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Abstract. The study of the set-theoretic solutions of the reflection equa-
tion, also known as reflection maps, is closely related to that of the Yang–
Baxter maps. In this work, we construct reflection maps on various geo-
metrical objects, associated with factorization problems on rational loop
groups and involutions. We show that such reflection maps are smoothly
conjugate to the composite of permutation maps, with corresponding re-
duced Yang–Baxter maps. In the case when the reduced Yang–Baxter
maps are independent of parameters, the latter are just braiding opera-
tors. We also study the symplectic and Poisson geometry of such reflection
maps. In a special case, the factorization problems are associated with the
collision of N -solitons of the n-Manakov system with a boundary, and in
this context, the N -body polarization reflection map is a symplectomor-
phism.

Mathematics Subject Classification. 16T25, 37J39, 37K25, 35Q55, 35C08.

1. Introduction

The reflection equation, which is a close companion of the Yang–Baxter equa-
tion (YBE) [6,69], first arose in the context of factorized scattering on a half-
line [12]. It is an important equation in the study of quantum integrable sys-
tems with non-periodic boundary conditions [56]. The YBE, as is well-known,
is related to a multitude of topics [6,33,35,39,54,59,61,69,71]. In particular,
any solution of YBE gives rise to linear representation of the braid group Bn

[36]. Likewise, the reflection equation is connected with various branches of
mathematics and physics (see, for example, [4,9,10,12,21,29,41,50,52,56,64,
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68]). And in the same vein as YBE, the reflection equation deals with rep-
resentation of the generalized braid group B1,n, which can be regarded as a
subgroup of Bn+1 consisting of braids with one frozen strand (see, for example,
[14,42,55]).

In the early 1990s, Drinfeld posed the problem of finding set-theoretic
solutions of the Yang–Baxter equation [23]. More precisely, given a set X, the
problem is to find invertible maps R : X × X −→ X × X satisfying

R12R13R23 = R23R13R12 (1.1)

where Rij denotes the map from X × X × X to itself which acts as R on the
i-th and j-th component and as the identity on the other component. This
problem has led to numerous works (see, for example, [1,2,16,26,31,32,43,
46,53,59,63,66]). Of these, the papers [2,31,59,63] are connected with soliton
collisions in multi-component integrable PDEs, and such maps are referred
to as Yang–Baxter maps in [63]. It should be pointed out that in some cases
in [43], solutions of the YBE are not necessarily defined on a product space,
but we continue to call such maps Yang–Baxter maps, and this is the usage
which we are following here. In a nutshell, the YBE or its set-theoretic version
is a condition which ensures the factorization property. In the context of the
n-Manakov system (a.k.a. vector NLS) on the line [3,48] (the n = 2 case is
due to Manakov in [48]), the vector solitons have internal degrees of freedom,
called polarizations. Colliding solitons alter each other’s polarization states,
which is what makes colliding solitons of interest in optical computing [34].
Here the factorization property means that an N -soliton collision process can
be factorized into a nonlinear superposition of N(N − 1)/2 pairwise collisions
in an arbitrary order, and the YBE ensures that all these possibilities give
the same result [2,59]. By studying the n-Manakov system on a half-line, with
Robin boundary condition or mixed Dirichlet/Neumann condition at x = 0,
the authors in [18] showed that there is also factorization in the presence of a
boundary and were led to introduce a set-theoretic version of the (parametric)
reflection equation. In recent years, the study of set-theoretic solutions of the
reflection equation, which are called reflection maps, and their relations to
Yang–Baxter maps have been the subject of several studies [15,19,20,24,40,
47,58].

Our initial motivation for this work is to study the Poisson properties, if
any, of the parametric reflection map, which arises in [18], where the authors
are studying the interaction of N -solitons of the n-Manakov system on the
half-line x ≥ 0 with the boundary at x = 0. Following [3], recall that the
n-component Manakov system is given by the equation:

iqt = qxx + 2‖q‖2q, (1.2)

where q is a C
n-valued function and ‖q‖ = (q∗q)1/2 is the Euclidean norm of

q. In [18], the authors consider (1.2) on the half-line x ≥ 0 and impose the
following boundary conditions at x = 0 :
(a) Robin boundary conditions of the form

qx(0, t) − 2αq(0, t) = 0, α ∈ R, (1.3)
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or
(b) mixed Dirichlet/Neumann boundary conditions, given by

qj(0, t) = 0, j ∈ S ⊂ {1, . . . , n},

qjx(0, t) = 0, j ∈ {1, . . . , n} \ S.
(1.4)

These boundary conditions are not arbitrary, but were derived earlier in [17],
in which the authors showed that a nonlinear mirror image method [7,11,38]
can be used to construct an inverse scattering transform for the half-line prob-
lem with that of a full-line problem. As a consequence, one can obtain the
N -soliton solution of the half-line problem with the above boundary condi-
tions as the restriction to x > 0 of a 2N -soliton solution of a full-line problem
provided that the norming constants and the poles αj satisfy appropriate mir-
ror symmetry conditions, which are dependent on the boundary conditions.
This is worked out in [18], and the reflection map is precisely the map which
describes the change in the polarization vector of a 1-soliton when it interacts
with the boundary. Note that in using the nonlinear mirror image method
mentioned above, the collision of a 1-soliton with the boundary at x = 0 be-
comes identified with the collision of the 1-soliton with its ‘mirror’ soliton.
Since soliton collision problems correspond to refactorization problems associ-
ated with simple elements in rational loop groups, the kind of refactorization
problems we consider in this connection will have some special structure, or
symmetry.

Motivated by what we described in the previous paragraph, our goal in
this work is to construct set-theoretic solutions of the reflection equation, or re-
flection maps, for a variety of geometric objects, and to study their symplectic
and Poisson geometry. The heuristic reason why the Yang–Baxter maps in [43],
and the reflection maps we consider here should have some interesting sym-
plectic/Poisson geometry is the following. The n-Manakov system, and more
generally multi-component integrable PDEs, are infinite-dimensional Hamil-
tonian systems. By general arguments, the dynamics of the multi-soliton so-
lutions of such equations is expected to give rise to canonical maps on their
respective phase spaces. In the case of many scalar integrable PDEs, this is
well known (see, for example, [28]). For a recent nontrivial example connected
with the Benjamin–Ono equation, we refer the reader to [57]. As explained
above, the dynamics of the n-Manakov system on the line can be described
by Yang–Baxter maps and on the half-line with integrable boundary condi-
tions by reflection maps (up to asymptotic velocities and phase shifts). It
is therefore not only natural, but also a fundamental question to investigate
whether such maps have symplectic/Poisson properties with respect to some
symplectic/Poisson structures. This is the overarching principle in [43] and in
the present work. Thus, our main result here is that we establish, for the first
time, the symplectic/Poisson nature of our reflection maps, at the level of pro-
jectors, at the level of complex projective spaces, and at the level of Poisson Lie
groups. Since our reflection maps are associated with refactorization problems
with some symmetry, associated with involutions, it is natural to consider the
reduction of the Yang–Baxter maps in [43], which are diffeomorphisms on the
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graphs of the involutions. As it turns out, our reflection maps are smoothly
conjugate to the composite of permutation maps, with corresponding reduced
Yang–Baxter maps. In the case when the reduced Yang–Baxter maps are inde-
pendent of parameters, the latter are just braiding operators. This relationship
opens up an approach to investigate the symplectic/Poisson geometry of the
reflection maps, by means of reduction to symplectic submanifolds or reduction
to Dirac submanifolds [44], starting with the results in [43].

The paper is organized as follows. In Sect. 2, we assemble some of the
basic facts which we will use in this work from several domains. First of all, we
will summarize some of the results in [43] on refactorization problems in the
rational loop group Krat, and the symplectic and Poisson geometry of Yang–
Baxter maps, as they provide the starting point of this investigation. Then,
we will give the basic facts on the notion of Dirac submanifolds [67], and the
method of Dirac reduction [44]. In the context of our present work, we are
mainly dealing with the case in which the symplectic submanifolds and Dirac
submanifolds are given by the stable loci of symplectic/Poisson involutions.
In Sect. 3, we begin by introducing the class of involutions on Krat, which we
consider in this work. Since what we are doing here is motivated by the study
of the n-Manakov system on the half-line with C

n-valued solutions q, we must
include at least the two kinds of involutions which are implicit in [18]. To cut
the story short, the two kinds of involutions correspond to the two distinct
kinds of boundary conditions (a) and (b) described above. As the reader will
see, case (a) is not really of interest, and the class of involutions which we will
consider in this work, at the level of loops in the rational loop group Krat (we
will also consider involutions at the level of projectors, at the level of CPn−1

or abstractly on a Lie group), is given by:

σ : Krat −→ Krat, σ(g)(z) = Ug∗(−z)U∗, (1.5)

where U is a Hermitian unitary matrix, and the special case with

U = IS = diag(d1, . . . , dn), where di =

{
1 if i ∈ S ⊂ {1, . . . , n},

−1 if i /∈ S,

(1.6)

is what corresponds to case (b) with mixed Dirichlet/Neumann boundary con-
ditions. Thus, what we consider here is way beyond what we need to under-
stand the case where U = IS . Note that if we restrict σ to simple elements
gα,P , of the form

gα,P (z) = I +
α − α

z − α
P, (1.7)

where P is an n × n Hermitian projector of rank k, 1 ≤ k ≤ n − 1, and then,
we obtain an induced map

(α, P ) �→ (τ(α), cU,k(P )), τ(α) = −α, cU,k(P ) = UPU∗, (1.8)

which is also an involution, and indeed, this is what we will be working with
in Sect. 3. In [43], the author showed that the parametric Yang–Baxter map
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Rk,k(α1, α2) (to be defined below) is a symplectomorphism on P (n)k ×P (n)k,
where P (n)k is the set of n × n Hermitian projectors of rank k. The start-
ing point of our investigation in that section consists of studying the restric-
tion of Rk,k(τ(α), α) to the graph of cU,k, which we denote by GU,k. Indeed,
Rk,k(τ(α), α) |GU,k

maps GU,k to itself. Thus, we have the induced diffeomor-
phism Rk,k

red(τ(α), α) on GU,k. As it turns out, GU,k is a symplectic submanifold
of P (n)k ×P (n)k, and the braiding operator corresponding to Rk,k

red(τ(α), α) is
smoothly conjugate to the parametric reflection map B(α). This is the path we
take in showing that B(α) is a symplectomorphism. By using the partial ac-
tion ξ associated with the refactorization problem in Theorem 5.13 (a) of [43],
and consideration related to the method of nonlinear mirror images (see the
proof in Theorem 3.3 of [18]), we also show that B(α) satisfies the parametric
reflection equation.

In Sect. 4, we specialize to the rank 1 case, in which we describe our
results at the level of complex projective space CP

n−1. Here, the involution is
given by the map:

c̃U : CPn−1 −→ CP
n−1, [p] �→ [Up]. (1.9)

In the particular case where U = IS , the corresponding parametric reflection
map is what appeared in [18] and describes the change in polarization when
a 1-soliton solution of the n-Manakov system is reflected by the boundary at
x = 0. Motivated by the interaction of N -soliton solutions with the boundary
at x = 0 in this context, we introduce the N -body polarization reflection map
corresponding to a general Hermitian unitary matrix U, and we show that this
map is a symplectomorphism. We wrap up that section with an explanation
of the physical meaning of the N -body polarization reflection map, in the con-
text of the n-Manakov system on the half-line with mixed Dirichlet/Neumann
boundary conditions at x = 0. We also point out the relationship between the
full polarization-scattering map and that of the N -body polarization reflection
map.

In Sect. 5, the last section of this work, we begin by proving two abstract
results in the context of a Poisson Lie group G. Here a number of assump-
tions must be made. As shown by the work in [43], the Yang–Baxter maps
associated with refactorization problems in Krat are not defined everywhere
on the product Krat × Krat, and are associated with partial actions. (This is
in contrast to what is assumed in [46].) Thus, we must postulate the existence
of a left partial group action ξ : G ∗ G −→ G and a right partial group action
η : G ∗ G −→ G, which are compatible in the sense that

gh = ξg(h)ηh(g) for all (g, h) ∈ G ∗ G, (1.10)

where G∗G is assumed to be an open submanifold of G×G. In addition, we have
to make several assumptions on the domain of ξg and ηg for g ∈ G. Of course,
such assumptions are vacuous in case ξ and η are genuine actions. On the other
hand, we have to postulate the existence of a Poisson involution σ, which is
also a Lie group anti-morphism satisfying some additional assumptions. These
assumptions have to do with the intersection of the graph of σ with G ∗ G, as
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well as the way σ interacts with the two partial group actions. As a matter of
fact, if we let G′(σ) := G(σ) ∩ (G ∗ G), where G(σ) denote the graph of σ, we
have to assume that

G′ := (σ, idG)−1(G′(σ)) �= ∅. (1.11)

Under the first set of assumptions, we show that the map

R : G ∗ G −→ G ∗ G, (g, h) �→ (ηh(g), ξg(h)) (1.12)

is a Yang–Baxter map, and moreover, is a Poisson diffeomorphism, when the
open Poisson submanifold G ∗ G is equipped with the structure induced from
G × G. With the additional postulates on σ, we show that G(σ), the graph of
σ, is a Dirac submanifold of G×G, equipped with the product structure. Thus,
G(σ) carries an induced Poisson structure πG(σ). On the other hand, we can
push the Poisson structure on G forward to G(σ) using the map (σ, idG) so
that it becomes a Poisson diffeomorphism, when its codomain is equipped with
the pushforward structure. It is miraculous that this pushforward structure is
precisely 2πG(σ). Note that the reflection map in this setting, which we denote
by B, is only defined on the open submanifold G′ of the Poisson Lie group G,
but we can show that it is smoothly conjugated to the braiding operator, of
the reduced Yang–Baxter map Rred : G′(σ) −→ G′(σ). Combining this with
the results on the various Poisson structures, we conclude that B is a Poisson
diffeomorphism. With suitable restrictions, we can also show that B satisfies
the reflection equation. Finally, we conclude the section by applying the gen-
eral results to Krat. There are various conditions to check, see, in particular,
Proposition 5.9 and Proposition 5.10.

