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Predicting pore-carrier solubility and size-
exclusivity towards the rational design of type II
porous liquid solutions†

Austin M. Mroz, ‡*ab Benjamin D. Egleston, ‡a James Sherwood, c

Ruby C. Morel, ad Kim E. Jelfs a and Rebecca L. Greenaway *a

Porous liquids are a sub-class of porous materials that combine permanent porosity, typically associated with

solids, with the fluidity and fast mass-transfer capabilities of liquids, making them ideal candidates for gas

storage and separation applications. One strategy to form porous liquids is the dissolution of discrete and

permanently porous molecular species at relatively high concentrations in cavity-excluded solvents, thus

introducing permanent porosity into the liquid in which it is dissolved and ensuring a solution of reasonable

porosity is obtained. To access high-performance porous liquids for target applications, the selection of

both the porous molecular species and the cavity-excluded solvent is key to ensuring the solvent is

permanently excluded and the pore carrier is highly soluble. Finding new solvents that fit both these

requirements is challenging, often resulting in a trial-and-error approach. While predictive data-driven

models may be attractive, the youth of the porous liquid field currently limits the availability of data

necessary to train robust models. Here, we present a computational workflow for the discovery of new

porous liquid solutions combining solubility prediction software and a size-exclusivity prediction algorithm

that correctly predicts size-exclusivity; this is followed by experimental validation with a representative

system. Our workflow yielded size-excluded solvent and soluble porous organic cage pairs, leading to the

realisation of a new porous liquid with enhanced methane uptake compared to previous systems

discovered in a purely experimental high-throughput brute-force manner, highlighting the advantages of

incorporating a computational workflow in the discovery of new porous liquids.

Porous liquids (PLs) are a relatively new sub-class of porous

materials that combine the guest-accessible cavities of porous

solids with the fast mass transfer of liquids, yielding a liquid

featuring permanent ‘intrinsic’ porosity.1,2 This unique func-

tionality was initially proposed by James and colleagues,3

leading to the categorization of PLs that was recently expanded

into four types (Fig. 1a): type I – neat molecular liquids featuring

permanent, intrinsic porosity; type II – empty molecular hosts

dissolved in cavity-excluded solvents; type III – multiphase

uids featuring porous materials dispersed in cavity-excluded

solvents; and later, type IV – neat, meltable extended porous

solids.4 The recent experimental realisation of porous liquids

has since motivated a host of potential applications to be

Fig. 1 (a) Illustration of conventional liquids (featuring transient

‘extrinsic’ porosity) with the four types of PLs (featuring permanent

‘intrinsic’ porosity) – type I and IV PLs consist of neat porous hosts that

are either in the liquid state or meltable respectively, whereas type II

and type III consist of porous hosts either dissolved or dispersed in

cavity-excluded solvents, respectively; (b) representative schematic

summarising the computational workflow and experimental validation

process presented in this work to streamline the discovery of type II

porous liquid solutions.
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investigated, including gas separation, gas storage, and catal-

ysis,5 among others.6 Indeed, PLs have garnered attention as

potential replacements for current industrial liquid sorbents,7

as they would be more easily implemented in existing industrial

ow processes than their solid-state counterparts.

Considering the diversity of potential applications and the

component space, PLs are an interesting functional materials

design problem. To select the ideal PL for a target application,

an understanding of the macroscopic properties and the

materials space that PLs span is required. Further, while each

type offers intrinsic porosity, they differ in the ease of design,

the required properties of their constituent components, and

the overall properties of the resulting PL. For example, type I PLs

possess higher viscosities compared to type II and III PLs and

require materials exhibiting a low melting point without risk of

decomposition or loss of porosity. Comparing type II and III

PLs, both require cavity-excluded solvents, but the former relies

on highly soluble porous material–solvent combinations, and

the latter, being dispersions, require careful design to ensure

stable dispersions are formed that do not suffer from phase

separation (i.e., creaming or sedimentation). The design rules

for selecting a suitable solvent that both highly solubilizes the

molecular host and is size-excluded are still unclear, and the

move towards less toxic and lower cost solvents is also desirable

for scale-up. Owing to these challenges, here we focus on the

development of a workow for type II PLs to streamline the

identication of size-excluded and highly solubilising solvents,

although the developed methods here would also be extensible

to type III PLs where size-exclusivity and a poor solubilizing

solvent is required.

Designing type II PLs for target applications may be

considered as a general multi-objective optimisation problem;

the ideal molecular host and solvent pair must be selected to

generate a viable PL, ensuring the solvent is permanently cavity-

excluded and that a reasonable pore concentration is achieved.

At their initial discovery, one example of a type II PL was

prepared based on a vertex-disordered imine porous organic

cage (POC) mixture dissolved in a size-excluded perchlorinated

solvent aer a manual screen.8 Although seemingly simple, and

while we have previously developed and reported an experi-

mental high-throughput workow to accelerate screening,9,10

this design problem is challenging in that it is simply too vast

for brute-force experimental screening techniques. Indeed,

there are estimated to be 1060 small molecules that could

feasibly be synthesised; this does not account for the iso-

reticular and combinatorial materials that could be formed via

the modular assembly of these molecular building blocks.

