − i + 1)2B − 1 neighbors belonging to X . On the other hand, for r iB it holds

123

Algorithmica

that N (r iB) ∩ V (Y) = ⋃i
j=1 Y

j , therefore r iB has exactly 3B − 1 + (i − 1)2B =
2i B + B − 1 neighbors belonging to Y . Consequently, it holds that gπ (ximin, y

i
max) ≥

(k − i + 1)2B − 1 + 2i B + B − 1 + 4kB = 6kB + 3B − 2 = 3(b + 1) − 2.
Furthermore, gπ (ximin, y

i
max) ≤ gπ (ximin,

i
1) + gπ (
i1, r

i
B) + gπ (r iB, yimax) − 2, since

at least two vertices, namely
i1 and r
i
B , are counted more than once. Since the edges

ei1 = {ximin,

i
1}, ei2 = {
i1, r iB} and ei3 = {r iB, yimax} are present in G, it follows that

gπ (ximin,

i
1) + gπ(
i1, r

i
B) + gπ (r iB, yimax) − 2 ≤ 3(b + 1) − 2. Hence, it follows

that gπ (ximin,

i
1) = gπ (
i1, r

i
B) = gπ (r iB, yimax) = b + 1, while gπ (ximin, y

i
max) =

3(b + 1) − 2, thus only vertices
i1 and r
i
B are counted twice in the previous sum.

Consequently, it holds that π(
⋃k

j=i X
j) = [2kB+ B−|⋃k

j=i X
j |+1, 2kB+ B],

whileπ(
⋃i

j=1 Y
i) = [6kB+B+1, 6kB+B+1+|⋃i

j=1 Y
i |−1], i.e., the vertices of

N (
i1) ∩ V (X) appear in the rightmost positions occupied by the vertices of X , while
the vertices of N (r iB)∩V (Y) appear in the leftmost positions occupied by the vertices
of Y . Having determined π(ximin) and π(yimax), as well as that π(
i1) − π(ximin) =
π(yimax)−π(r iB) = b, the values of π(
i1) and π(r iB) follow. Since π(r iB)−π(
i1) = b
and the vertices of Li ∪ Ri form a clique, it follows that π(
i1) = min(π(Li)) and
π(r iB) = max(π(Ri)); if that were not the case, then there would exist an edge of
stretch larger than b.

Lastly, since N (
i1) ∩ V (X) = (N (
i+1
1) ∩ V (X)) ∪ Xi , and N (r i+1

B) ∩ V (Y) =
(N (r iB) ∩ V (Y)) ∪ Y i+1, the vertices of Xi and Y i are positioned as in Fig. 6. �

Next, we prove that all vertices of Li (respectively, Ri) appear before the vertices
of Li+1 (respectively, Ri+1).

Claim 21 For i ∈ [k] and j ∈ [B], it holds that
– π(
i1) ≤ π(
ij) < π(
i1) + |Xi | and
– π(r iB) − |Y i | < π(r ij) ≤ π(r iB).

Proof Fix some i ∈ [k]. Set x = x2i B+B+1 if i �= k and x = x2kB+B otherwise.
Additionally, set y = y2i B−B if i �= 1 and y = y1 otherwise. Notice that x ∈ Xi

while y ∈ Y i . Let ximin and yimax be vertices such that π(ximin) = min(π(N (
i1)))

and π(yimax) = max(π(N (r iB))). Due to Claim 20, it holds that π(ximin) ≤ π(x) ≤
π(ximin) + |Xi | − 1, while π(yimax) − |Y i | + 1 ≤ π(y) ≤ π(yimax).

Let j ∈ [B]. We will prove that π(
ij) < π(
i1) + |Xi | as well as π(r iB) − |Y i | <

π(r ij), since the other inequalities follow from Claim 20.

For the first inequality, notice that {x,
ij } ∈ E(G), therefore it holds that π(
ij) −
π(x) ≤ b. Moreover, due to Claim 20 it holds that π(
i1) − π(ximin) = b. In that case,
it follows that

π(
ij) ≤ b + π(x)

= π(
i1) − π(ximin) + π(x)

≤ π(
i1) − π(ximin) + π(ximin) + |Xi | − 1

123

Algorithmica

= π(
i1) + |Xi | − 1.