We end the paper with a conclusion section in which we discuss what has
been achieved as well as giving some perspectives on future directions.

2. Preliminaries

In this section, we will first of all collect a number of results from [43] which
serves as the starting point of our analysis in this work. We will also recall
the notion of Dirac submanifolds [67] and the method of Dirac reduction [44],
which will be used in the section on reflection maps and Poisson Lie groups.

2.1. Parametric Yang–Baxter Maps

We begin by introducing the loop groups, which play an essential role in [43].
To do so, let CP

1 = C ∪ {∞}, Ω+ = C, Ω− = O∞, a neighbourhood of ∞
invariant under complex conjugation. Also, let U(n) be the unitary group,
and denote its Lie algebra by u(n). Following Terng and Uhlenbeck [60], we
introduce the loop group

K = {g : Ω+ ∩ Ω− −→ GL(n,C) | g is holomorphic, and g(z̄)∗g(z) = I, for

all z ∈ Ω+ ∩ Ω−}. (2.1)
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For a matrix loop g which is holomorphic in U ⊂ CP
1 satisfying g(z̄)∗g(z) = I

for all z ∈ U , we say that g is u(n)-holomorphic on U . Then, we have the
following Lie subgroups of K:

K+ = {g ∈ K | g extends u(n) − holomorphically to Ω+},

K− = {g ∈ K | g extends u(n) − holomorphically to Ω−, g(∞) = I},

Krat = subgroup of rational maps g ∈ K−. (2.2)

In Krat, there are some special elements that are of basic importance. To
introduce these elements, let H(n) denote the set of n×n Hermitian matrices,
and let

P (n) = {P ∈ H(n) | P 2 = P}. (2.3)

Then associated with each α ∈ C \ R, and P ∈ P (n), is the simple element

gα,P (z) = I +
α − α

z − α
P. (2.4)

These simple elements are known as dressing factors in the work of Zakharov
and Shabat [70]; they are called Blaschke–Potapov factors in [28] (see [51]).

Theorem 2.1 ([62]).
(a) gα,P ∈ Krat.
(b) Krat is generated by the simple elements, i.e. every g ∈ Krat can be

factorized into a product of simple elements.

Note that if we drop the reality condition g(z)∗g(z) = I in Krat, the result
is Grat, which is called the full rational loop group in [30]. Clearly, we have
the (involutive) automorphism Grat −→ Grat : g(z) −→ (g(z)∗)−1 and Krat is
the fixed point subgroup of this automorphism. The reason why we consider
Krat is due to the fact that we are geared towards the n-Manakov system
here, whose Lax operator in the zero curvature representation has certain
symmetries (see, e.g. [3]), but this is by no means necessary in the study
Yang–Baxter maps. Indeed, in [43], Grat is also considered. In this connection,
we refer the reader to [49] for a systematic study of various reductions in zero
curvature representations.

We will equip H(n) � u(n)∗ with the Lie–Poisson structure, where the
identification is through the map

κ : H(n) −→ u(n)∗, κ(A)(B) = −√−1 tr (AB). (2.5)

Then, P (n) is a Poisson submanifold of H(n). If for 1 ≤ k ≤ n − 1, we let

P (n)k = {P ∈ P (n) | tr P = k} (2.6)

then P (n)k is nothing but the coadjoint orbit of the unitary group U(n)
through the point Ek, defined by the following formula:

Ek =
(

Ik 0
0 0n−k

)
. (2.7)

Hence, there is a standard symplectic structure on P (n)k, given by

ωEk
(P )([X,P ], [Y, P ]) =

√−1tr P [X,Y ], P ∈ P (n)k, X, Y ∈ u(n). (2.8)



L.-C. Li and V. Caudrelier Ann. Henri Poincaré

Theorem 2.2 ([43]). (a) For given gαi,Pi
with αi ∈ C\R, i = 1, 2, the refactor-

ization problem

gα1,P1 gα2,P2 = gα2,P̃2
gα1,P̃1

(2.9)

has a unique solution if

{α1, α1} ∩ {α2, α2} = ∅. (2.10)

In this case, the projections P̃1 and P̃2 are given by:

P̃i = φPiφ
−1, (2.11)

where

φ = (α2 − α1)I + (α2 − α2)P2 + (α1 − α1)P1, (2.12)

and we define

R(α1, α2)(P1, P2) = (P̃1, P̃2). (2.13)

(b) Let αi ∈ C\R, i = 1, 2, 3 satisfy

{αi, αi} ∩ {αj , αj} = ∅, i �= j, (2.14)

then Rij(αi, αj) satisfy the parametric Yang–Baxter equation:

R12(α1, α2)R13(α1, α3)R23(α2, α3) = R23(α2, α3)R13(α1, α3)R12(α1, α2)
(2.15)

on P (n) × P (n) × P (n).
(c) Let α1, α2 be as in part (a), and denote by {·, ·}P (n) the bracket on the
Poisson submanifold P (n) of H(n) equipped with the Lie-Poisson structure.
Consider P (n)×P (n) with the product Poisson structure, where the first copy
of P (n) is equipped with (−2 Im α1){·, ·}P (n), and the second copy of P (n) is
equipped with (−2 Im α2){·, ·}P (n). If we denote this bracket by {·, ·}, then the
map

R(α1, α2) : (P (n) × P (n), {·, ·}) −→ (P (n) × P (n), {·, ·}) (2.16)

is a Poisson diffeomorphism. Indeed, for any 1 ≤ k, � ≤ n − 1, if we let
Rk,�(α1, α2) = R(α1, α2) | P (n)k × P (n)�, and equip P (n)k × P (n)� with the
symplectic structure given by the 2-form

ω′
α1,α2

= (−2 Im α1)ωEk
⊕ (−2 Im α2)ωE�

, (2.17)

then

Rk,�(α1, α2) : (P (n)k × P (n)�, ω
′
α1,α2

) −→ (P (n)k × P (n)�, ω
′
α1,α2

) (2.18)

is a symplectomorphism.

While the map R(α1, α2) is defined by the refactorization problem in
(2.9), we define the map R21(α2, α1) on P (n) × P (n) by

R21(α2, α1)(P1, P2) = (P̃1, P̃2), where gα2,P2gα1,P1 = gα1,P̃1
gα2,P̃2

, (2.19)
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and of course, this gives rise to maps Rk,�
21 (α2, α1) from P (n)k ×P (n)� to itself.

Clearly, we have

R21(α2, α1)R(α1, α2) = idP (n)×P (n) (2.20)

and moreover,

Rk,�
21 (α2, α1) = S−1

k,� ◦ R�,k(α2, α1) ◦ Sk,�, (2.21)

where Sk,� : P (n)k × P (n)� −→ P (n)� × P (n)k is the permutation map that
sends (P1, P2) to (P2, P1).

2.2. The Rank 1 Case

The rank 1 case, which corresponds to k = 1 in (2.6) is related to soliton
collisions in the n-Manakov system. In that system, people usually deal with
the change of unit polarization vectors [2,3] and projectors of rank 1 are con-
structed from such vectors. Since the change of unit polarization map is a map
from S2n−1 × S2n−1 into itself, such a map cannot be symplectic as S2n−1 is
odd-dimensional. This is the reason why the author is working with CP

n−1

instead of S2n−1 in [43]. Here is the result we will use in this work.

Theorem 2.3 ([43]). (a) Let jδ be the map given by

jδ : CPn−1 −→ P (n)1, [p] �→ pp∗

p∗p
= π[p], (2.22)

then the pullback of ωE1 under jδ is the Fubini–Study 2-form

j∗
δ ωE1 = ωFS =

p∗dp ∧ dp∗p + (p∗p)dp∗ ∧ dp

(p∗p)2
. (2.23)

(b) Equip CP
n−1 × CP

n−1 with the symplectic 2-from

Ωα1,α2 = (jδ × jδ)∗((α1 − α1)ωE1 ⊕ (α2 − α2)ωE1)

= (α1 − α1)ωFS ⊕ (α2 − α2)ωFS,
(2.24)

then the map

R̃(α1, α2) : CPn−1 × CP
n−1 −→ CP

n−1 × CP
n−1,

([p1], [p2]) �→ ([φα([p1], [p2])p1], [φα([p1], [p2])p2])
(2.25)

is a symplectomorphism, where

φα([p1], [p2]) = (α2 − α1)I + (α2 − α2)π[p2] + (α1 − α1)π[p1]. (2.26)

Moreover, we have the following formulas:
φα([p1], [p2])p1 = (α2 − α1)gα2,α2,π[p2](α1)p1,

φα([p1], [p2])p2 = (α2 − α1)gα1,α1,π[p1](α2)p2.
(2.27)

In Sect 4 of [43], the author also has a result on the polarization-scattering
map. For our purpose here, let us recall its definition since we will use it in
Sect. 4 of the present work. We start with the fact that for the n-Manakov
system, an N -soliton solution corresponding to distinct eigenvalues

αj =
1
2
(uj + ivj), j = 1, . . . , N (2.28)
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in the upper half-plane behaves asymptotically as a sum of N one-soliton
solutions as t → ±∞:

q(x, t) ∼
N∑

j=1

q±
j (x, t)p±

j , (2.29)

where p±
j are unit vectors in C

n, and q±
j (x, t) is parametrized by uj , vj , j =

1, . . . , N. Here p−
j (resp. p+

j ) is the unit asymptotic polarization vector of
soliton j before (resp. after) all its collisions. We call the map defined by

S(α1, . . . , αN ) : (CPn−1)N −→ (CPn−1)N

([p−
1 ], . . . , [p−

N )]) �→ ([p+
1 ], . . . , [p+

N )])
(2.30)

the polarization-scattering map. In Sect. 4, we will make use of it to explain the
meaning of the N -body polarization reflection map in the context of soliton-
boundary interactions for the n-Manakov system.

2.3. Yang–Baxter Maps and Krat

Recall that a non-singular rational matrix function A has as many poles and
zeros in CP

1 = C∪{∞} [37]. If A is such a rational matrix function, the divisor
of A is denoted by (A) = (A)0 − (A)∞, where (A)0 is the divisor of zeros and
(A)∞ is the divisor of poles. We are dealing with g ∈ Krat, the rational loop
group. Since g(z)∗g(z) = I, it follows that the divisor of g is of the form

(g) =
�∑

i=1

ni · αi −
�∑

i=1

ni · αi, (2.31)

where α1, . . . , α� (resp. α1, . . . , α�) are distinct zeros (resp. poles) of g with
orders n1, . . . , n�. Conversely, given a divisor D ∈ Div0(C\R) satisfying D =
−D, we let

Krat(D) = {g ∈ Krat | (g) = D}, (2.32)

and we denote by suppD the support of D. Note that in contrast to the n = 1
case, a rational matrix function can have zero and pole at the same point (see
Remark 2.3 in [43]). In order to state the next result, we first recall the notion
of partial group actions, which first appeared in the study of some C∗-algebras
[25] (see also [5,43]).

Definition 2.4. Let M be a smooth manifold, and let G be a Lie group. A
left partial action of G on M consists of a family {Mg}g∈G of subsets of M
and a family of bijections {Φg : Mg−1 −→ Mg}g∈G satisfying the following
conditions:
(a) Me = M, Φe = idM ,
(b) Φ−1

h (Mg−1 ∩ Mh) ⊂ M(gh)−1 , g, h ∈ G,

(c) Φg(Φh(x)) = Φgh(x) for each x ∈ Φ−1
h (Mg−1 ∩ Mh).

We say that the left partial group action is smooth if

G ∗ M = {(g, x) ∈ G × M | x ∈ Mg−1} (2.33)
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is a smooth submanifold of the product manifold G × M and the map

Φ : G ∗ M −→ M, (g, x) �→ Φg(x) (2.34)

is a smooth map.

In a similar way, we can define right partial group action of G on M. We
will make use of the following result established in [43].

Theorem 2.5 ([43]) (a) Given u ∈ Krat(D), v ∈ Krat(D′), where D �= D′

are divisors in Div0(C\R) satisfying D = −D, D′ = −D′, the refactorization
problem

uv = ṽũ (2.35)

of finding ũ ∈ Krat(D), ṽ ∈ Krat(D′) has a unique solution if suppD ∩
suppD′ = ∅, in which case we write

ṽ = ξu(v), ũ = ηv(u). (2.36)

Thus, for each u ∈ Krat, ξu is defined on

Ku−1

rat = {v ∈ Krat | supp (u) ∩ supp (v) = ∅} = Ku
rat (2.37)

and it takes values in the same set. Similarly, for given v ∈ Krat, ηv is defined
on Kv−1

rat = Kv
rat and takes values in the same set.