Consider a modest database of 1000 molecular hosts and 10 000

candidate solvent molecules; this results in 10 million potential

PLs, and is prohibitively large for exhaustive computation or

experiment.

While computational studies may compliment experiment

and offer atomistic insights into macroscopic properties, these

measured properties are a result of interactions at varying time

and length scales, and, thus, require models ranging from

classical to quantummechanical levels of theory.7 Indeed, while

computational studies may require fewer resources than

experiments, PL simulations are still time- and resource-

intensive, oen necessitating periodic models to assess bulk

liquid properties and limiting the chemical space that can be

feasibly explored using a high-throughput computational

approach. This massive design space is further complicated by

the youth of the PL eld which limits data availability and, by

extension, the applicability of data-driven methods, which

typically require large amounts of data for predictive accuracy.

Chemical design initiatives for PLs have typically fallen into

two main categories: (i) a brute-force screening approach –

large-scale candidate testing based on resource availability or

chemical intuition;9,10 or (ii) a down-selection or ltering

approach – sequential constraints are placed on candidate

combinations to decrease design space.11 Each of these

approaches is limiting. For example, brute-force screening

approaches like that reported previously for imine POC based

type II PLs is resource- and time-intensive, requiring extensive

synthesis and use of low accuracy measurements to increase

throughput. Whereas high-performing candidates may be

inadvertently excluded within a down-selection or ltering

approach. Further, current computational methodologies

employ several assumptions, which can limit their utility across

PL formulations.12 Thus, alternative methods are required to

assess the viability of potential pore carrier/solvent

combinations.

Here, we present a computational, high-throughput work-

ow for identifying potential new PL solutions featuring two

prediction algorithms to assess solubility and size-exclusivity of

candidate pore carrier/solvent combinations. By combining

solubility prediction soware and a size-exclusivity prediction

algorithm, and subsequently experimentally validating the

predictions (Fig. 1b), we demonstrate the utility of these algo-

rithms to design novel porous liquid solutions. While we

employ a down-selection strategy for the purposes of experi-

mental feasibility in this workow demonstration, we empha-

sise the utility and efficiency of the predictive algorithms

independently.

Workflow and results

Our overall workow for type II PL discovery involves a series of

steps including: (i) solubility prediction and application of

a series of selection parameters to identify potential highly

solubilising solvents with desirable properties for a specic

pore carrier; (ii) size-exclusivity prediction of the identied

solvents from the porous motif using a custom algorithm that

exploits information from atomistic simulations to identify

potential pore carrier/solvent pairs that would successfully form

a type II PL; followed by (iii) experimental validation via solu-

bility and gas uptake measurements.

To develop and validate the proposed workow, we rst

selected a representative pore carrier to serve as an initial case

study. Of the candidate hosts for type II PLs, porous organic cages

(POCs) present an example of an ideal molecular motif for PLs for

several reasons: (i) POCs are discrete molecules containing

a permanent cavity accessible through windows, and (ii) POCs

possess an inherent solution processibility and maintain their

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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pore structure upon dissolution. Owing to these factors, POCs

have formed the basis of a substantial number of type II PLs to

date.13–15 However, complicating the computational challenges,

POCs generally possess fairly low solubilities overall. A number of

design strategies have therefore been employed to increase their

solubility enabling high concentration PLs to be realised, with the

most popular being the formation of statistical ‘scrambled’

distributions of POCs with mixed vertex functionality to disrupt

the solid-state packing and increase the solubility in a range of

size-excluded solvents (Fig. 2a).8–10 In addition, one particular

‘scrambled’ POC, 33:133-R (Fig. 2b), has previously been screened

in a wide range of solvents using both brute-force manual

measurements and simulations, as well as high-throughput

experimental screening,9,10 leading to a family of type II PLs by

varying the size-excluded solvent (Fig. 2c), and also providing

initial data for the solubility screening workow here.

Solubility candidate selection workow

To access PLs with a reasonable pore volume capable of

demonstrating an enhancement in gas uptake over the neat

solvent, the pore carrier needs to be dissolved at relatively high

concentrations (type II) or low concentrations to access high

concentration dispersions (type III). For the former, solubility is

typically determined using manual measurements in each

solvent. Computationally assessing solubility is more chal-

lenging, owing to the complexity of competing inter- and

intramolecular interactions. Previously, COSMO-RS,

a continuum solvation model based on quantum chemical

calculations, was used to estimate the solubility of one POC

candidate with a series of solvents to design POC-based type II

PLs.11 Yet, this method achieved only 58% accuracy, likely due

to limitations associated with representing interactions

between secondary and tertiary amines. Data-driven solubility

prediction approaches have shown promise with respect to

increased accuracy and robustness of the models.16,17 Yet, these

models are trained on datasets of small organic molecules,

which are not representative of the PL chemical space. While

the candidate solvent molecules could be considered to fall

within the small molecule datasets, the porous hosts would not

– even the molecular hosts comprising type II PLs are too large

for tools developed for small molecules. We therefore looked to

develop an alternative, more accurate solubility assessment

protocol for PLs.