As for the second inequality, notice that {y, r ij } ∈ E(G), therefore it holds that

π(y) − π(r ij) ≤ b. Moreover, due to Claim 20 it holds that π(yimax) − π(r iB) = b. In
that case,

π(r ij) ≥ π(y) − b

= π(y) − π(yimax) + π(r iB)

≥ π(yimax) − |Y i | + 1 − π(yimax) + π(r iB)

= π(r iB) − |Y i | + 1,

and the statement follows. �
In the following, we will refer to the vertex placed at position 2kB+ B as
01, while

we will additionally refer to
k1 as r
0
B . Notice that, due to Claims 20 and 21, it follows

that the vertices of the item cliques are positioned in the following way:

– B vertices are placed between positions π(
01) and π(
11),
– B vertices are placed between positions π(
i1) and π(
i+1

1), for every i ∈ [k − 1],
since B − 1 out of the 2B − 1 free positions are occupied by vertices of Li ,

– B vertices are placed between positions π(
k1) and π(r1B), since 2(B − 1) out of
the 3B − 2 free positions are occupied by vertices of Lk and R1,

– B vertices are placed between positions π(r iB) and π(r i+1
B), for every i ∈ [k − 1],

since B − 1 out of the 2B − 1 free positions are occupied by vertices of Ri .

Set Si = {a ∈ ⋃
j∈[n] A j,L : π(
i−1

1) < π(a) < π(
i1)}, while S ′
i = {a ∈

⋃
j∈[n] A j,R : π(r i−1

B) < π(a) < π(r iB)}, for every i ∈ [k]. Notice that for every

a ∈ ⋃
j∈[n] A j,R , π(lk1) < π(a); if that were not the case, then min(π(Y 1))−π(a) >

6kB+ B+1− (4kB+1) = 2kB+ B > b, while {a, y1} ∈ E(G) and y1 ∈ Y 1, which
is a contradiction. Consequently, sets Si partition

⋃n
j=1 A

j,L , while sets S ′
i partition⋃n

j=1 A
j,R . Next, define Ii = { j ∈ [n] : Si ∩ A j,L �= ∅} to be the set of indices of the

items of the Unary Bin Packing instance for which vertices of the corresponding
item clique are present in Si .

Claim 22 For any i ∈ [k], it holds that Si = ⋃
j∈Ii A

j,L as well as S ′
i = ⋃

j∈Ii A
j,R .

Proof We will prove the statement by induction on i ∈ [k]. Let i ∈ [k] and suppose
that the statement holds for all z ∈ [1, i − 1] (notice that this is trivially true when
i = 1). We will show that the statement also holds for i .

First, it holds that Ii ∩Iz = ∅ for all z ∈ [1, i −1], as for any such z, if j ∈ Iz then
A j,L ⊆ Sz due to the induction hypothesis, therefore A j,L ∩ Si = ∅, which implies
that j /∈ Ii .

We now argue that
⋃

j∈Ii A
j,R ⊆ S ′

i . Fix an arbitrary j ∈ Ii . In that case, there

exists a ∈ A j,L ∩ Si with π(a) < π(
i1). Additionally, for all z ∈ [1, i − 1] it
holds that j /∈ Iz , since Ii ∩ Iz = ∅, thus A j,R ∩ S ′

z = ∅ due to the induction

123

Algorithmica

hypothesis. Moreover, recall that for every a′ ∈ A j,R it holds that π(a′) > π(
k1),
thus π(a′) > π(r i−1

B) follows. Assume there exists a′ ∈ A j,R such that π(a′) >

π(r iB). Then, π(a′) − π(a) > π(r iB) − π(
i1) = 2kB + B − 1 = b, which is a
contradiction since e = {a, a′} ∈ E(G), thus stretchπ (e) ≤ b. Consequently, it
follows that A j,R ⊆ S ′

i for any j ∈ Ii , thus
⋃

j∈Ii A
j,R ⊆ S ′

i , which implies that

| ⋃ j∈Ii A
j,L | = |⋃ j∈Ii A

j,R | ≤ |S ′
i | = B.

Notice that, by the definition of Ii , it holds that
⋃

j∈Ii A
j,L ⊇ Si , which implies

that | ⋃ j∈Ii A
j,R | = | ⋃ j∈Ii A

j,L | ≥ |Si | = B.