(b) Define

Krat ∗ Krat = {(u, v) ∈ Krat × Krat | supp(u) ∩ supp(v) = ∅}, (2.38)

then the map

ξ : Krat ∗ Krat −→ Krat, (u, v) �→ ξu(v) (2.39)

is a left partial group action. Similarly, the map

η : Krat ∗ Krat −→ Krat, (u, v) �→ ηv(u) (2.40)

is a right partial group action.

Now introduce the map

R : Krat ∗ Krat −→ Krat ∗ Krat, (u, v) �→ (ηv(u), ξu(v)). (2.41)

We also introduce

K
(3)
rat = {(u1, u2, u3) ∈ Krat × Krat × Krat | supp(ui) ∩ supp(uj) = ∅, i �= j}.

(2.42)

Then as a corollary of the theorem above, we have

Corollary 2.6 ([43]). The map R is a diffeomorphism satisfying the set-theoretical
Yang–Baxter equation

R12R13R23 = R23R13R12, (2.43)

where we interpret (2.43) as an equality of maps from K
(3)
rat to K

(3)
rat .
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In order to describe the Poisson character of the map R, let k, k± be the
Lie algebras of the loop groups K, K± introduced in the first subsection. We
equip k with the invariant pairing

(X,Y )k =
∮

γ

tr(X(z)Y (z))
dz

2πi
, γ = ∂O∞, X, Y ∈ k. (2.44)

Since k = k+ ⊕ k−, we have the associated projection operators Πk+ , Πk− and

J = Πk+ − Πk− (2.45)

is a skew-symmetric solution (w.r.t. (·, ·)k ) of the modified Yang–Baxter equa-
tion (mYBE). In order to introduce the Poisson structure on K, it is necessary
to restrict ourselves to a subclass of functions in C∞(K). Following the ap-
proach in [45], a function ϕ ∈ C∞(K) is smooth at g ∈ K iff there exists
Dϕ(g) ∈ k (called the right gradient of ϕ at g) such that

d
dt

∣∣∣
t=0

ϕ(etXg) = (Dϕ(g),X)k, X ∈ k (2.46)

where (·, ·)k is the pairing in (2.44). If ϕ ∈ C∞(K) is smooth at g for all g ∈ K,
then we say it is smooth on K. Note that the nondegeneracy of (·, ·)k implies
that the map

i : k −→ k∗, X �→ (X, ·)k (2.47)

is an isomorphism onto a subspace of k∗ which we will call the smooth part of
k∗. Thus ϕ ∈ C∞(K) is smooth at g iff T ∗

e rgdϕ(g) is in the smooth part of k∗

and we can define the left gradient of such a function at g by

d
dt

∣∣∣
t=0

ϕ(getX) = (D′ϕ(g),X)k, X ∈ k. (2.48)

For each g ∈ K, we will denote the collection of all smooth functions at g
by Fg(K) and we set F(K) = ∩g∈KFg(K). With the above considerations,
it is easy to check that F(K) is non-empty and forms an algebra under ordi-
nary multiplication of functions. Moreover, for ϕ,ψ ∈ F(K) and g ∈ K, the
expression

{ϕ,ψ}J (g) =
1
2
(J(Dϕ(g)),Dψ(g))k − 1

2
(J(D′ϕ(g)),D′ψ(g))k (2.49)

defines {ϕ,ψ}J ∈ F(K) (Proposition 5.3 of [43], the proof is identical to
that in [45], Proposition 3.1) and hence is a Poisson bracket on F(K). Hence
(K, {·, ·}J ) is a coboundary Poisson Lie group, in the sense of Drinfeld [22]. In
[43], we showed that Krat is a Poisson Lie subgroup of (K, {·, ·}J ).

In order to state the next result, we will have to use the notion of Poisson
group partial actions introduced in [43]. We begin by recalling the notion of a
coisotropic submanifold of a Poisson manifold [13].

Definition 2.7. A submanifold C of a Poisson manifold (M,π) is coisotropic if
for each m ∈ C, the annihilator TmC⊥ ⊂ T ∗

mM is isotropic, i.e.

π(m)(TmC⊥, TmC⊥) = 0. (2.50)
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Definition 2.8. Let (M,π) be a Poisson manifold, and G a Poisson Lie group.
A left partial group action Φ : G ∗ M −→ M is called a left Poisson group
partial action iff

Graph(Φ) = {(g, x, y) ∈ G × M × M | (g, x) ∈ G ∗ M,y = Φg(x)} (2.51)

is a coisotropic submanifold of the product Poisson manifold G × M × M−,
where M− is the manifold M equipped with the minus Poisson structure. In
a similar way, we can define right Poisson group partial action.

We will make use of the following result.

Theorem 2.9 [43] (a) The map R in (2.41) is a Poisson diffeomorphism, when
the Poisson submanifold Krat∗Krat is equipped with the structure induced from
Krat × Krat.
(b) The maps

ξ : Krat ∗ Krat −→ Krat, (u, v) �→ ξu(v)

η : Krat ∗ Krat −→ Krat, (u, v) �→ ηv(u)
(2.52)

are Poisson group partial actions.

2.4. Dirac Submanifolds, Poisson Involutions, and Dirac Reduction

It is well-known that the pullback of a symplectic form to a submanifold is
closed, but not necessarily nondegenerate. In the case when the pullback is
nondegenerate, the submanifold is known as a symplectic submanifold. In the
Poisson category, there is a natural generalization of the notion of symplectic
submanifolds. For our purpose here, we will make use of the notion of Dirac
submanifolds introduced in [67]. In order to define this notion, let us begin by
recalling the concept of Lie algebroids.

Definition 2.10. (a) A Lie algebroid over a smooth manifold M is a smooth
vector bundle A −→ M equipped with a Lie bracket [·, ·] on the set Γ(A) of
smooth sections of A and a base-preserving bundle map ρ : A −→ TM (called
the anchor map) such that

ρ([ξ, η]) = [ρ(ξ), ρ(η)],

[ξ, fη] = f [ξ, η] + ρ(ξ)(f)η
(2.53)

for all ξ, η ∈ Γ(A) and for all f ∈ C∞(M).
(b) Let A −→ M be a Lie algebroid with anchor map ρ and A′ ⊂ A

a vector subbundle along a submanifold N ⊂ M. Then A′ −→ N is a Lie
subalgebroid of A iff the following conditions are satisfied:

(i) if s1, s2 ∈ Γ(A) restrict to N give sections of A′, then so is [s1 | N, s2 | N ],
(ii) ρ(A′) ⊂ TN.

Example 2.11. (a) A Lie algebra is a Lie algebroid over a point.
(b) Let M be a smooth manifold, then the tangent bundle TM −→ M is

a Lie algebroid where the Lie bracket on Γ(TM) is the usual bracket of vector
fields on M and the anchor map is the identity map idTM on TM.
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(c) Let (M,π) be a Poisson manifold, and let π# : T ∗M −→ TM be the
bundle map corresponding to the Poisson bivector field π. Then the cotangent
Lie algebroid [27,65] is the cotangent bundle T ∗M with anchor map given by
π# and whose space of sections Γ(T ∗M) is equipped with the Lie bracket

[s1, s2] = Lπ#(s1)s2 − Lπ#(s2)s1 − d[π(s1, s2)], s1, s2 ∈ Γ(T ∗M). (2.54)

For a readable account on Lie algebroids including the notion of cotangent
Lie algebroid, we refer the reader to [13].

Definition 2.12. Let (M,π) be a Poisson manifold. A submanifold N of M is
a Dirac submanifold iff there exists a Whitney sum decomposition

TNM = TN ⊕ VN , (2.55)

where V ⊥
N is a Lie subalgebroid of the cotangent Lie algebroid T ∗M.

If N is a Dirac submanifold of (M,π), then necessarily N carries a natural
Poisson structure πN whose symplectic leaves are given by the intersection of
N with the symplectic leaves of M. Indeed, π#

N : T ∗N −→ TN is just the
anchor map of the Lie subalgebroid T ∗N � V ⊥

N of T ∗M. Moreover, from the
knowledge of the injective Lie algebroid morphism T ∗N −→ T ∗M, it is easy
to show that [67]

π#
N = pr ◦ π# ◦ pr∗, (2.56)

where pr : TNM −→ TN is the projection map induced by the decomposi-
tion in (2.55), and pr∗ is its dual. Note that when the Poisson manifold is
symplectic, its Dirac submanifolds are precisely its symplectic submanifolds.

The following result gives an important class of Dirac submanifolds which
we will use in this work.

Theorem 2.13 ([67]) Let μ : M −→ M be a Poisson involution, i.e. an invo-
lution which is also a Poisson map. Then it stable locus N = Mμ is a Dirac
submanifold of M with VN =

⋃
x∈N ker (Txμ + 1).

Since we will be dealing with Poisson maps between Poisson manifolds,
the following result is fundamental in reducing such maps.

Theorem 2.14 ([44]). Let φ : M1 −→ M2 be a Poisson map and let N1 ⊂ M1,
N2 ⊂ M2 be Dirac submanifolds with respective Whitney sum decompositions

TN1M1 = TN1 ⊕ VN1 , TN2M2 = TN2 ⊕ VN2 . (2.57)

Then under the assumptions that

(i) φ(N1) ⊂ N2,
(ii) Txφ(VN1)x ⊂ (VN2)φ(x), x ∈ N1,

then the reduced map φ |N1 : N1 −→ N2 given by φ |N1 (x) = φ(x) for
x ∈ N1 is a Poisson map, when N1 and N2 are equipped with the induced
Poisson structures.
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In [44], the map φ |N1 : N1 −→ N2 is called a Dirac reduction of the
Poisson map φ : M1 −→ M2 and we will use this terminology here. In the
special case when the Dirac submanifolds in the theorem above are the stable
loci of Poisson involutions, we have the following result.

Corollary 2.15. Let μ1 : M1 −→ M1, μ2 : M2 −→ M2 be Poisson involutions
with stable loci given by N1 and N2 respectively. If φ : M1 −→ M2 is a Poisson
map which commutes with μ1 and μ2, i.e. μ2◦φ = φ◦μ1. then φ |N1 : N1 −→ N2

is a Poisson map, when N1 and N2 are equipped with the induced structures.

To end this section, we will first of all introduce a piece of notation to
unify the description of reduction maps in Sects. 3, 4 and 5. For this purpose,
let X be a non-empty set and consider a bijection ψ : X −→ X. Suppose
B ⊂ X and ψ(B) = B, and let ι : B −→ X be the inclusion map. Then the
map ψred : B −→ B satisfying

ψ ◦ ι = ι ◦ ψred (2.58)

will be called the reduction of ψ to B. Finally, we give the definition of reflection
maps and parametric reflection maps.

Definition 2.16. Let X be a non-empty set and suppose R : X ×X −→ X ×X
is a Yang–Baxter map. Then B : X −→ X is a reflection map if it satisfies the
set-theoretic reflection equation

B1R21B2R12 = R21B2R12B1, (2.59)

interpreted as an equality on X × X.

In Sect. 5, we actually have to modify Definition 2.16 a little bit, as the
Yang–Baxter map there is only defined on an open submanifold G∗G of G×G,
and the map B is only defined on some open submanifold G′ of G, where G is
a Poisson Lie group. But the formula above does give the correct form of the
set-theoretic reflection equation.

Definition 2.17. Let R(k1, k2) : X × X −→ X × X be a parametric Yang–
Baxter map, where k1, k2 belong to some parameter space Λ, and let ρ : Λ → Λ
be an involution. Then, B(k) : X → X, k ∈ Λ, is called a parametric reflection
map if it satisfies the parametric set-theoretic reflection equation (cf. (4.13),
[18])

B1(k1)R21(ρ(k2), k1)B2(k2)R12(k1, k2)

= R21(ρ(k2), ρ(k1))B2(k2)R12(ρ(k1), k2)B1(k1),
(2.60)

interpreted as an equality on X × X.

As the reader will see, in (3.26), we have in fact a generalization of the
above form of the parametric reflection equation which we call the generalized
parametric reflection equation there. Of course, (3.26) comes from a parametric
reflection equation which involves R(α1, α2) (see (2.13)) and B(α) : P (n) −→
P (n) where B(α)(P ) = Bk(α)(P ) for P ∈ P (n)k for 1 ≤ k ≤ n − 1. We will
leave the formulation of the abstract definition of the generalized parametric
equation to the reader.
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3. Reflection Maps at the Level of Projectors

We begin by introducing a map

U : C \ R −→ U(n) (3.1)

satisfying the property that

U(τ(α)) = U(α)∗, (3.2)

where τ is the involution defined by

τ : C −→ C : z �→ −z. (3.3)

For α ∈ C\(R ∪ √−1R), P ∈ P (n), define a map σ on the set of simple
elements of Krat by the formula

σ(gα,P )(z) = U(α)(g∗
α,P ◦ τ)(z)U(α)∗ = g−α,U(α)PU(α)∗(z). (3.4)

What we would like to do is to extend σ to a map on the entire loop group Krat

by requiring it to be a Lie group anti-morphism, which is the case if U(α) = I,
and we define σ(g)(z) = g∗(−z) for all g ∈ Krat. As we will see, this is not
always possible. Since what we are doing here is motivated by the study of
the n-Manakov system on the half-line with C

n-valued solution q, we must at
least include the two kinds of U(α) which arise in [18]. To recall, we have the
following:

(a) the first kind of U(α) is given by:

U(α) = m(α) =
h(α)
|h(α)|I, h(α) =

α − iβ

α + iβ
, β ∈ R,

(3.5)

which corresponds to imposing Robin condition on q at x = 0,
(b) the second kind of U(α) consists of matrices of the form

U(α) = IS = diag(d1, . . . , dn), where di =

{
1 if i ∈ S ⊂ {1, . . . , n},

−1 if i /∈ S,
(3.6)

which corresponds to imposing Dirichlet condition on those components qi of
the solution q with i ∈ S, and Neumann condition on those qi with i /∈ S.