Hansen solubility parameters (HSPs) provide a method to

quantitatively assess the likelihood one molecular compound

will dissolve another and have seen previous success across

a variety of applications, ranging from pharmaceuticals, to

polymers, and materials chemistry. For example, HSPs have

been used to identify solvents that optimise the dispersion of

nanomaterials such as graphene,18 to select green extraction

solvents for bioactive compounds,19 to predict the dispersion of

nanoparticles in polymeric lms,20 to predict miscible mixtures

for cocrystal formation of a drug and conformer,21 and to

correlate the solubility parameters that govern self-assembly in

molecular gels.22 Typically, however, HSPs are used to ratio-

nalise and predict the solubility behaviour of small molecules,

polymers, and particles, rather than discrete large molecules

such as candidate POCs. In addition, the requirement for

solvent size-exclusivity to form type II PLs may affect the overall

solubility and present a unique challenge. Therefore, here, we

wanted to explore the applicability of HSPs to PL solubility

prediction.

With HSPs, each molecule is associated with three polarity

scales describing the energy density of dispersion forces (dd),

dipolar intermolecular forces (dp), and hydrogen bonds (dh).

Solubility is then assessed by comparing the HSPs of the

molecules of interest – the focal tenet being that molecules with

Fig. 2 (a) Schematic illustrating the formation of a type II PL by dissolving a statistical distribution of ‘scrambled’ POCs in a size-excluded solvent

(grey spheres); (b) synthesis of a mixture of vertex-disordered POCs via a dynamic imine condensation – combining 4 equivalents of 1,3,5-

triformylbenzene with 3 equivalents of (1R,2R)-cyclohexane-1,2-diamine (used to formCC3) and 3 equivalents of 2-methylpropane-1,2-diamine

(used to form CC13) affords a scrambled 33:133-R POCmixture; (c) the range of size-excluded solvents used previously to dissolve 33:133-R and

form type II PLs.9,10

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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similar HSPs are more likely to form a soluble mixture. To use

HSPs in a predictive manner, we needed to determine the HSPs

of the scrambled 33:133-R POC mixture; this is accomplished

using the HSPiP soware package.23 The solute parameters for

the 33:133-R POC mixture are: dd = 22.3 MPa
1
2 indicating a large

dispersion contribution due to the large size of the cage mole-

cules; dp = 0.1 MPa
1
2 indicating there is no overall dipole across

the cage molecule; and dh = 12.5 MPa
1
2 indicating the cage

molecule would form effective solutions with polar and

hydrogen-bonding solutes. These parameters indicate that

a non-polar solvent, with no permanent overall dipole but still

polarisable, is preferential – this is represented by a high dd

parameter and a low dp parameter. Halogenated solvents, and

aromatic solvents to a lesser extent, provide this combination of

polarity attributes, which agrees with the initial size-excluded

solvents found to form highly concentrated PLs with 33:133-R

(Fig. 2c).

Solubility of a candidate solute/solvent pair is then predicted

by comparing the similarity of their HSPs. The Hansen inter-

action radius (Ra) is quantied by calculating the distance

between the HSPs of two substances in the three-dimensional

Hansen space:

(Ra)
2
= 4(dd2 − dd1)

2 + (dp2 − dp1)
2 + (dh2 − dh1)

2 (1)

Thus, molecules with lower Ra values andmore similar HSPs are

more likely to form a soluble mixture. Solubility prediction is

achieved by experimentally determining the maximum suitable

Ra value (R0). This ‘cut-off’ denes the radius of the resulting

‘solubility sphere’ centered on the solute. Here, all solvents

within the sphere (and so Ra # R0) are predicted to dissolve the

solute.

To generate a predictive solubility model for the scrambled

33:133-R POC mixture, a dataset containing the previous solu-

bility studies of the scrambled 33:133-R POC mixture in both

conventional and size-excluded solvents was manually collated,

and the resulting 44 solvents categorised based on the overall

solubility of the POC (Fig. 3a and Table S1†).9,10 To ensure

a reliable prediction method could be developed, the existing

solubility data contained both poorly and highly solubilising

molecules. This dataset was then used to predict the solubility

sphere for the 33:133-R POC mixture using the HSPiP soware

(Fig. 3b). Using this solubility sphere, there was an 84% success

rate on correlating the solvents with the solute parameters

(Table S2†), i.e., 84% of the solvents used to build the model

would have been correctly predicted to solubilise the POC

mixture. Furthermore, 86% of the known size-excluded solvents

included in the model also correlated with the predictions.

While a reasonably good success rate, there may be several

reasons why this is not higher: (i) we are applying the model to

a statistical distribution of a mixture of cage species instead of

a single molecular species; (ii) the cage structure is quite

complex, at least when compared to small molecules and

polymers; and (iii) the dataset included size-excluded solvents,

which do not solvate the entire cage molecule (i.e., the cavity of

the cage is unsolvated), although the prediction accuracy is

quite consistent between the full solvent dataset and just the

size-excluded solvent dataset, potentially suggesting that the

solvation state of the cage cavity is a less contributing factor.