Since we have shown both that Si ⊆ ⋃
j∈Ii A

j,L while |Si | = |⋃ j∈Ii A
j,L |, and

that S ′
i ⊇ ⋃

j∈Ii A
j,R while |S ′

i | = | ⋃ j∈Ii A
j,R |, the claim follows. �

We argue that (I1, . . . , Ik) certifies that (A, k) is a YES-instance of Unary Bin
Packing. Claim 22 implies that Ii ∩ I j = ∅ for all 1 ≤ i < j ≤ k. Additionally,
for every j ∈ [n], there exists i ∈ [k] such that j ∈ Ii , since, as already argued,
sets S1, . . . ,Sk partition set

⋃n
j=1 A

j,L . Consequently, (I1, . . . , Ik) partitions [n]. It
remains to show that

∑
j∈Ii a j = B for all i ∈ [k]. In order to do so, notice that

a j = |A j,L |, for all j ∈ [n]. Moreover, |Si | = B, while due to Claim 22 it holds that
Si = ⋃

j∈Ii A
j,L for all i ∈ [k]. Consequently,

∑

j∈Ii
a j =

∑

j∈Ii
|A j,L | =

∣
∣
∣
∣

⋃

j∈Ii
A j,L

∣
∣
∣
∣ = |Si | = B,

and the statement follows. �
Lemma 23 It holds that cvd(G) = O(k).

Proof Let S = {x2kB+B} ∪ {x2i B+B+1 : i ∈ [k − 1]} ∪ {y1} ∪ {y2i B−B : i ∈ [2, k]} ∪
{
i1, r iB : i ∈ [k]}. It holds that |S| = 4k = O(k), while G − S is a collection of
cliques, therefore cvd(G) = O(k) follows. �

5 Conclusion

In the current work we extend our understanding of Bandwidth in the setting of
parameterized complexity. In particular, we have shown that the problem is FPT when
parameterized by the cluster vertex deletion number cvd plus the clique number ω of
the input graph, becomes W[1]-hard when parameterized solely by cvd.

The most natural research direction would be to explore the tractability of the
problem when parameterized by twin cover, modular-width, or vertex integrity, given
the lack of any relevant FPT/XP algorithms or hardness results. As a matter of fact,
it is not even known whether the problem is in XP when parameterized by cvd or
tree-depth.

Finally, most tractability results for the various structural parameters rely on some
ILP formulation. This raises the question of whether any other kind of approach is
applicable, as is the case for Cutwidth[11].

123

Algorithmica

Acknowledgements We would like to thank Virginia Ardévol Martínez and Yota Otachi for interesting
discussions at the preliminary stages of this work.

Funding Our research visit to Nagoya University, Japan was funded by the PRC CNRS JSPS2019- 2020
program, project PARAGA (Parameterized Approximation Graph Algorithms).Tatsuya Gima: Partially
supported by JSPS KAKENHI Grant Number JP23KJ1066. Eun Jung Kim: Supported by ANR project
ANR-18-CE40-0025-01 (ASSK). Noleen Köhler: Supported by ANR project ANR-18-CE40-0025-01
(ASSK). Nikolaos Melissinos: Supported by the CTU Global postdoc fellowship program. Manolis Vasi-
lakis: Partially supported by ANR project ANR-21-CE48-0022 (S-EX-AP-PE-AL).

Data Availibility No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bakken, O.R.: Arrangement Problems Parameterized by Neighbourhood Diversity. Master’s thesis,
University of Bergen (2018)

2. Banik, A., Kasthurirangan, P.N., Raman, V: Dominator coloring and CD coloring in almost cluster
graphs. In: Algorithms and Data Structures: 18th International Symposium, WADS 2023, volume
14079 of Lecture Notes in Computer Science, pp. 106–119. Springer (2023). https://doi.org/10.1007/
978-3-031-38906-1_8

3. Bodlaender, H.L.: Parameterized complexity of bandwidth of caterpillars andweighted path emulation.
In: Graph-Theoretic Concepts in Computer Science: 47th International Workshop, WG 2021, volume
12911 of Lecture Notes in Computer Science, pp. 15–27. Springer (2021). https://doi.org/10.1007/
978-3-030-86838-3_2

4. Bodlaender, H.L., Groenland, C., Nederlof, J., Swennenhuis, C.: Parameterized problems complete for
nondeterministic FPT time and logarithmic space. Inf. Comput. 300, 105195 (2024). https://doi.org/
10.1016/J.IC.2024.105195

5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex
deletion. Theory Comput. Syst. 58(2), 357–376 (2016). https://doi.org/10.1007/s00224-015-9631-7