Note, however, that in the case where U(α) = m(α), we have σ(gα,P ) =
g−α,P and since this commutes with gα,P , it follows that the corresponding
parametric Yang–Baxter map is just the identity map. So this case is not
interesting and for this reason, we are not going to deal with this case. Now
if we want the extension of σ in (3.4) above to be a Lie-group anti-morphism,
we have to make the definition

σ(gα1,P1gα2,P2) = σ(gα2,P2)σ(gα1,P1). (3.7)

And in order for this to be well-defined, we have to check that the result is
independent of how we factorize the group element g = gα1,P1gα2,P2 . So let us
suppose gα1,P1gα2,P2 = gα2,P̃2

gα1,P̃1
. Then by a direct calculation using (3.4),

it is easy to check that the condition σ(gα2,P2)σ(gα1,P1) = σ(gα1,P̃1
)σ(gα2,P̃2

)
is not satisfied in general; sufficient conditions which guarantee its validity are
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given by U(α) = m(α) or U(α) is independent of α. As the former case in not
of interest, we will henceforth assume that U is a constant map and by abuse
of notation, we take U to be a constant Hermitian matrix in U(n). It is easy
to show that a Hermitian matrix U ∈ U(n) is of the form U = 2Π − I, where
Π ∈ P (n). Alternatively, U = V ISV ∗, where S ⊂ {1, . . . , n}, and V ∈ U(n).
(This latter form of U was used in [17] when the authors derived integrable
boundary conditions for the n-Manakov system.) Thus, we have

σ(gα,P )(z) = U(g∗
α,P ◦ τ)(z)U∗ = g−α,UPU∗(z), (3.8)

and we can extend this to a Lie group anti-morphism of Krat by using the fact
that Krat is generated by the simple elements. In what follows, we will denote
the extension also by the same symbol σ and we have the general formula

σ(g)(z) = Ug∗(−z)U∗, g ∈ Krat. (3.9)

From this, we find

σ2(g) =U(σ(g)∗ ◦ τ)U∗

=U(U((g ◦ τ) ◦ τ)U∗)U∗ = g
(3.10)

and therefore the map σ is an involution. Note that this map σ is not used to
impose a reduction in the sense of [49]; indeed, σ is a Lie group anti-morphism
and therefore the fixed point set of σ is not a subgroup. In the next proposition,
the reader will see the role played by this map.

Proposition 3.1. Given α ∈ C\(R ∪ √−1R), P ∈ P (n)k, the refactorization
problem

σ(gα,P )gα,P = gα,P̃2
g−α,P̃1

(3.11)

has a unique solution. Moreover, we have

P̃2 = φPφ−1, φ = 2αI + (α − α)(P + UPU∗), (3.12)

and

P̃1 = UP̃2U
∗. (3.13)

Proof. First of all, since α is neither on the real line nor on the imaginary axis,
it follows that {α, α} ∩ {−α,−α} = ∅. Therefore, it follows from Theorem 2.2
that the refactorization problem is guaranteed to have a unique solution for
(P̃1, P̃2). Moreover, the formulas for P̃2 and φ in (3.12) follow immediately
from (2.11) and (2.12).

Now, observe that

φU = 2αU + (α − α)(PU + UP ) = Uφ (3.14)

and therefore we also have Uφ−1 = φ−1U. From this, we find that

P̃1 = φUPU∗φ−1 = UφPφ−1U∗ = UP̃2U
∗, (3.15)

as asserted. Note that the same conclusion can also be obtained from the
invariance of the left-hand side of (3.11) under σ from which it follows that

gα,P̃2
g−α,P̃1

= σ(g−α,P̃1
)σ(gα,P̃2

). (3.16)
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Thus, it follows from the uniqueness of solution of the refactorization problem
(Theorem 2.2) that g−α,P̃1

= σ(gα,P̃2
), and this gives (3.13). �

In view of the special relation between P1 = UPU∗ and P2 = P in the
above refactorization problem in (3.11), we introduce the map

cU,k : P (n)k −→ P (n)k, P �→ UPU∗ (3.17)

and we would like to restrict Rk,k(τ(α), α) (see (2.18)) to the graph of cU,k,
which we define to be

GU,k = {(cU,k(P ), P ) | P ∈ P (n)k}. (3.18)

Indeed, if we let ιk : GU,k −→ P (n)k × P (n)k be the inclusion map, then
Proposition 3.1 shows that we have the reduced diffeomorphism

Rk,k
red(τ(α), α) : GU,k −→ GU,k : (cU,k(P ), P ) �→ (cU,k(P̃2), P̃2), (3.19)

satisfying the relation ιk ◦Rk,k
red(τ(α), α) = Rk,k(τ(α), α)◦ ιk, where P̃2 is given

by (3.12). Now we introduce the pre-symplectic form

ωk = ι∗k(ωEk
⊕ ωEk

) (3.20)

on GU,k, where we recall that ωEk
is defined in (2.8). Note that due to the

relation Imα = Im (−α), we can simply drop the common factor −2Im α in
the expression for ω−α,α and consider ωEk

⊕ ωEk
in (3.20) above. In our next

result, we will show that ωk is nondegenerate on GU,k.

Proposition 3.2. The 2-form ωk is nondegenerate on GU,k so that (GU,k, ωk) is
a symplectic submanifold of (P (n)k ×P (n)k, ωEk

⊕ωEk
). Hence, Rk,k

red(τ(α), α)
is a symplectomorphism when the domain and codomain are equipped with the
symplectic form ωk.

Proof. Suppose (cU,k(H),H) ∈ Ker (ωk)(cU,k(P ),P ), then H = [X,P ] for some
X ∈ u(n). Therefore, we have

(ωk)(cU,k(P ),P )

(
(cU,k([X,P ]), [X,P ]), (cU,k([Y, P ]), [Y, P ])

)
= 0 (3.21)

for all Y ∈ u(n). But by a direct computation using the definition of ωk, we
have

(ωk)(cU,k(P ),P )

(
(cU,k([X, P ]), [X, P ]), (cU,k([Y, P ]), [Y, P ])

)
= ωEk

(cU,k(P ))([cU,k(X), cU (P )], [cU,k(Y ), cU,k(P )]) + ωEk
(P )([X, P ], [Y, P ])

=
√−1 tr cU,k(P )[cU,k(X), cU,k(Y )] +

√−1 trP [X, Y ]

= −2
√−1 tr [X, P ]Y. (3.22)

Since this expression is zero for all Y ∈ u(n), it follows that we must have
H = [X,P ] = 0. As this is true for all points (P, cU,k(P )) ∈ GU,k, this
shows the closed 2-form ωk is nondegenerate. The assertion that Rk,k

red(τ(α), α)
is a symplectomorphism then follows from the relation ιk ◦ Rk,k

red(τ(α), α) =
Rk,k(τ(α), α) ◦ ιk and Theorem 2.2 (c). �

We will call Rk,k
red(τ(α), α) the reduced parametric Yang–Baxter map.
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Definition 3.3. We define the map Bk by

Bk :(C \ (R ∪ √−1R)) × P (n)k −→ (C \ (R ∪ √−1R)) × P (n)k,

(α, P ) �→ (τ(α), Bk(α)(P )) = (τ(α), UφPφ−1U∗),
(3.23)

where φ is given in (3.12).

From the above definitions and (3.19), we clearly have

Rk,k
red(τ(α), α)(cU,k(P ), P ) = (Bk(α)(P ), cU,k(Bk(α)(P ))). (3.24)

Theorem 3.4. (a) Bk is an involution. In particular, we have

Bk(τ(α))Bk(α) = idP (n)k
. (3.25)

(b) For any 1 ≤ k, � ≤ n − 1, the pair Bk(α) and B�(α) satisfies the
generalized parametric reflection equation

Bk
1 (α1)R

k,�
21 (τ(α2), α1)B�

2(α2)R
k,�
12 (α1, α2)

= Rk,�
21 (τ(α2), τ(α1))B�

2(α2)R
k,�
12 (τ(α1), α2)Bk

1 (α1)
(3.26)

for all α1, α2 ∈ C\(R ∪ √−1R) satisfying the conditions

{α1, α1} ∩ {α2, α2} = ∅, {−α1,−α1} ∩ {α2, α2} = ∅. (3.27)

When k = �, the generalized parametric reflection equation reduces to the usual
parametric equation (2.60).

(c) The map

Rk(α) : (P (n)k, 2ωEk
) −→ (GU,k, ωk) : P �→ Rk,k

red(τ(α), α)(cU,k(P ), P ) (3.28)

is a symplectomorphism. Moreover, the parametric reflection map

Bk(α) = (idP (n)k
, cU,k)−1 ◦ Rk(α)

= (cU,k, idP (n)k
)−1 ◦ (S ◦ Rk,k

red(τ(α), α)) ◦ (cU,k, idP (n)k
)

(3.29)

is also a symplectomorphism, when P (n)k is equipped with the symplectic form
ωEk

. Here

(cU,k, idP (n)k
) : P (n)k −→ GU,k, P �→ (cU,k(P ), P ) (3.30)

and S : GU,k −→ GU,k is the restriction of the permutation map on P (n)k ×
P (n)k that sends (P1, P2) to (P2, P1).

Proof. (a) To simplify notation, we denote Bk simply by B. To show B2(α, P ) =
(α, P ), we make use the uniqueness of solution of refactorization problems. In
what follows, in order to facilitate our calculations, we will (by abuse of nota-
tion) denote gτ(α),UφPφ−1U∗ more economically as gB(α,P ) (see (3.23) above).
With this notation, the refactorization problem that defines B(α, P ) is given
by

σ(gα,P )gα,P = σ(gB(α,P ))gB(α,P ). (3.31)

Similarly, the refactorization that defines B2(α, P ) = B(B(α, P )) is given by:

σ(gB(α,P ))gB(α,P ) = σ(gB2(α,P ))gB2(α,P ). (3.32)
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Hence, it follows from the last two expressions and the uniqueness of solutions
of refactorization problems that B2 is the identity map. As B(B(α, P )) =
B(τ(α), B(α)(P )) = (α,B(τ(α))B(α)(P )), the second assertion follows.

(b) Take α1, α2 satisfying the assumptions, and let α3 = τ(α1), α4 =
τ(α2). We consider the graph of cU,k × cU,�, which we define to be

G(U, k, �) = {(P1, P2, cU,k(P1), cU,�(P2) | (P1, P2) ∈ P (n)k × P (n)�}.

(3.33)

In the next two expressions, we consider maps Rij(αi, αj) apply to quadru-
ples of projectors (P1, P2, P3, P4) ∈ P (n)k1 × P (n)k2 × P (n)k3 × P (n)k4 . The
notation means the following: if i < j (resp. i > j), Rij(αi, αj) is the map
which acts as R(αi, αj) (resp. R21(αi, αj)) on the i-th and j-the component
and as identity on the other components (see Theorem 2.2 for the definition
of R(αi, αj) and (2.19) for the definition of R21(αi, αj)). Let

Π1(α1, α2, α3, α4)

= Rk1,k3
31 (α3, α1)R

k2,k3
32 (α3, α2)R

k1,k4
41 (α4, α1)R

k2,k4
42 (α4, α2)

Rk3,k4
43 (α4, α3)R

k1,k2
12 (α1, α2), (3.34)

and
Π2(α1, α2, α3, α4)

= Rk3,k4
43 (α4, α3)R

k1,k2
12 (α1, α2)R

k2,k4
42 (α4, α2)

Rk2,k3
32 (α3, α2)R

k1,k4
41 (α4, α1)R

k1,k3
31 (α3, α1),

(3.35)

where we assume the parameters αa are such that all the maps on the right-
hand sides of the above two expressions are defined. In the following calcula-
tion, we will drop the superscripts to simplify notation. Using the Yang–Baxter
equation in the form

Rab(αa, αb)Rac(αa, αc)Rbc(αb, αc) = Rbc(αb, αc)Rac(αa, αc)Rab(αa, αb)
(3.36)

valid for any triplet a, b, c ∈ {1, 2, 3, 4} and the fact that

Rab(αa, αb)Rcd(αc, αd) = Rcd(αc, αd)Rab(αa, αb) (3.37)

for any pairwise distinct a, b, c, d, we have
Π1(α1, α2, α3, α4)

= R31(α3, α1)R32(α3, α1)R41(α4, α1)R42(α4, α2)R12(α1, α2)R43(α4, α3)

= R31(α3, α1)R32(α3, α1)R12(α1, α2)R42(α4, α2)R41(α4, α1)R43(α4, α1)

= R12(α1, α2)R32(α3, α1)R31(α3, α1)R42(α4, α2)R41(α4, α1)R43(α4, α1)

= R12(α1, α2)R32(α3, α1)R42(α4, α2)R31(α3, α1)R41(α4, α1)R43(α4, α1)

= R12(α1, α2)R32(α3, α1)R42(α4, α2)R43(α4, α1)R41(α4, α1)R31(α3, α1)

= R12(α1, α2)R43(α4, α1))R42(α4, α2)R32(α3, α1)R41(α4, α1)R31(α3, α1)

= Π2(α1, α2, α3, α4).