The approximately 10 000 compounds in the HSPiP database

were subsequently ranked according to their calculated Ra

(likelihood to solubilise the POC mixture), with 2147 potential

new solvents identied (Fig. 3c). However, not all these candi-

dates would be suitable as a PL solvent – in addition to needing

to be size-excluded to ensure permanent porosity is maintained

in the liquid state (addressed in the next stage of the workow),

it would also be benecial for solvents to: (i) have a high boiling

point to reduce volatility issues and to enable potential

temperature-swing gas uptake/release cycles; (ii) have a rela-

tively low melting point so that they are in the liquid state at, or

near, room temperature; (iii) not have competing reactivity with

the POC imine bonds due to their reversible nature; (iv) be less

hazardous than some of those used previously (i.e., avoid

chlorinated solvents where possible); and (v) be affordable,

which is especially important when considering scale-up. Thus,

we implemented and applied a series of selection criteria as

a screening procedure to the top 100 ranked solute compounds

predicted by HSPiP (Fig. 3d and Table S3†). Starting with the

closest match based on Ra and working progressively down the

predicted solvents, the following selection criteria were there-

fore applied:

(a) Eliminate potential solvents that were not liquids at, or

near, room temperature (melting point # 40 °C), and that have

a high boiling point (boiling point $ 90 °C), to ensure the

selected solvents were liquids at reasonable temperatures and

were comparable to previously reported PL solvents to avoid

signicant evaporation during experiments. These tempera-

tures were selected so the solutions/mixtures could form liquids

at room temperature (20 °C, assuming some melting point

suppression could occur) and so solvent evaporation would not

signicantly affect the prepared samples when under experi-

mental investigation.

(b) Eliminate solvents with functionality that could poten-

tially react with the POC imines, such as amines and thiols,

alongside any with signicant hazards, including those fatal

upon any exposure route, carcinogens, mutagens, or teratogens.

(c) Finally, cost was considered, and any solvents that were

not commercially available at <£3/g were removed.24

Applying these criteria led to 24 solvents, of which, the top 10

solvents with an Ra below 9.7 MPa
1
2 were taken forward for

experimental validation of the solubility predictions and

subsequent size-exclusivity screening (Fig. 3e).

Experimental validation of solubility predictions

Prior to predicting the size-exclusivity of the potential solvents,

we rst validated the results of the solubility screening workow

by ensuring the scrambled 33:133-R POC mixture met

a minimum solubility threshold of 200 mg + 1 mL. This

concentration was selected as this was the solubility used in

previous studies to compare PLs formed from the same

scrambled POC mixture and corresponds to the ‘good’ solvent

category in the HSPiP input set. See Sections S2 and S3† for

a detailed description of synthetic and analytical methods.

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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Of the top 10 selected solvents, six were found to solubilise

the POC mixture at the 200 mg + 1 mL threshold and remain

liquid on dissolution (2-methylphenol, 2-ethylphenol, 1-phe-

nylethanol, 2-methyl-1-phenyl-2-propanol, and 2-phenyl-1-

propanol), one was found to solubilise the POC in a 200 mg +

1 mL sample at a slightly elevated temperature and remained

liquid on cooling to room temperature (diphenyl ether – a low

melting solid), one was found to solubilise the POC at 200 mg +

1 mL but solidied on cooling (2,6-dimethylphenol), and the

remaining three solvents (3-phenyl-2-propen-1-ol, 1-phenyl-3-

Fig. 3 (a) Curated dataset of existing experimental solubility measurements of 33:133-R POC mixture in a range of solvents, including size-

excluded examples; (b) the HSP model used to identify the solubility sphere of scrambled 33:133-R POC mixture (depicted as the blue triangle).

Datapoints are colored based on their solubility ranking. Compounds predicted to form a solubilizedmixture are highlighted by a bold, black line;

(c) HSP comparison between the POC mixture (triangle data point) and the HSPiP database of candidate solvents (circle datapoints). Candidate

solvent molecules are colored by their distance to the scrambled 33:133-R POC mixture (Ra); (d) solvent down-selection procedure and

associated number of candidate compounds remaining at each stage, with the top 10 from this down-selection procedure being selected and

taken forward for experimental testing and size-exclusivity prediction; (e) top 10 selected solvents predicted to form a highly solublemixture with

the 33:133-R POC which meets all the selection criteria. These predictions were validated experimentally – four candidates were identified to be

insoluble at the selected minimum 200 mg + 1 mL threshold (purple) and six candidates were identified to be soluble at 200 mg + 1 mL (green).

Each candidate is labelled with its Hansen interaction radius.

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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methyl-3-pentanol, 4-methyl-2,6-dimethoxyphenol) either did

not fully dissolve the POC or underwent gelation (Table S4†).

Overall, this led to a success rate of 70% when considering the

solvents that solubilised the POC in a 200 mg + 1 mL sample.

While this is slightly lower than the 84% accuracy of the HSP

method when validated using previous experimental data

(Table S1†), we believe this is a promising result, especially

given we were only screening against a minimum threshold

solubility over absolute solubilities. This promising results

motivates future exploration of this solubility prediction

method for porous liquid solutions. The six solvents that

formed highly soluble mixtures and remained liquid at room

temperature were taken forward for size-exclusivity prediction.