6. Bruhn, H., Chopin, M., Joos, F., Schaudt, O.: Structural parameterizations for boxicity. Algorithmica
74(4), 1453–1472 (2016). https://doi.org/10.1007/s00453-015-0011-0

7. Chinn, P.Z., Chvatalova, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and
matrices: a survey. J. Graph Theory 6(3), 223–254 (1982). https://doi.org/10.1002/jgt.3190060302

8. Chlebíková, J., Chopin, M.: The firefighter problem: further steps in understanding its complexity.
Theor. Comput. Sci. 676, 42–51 (2017). https://doi.org/10.1016/J.TCS.2017.03.004

9. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set
selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014). https://doi.org/10.1007/s00224-013-
9499-3

10. Cygan,M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-38906-1_8
https://doi.org/10.1007/978-3-031-38906-1_8
https://doi.org/10.1007/978-3-030-86838-3_2
https://doi.org/10.1007/978-3-030-86838-3_2
https://doi.org/10.1016/J.IC.2024.105195
https://doi.org/10.1016/J.IC.2024.105195
https://doi.org/10.1007/s00224-015-9631-7
https://doi.org/10.1007/s00453-015-0011-0
https://doi.org/10.1002/jgt.3190060302
https://doi.org/10.1016/J.TCS.2017.03.004
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/978-3-319-21275-3

Algorithmica

11. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth parameterized by
vertex cover. Algorithmica 68(4), 940–953 (2014). https://doi.org/10.1007/s00453-012-9707-6

12. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput. Sci. 411(40–42), 3701–
3713 (2010). https://doi.org/10.1016/j.tcs.2010.06.018

13. Cygan,M., Pilipczuk,M.: Bandwidth and distortion revisited. Discret. Appl. Math. 160(4–5), 494–504
(2012). https://doi.org/10.1016/j.dam.2011.10.032

14. Cygan,M., Pilipczuk,M.: Even faster exact bandwidth. ACMTrans. Algorithms 8(1), 8:1-8:14 (2012).
https://doi.org/10.1145/2071379.2071387

15. Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACMComput. Surv. 34(3), 313–356
(2002). https://doi.org/10.1145/568522.568523

16. Diestel, R.: Graph Theory, Volume 173 of Graduate Texts in Mathematics. Springer (2017). https://
doi.org/10.1007/978-3-662-53622-3

17. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and
clique-width. In:Mathematical Foundations ofComputer Science 2012: 37th International Symposium,
MFCS2012, volume7464ofLectureNotes inComputer Science, pp. 348–359. Springer (2012). https://
doi.org/10.1007/978-3-642-32589-2_32

18. Dregi, M.S., Lokshtanov, D.: Parameterized complexity of bandwidth on trees. In: Automata, Lan-
guages, and Programming: 41st International Colloquium, ICALP 2014, volume 8572 of LectureNotes
in Computer Science, pp. 405–416. Springer (2014). https://doi.org/10.1007/978-3-662-43948-7_34

19. Dubey, C.K., Feige, U., Unger, W.: Hardness results for approximating the bandwidth. J. Comput.
Syst. Sci. 77(1), 62–90 (2011). https://doi.org/10.1016/J.JCSS.2010.06.006

20. Feige, U., Talwar, K.: Approximating the bandwidth of caterpillars. Algorithmica 55(1), 190–204
(2009). https://doi.org/10.1007/S00453-007-9002-0

21. Fellows, M.R., Hermelin, D., Rosamond, F.A., Shachnai, H.: Tractable parameterizations for the min-
imum linear arrangement problem. ACM Trans. Comput. Theory 8(2), 6:1-6:12 (2016). https://doi.
org/10.1145/2898352

22. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity
ecology of parameters: an illustration using bounded max leaf number. Theory Comput. Syst. 45(4),
822–848 (2009). https://doi.org/10.1007/s00224-009-9167-9

23. Fellows,M.R., Lokshtanov, D.,Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems param-
eterized by vertex cover. InAlgorithms andComputation, 19th International Symposium, ISAAC2008,
volume 5369 of Lecture Notes in Computer Science, pp. 294–305. Springer (2008). https://doi.org/
10.1007/978-3-540-92182-0_28

24. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7, 49–65 (1987). https://doi.org/10.1007/BF02579200

25. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An exponential time 2-approximation algorithm for
bandwidth. Theor. Comput. Sci. 511, 23–31 (2013). https://doi.org/10.1016/j.tcs.2013.03.024