(3.38)
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Therefore, in particular, for α1, α2 satisfying (3.27) and α3 = τ(α1), α4 =
τ(α2), we obtain

Π1(α1, α2, α3, α4) |G(U,k,�)= Π2(α1, α2, α3, α4) |G(U,k,�) . (3.39)

Now consider the product σ(gα1,P1gα2,P2)gα1,P1gα2,P2 , where (P1, P2) belongs
to P (n)k × P (n)�. Then, corresponding to Π1(α1, α2, α3, α4) |G(U,k,�) applied
to (P1, P2, cU,k(P1), cU,k(P2)), we have the following sequence of expressions,
obtained by solving successively the respective refactorization problems, which
have unique solutions by the assumptions on α1, α2:

σ(gα2,P2)σ(gα1,P1)gα1,P1gα2,P2

= σ(g
α1,P

(ii)
1

)σ(g
α2,P

(ii)
2

)g
α2,P

(ii)
2

g
α1,P

(ii)
1

= σ(g
α1,P

(ii)
1

)g
α2,P

(iii)
2

σ(g
α2,P

(iii)
2

)g
α1,P

(ii)
1

= g
α2,P

(iv)
2

σ(g
α1,P

(iv)
1

)g
α1,P

(iv)
1

σ(g
α2,P

(iv)
2

)

= g
α2,P

(iv)
2

g
α1,P

(v)
1

σ(g
α1,P

(v)
1

)σ(g
α2,P

(iv)
2

),

(3.40)

so that

Π1(α1, α2, α3, α4)(P1, P2, cU,k(P1), cU,�(P2))

= (P (v)
1 , P

(iv)
2 , cU,k(P (v)

1 ), cU,�(P
(iv)
2 )).

(3.41)

In a similar way, corresponding to Π2(α1, α2, α3, α4) |G(U,k,�) applied to the
same quadruple in G(U, k, �), we find

σ(gα2,P2)σ(gα1,P1)gα1,P1gα2,P2

= σ(gα2,P2)gα1,P̃
(ii)
1

σ(g
α1,P̃

(ii)
1

)gα2,P2

= g
α1,P̃

(iii)
1

σ(g
α2,P̃

(iii)
2

)g
α2,P̃

(iii)
2

σ(g
α1,P̃

(iii)
1

)

= g
α1,P̃

(iii)
1

g
α2,P̃

(iv)
2

σ(g
α2,P̃

(iv)
2

)σ(g
α1,P̃

(iii)
1

)

= g
α2,P̃

(v)
2

g
α1,P̃

(v)
1

σ(g
α1,P̃

(v)
1

)σ(g
α2,P̃

(v)
2

),

(3.42)

which means that

Π2(α1, α2, α3, α4)(P1, P2, cU,k(P1), cU,k(P2))

= (P̃ (v)
1 , P̃

(v)
2 , cU,k(P̃ (v)

1 ), cU,�(P̃
(v)
2 )).

(3.43)

Equating (3.41) and (3.43), we conclude that

(P (v)
1 , P

(iv)
2 , cU,k(P (v)

1 ), cU,�(P
(iv)
2 )) = (P̃ (v)

1 , P̃
(v)
2 , cU,k(P̃ (v)

1 ), cU,�(P̃
(v)
2 )).

(3.44)
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To conclude the proof, we make use of (3.40) again and obtain

B1(α1)R21(τ(α2), α1)B2(α2)R12(α1, α2)(P1, P2)

= B1(α1)R21(τ(α2), α1)B2(α2)(P
(ii)
1 , P

(ii)
2 )

= B1(α1)R21(τ(α2), α1)(P
(ii)
1 , cU,�(P

(iii)
2 ))

= B1(α1)(P
(iv)
1 , cU,�(P

(iv)
2 ))

= (cU,k(P (v)
1 ), cU,�(P

(iv)
2 )).

(3.45)

Similarly, by using (3.42) again, we find

R21(τ(α2), τ(α1))B2(α2)R12(τ(α1), α2)B1(α1)(P1, P2)

= R21(τ(α2), τ(α1))B2(α2)R12(τ(α1), α2)(cU,k(P̃ (ii)
1 ), P2)

= R21(τ(α2), τ(α1))B2(α2)(cU,k(P̃ (iii)
1 ), P̃ (iii)

2 )

= R21(τ(α2), τ(α1))(cU,k(P̃ (iii)
1 ), cU,�(P̃

(iv)
2 ))

= (cU,k(P̃ (v)
1 ), cU,�(P̃

(v)
2 )).

(3.46)

Hence, the equality of (3.45) and (3.46) follows from (3.44).
(c) With the definition of the map (cU,k, idP (n)k

) in (3.30), it is clear that we
can regard Rk(α) as the composite

Rk(α) = Rk,k
red(τ(α), α) ◦ (cU,k, idP (n)k

). (3.47)

Now cU,k is a symplectomorphism, when P (n)k is equipped with the 2-form
ωEk

. By direct calculation, we have

(cU,k, idP (n)k
)∗ωk = c∗

U,k(ωEk
) + ωEk

= 2ωEk
, (3.48)

hence the map

(cU,k, idP (n)k
) : (P (n)k, 2ωEk

) −→ (GU,k, ωk) (3.49)

is a symplectomorphism as well. As the composition of symplectomorphisms is
a symplectomorphism, it follows from the above argument, (3.48), and Theo-
rem 3.4 (c) that Rk(α) is a symplectomorphism. To establish the corresponding
assertion for B(α), first note that

Bk(α) = π1 ◦ ιk ◦ Rk(α), (3.50)

where ιk is the inclusion map of GU,k in P (n)k×P (n)k, and π1 is the projection
map of this product space into the first factor. But now, it is easy to show
that π1 ◦ ιk = (idP (n)k

, cU,k)−1 = (cU,k, idP (n)k
)−1 ◦ S. Hence, the assertion

for Bk(α) follows as we can drop the factor 2 from the 2-form 2ωEk
, and S is

clearly a symplectomorphism. �

In view of Theorem 3.4 and Definition 2.17, Bk(α) is a parametric reflec-
tion map.
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4. The Rank 1 Case

The case where the projectors are of rank 1 is of special interest because it
arises in soliton-boundary interactions in multi-component soliton equations
such as the n-Manakov system on the half-line [18]. Of course, what we are
doing here is beyond what is required to understand the results in [18].

We begin by introducing quantities related to the ones which appear in
the last section in the case when the projectors are of rank 1. First, we have
the diffeomorphism

c̃U : CPn−1 −→ CP
n−1, [p] �→ [Up] (4.1)

which is conjugate to cU,1 with the relation

c̃U = j−1
δ ◦ cU,1 ◦ jδ, (4.2)

where jδ is defined in (2.22) Corresponding to the map c̃U is its graph, which
we define to be the submanifold of CPn−1 × CP

n−1, given by

G̃U = {([Up], [p]) | [p] ∈ CP
n−1}. (4.3)

Let ι̃1 : G̃U −→ CP
n−1 × CP

n−1 be the inclusion map, and let

(jδ × jδ)r : G̃U −→ GU,1, ([Up], [p]) �→ (π[Up], π[p]) = (Uπ[p]U
∗, π[p]) (4.4)

be the map induced by jδ × jδ, then by conjugating R1,1
red(τ(α), α) by the map

(jδ × jδ)−1
r , we have the reduced diffeomorphism

R̃red(τ(α), α) : G̃U −→ G̃U , (4.5)

where Rk,k
red(τ(α), α) is defined in (3.19). Clearly, R̃red(τ(α), α) is the reduction

of R̃(τ(α), α) := (jδ × jδ)−1 ◦ R1,1(τ(α), α) ◦ (jδ × jδ) to G̃U . We now define
the pre-symplectic form:

ω̃ = ι̃∗1(ωFS ⊕ ωFS), (4.6)

where ωFS is the Fubini–Study 2-form in (2.23). The proof of the next propo-
sition makes use of the invariance of ωFS under U(n), Theorem 2.3 (b), and
the relation ι̃1 ◦ R̃red(τ(α), α) = R̃(τ(α), α) ◦ ι̃1, it proceeds in a similar way
as in the proof of Proposition 3.2.

Proposition 4.1. The 2-form ω̃ is nondegenerate on G̃U so that (G̃U , ω̃) is a
symplectic submanifold of (CPn−1 × CP

n−1, ωFS ⊕ ωFS). Hence R̃red(τ(α)α)
is a symplectomorphism when its domain and codomain are equipped with the
symplectic form ω̃.

We next introduce the analog of Definition 3.3, for the case k = 1, at the
level of complex projective space.

Definition 4.2. We define the map

B̃ : (C \ (R ∪ √−1R)) × CP
n−1 −→ (C \ (R ∪ √−1R)) × CP

n−1 (4.7)

by

B̃ = (id × jδ)−1 ◦ B1 ◦ (id × jδ), (4.8)
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where id is the identity map of the parameter space C \ (R ∪ √−1R) and
B is defined in (3.23). The corresponding parametric map is defined by the
relation:

B̃(α, [p]) = (τ(α), B̃(α)([p])). (4.9)

From the above definition, we have (cf. (3.24))

R̃(τ(α), α)(c̃U ([p]), [p]) = (B̃(α)([p]), c̃U (B̃(α)([p])). (4.10)

The next result is the analog of Theorem 3.4 at the level of CP
n−1, for the

case where k = 1.

Proposition 4.3. (a) The map B̃ is an involution. In particular, B̃ satisfies

B̃(τ(α))B̃(α) = idCPn−1 . (4.11)

Explicitly,

B̃(α)([p]) = [(α + α)gα,π[p](τ(α))Up]

=
[(

I +
α − α

α + α

pp∗

p∗p

)
Up

]
.

(4.12)

(b) B̃(α) satisfies the parametric reflection equation

B̃1(α1)R̃21(τ(α2), α1)B̃2(α2)R̃12(α1, α2)

= R̃21(τ(α2), τ(α1))B̃2(α2)R̃12(τ(α1), α2)B̃1(α1)
(4.13)

for all α1, α2 ∈ C\(R ∪ √−1R) satisfying the conditions in (3.27).
(c) The map

R̃(α) : (CPn−1, 2ωFS) −→ (G̃U , ω̃) : [p] �→ R̃(τ(α), α)(c̃U ([p]), [p]) (4.14)

is a symplectomorphism. Moreover, the parametric map

B̃(α) = (idCPn−1 , c̃U )−1 ◦ R̃(α)

= (c̃U , idCPn−1)−1 ◦ (s̃ ◦ R̃red(τ(α), α)) ◦ (c̃U , idCPn−1)
(4.15)

is also a symplectomorphism, when CP
n−1 is equipped with ωFS. Here s̃ :

G̃U −→ G̃U is the map induced by the permutation map on CP
n−1 × CP

n−1

that maps ([p1], [p2]) to ([p2], [p1]).

Proof. (a) The assertion that B̃ is an involution follows from (4.8) and The-
orem 3.4 (a). Moreover, the relation in (4.11) follows from (3.25). Lastly, the
explicit formula in (4.12) can be obtained by direct computation by using
B̃(α) = j−1

δ ◦ B1(α) ◦ jδ and then by using the explicit formula for the simple
elements.

(b) We have the following relations

R̃(α1, α2) = (jδ × jδ)−1 ◦ R1,1(α1, α2) ◦ (jδ × jδ),

B̃2(α2) = (jδ × jδ)−1 ◦ B1
2(α2) ◦ (jδ × jδ),

B̃1(α1) = (jδ × jδ)−1 ◦ B1
1(α1) ◦ (jδ × jδ)

(4.16)
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from which we obtain

B̃1(α1)R̃21(τ(α2), α1)B̃2(α2)R̃12(α1, α2)

= (jδ × jδ)−1 ◦ B1
1(α1)R

1,1
21 (τ(α2), α1)B1

2(α2)R
1,1
12 (α1, α2) ◦ (jδ × jδ).(4.17)

In a similar way, we find

R̃21(τ(α2), τ(α1))B̃2(α2)R̃12(τ(α1), α2)B̃1(α1)

= (jδ × jδ)
−1 ◦ R1,1

21 (τ(α2), τ(α1))B
1
2(α2)R

1,1
12 (τ(α1), α2)B

1
1(α1) ◦ (jδ × jδ).(4.18)

The assertion therefore follows from (3.26) and the above relations.
(c) In view of the relation

R̃(α) = R̃red(τ(α), α) ◦ (c̃U , idCPn−1) (4.19)

and Proposition 4.1, it suffices to show that (c̃U , idCPn−1) is a symplectomor-
phism, when its domain is equipped with 2ωFS, and its codomain is equipped
with ω̃. This checking is as in (3.49). Finally, it is straightforward to derive the
first line of (4.15). From this relation and what we just proved, it is now plain
that B̃(α) is a symplectomorphism, when CP

n−1 is equipped with ωFS . �

In view of Proposition 4.3, B̃(α) is a parametric reflection map.
Now we fix a positive integer N. For given α1, . . . , αN ∈ C\(R∪ √−1R),

let αi+N = τ(αi), i = 1, . . . , N. We will make the assumption that {αi, αi} ∩
{αj , αj} = ∅, for i �= j, 1 ≤ i, j ≤ 2N. Given [p−

1 ], . . . , [p−
N ] in CP

n−1, consider
the refactorization problem

σ(gα1,π
[p−

1 ]
· · · gαN ,π

[p−
N ]

)gα1,π
[p−

1 ]
· · · gαN ,π

[p−
N ]

= gαN ,π
[p+

N ]
· · · gα1,π

[p+
1 ]

σ(gαN ,π
[p+

N ]
· · · gα1,π

[p+
1 ]

).
(4.20)

Under the above assumptions, the problem has unique solutions for [p+
1 ], . . . ,

[p+
N ]. We define

Π(α1, . . . , αN ) : (CPn−1)N −→ (CPn−1)N

([p−
1 ], . . . , [p−

N ]) �→ ([c̃U ([p+
1 ]), . . . , c̃U ([p+

N ])).
(4.21)

We will call Π(α1, . . . , αN ) the N -body polarization reflection map. Note that
when N = 1, Π(α1) is nothing but the parametric reflection map B̃(α1). When
N = 2, it follows from the calculations in (3.40) and (3.45) that Π(α1, α2) can
be obtained as the composite

B̃1(α1)R̃21(τ(α2), α1)B̃2(α2)R̃12(α1, α2). (4.22)

Thus, Π(α1, α2) is just the map which appears in the formulation of the para-
metric reflection equation (4.13).