Computational size-exclusivity prediction algorithm

As discussed above, ensuring the cavities of the pore carrier

remain available for guest molecules is pivotal to PL perfor-

mance. Pore availability is largely dictated by the relative sizes of

the solvent, the cavity aperture, and the terminal chains of the

pore carrier, which may interpenetrate cavities.25 While experi-

mental efforts to assess size-exclusivity have evolved, they oen

infer size-exclusivity by measuring enhancements in gas uptake

over the neat solvents,7 and experimentation is an infeasible

solution to screening the vast chemical space spanned by PLs,

even when considering a sub-set of these in the form of POC-

based PLs like we are here. Computation offers a cost and

resource effective alternative,26 and there are several computa-

tional methods for assessing size-exclusivity; these range in

complexity from large-scale, atomistic molecular dynamics

(MD) liquid simulations,8,25 to size comparison methods relying

on static size measurements of pore carriers and solvent

molecules. While effective, large-scale MD simulations are

computationally intensive and prior studies have been limited

to small (<10models) datasets.25 Further, thesemethods require

a new simulation for each pore carrier–solvent pair, and, as

a result, is not feasibly implemented in potential, future HT

workows. While there are examples in the literature of size

comparison methods (i.e., comparing porous cavity diameters

with solvent diameters),11,12,27 current methods do not account

for the dynamics of each of the systems, and thus, struggle with

accuracy and robustness. Therefore, we developed an alterna-

tive and efficient computational method for predicting size-

exclusivity.

The novel size-exclusivity prediction algorithm presented

here is comprised of three main stages (Fig. 4a and S5†): (i)

system setup; (ii) size analysis; and (iii) size-exclusivity assess-

ment. POC and solvent molecules are treated independently

until the nal size comparison to determine size-exclusivity.

Each stage is described briey below using a representative

and well-characterised POC, CC3.28 Full computational details

of all stages are found in the ESI Section S5† and the code is

available on Github (https://github.com/austin-mroz/

SPLASHD).

System setup. First, POC and solvent single molecule struc-

ture models are generated and optimised using the soware

packages stk and stko,29,30 which support high-throughput

structure generation and optimisation for supramolecular

materials. To ensure that the computational dynamics are

reasonable and align with experimental results, y conformers

Fig. 4 (a) The full workflow of the size-exclusivity prediction algorithm. A library of systems containing candidate porous hosts and solvents are

prepared and optimised in separate workflows. Conformers are then extracted from a MD simulation, and the kernel density estimate (KDE) of

sizes is calculated for each system. Finally, to predict the size-exclusivity, the KDE overlap is calculated for each porous host/solvent pair; (b)

a sample KDE is presented for a representative POC, CC3. The KDE is derived from the distribution of cage apertures exhibited over the course of

a MD simulation; (c) size exclusivity is quantified by the KDE overlap of the porous host/solvent pair. Two common solvents are presented;

chloroform is not size excluded (KDE overlap > 0.35), while 15-crown-5 is size-excluded (KDE overlap < 0.25); (d) a schematic representation of

the POC/15-crown-5 size-excluded result, and the POC/chloroform not size-excluded result.

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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are then extracted from a MD simulation performed at the

target experimental conditions (i.e., temperature – 300 K); here,

we examine standard temperature and pressure.

Size analysis. Second, for each of the y extracted

conformers, the molecule size is assessed, and size is weighted

by the energy of the conformer from which it was calculated.

From these sizes, we generate a distribution using a kernel

density estimate (KDE). Essentially, the KDE is a measure of the

probability that the chemical system (POC or solvent) will take

on a particular size and can be considered as a histogram of the

dynamic dimensions of the system. In the case of PLs, we are

concerned with measuring the pore carrier cavity window

diameter, and the solvent dimensions. Thus, pore carriers and

solvents are treated with separate size analysis workows.

In the case of POCs, the window diameters are calculated

using PyWindow31 for each window in each extracted

conformer. These are then used to derive the KDE for the POC

system (Fig. 4b). Using the distribution of pore apertures to

predict guest selectivity has been previously used to identify

POCs for xenon/krypton separations;32 the published cage

window distribution is commensurate with the results we

observe with our workow.

In the case of solvent molecules, solvent dimensions are

obtained using a custom size metric built on SMORES33

(Fig. S6†), an extension of conventional steric parameters,

Sterimol.34,35 Here, we require a method that assesses all of the

dimensions of the solvent molecule and, in doing so, the

resulting distribution of solvent dimensions may be considered

a measure of “shape”. Importantly, considering the complex

solvent–cage interaction dynamics for candidate solvent mole-

cules,36we treat rigid and non-rigid candidate solvent molecules

differently; the entire solvent molecule is considered for rigid

candidates, whereas slices of the solvent molecules are

considered for non-rigid candidates (Fig. S7†). Full details on

calculating this metric are found in ESI Section S5.2.† Fig. 4c

depicts the KDE for two candidate solvents, 15-crown-5 and

chloroform, and further illustrates the unique characteristics of

the custom size metric that we present. Here, chloroform is

represented by a bimodal distribution, which indicates that the

chloroform molecule shape is dominated by two main vectors –

the Cl–Cl vector and the Cl–H vector. On the other extreme, 15-

crown-5 is represented by a wide, unimodal distribution,

reecting the underlying symmetry of the molecule.