26. Gajarský, J., Lampis,M., Ordyniak, S.: Parameterized algorithms formodular-width. In: Parameterized
and Exact Computation: 8th International Symposium, IPEC 2013, volume 8246 of Lecture Notes in
Computer Science, pp. 163–176. Springer (2013). https://doi.org/10.1007/978-3-319-03898-8_15

27. Ganian, R.: Improving vertex cover as a graph parameter. Discret.Math. Theor. Comput. Sci. 17(2), 77–
100 (2015). https://doi.org/10.46298/DMTCS.2136 https://doi.org/10.46298/DMTCS.2136 https://
doi.org/10.46298/DMTCS.2136

28. Ganian, R., Hlinený, P., Nesetril, J., Obdrzálek, J., de Mendez, P.O.: Shrub-depth: capturing height of
dense graphs. Log. Methods Comput. Sci. 1, 10 (2019). https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.23638/LMCS-15(1:7)2019 https://doi.org/10.23638/LMCS-15(1:7)2019

29. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width. SIAM J. Discret. Math.
36(4), 2635–2666 (2022). https://doi.org/10.1137/20m137478x

30. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth minimiza-
tion. SIAM J. Appl. Math. 34(3), 477–495 (1978). https://doi.org/10.1137/0134037

31. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth
and vertex cover through vertex integrity. Theor. Comput. Sci. 918, 60–76 (2022). https://doi.org/10.
1016/j.tcs.2022.03.021

32. Gima, T., Kim, E.J., Köhler, N., Melissinos, N., Vasilakis, M.: Bandwidth parameterized by cluster
vertex deletion number. In: 18th International Symposium on Parameterized and Exact Computation,
IPEC: volume 285 of LIPIcs, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
2023, (2023). https://doi.org/10.4230/LIPICS.IPEC.2023.21

123

https://doi.org/10.1007/s00453-012-9707-6
https://doi.org/10.1016/j.tcs.2010.06.018
https://doi.org/10.1016/j.dam.2011.10.032
https://doi.org/10.1145/2071379.2071387
https://doi.org/10.1145/568522.568523
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1007/978-3-662-43948-7_34
https://doi.org/10.1016/J.JCSS.2010.06.006
https://doi.org/10.1007/S00453-007-9002-0
https://doi.org/10.1145/2898352
https://doi.org/10.1145/2898352
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/BF02579200
https://doi.org/10.1016/j.tcs.2013.03.024
https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.46298/DMTCS.2136
https://doi.org/10.46298/DMTCS.2136
https://doi.org/10.46298/DMTCS.2136
https://doi.org/10.46298/DMTCS.2136
https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.1137/20m137478x
https://doi.org/10.1137/0134037
https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.4230/LIPICS.IPEC.2023.21

Algorithmica

33. Gupta, A.: Improved bandwidth approximation for trees and chordal graphs. J. Algorithms 40(1),
24–36 (2001). https://doi.org/10.1006/JAGM.2000.1118

34. Gurari, E.M., Sudborough, I.H.: Improved dynamic programming algorithms for bandwidthminimiza-
tion and the mincut linear arrangement problem. J. Algorithms 5(4), 531–546 (1984). https://doi.org/
10.1016/0196-6774(84)90006-3

35. Harper, L.H.: Optimal assignments of numbers to vertices. J. Soc. Ind. Appl. Math. 12(1), 131–135
(1964). https://doi.org/10.1137/0112012

36. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster
vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010). https://doi.org/10.1007/s00224-008-
9150-x

37. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J.
Comput. Syst. Sci. 79(1), 39–49 (2013). https://doi.org/10.1016/j.jcss.2012.04.004

38. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–
440 (1987). https://doi.org/10.1287/moor.12.3.415

39. Kare, A.S., Reddy, I.V.: Parameterized algorithms for graph burning problem. In: Combinatorial Algo-
rithms: 30th International Workshop, IWOCA 2019, volume 11638 of Lecture Notes in Computer
Science, pp. 304–314. Springer (2019). https://doi.org/10.1007/978-3-030-25005-8_25

40. Kucera, M., Suchý, O.: Minimum eccentricity shortest path problem with respect to structural param-
eters. Algorithmica 85(3), 762–782 (2023). https://doi.org/10.1007/s00453-022-01006-x

41. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37
(2012). https://doi.org/10.1007/S00453-011-9554-X

42. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4),
538–548 (1983). https://doi.org/10.1287/moor.8.4.538

43. Lokshtanov, D.: Parameterized Integer Quadratic Programming: Variables and Coefficients (2017).
arXiv:1511.00310

44. Majumdar, D., Raman, V.: Structural parameterizations of undirected feedback vertex set: FPT algo-
rithms and kernelization. Algorithmica 80(9), 2683–2724 (2018). https://doi.org/10.1007/S00453-
018-0419-4

45. Misra, N., Mittal, H.: Imbalance parameterized by twin cover revisited. Theor. Comput. Sci. 895, 1–15
(2021). https://doi.org/10.1016/j.tcs.2021.09.017

46. Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is np-complete.
SIAM J. Algebraic Discrete Methods 7(4), 505–512 (1986). https://doi.org/10.1137/0607057

47. Muradian, D.: The bandwidth minimization problem for cyclic caterpillars with hair length
1 is np-complete. Theor. Comput. Sci. 307(3), 567–572 (2003). https://doi.org/10.1016/S0304-
3975(03)00238-X

48. Jaroslav Nesetril and Patrice Ossona de Mendez: Tree-depth, subgraph coloring and homomorphism
bounds. Eur. J. Comb. 27(6), 1022–1041 (2006). https://doi.org/10.1016/j.ejc.2005.01.010

49. Papadimitriou, C.H.: The np-completeness of the bandwidth minimization problem. Computing 16(3),
263–270 (1976). https://doi.org/10.1007/BF02280884

50. Saxe, J.B.: Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial
time. SIAM J. Algebraic Discret. Methods 1(4), 363–369 (1980). https://doi.org/10.1137/0601042

51. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. Theory Comput. Syst. 65(2),
323–343 (2021). https://doi.org/10.1007/s00224-020-10005-w

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Tatsuya Gima1 · Eun Jung Kim2,3,4 · Noleen Köhler5 ·
Nikolaos Melissinos6 ·Manolis Vasilakis7

B Noleen Köhler
n.koehler@leeds.ac.uk

123

https://doi.org/10.1006/JAGM.2000.1118
https://doi.org/10.1016/0196-6774(84)90006-3
https://doi.org/10.1016/0196-6774(84)90006-3
https://doi.org/10.1137/0112012
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/s00453-022-01006-x
https://doi.org/10.1007/S00453-011-9554-X
https://doi.org/10.1287/moor.8.4.538
http://arxiv.org/abs/1511.00310
https://doi.org/10.1007/S00453-018-0419-4
https://doi.org/10.1007/S00453-018-0419-4
https://doi.org/10.1016/j.tcs.2021.09.017
https://doi.org/10.1137/0607057
https://doi.org/10.1016/S0304-3975(03)00238-X
https://doi.org/10.1016/S0304-3975(03)00238-X
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1007/BF02280884
https://doi.org/10.1137/0601042
https://doi.org/10.1007/s00224-020-10005-w
https://orcid.org/0000-0003-2815-5699
https://orcid.org/0000-0002-6824-0516
https://orcid.org/0000-0002-1023-6530
https://orcid.org/0000-0002-0864-9803
https://orcid.org/0000-0001-6505-2977

Algorithmica

Tatsuya Gima
gima@ist.hokudai.ac.jp

Eun Jung Kim
eunjung.kim@kaist.ac.kr

Nikolaos Melissinos
nikolaos.melissinos@fit.cvut.cz

Manolis Vasilakis
emmanouil.vasilakis@dauphine.eu

1 Hokkaido University, Sapporo, Japan

2 KAIST, Daejeon, South Korea

3 CNRS, Paris, France

4 Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea

5 University of Leeds, Leeds, UK

6 Department of Theoretical Computer Science, Faculty of Information Technology, Czech
Technical University, Prague, Czech Republic

7 CNRS UMR7243, LAMSADE, Université Paris-Dauphine, PSL University, Paris, France

123

	Bandwidth Parameterized by Cluster Vertex Deletion Number
	Abstract
	1 Introduction
	2 Preliminaries
	3 An FPT-Algorithm Parameterized by Cluster Vertex Deletion Number Plus Clique Number
	3.1 Types and Buckets
	3.2 Nice Orderings
	3.3 ILP Formulation

	4 W[1]-Hardness Parameterized by Cluster Vertex Deletion Number
	5 Conclusion
	Acknowledgements
	References