Theorem 4.4. Under the above assumptions, the N -body polarization reflection
map Π(α1, . . . , αN ) is a symplectomorphism, when (CPn−1)N is equipped with
the symplectic 2-form

Ωα1,...,αN
= (α1 − α1)ωFS ⊕ · · · ⊕ (αN − αN )ωFS. (4.23)
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Proof. Let B̃i(αi), 1 ≤ N be the map from (CPn−1)N to itself which acts as
B̃(αi) on the i-th factor of (CPn−1)N and acts as the identity on the other
factors. Similarly, we define R̃ij(αi, αj) (resp. R̃ij(τ(αi), αj)) for 1 ≤ i ≤ j ≤ N
(resp. for ≤ 1 ≤ j < i ≤ N ) as the map from (CPn−1)N to itself which acts
as R̃(αi, αj) on the i-th and the j-th factor of (CPn−1)N and as the identity
on the other factors. Since the unique solution of the refactorization problem
can be obtained by applying Theorem 2.2 (a) repeatedly, it follows that we
can obtain the map Π(α1, . . . , αN ) as a composition of maps of the three types
which we introduced above. Now, from Theorem 2.3 (b), for each (i, j) with
1 ≤ i < j ≤ N (resp. 1 ≤ j < i ≤ N) the map R̃ij(αi, αj) (resp. R̃ij(τ(αi), αj))
is a symplectomorphism, when (CPn−1)N is equipped with the structure in
(4.23). On the other hand, it follows from Proposition P:4.3 (c) that for each
1 ≤ i ≤ N, B̃i(αi) is also a symplectomorphism of ((CPn−1)N ,Ωα1,...,αN

).
Hence, the assertion follows. �

We will wrap up this section by explaining the physical meaning of the
polarization reflection map in the context of the n-Manakov system on the
half-line x ≥ 0 with mixed Dirichlet/Neumann boundary conditions at x = 0.
We will also point out, for general Hermitian U ∈ U(n), the relationship
between the full polarization-scattering map in (2.30), and that of the N -body
polarization reflection map in (4.21).

Consider an N -soliton solution of the half-line problem, with mixed Dirich-
let/Neumann boundary conditions at x = 0. As we pointed out earlier, this
can be obtained from a 2N -soliton solution on the full line with norming con-
stants and the poles αj satisfying certain mirror symmetry conditions [18].
More precisely, when t → −∞, the 2N -soliton behaves like the sum of 2N
1-soliton solutions characterized by αj = 1

2 (uj + ivj) for the real solitons and
τ(αj) = −αj for the ‘mirror’ solitons, where uj , vj > 0 for j = 1, . . . , N. Thus
−2uj is the velocity of the real j-th 1-soliton on x > 0 while 2uj is the velocity
of the j-th ‘mirror’ 1-soliton on x < 0, j = 1, . . . , N. Assume

0 < u1 < u2 < . . . < uN (4.24)

so that the 1-solitons are arranged in the order 1, . . . , N on the positive x-axis
as t → −∞. The system evolves towards the boundary at x = 0, where the real
solitons interact with the ‘mirror’ solitons, which then turn into real solitons.
To summarize, we have the following scattering picture [17]:

2N, 2N − 1, . . . , N + 1|1, 2, . . . , N, t → −∞,

N,N − 1, . . . , 1|N + 1, N + 2, . . . , 2N, t → ∞,
(4.25)

where the vertical bar stands for the boundary at x = 0. Consequently, the
polarization-scattering map is given by:

([Up−
N ], . . . , [Up−

1 ], [p−
1 ], . . . , [p−

N ]) �→ ([Up+
N ], . . . , [Up+

1 ], [p+
1 ], . . . , [p+

N ])
(4.26)

with U = V ISV ∗, where p−
j (resp. Up+

j ) is the asymptotic unit polarization
vector of the j-th real soliton as t → −∞ (resp. t → ∞), j = 1, . . . , N.



Reflection Maps Associated with Involutions

With this information, we can now interpret the corresponding N -body
polarization reflection map, given by Π(α1, . . . , αN ), as defined in (4.21), in
the case where U = V ISV ∗ and with the above assumptions. And the general
definition in (4.21) is motivated by this scenario.

To understand the relationship between the polarization scattering map
in (4.26) and the N -body polarization reflection map, we introduce further
notations. For this purpose, let (c̃U )N = c̃U × . . . c̃U (N copies), and let

β : (CPn−1)N −→ (CPn−1)N , ([p1], . . . , [pN ]) �→ ([pN ], . . . , [p1]). (4.27)

Denote the graph of (c̃U )N ◦ β by

G̃N
U = {((c̃U )N ◦ β(x), x) | x ∈ (CPn−1)N}. (4.28)

Then, the polarization-scattering map in (4.26) is the reduction

Sred(τ(αN ), . . . , τ(α1), α1, . . . , αN ) : G̃N
U −→ G̃N

U . (4.29)

Therefore, if s̃N : G̃N
U −→ G̃N

U is the map induced by the permutation map on
(CPn−1)N × (CPn−1)N that maps (X,Y ) to (Y,X), we have

Π(α1, . . . , αN )

= β ◦ ((c̃U )N ◦ β, id(CPn−1)N )−1(s̃N ◦ Sred(τ(αN ), . . . ,

τ(α1), α1, . . . , αN )) ◦ ((c̃U )N ◦ β, id(CPn−1)N ),

(4.30)

where α stands for (α1, . . . , αN ) and similarly τ(α) is the shorthand for (τ(α1),
. . . , τ(αN )). Note that in the case when N = 1, the map β is just the identity
map and so in this case, the relation in (4.30) is just the relation in (4.15). It
is in this sense that we have a generalization of the relation in (4.15).

Remark 4.5. For given projectors P−
1 ∈ P (n)k1 , . . . , P

−
N ∈ P (n)kN

, we can
consider the refactorization problem

σ(gα1,P −
1

· · · gαN ,P −
N

)gα1,P −
1

· · · gαN ,P −
N

= gαN ,P+
N

· · · gα1,P+
1

σ(gαN ,P+
N

· · · gα1,P+
1

).
(4.31)

Clearly, we can formulate the analog of Theorem 4.4 in this context, by intro-
ducing the map

(P−
1 , · · · P−

N ) �→ (cU,k1(P
+
1 ), . . . , cU,kN

(P+
N )). (4.32)

We will leave the details to the interested reader.

5. Reflection Maps and Poisson Lie Groups

We begin by formulating two results in the context of a Poisson Lie group
(G, πG). Then we will apply the general result to the rational loop group Krat.

We will make the following assumptions.

(A1) There exist a left partial group action ξ of G on itself given by a family
of subsets {Gg}g∈G of G and a family of bijections {ξg : Gg−1 −→ Gg}g∈G

satisfying the usual conditions [5,43]. We also assume the existence of a right



L.-C. Li and V. Caudrelier Ann. Henri Poincaré

partial group action η of G on itself given by the same family of subsets above
and a family of bijections {ηg : Gg−1 −→ Gg}g∈G.

(A2) Let

G ∗ G = {(g, h) ∈ G × G | g ∈ Gh−1 , h ∈ Gg−1}. (5.1)

We assume G ∗ G is an open submanifold of G × G and that the partial group
actions are compatible in the sense that

gh = ξg(h)ηh(g) for all (g, h) ∈ G ∗ G. (5.2)

In addition, we assume that

Gg−1 = Gg for all g ∈ G (5.3)

so that ξg and ηg are maps from Gg to itself.
From the definition of G ∗ G, it is clear that G ∗ G is symmetric in the

sense that

(g, h) ∈ G ∗ G ⇐⇒ (h, g) ∈ G ∗ G. (5.4)

(A3) For all (g, h) ∈ G ∗ G, we assume that

Gξg(h) = Gh, Gηh(g) = Gg. (5.5)

In addition, we assume that

g1 ∈ Gg2 ⇐⇒ g2 ∈ Gg1 for g1, g2 ∈ G. (5.6)

(A4) Let σ : G −→ G be a Poisson involution which is also a Lie group
anti-morphism such that

(g, h) ∈ G ∗ G =⇒ (σ(h), σ(g)) ∈ G ∗ G, (5.7)

and moreover,

σ(ξg(h)) = ησ(g)(σ(h)), σ(ηh(g)) = ξσ(h)(σ(g)). (5.8)

Let the graph of σ be the submanifold

G(σ) := {(σ(g), g) | g ∈ G}. (5.9)

We assume

G′ := (σ, idG)−1(G(σ) ∩ (G ∗ G)) �= ∅, (5.10)

where (σ, idG) is the diffeomorphism defined by

(σ, idG) : G −→ G(σ), g �→ (σ(g), g). (5.11)

In addition, we assume that

the equation xσ(x) = 1 has only the solution x = 1. (5.12)
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Remark 5.1. If in assumption (A1), ξ and η are group actions (rather than
partial group actions), then we have Gg = G for all g ∈ G. In this case, we
can replace G ∗ G in assumption (A2) by the product G × G and (5.3) will
hold automatically. Also, there is no need to make the assumptions in (A3).
However, in (A4), we still have to assume the relations in (5.8) and that the
equation xσ(x) = 1 has only the trivial solution x = 1. The reader will see
that they are essential in our discussion below.

In the following, we will equip G × G with the product Poisson structure
so that the open submanifold G ∗ G of G × G has an induced Poisson bracket.
Similarly, we will equip the open submanifold G′ of G with the induced Poisson
bracket.

Definition 5.2. We define

R : G ∗ G −→ G ∗ G (5.13)

by the formula

R(g, h) = (ηh(g), ξg(h)), (g, h) ∈ G ∗ G (5.14)

and define the (putative) reflection map B associated with R and σ by

B : G′ −→ G′, g �→ ηg(σ(g)). (5.15)

Remark 5.3. (a) In the definition of B, the reason why we know ηg(σ(g)) ∈ G′

follows from σ(ηg(σ(g)) = ξσ(g)(g) ∈ Gσ(g) = Gηg(σ(g)) and ηg(σ(g)) ∈ Gg =
Gξσ(g)(g), where we have used the definition of G′ and (5.5).

(b) Defining the reflection map B by the formula in (5.15) is a matter of
choice we pick here. The fact is that instead of B, we could use B′ : G′ −→
G′, σ(g) �→ ξσ(g)(g) because of the mirror symmetry. Indeed, if we call B the
reflection map, then we might call B′ the mirror reflection map, as motivated
by the collisions scenario in Sect. 4 (since we can consider the map which keeps
track of the change in polarization vector of the mirror 1-soliton).

Theorem 5.4. Under assumptions (A1)–(A3) above,
(a) R is a Yang–Baxter map, i.e.

R12R13R23 = R23R13R12, (5.16)

where we interpret (5.16) as an equality of maps from G(3) to itself, where

G(3) = {(g1, g2, g3) ∈ G × G × G | (gi, gj) ∈ G ∗ G, i �= j}. (5.17)

(b) R is a Poisson diffeomorphism, when the open Poisson submanifold G ∗ G
is equipped with the structure induced from G × G.

Proof. (a) Take (g1, g2, g3) ∈ G(3). Then clearly, R23(g1, g2, g3) is defined. In
order for R13R23(g1, g2, g3) to be defined, we require that g1 ∈ Gξg2 (g3) and
ξg2(g3) ∈ Gg1 . As Gξg2 (g3) = Gg3 by (A3), the first condition is satisfied and
so the second condition follows by (5.6) in (A3). This gives

R13R23(g1, g2, g3) = (ηξg2 (g3)(g1), ηg3(g2), ξg1g2(g3)). (5.18)
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To show that R12R13R23(g1, g2, g3) is defined, we require that ηξg2 (g3)(g1) ∈
Gηg3 (g2) = Gg2 and ηg3(g2) ∈ Gηξg2 (g3)(g1) = Gg1 . However, the former follows
as we have g2 ∈ Gg1 = Gηξg2 (g3)(g1) and so the second one is true as well by
(5.6) in (A3). So this leads to

R12R13R23(g1, g2, g3) = (ηg2g3(g1), ξηξg2 (g3)(g1)(ηg3(g2)), ξg1g2(g3)). (5.19)

In a similar way, we can show that R23R13R12(g1, g2, g3) is defined, and we
have

R23R13R12(g1, g2, g3) = (ηg2g3(g1), ηξηg2 (g1)(g3)(ξg1(g2)), ξg1g2(g3)) (5.20)

The argument to show that the expressions in (5.19) and (5.20) are equal is
identical to the one in Corollary 5.2 of [43].