Size-exclusivity prediction. Lastly, size-exclusivity is quanti-

ed by the overlap of the porous host KDE and the solvent KDE;

as a representative example, KDEs of two solvents (chloroform

and 15-crown-5) and CC3 are compared, and the calculated

overlaps are presented (Fig. 4c). We observe a large KDE overlap

for chloroform/CC3, which indicates that the cage window and

chloroform molecule are likely to take on conformations that

are similar in size, and a small KDE overlap for 15-crown-5/CC3,

which indicates that the 15-crown-5 solvent molecule takes on

conformations that are larger than the cage window. This is

expected considering chloroform is experimentally known to

not be size-excluded, while 15-crown-5 is known to be size-

excluded (Fig. 4d).8,9 The KDE overlap is used as a metric that

assesses the probability that a cage window and solvent

molecule will be similar sizes. Using the KDE overlap, we can

classify cage/solvent pairs as porous (KDE overlap < 0.25), not

porous (KDE overlap > 0.35), or potentially porous (0.25 < KDE

overlap < 0.35). These designations are determined by the KDE

kernel. Indeed, the KDE overlap cutoffs used to label candidate

solvents (KDE overlap = 0.30) may be linked to the Gaussian

kernel that was used to derive the KDE – within a standard

Gaussian normal distribution, 34% of the area is one standard

deviation away from the distribution mean. It should be noted

that for the edge cases where the solvent molecule is sufficiently

small and the pore carrier window distribution is sufficiently

large enough to yield KDE overlap < 0.25, we further check the

predictions by verifying that the mean of the pore carrier

window distribution is smaller than themean of the solvent size

distribution. If this is not the case, the pore carrier/solvent pair

is agged for manual inspection.

We validated our size-exclusivity prediction algorithm using

a subset of the solvents from the curated database of solubility

measurements above, focusing on those where it was experi-

mentally known if the solvent was size-excluded from the cavi-

ties of the scrambled 33:133-R POC mixture or not (Fig. 5). We

correctly predict the size-exclusivity of all the solvents in the

validation set. The size-exclusivity algorithm suggested that four

of the solvent molecules might be size-excluded; including 20-

hydroxyacetophenone, hexachloropropene, 1,1,2,2,3,3-hexa-

chloropropane, and perchloroethylene. We can examine the

KDE overlaps for each of the systems in relation to the experi-

mental gas uptake results. Experimentally, 20-hydrox-

yacetophenone (KDE overlap = 0.260) and hexachloropropene

(KDE overlap = 0.264) are size-excluded. Whereas 1,1,2,2,3,3-

hexachloropropane (KDE overlap = 0.292) and perchloroethy-

lene (KDE overlap = 0.349) are not size-excluded. This result

further reinforces the use of the KDE overlap as a size-exclusivity

prediction metric; the lower the KDE overlap, the more likely

the pore carrier/solvent are size-excluded, and vice versa.

The size-exclusivity of the candidate solvents identied by

the computational solubility screening protocol were then pre-

dicted (Fig. 6a). From the calculated KDE overlaps, we see that

diphenyl ether, 2-phenyl-1-propanol, 2-methylphenol, and 2-

ethylphenol should be size-excluded, and 2-methyl-1-phenyl-2-

propanol and 1-phenylethanol are potentially size-excluded.

While four of the six solvents were predicted to be size-

excluded, all combinations were taken forward as a means of

validating the size-exclusivity prediction algorithm.

Experimental validation of size-exclusivity via gas uptake

enhancement measurements

The six POC/solvent pairs that met the solubility threshold

(200 mg + 1 mL) above were screened for methane uptake using
1H NMR spectroscopy and compared to the neat solvents

(Fig. 6b). Full experimental details are presented in ESI Section

S6.† On addition of CH4 into the 2-methylphenol sample, the

POC precipitated with the condensed CH4 behaving as an anti-

solvent, meaning the uptake could not be determined. For the

remaining ve solutions, measured CH4 uptakes suggested that

four new type II PLs had been formed with 2-ethylphenol, 2-

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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phenyl-1-propanol, 1-phenylethanol, and 2-methyl-1-phenyl-2-

propanol, which all showed signicant uptake enhancement

compared to the neat solvents, albeit to varying degrees (3.3 to

8.1 times, Fig. 6b). This success indicates the model is effective

at size-exclusivity prediction. Furthermore, while CH4 uptake

was recorded in the diphenyl ether cage solution (5.7 mmol

mL−1), no direct comparison is made to its neat solvent coun-

terpart as it forms a solid at ambient conditions, and therefore

it cannot be determined whether a porous liquid has formed.

Thus, we are also unable to use this solvent in the size-

exclusivity validation.

The gas uptake in the new PLs based on 2-ethylphenol and 2-

methyl-1-phenyl-2-propanol gave higher CH4 solubilities (36

mmol mL−1 and 33 mmol mL−1) than those discovered in the

previous high-throughput experimental study at the same

concentration (20-hydroxyacetophenone, 26 mmol mL−1),9

though not meeting the uptakes recorded in the original

scrambled PL based on the perchlorinated solvent discovered in

2017 (81 mmol mL−1).10 The CH4 uptake in the porous liquids

based on 1-phenylethanol and 2-phenyl-1-propanol (both 14

mmol mL−1) were lower than 2-ethylphenol and 2-methyl-1-

phenyl-2-propanol. The lower uptake for 1-phenylethanol

reects the prediction that this solvent is only potentially size-

excluded based on the KDE, while the highest performing

solvents were predicted to be excluded with more condence.

The downeld shi of the CH4 NMR signals (Table S8†) reect

the gas uptake enhancement, the values range from −0.97 ppm

to −2.28 ppm in line with previously reported data, further

indicating the CH4molecules are occupying the cage pore as the

electron rich arene walls shield the 1H nuclei from the external

magnetic eld.

As a nal step, the maximum solubility of the four identied

PLs was determined and the CH4 uptakes at the respective

maximum solubility was measured (Fig. 6b). In previously

published studies, the PLs were compared at the 200 mg + 1 mL

formulation so the materials could be compared directly,

without requiring density measurements.9,10 Gas uptake

enhancement was shown to improve with the cage concentra-

tion previously. Similarly, here we observe enhanced CH4

uptake for the PLs at their maximum solubility for all samples

Fig. 5 Previously reported solvents whose size-exclusivity from scrambled 33:133-R POC is known from experiment. Solvents are labelled as

size-excluded (KDE overlap < 0.25), potentially size-excluded (0.25 < KDE overlap < 0.35), or not size-excluded (KDE overlap > 0.35), based on the

calculated KDE overlap.

Fig. 6 (a) Size-exclusivity predictions for solvents identified by the computational solubility screen. None of the six candidates are predicted to

be not size-excluded; (b) calculated methane uptakes from 1H NMR spectra for the 4 new PL systems at 200 mg + 1 mL and the maximum

concentration vs. the neat solvents, also compared to two previously reported high performing PL systems based on the same scrambled

33:133-R POC mixture at the same concentrations.9,10

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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(Fig. 6b). The chemical shi of the 1H environments in the CH4

gas are shied further downeld in the NMR spectra (Table

S8†), showing the increase in cavity concentration further

moves the equilibrium towards gas occupying the pores

present. The gas uptake in the 2-ethylphenol based PL at the

maximum cage concentration gives a CH4 uptake capacity of 60

mmolmL−1. This exceeds the maximum uptake enhancement of

the previously reported PL based on 2-hydroxyacetophenone (41

mmol mL−1) and reaches 74% of the uptake capacity of the PL

based on perchloropropene, making this the highest perform-

ing non-chlorinated scrambled cage-based PL to date. It should

be noted that in previous studies, additional purication of

solvents was required to give the enhanced porosity recorded,

here the high gas uptake and porosity was achieved using the

as-purchased solvent. Again, the extent of porosity recorded in

the PLs broadly correlates with the condence at which size-

exclusion was predicted, further validating the model. This

also shows how experimentally, size-exclusion can be viewed as

a continuous metric, with partial occlusion of the pore occur-

ring with partially excluded solvents. While the model does not

directly correlate with this, the KDE can reect the level of

porosity retained upon dissolution of the POC.

Conclusions

We presented and experimentally validated a high-throughput

computational workow to identify potential candidate pore

carrier/solvent PL combinations, as exemplied with type II

POC-based PLs. At each step of the workow, we identied

several features contributing to the performance of the PLs

designed using the scrambled 33:133-R POC mixture and

demonstrated the applicability of these computational tech-

niques to POC-based type II PL design.

Our study is the rst application of HSPs for POC solubility

prediction, obtaining an accuracy of 84% using the scrambled

33:133-R mixture and known solubility data. This approach is

powerful considering the massive chemical space spanned by

candidate solvents for PLs. While not an explicitly in silico

method (i.e., the solubility sphere of the candidate POCmust be

calculated using experimental results), HSPs allow us to exploit

the wealth of information contained within oen sparse solu-

bility datasets. Of the 10 candidate solvent molecules, 6 were

soluble at the tested threshold concentration. This highlights

one of the limitations of HSPs for PL solubility prediction – this

method mainly classies solvents as soluble or insoluble. This

classication is largely determined by the concentration of the

experimental solubility data that was used to calculate the

solubility sphere and may not be representative of other target

concentrations. However, despite its relatively simple approach

to solubility modelling, Hansen solubility theory is more than

adequate to conduct a rationalised solvent screening without

the need to consider the underlying fundamental thermody-

namic parameters, making it accessible and quick to

implement.

With respect to the integration of the size-exclusivity

prediction algorithm in this work, we observe a signicant

decrease in the resources necessary to access this material

property computationally. Indeed, computational size-

exclusivity predictions would otherwise require full liquid

simulations. There are two main contributions associated with

this algorithm: (i) the procedure used to obtain a quantitative

representation of molecular shape, and (ii) a quantitative metric

for size-exclusivity via the KDE overlap. The candidate solvent

size analysis workow indicates the importance of solvent

rigidity in size-exclusivity prediction. While intuitive, the

dynamic nature of PLs necessitates new ways of quantifying

molecular shape that account for the numerous degrees of

freedom within candidate solvent molecules. Conventional size

metrics are too rigid, in that they typically distill molecular

shape into a series of vectors that are likely too large considering

the dynamic interactions in the liquid state. By integrating

a measure of rigidity into our workow, we avoid this and gain

a better representation of candidate solvents that assesses the

size they would be as they interact with the cavity of the pore

carrier in PLs. Indeed, the solvent size analysis workow and

molecular shape metric has implications beyond PLs in systems

where molecular shape is a governing feature in property

prediction.