(b) The proof follows the same argument as in the proof of Theorem 5.13
in [43]. �

Lemma 5.5. The map

Σ : G × G −→ G × G, (g, h) �→ (σ(h), σ(g)), (g, h) ∈ G × G (5.21)

is a Poisson involution with stable locus (G × G)Σ given by the graph of σ,
defined in (5.9) above. Hence, G(σ) is a Dirac submanifold of G × G, and the
bundle map of its induced Poisson structure is given by the formula

π#
G(σ)(σ(g), g)(a, b) =

1
2
(π#

G (σ(g))(a) + π#
G (σ(g))T ∗

σ(g)σ(b),

π#
G (g)(b) + π#

G (g)T ∗
g σ(a)). (5.22)

Consequently, the open submanifold G′(σ) of G(σ) defined by

G′(σ) := G(σ) ∩ (G ∗ G) (5.23)

carries an induced Poisson structure πG′(σ).

Proof. Let s : G × G −→ G × G be the swap map, given by s(g, h) = (h, g),
(g, h) ∈ G × G. Then, clearly Σ = (σ × σ) ◦ s. Since both s and σ × σ are
Poisson involutions, it follows that Σ is a Poisson involution and the assertion
about its stable locus is clear. To compute the bundle map of the induced
Poisson structure on the Dirac submanifold (G×G)Σ = G(σ), we make use of
the formula

π#
G(σ) = pr ◦ π#

G×G |G(σ) ◦ pr∗, (5.24)

where pr : TG(σ)(G × G) −→ TG(σ) is the projection map induced by the
vector bundle decomposition

TG(σ)(G × G) = TG(σ) ⊕
⋃

(σ(g),g)∈G(σ)

ker (T(σ(g),g)Σ + 1). (5.25)

From
T(σ(g),g)G(σ) = {(Tgσ(v), v) | v ∈ TgG},

ker (T(σ(g),g)Σ + 1) = {(−Tgσ(v), v) | v ∈ TgG},
(5.26)
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a direct calculation shows that

pr(σ(g),g)(v, w) =
1
2
(v + Tgσ(w), w + Tσ(g)σ(v)). (5.27)

Using this, another computation gives

pr∗
(σ(g),g)(a, b) =

1
2
(a + T ∗

σ(g)σ(b), b + T ∗
g σ(a)). (5.28)

By making use of (5.24), (5.27), and (5.28), a straightforward but lengthy
calculation then gives the formula in (5.22). Lastly, it follows from (A4) that
G′(σ) �= ∅, hence the assertion is clear. �

In order to analyse B, we introduce the diffeomorphism

(σ, idG)′ : G′ −→ G′(σ), g �→ (σ(g), g). (5.29)

If iG′(σ) : G′(σ) −→ G(σ) and iG′ : G′ −→ G are the embedding maps, we
have the relation

iG′(σ) ◦ (σ, idG)′ = (σ, idG) ◦ iG′ . (5.30)

Clearly, we can push the Poisson structure on G forward to G(σ) using
this map so that (σ, idG) is a Poisson diffeomorphism when its codomain is
equipped with the pushforward structure. We now compute this structure and
describe its consequences.

Lemma 5.6. (a) For all g ∈ G, (a, b) ∈ T ∗
g G(σ), we have

Tg(σ, idG) ◦ π#
G (g) ◦ T ∗

g (σ, idG)(a, b)

= (Tgσπ#
G (g)T ∗

g σ(a) + Tgσπ#
G (g)(b), π#

G (g)T ∗
g σ(a) + π#

G (g)(b))

= 2π#
G(σ)(σ(g), g)(a, b) (5.31)

so that (σ, idG) : (G, πG) −→ (G(σ), 2πG(σ)) is a Poisson diffeomorphism.
(b) The map (σ, idG)′ : (G′, πG′) −→ (G′(σ), 2πG′(σ)) is a Poisson diffeomor-
phism.

Proof. (a) We have the formulas

Tg(σ, idg)(v) = (Tgσ(v), v), T ∗
g (σ, idG)(a, b) = b + T ∗

g σ(a) (5.32)

from which we obtain the second line in (5.31). To pass from the second line to
the last line in (5.31), we use the fact that σ is a Poisson map from which we
find Tgσπ#

G (g) = π#
G (σ(g))T ∗

σ(g)σ. The assertion therefore follows by comparing
with the formula in (5.22).

(b) This is a consequence of part (a) and the relation in (5.30). �

With this preparation, we are now ready to establish the following. For
this purpose, consider the reduction of the map Σ in (5.21) to G ∗ G:

Σ |G∗G: G ∗ G −→ G ∗ G, (5.33)

in the sense of Theorem 2.14, which is well defined by (A4). Moreover, it is a
Poisson involution since Σ is a Poisson involution and the embedding map of
G ∗ G into G × G is Poisson.
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Theorem 5.7. (a) The map R commutes with Σ | G ∗ G, i.e. Σ |G∗G ◦R =
R ◦ Σ |G∗G and therefore its reduction

Rred : G′(σ) −→ G′(σ) (5.34)

is a Poisson diffeomorphism, when G′(σ) is equipped with any nonzero multiple
of πG′(σ). That is, Rred is a Dirac reduction of R.

(b) Let s : G × G −→ G × G be the swap map, given by s(g, h) = (h, g)
for (g, h) ∈ G × G. Then, the map

B : (G′, πG′) −→ (G′, πG′) (5.35)

satisfies the relation

B = ((σ, idG)′)−1 ◦ (s ◦ R)red ◦ (σ, idG)′ (5.36)

and hence is a Poisson diffeomorphism. Here (s ◦ R)red : G′(σ) −→ G′(σ).
(c) The map B satisfies the reflection equation

B1R21B2R12 = R21B2R12B1 (5.37)

where we interpret (5.37) as an equality of maps from G
(2)
σ to itself, where

G(2)
σ = {(g1, g2) ∈ G′ × G′ | (g1, g2) ∈ G ∗ G, (g1, σ(g2)) ∈ G ∗ G}. (5.38)

Hence B is a reflection map.

Proof. (a) Let (g, h) ∈ G ∗ G. Then from gh = ξg(h)ηh(g), we have Σ |G∗G

◦R(g, h) = (σ(ξg(h)), σ(ηh(g)). On the other hand, since σ is a Lie group anti-
morphism, it follows that σ(h)σ(g) = σ(ηh(g))σ(ξg(h)). From this, we find that
R ◦ Σ |G∗G (g, h) = R(σ(h), σ(g)) = (σ(ξg(h)), σ(ηh(g)). Since (g, h) ∈ G ∗ G
is arbitrary, we thus conclude that R commutes with the Poisson involution
Σ |G∗G . Since the stable locus of Σ |G∗G is given by G′(σ), it follows from
Theorem 5.4 (b) above and Dirac reduction (Corollary 2.9) that the map
R |G′(σ) is a Poisson diffeomorphism, when G′(σ) is equipped with the induced
structure in (5.22).

(b) In view of the last relation in (5.8), the map that sends R(σ(g), g) to
ηg(σ(g)) is given by (idG, σ)−1. But clearly, (idG, σ) = s |G(σ) ◦(σ, idG). As s
is an involution, the relation in (5.36) follows. Now by Lemma 5.6, the map
(idG, σ) : (G, πG) −→ (G(σ), 2πG(σ)) is a Poisson map. On the other hand,
it follows from part (a) above that R |G(σ) is a Poisson map, when G(σ) is
equipped with the structure 2πG(σ). As s◦Σ = Σ◦ s = (σ ×σ) |G∗G, as can be
easily verified, it follows by Dirac reduction that s |G(σ) is Poisson, when G(σ)
is equipped with the structure 2πG(σ). Lastly, it follows from the above dis-
cussion that (idG, σ)−1 is a Poisson map from (G(σ), 2πG(σ)) to (G, πG). Since
composition of Poisson maps is Poisson, the assertion regarding Bσ follows
from (5.36).

(c) We will establish the relation

R31R32R41R42R43R12(g1, g2, σ(g1), σ(g2))

= R43R12R42R32R41R31(g1, g2, σ(g1), σ(g2))
(5.39)
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under the assumption that (g1, g2) ∈ G
(2)
σ . We begin by showing that the first

line above is well defined and in the process, we will compute the expression
step by step. Since (g1, g2) ∈ G∗G, and (5.8) holds, we have the factorizations

g1g2 = h2h1, h2 = ξg1(g2), h1 = ηg2(g1)

σ(g2)σ(g1) = σ(h1)σ(h2),

σ(h1) = ξσ(g2)(σ(g1)), σ(h2) = ησ(g1)(σ(g2))
(5.40)

from which it follows that

R43R12(g1, g2, σ(g1), σ(g2)) = (h1, h2, σ(h1), σ(h2)). (5.41)

On the other hand, since g2 ∈ G′, we can check that h2 ∈ G′, and hence we
have the factorization

σ(h2)h2 = j2σ(j2), j2 = ξσ(h2)(h2) (5.42)

so that

R42R43R12(g1, g2, σ(g1), σ(g2)) = (h1, j2, σ(h1), σ(j2)). (5.43)

Now we want to apply R41 and R32 to the expression above. In order to be able
to do this, we form σ(j2)h1, and for solvability of the refactorization problem,
we require that σ(j2) ∈ Gh1 and h1 ∈ Gσ(j2). By symmetry, and by using (5.5),
(5.36), and (5.34), it suffices to show that h1 = ηg2(g1) ∈ Gσ(j2) = Gσ(h2) =
Gσ(g2). Again by symmetry, it suffices to show that σ(g2) ∈ Gηg2 (g1) = Gg1 .

But the validity of this follows by assumption that (g1, σ(g2)) ∈ G ∗ G. Thus,
we have

σ(j2)h1 = k1σ(�2), σ(h1)j2 = �2σ(k1), k1 = ξσ(j2)(h1), σ(�2) = ηh2(σ(j2))
(5.44)

and therefore

R32R41R42R43R12(g1, g2, σ(g1), σ(g2)) = (k1, �2, σ(k1), σ(�2)). (5.45)

Finally, from the assumption that g1 ∈ G′, we can show that k1 ∈ G′, hence
we have the factorization

σ(k1)k1 = �1σ(�1), �1 = ξσ(k1)(k1). (5.46)

Therefore, when we apply R31 to both sides of (5.45), we obtain

R31R32R41R42R43R12(g1, g2, σ(g1), σ(g2)) = (�1, �2, σ(�1), σ(�2)). (5.47)

In a similar way, we can show that the second line in (5.39) is well defined
under the assumption that (g1, g2) ∈ G

(2)
σ . Successively, we have

R43R12R42R32R41R31(g1, g2, σ(g1), σ(g2))

= R43R12R42R32R41(r1, g2, σ(r1), σ(g2))

= R43R12R42(s1, s2, σ(s1), σ(s2))

= R43R12(s1, t2, σ(s1), σ(t2))

= (u1, u2, σ(u1), σ(u2)),

(5.48)
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where

σ(g1)g1 = r1σ(r1), r1 = ξσ(g1)(g1)

σ(g2)r1 = s1σ(s2), σ(r1)g2 = s2σ(s1), s1 = ξσ(g2)(r1), σ(s2) = ηr1(σ(g2))

σ(s2)s2 = t2σ(t2), t2 = ξσ(s2)(s2)

s1t2 = u2u1, σ(t2)σ(s1) = σ(u1)σ(u2), u2 = ξs1(t2), u1 = ηt2(s1). (5.49)

By using (5.44), we have

�2 = ξσ(h1)(j2) = ξσ(h1)ξσ(h2)(h2) = ξσ(g1g2)g1(g2). (5.50)

On the other hand, on using (5.49), we obtain

u2 = ξs1(t2) = ξs1σ(s2)(s2) = ξσ(g2)r1σ(r1)(g2) = ξσ(g1g2)g1(g2). (5.51)

This shows �2 = u2. Now, on using (5.40), (5.42),(5.44), and (5.46), we find

σ(g1g2)g1g2 = �2�1σ(�2�1). (5.52)

Similarly, on using the relations in (5.49), we obtain

σ(g1g2)g1g2 = u2u1σ(u2u1). (5.53)

Therefore, on equating (5.52) and (5.53), we conclude that x = (�2�1)−1(u2u1)
satisfies the equation xσ(x) = 1. Consequently, x = 1 and as �2 = u2, we
must have �1 = u1 and this establishes the validity of the relation in (5.39).
To conclude the proof, we will deduce the relation B1R21B2R12(g1, g2) =
R21B2R12B1(g1, g2), (g1, g2) ∈ G

(2)
σ from (5.39), by using its proof. Thus, we

have
B1R21B2R12(g1, g2) =B1R21B2(h1, h2)

=B1R21(h1, σ(j2))

=B1(k1, σ(�2))

= (σ(�1), σ(�2)).

(5.54)

In a similar fashion, we find that

R21B2R12B1(g1, g2) = (σ(u1), σ(u2)). (5.55)

Hence the assertion follows. �

Remark 5.8. Note that since R is a Yang–Baxter map, the composite s ◦ R is
a braiding operator. Thus according to (5.36), the reduction of this braiding
operator to G′(σ) is smoothly conjugate to B.