The predictive success of this algorithm indicates that PL

size-exclusivity is largely determined by the probability that the

pore carrier cavity apertures and the solvent molecule shape are

compatible (i.e., they spend a large portion of time in shapes/

sizes that are similar and/or the solvent molecule is smaller

than the cavity window). While intuitive, the successful appli-

cation of the KDE overlap quanties this and provides a gen-

eralisable, candidate-agnostic framework that is amenable to

the many porous materials or liquid carriers that are yet to be

developed or applied as porous liquids, including inorganic

systems and those featuring different functionalities.

Through this work, we identify four novel PLs featuring

a scrambled 33:133-R mixture and demonstrate the viability of

our computational workow. While we study single-solvent

systems here, we expect the generalisability of our algorithms

and workow to be extensible to mixed solvent systems.

Specically, mixed solvent system solubility could also be pre-

dicted for more concentrated solutions – on the basis that

mixed solvents normally dissolve block co-polymers better, and

we are using amixture of cages. This alsomay have implications

in the measured diffusivity of gases and viscosity. We expect the

generalisability of the prediction algorithms and theoretical-

experimental workow presented here to be advantageous for

and extensible to the accelerated discovery of POC-based type III

PLs, as well as PLs which incorporate other porous materials as

the pore carrier. Indeed, expanding to these systems merely

requires incorporating additional, already-established, compu-

tational methods for assessing cavity window diameter for

framework materials.

To validate the new computational methods presented in

this workow (application of HSP to POCs and the size-

exclusivity prediction algorithm), we setup this study as

a screening approach. Not only does this minimise the search

space that we are exploring experimentally, but it helps to

ensure positive ‘hits’ in the nal experimental validation. While

screening approaches for chemical design are useful, the close

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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integration of computation and experimentation in chemical

design and discovery are advantageous and may be achieved via

closed-loop discovery. Here, machine learning algorithms are

used to suggest the next set of experiments to perform to most

efficiently optimise the objective; these methods have been

shown to perform exceedingly well in chemical design and

optimisation studies.37,38 Thus, we envision the true utility of the

predictive methods presented in this work to be their applica-

tion in closed-loop discovery workows where they may be used

to assess particular areas of chemical space without the need to

perform resource-intensive experiments or simulations.

Data availability

The data supporting this article have been included as part of

the ESI,† and the related code can be found at https://

github.com/austin-mroz/SPLASHD.

Author contributions

R. L. G., A. M. M. and K. E. J. conceived the project, with R. L. G.

leading the experimental workow and K. E. J. leading the

computational modelling. J. S. carried out the solubility

prediction using HSPiP, R. C. M. designed and carried out the

solvent down-selection procedure, B. D. E. and R. L. G. carried

out the solubility screening, A. M. M. developed the computa-

tional size-exclusivity prediction algorithm and carried out the

size-exclusivity predictions, and B. D. E. synthesised the

scrambled cage and carried out the gas uptake

measurements. The paper was written by A. M. M., B. D. E., and

R. L. G., with input from all authors.

Conflicts of interest

The authors declare no conict of interest.

Acknowledgements

R. L. G. and K. E. J. thank the Royal Society for University

Research Fellowships and Enhancement Awards. K. E. J.

acknowledges the European Research Council through Agree-

ment No. 758370 (ERC-StG-PE5-CoMMaD). R. L. G. and B. D. E.

thank the Engineering and Physical Sciences Research Council

(EPSRC) under the Grant EP/W01601X/1. A. M. M. is supported

by the Eric and Wendy Schmidt AI in Science Postdoctoral

Fellowship, a Schmidt Sciences program. For the purpose of

open access, the author has applied a Creative Commons

Attribution (CC BY) license to any Author Accepted Manuscript

version arising.

References

1 P. F. Fulvio and S. Dai, Chem, 2020, 6, 3263–3287.

2 A. Joseph and S. Mathew, Resonance, 2023, 28, 751–769.

3 N. O'Reilly, N. Giri and S. L. James, Chem. - Eur. J., 2007, 13,

3020–3025.

4 T. D. Bennett, F.-X. Coudert, S. L. James and A. I. Cooper,

Nat. Mater., 2021, 20, 1179–1187.

5 C. He, Y.-H. Zou, D.-H. Si, Z.-A. Chen, T.-F. Liu, R. Cao and

Y.-B. Huang, Nat. Commun., 2023, 14, 3317.

6 D. Dai, L. Luo, Q. Zhu, D. Wang and T. Li, Angew. Chem., Int.

Ed., 2023, 62, e202303102.

7 B. D. Egleston, A. Mroz, K. E. Jelfs and R. L. Greenaway,

Chem. Sci., 2022, 13, 5042–5054.
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