We now apply the above results to the case where the Poisson Lie group
is Krat, for which the involution σ is given by the formula in (3.9). For this
example, recall that the definition of Krat ∗ Krat is given in (2.38) (we will
connect this with the object in (5.1) under assumption (A2)), which is an
open submanifold of Krat×Krat, equipped with the product Poisson structure.
Hence, Krat ∗ Krat is a Poisson submanifold of Krat × Krat. We have to check
that the assumptions in (A1) to (A4) are satisfied. First of all, recall from
Theorem 2.5 that we have Kg−1

rat = Kg
rat for g ∈ Krat, and that we have a left

partial group action ξ and a right partial group action η. With the definition
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of Kg
rat in (2.37), it is clear that the geometric object constructed in (5.1)

with G = Krat is in agreement with what we defined in (2.38). Moreover, the
validity of the other conditions under (A2) are clear. Regarding the conditions
under (A3), first of all, the validity of K

ξg(h)
rat = Kh

rat and K
ηh(g)
rat = Kg

rat is
a consequence of the fact that (ξg(h)) = (h) and (ηh(g)) = (g). The other
condition is also clear as we have g1 ∈ Kg2

rat iff supp (g1) ∩ supp (g2) = ∅ and
this condition is symmetric in g1 and g2. We now come to (A4). To check the
condition in (5.6), suppose supp (g) = {ai, ai}�

i=1, supp (h) = {bj , bj}m
j=1. Then

supp (σ(g)) = {−ai,−ai}�
i=1 and supp (σ(h)) = {−bj ,−bj}m

j=1. From this, it is
clear that supp (g)∩supp (h) = ∅ iff supp (σ(g))∩supp (σ(h)) = ∅. To show that
K ′

rat := (σ, idKrat)
−1(Krat(σ)∩(Krat×Krat)) �= ∅, simply take a simple element

gα,P . As we already observed in Proposition 3.1, for α ∈ C\(R ∪ √−1R),
gα,P ∈ K ′

rat. Moreover, ηgα,P
(σ(gα,P )) = σ(ξσ(gα,P )(gα,P )). To show that

ησ(g)(σ(h)) = σ(ξg(h)), ξσ(h)(σ(g)) = σ(ηh(g)) for all (g, h) ∈ Krat ∗ Krat,

(5.56)

we can use Theorem 2.5 (a), according to which the solution of the refactor-
ization problem

σ(h)σ(g) = ξσ(h)(σ(g))ησ(g)(σ(h)),

where (ησ(g)(σ(h)) = (σ(h)), (ξσ(h)(σ(g)) = (σ(g))
(5.57)

is unique and the fact that (σ(ξg(h))) = (σ(h)) and (σ(ηh(g))) = (σ(g)). Let

K
(2)
rat,σ = {(g1, g2) ∈ (K ′

rat × K ′
rat) ∩ (Krat ∗ Krat) | (g1, σ(g2)) ∈ Krat ∗ Krat}.

(5.58)

Take (g1, g2) ∈ K
(2)
rat,σ and going through the proof in Theorem 5.7 (c) and

making use of the same notations there, we just have to check that if we take
x = (�2�1)−1(u2u1) ∈ Krat, then we must have x = I.

Proposition 5.9. The element x = (�2�1)−1(u2u1) ∈ Krat which satisfies the
equation xσ(x) = I is the n × n identity matrix I.

Proof. We will keep track of the divisor structure of the various factors that
appear in the refactorization problems. First of all, we have

(h1) = (g1), (h2) = (g2), (j2) = (h2), (σ(j2)) = (σ(h2)),

(k1) = (h1), (σ(�2)) = (σ(j2)), (�2) = (j2)

(�1) = (k1), (σ(�1)) = (σ(k1)).
(5.59)

From this, we find that

(�1) = (k1) = (h1) = (g1), (�2) = (j2) = (h2) = (g2). (5.60)

Similarly, from

(r1) = (g1), (σ(r1)) = (σ(g1)), (s1) = (r1), (σ(s2)) = (σ(g2)),

(t2) = (s2), (σ(t2)) = (σ(s2)), (u1) = (s1),

(u2) = (t2),
(5.61)
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we find

(u1) = (s1) = (r1) = (g1), (u2) = (t2) = (s2) = (g2). (5.62)

Since supp(g1) ∩ supp(g2) = ∅, we have

(u2u1)0 = (g1)0 + (g2)0, (u2u1)∞ = (g1)0 + (g2)0. (5.63)

Likewise,

((�2�1)−1)0 = (g1)0 + (g2)0, ((�2�1)−1)∞ = (g1)0 + (g2)0. (5.64)

We want to show that x has no poles. To do so, suppose the contrary, that is,
x has poles and zeros. Let

(x)0 =
d∑

i=1

miαi +
d∑

i=1

miαi +
e∑

j=1

njβj +
e∑

j=1

njβj , (5.65)

where
d∑

i=1

miαi +
d∑

i=1

miαi ≤ (g1)0 + (g1)0,

e∑
j=1

njβj +
e∑

j=1

njβj ≤ (g2)0 + (g2)0.

(5.66)

Then from the definition of σ, we have

(σ(x)−1)0 =
d∑

i=1

mi(−αi) +
d∑

i=1

mi(−αi) +
e∑

j=1

nj(−βj) +
e∑

j=1

nj(−βj).

(5.67)

Since g1, g2 ∈ K ′
rat, we have supp(gi) ∩ supp(σ(gi)) = ∅, i = 1, 2. Hence the

following conditions hold:

{αi, αi}d
i=1 ∩ {−αi,−αi}d

i=1 = ∅, {βj , βj}e
j=1 ∩ {−βj ,−βj}e

j=1 = ∅. (5.68)

In view of these conditions, it follows from the equation x = σ(x)−1 and (5.65),
(5.67) that ∑

i

miαi + miαi =
∑

j

nj(−βj) +
∑

j

nj(−βj). (5.69)

But this is a contradiction to the assumption that (g1, σ(g2)) ∈ Krat ∗ Krat.
Consequently, x has no poles, and the only such element in Krat is the identity
matrix I. �

Now let πKrat be the induced Poisson structure on Krat as a Poisson Lie
subgroup of (K, {·, ·}J ). Recall that Krat × Krat is equipped with the product
Poisson structure, and the open submanifold Krat ∗ Krat with the induced
structure. Likewise, we will equip the open submanifold K ′

rat of Krat with the
induced structure. We next check that σ is a Poisson involution.

Proposition 5.10. The map σ defined in (3.9) is a Poisson involution, when
Krat is equipped with πKrat

.
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Proof. Extend σ to the full group K using the same formula, denote the ex-
tension by σe, and let ιKrat : Krat −→ K be the inclusion map. In view of
the relation ιKrat ◦ σ = σe ◦ ιKrat and the fact that ιKrat is a Poisson map, it
suffices to show that σe : (K, {·, ·}J ) −→ (K, {·, ·}J ) is a Poisson map. So let
ϕ,ψ ∈ F(K). Then by a direct calculation, for g ∈ K, we have

D(ϕ ◦ σe)(g)(z) = U∗D′ϕ(σe(g))(−z)U

D′(ϕ ◦ σe)(g)(z) = U∗Dϕ(σe(g))(−z)U.
(5.70)

Therefore, by the definition of J in (2.45), we have

J(D(ϕ ◦ σe)(g))(z) = U∗J(D′ϕ(σe(g))(−z)U,

J(D′(ϕ ◦ σe)(g))(z) = U∗J(Dϕ(σe(g))(−z)U.
(5.71)

Hence on using the pairing (·, ·)k in (2.44), we find that

(J(D(ϕ ◦ σe)(g)),D(ψ ◦ σe)(g))k = −(J(D′ϕ(σe(g)),D′ψ(σe(g)))k,

(J(D′(ϕ ◦ σe)(g)),D′(ψ ◦ σe)(g))k = −(J(Dϕ(σe(g)),Dψ(σe(g)))k
(5.72)

and the assertion that σe is Poisson follows from this formula. �

From this proposition, we can now conclude that the map Σ in (5.21)
with G = Krat is a Poisson involution by Lemma 5.5 and that its stable locus
is given by Krat(σ), the graph of σ. This is a Dirac submanifold of Krat ×Krat

and its induced Poisson structure πKrat(σ) is related to the structure πKrat

through the relation in (5.22). Consequently, the open submanifold K ′
rat(σ)

carries an induced structure πK′
rat(σ). We are now ready to state the following

consequence of Theorem 5.7.

Corollary 5.11. (a) The map R commutes with Σ |Krat∗Krat, i.e. Σ |Krat∗Krat

◦R = R ◦ Σ |Krat∗Krat
, and therefore, its reduction

Rred : K ′
rat(σ) −→ K ′

rat(σ) (5.73)

is a Poisson diffeomorphism, when K ′
rat(σ) is equipped with any nonzero mul-

tiple of πK′
rat(σ).

(b) The map

B : (K ′
rat, πK′

rat
) −→ (K ′

rat, πK′
rat

) (5.74)

satisfies the relation

B = ((σ, idKrat
)′)−1 ◦ (s ◦ R)red ◦ (σ, idKrat

)′ (5.75)

and hence is a Poisson diffeomorphism. Here (s ◦ R)red : K ′
rat(σ) −→ K ′

rat(σ)
is the reduction of s ◦ R to K ′

rat(σ).
(c) The map B satisfies the reflection equation

B1R21B2R12 = R21B2R12B1 (5.76)

where we interpret (5.76) as an equality of maps from K
(2)
rat,σ to itself, where

K
(2)
rat,σ is defined in (5.58). Hence, B is a reflection map.
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6. Conclusion

This work was motivated by the soliton-boundary interaction process for the
n-Manakov system on the half-line, with mixed Dirichlet/Neumann boundary
conditions at x = 0, as described in [18]. We have taken a first step here in (a)
constructing reflection maps from Yang–Baxter maps on various geometrical
objects and understanding their relationships, (b) describing the symplectic
and Poisson geometry of such maps. Thus, we have proved here, for the first
time, the symplectic/Poisson properties of reflection maps. As is clear from our
work in the previous sections, an involution plays an important role on each
level, this is a structure which emerges in the authors’ use of the nonlinear
mirror image method in [18]. In this concluding section, we will give a short
discussion of several issues which we have not addressed in this work, as well
as making some comments on the significance of our findings.

As in the case of the polarization-scattering map in [43], the N -body
polarization reflection map in Sect.4 should be regarded as a component of
the full scattering map, which would include as its components the map which
gives the change in asymptotic velocities and the map which gives the change in
phase shifts. We hope to extend our results here to that of the full scattering
map, as well as the construction of action-angle variables on multi-soliton
manifolds for the half-line problem. This latter endeavour, of course, would
involve the presence of the soliton parameters αi in the symplectic form, as
they are part of the scattering data in the reflectionless case.

On the other hand, although we are focusing our attention here to the
n-Manakov system, however, it is clear that the same methodology can be
adapted to other multi-component integrable soliton equations on the half-
line, if the nonlinear mirror image method applies, an important ingredient
being the existence of an involution which can be extended to a Lie group anti-
morphism. This is in fact one of the motivations behind formulating several
results in an abstract way in Sect. 5, when we deal with reflection maps on
Poisson Lie groups, as different multi-component integrable soliton equations
correspond to different Lie groups. In this connection, let us also recall that
in [43], the author shows that if we denote the Poisson Lie group dual to
(K, {·, ·}J ) by KJ , and the dressing orbit of KJ through gα,Ek

by L(α,Ek),
then the map R | L(α1, Ek) × L(α2, E�) (where R is given in (2.41)) and the
map Rk,�(α1, α2) in (2.18) are conjugated to each other (see (5.68) in [43]).
Thus, from this point of view, we could have developed our results in Sects. 3
and 4 of our present work starting with the results in Sect. 5. But of course
this would be unnecessarily complicated. The point we are trying to make here
is that the Poisson Lie group carries the complete information, as there are
various dressing orbits of KJ which could be of interest in the study of higher-
order multi-soliton solutions (the ones in [18] correspond to Riemann–Hilbert
problems with distinct simple zeros).

In any case, extending the results in Sects. 3 and 4 to the case of Poisson
Lie groups via the method of Dirac reduction is of intrinsic geometric interest.
Here we recall the work in [46], in which they show how to construct a solution
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of the Yang–Baxter equation on a group, assuming the existence of a pair of
actions satisfying a compatibility condition. This result is purely algebraic and
in particular is devoid of any meaning in Poisson geometry. In Theorem 5.4,
by following the same argument which was used in the proof of Theorem 5.13
in [43] for the case of Krat, we show how two compatible partial actions on a
Poisson Lie group G can give rise to a Yang–Baxter map R which is also a
Poisson diffeomorphism. And then by postulating the existence of a Poisson
involution σ on G which is also a Lie group anti-morphism satisfying some ad-
ditional conditions, we can define a reflection map B which is also a Poisson
diffeomorphism. And the method we use provides another illustration of the
use of Dirac reduction, which was first developed in [44] in order to under-
stand a class of spin Calogero–Moser systems associated with symmetric Lie
subalgebras, and the spin-generalized Ruijsenaars–Schneider equations which
correspond to N -soliton solutions of A

(1)
n affine Toda field theory [8].

We hope to have a better understanding of the integrability of the various
reflection maps in this work in the future.
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