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Climate change and increasing availability of resources such as carbon
dioxide are modifying forest functioning worldwide, but the effects of these
changes on forest structure are unclear. As additional resources become

available, for example, through CO, fertilization or nitrogen deposition,
large trees, with greater access to light, may be expected to gain further
advantages. Conversely, smaller light-suppressed trees might benefit more
iftheir light compensation point changes, while bigger trees may be the
most negatively impacted by increasing heat and drought. We assessed
recent changes in the structure of Earth’s largest tropical forest by analysing
30 years of Amazonian tree records across 188 mature forest plots. We

find that, atastand level, trees have become larger over time, with mean
tree basal areaincreasing by 3.3% per decade (95% Cl 2.4; 4.1). Larger trees
haveincreased inboth number and size, yet we observed similar rates

of relative size gainin large and small trees. This evidence is consistent

with aresource-driven boost for larger trees but also areductionin
suppression among smaller trees. These results, especially the persistence
and consistency of tree size increases across Amazonian forest plots,
communities and regions, indicate that any negative impacts of climate
change onforests and large trees here have so far been mitigated by the
positive effects of increased resources.

Forests worldwide are a key component of terrestrial carbon dynam-
ics. While land-use change in the tropics has driven alarge net carbon
flux to the atmosphere', research in remaining mature tropical forests
has revealed substantial and persistent increases in biomass and an
associated carbonsink®*. Widespread changes in biomass productivity
and mortality are also occurring across tropical forests, with at least
some of these changes likely driven by increased resource availability
from elevated atmospheric CO, concentrations or nitrogen deposi-
tion, and climatic stress with hotter temperatures and more intense
and frequent drought and storms>*”. These drivers can be at times
opposingforces, as while greater resource availability stimulates plant
growth®’, climate stressors can lead to lower productivity and increase
tree mortality rates'. The relative contribution of each of these drivers
and their netimpact on forest structure is poorly understood. To date,
the aggregate changes in mature tropical forest biomass have not been
interrogated in terms of shifts within forests in size-class dominance
and biomass contributions.

The effects of higher resources—either via CO, fertilization or
nitrogen deposition—on forest structure are unclear. Some ecological

theory predicts awinners-take-all response to the increasein resources,
where larger trees obtain disproportionate amounts of resources,
outcompeting smaller trees" ., Large trees are—almost by defini-
tion—stronger competitors in forests'>'>. Tree size provides such an
advantage that, to reach the canopy, trees invest large amounts of
carbon in vertical growth. Greater access to light allows large trees
to dominate light capture and thus accumulate more biomass®. This
boosts their relative fitness by making light unavailable to small trees'.
As a result, competition between trees is mostly size asymmetric'®,
with larger trees able to exploit greater amounts of resources. Larger
trees are also expected to dominate below-ground as investments in
foliage reflect larger investments in roots”. The more resource-rich
the area, the greater the advantage of large trees, either due to size
scaling with the capacity to use resources™ or because when other
resources are not limiting, competition for light becomes even more
important>*, Following this logic, at higher resource levels we would
anticipate awinners-take-all response, where the largest trees are able
to acquire a disproportionate amount of the increase in resources.
As large trees have high maintenance costs, an increase in resource
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Fig. 1| Potential impacts of growth stimulation and climate change on
foreststructure. a, Expected change in tree size distribution under different
hypotheses. D, diameter at breast height. b, Direction of anticipated changes
inkey tree size descriptors compared to the original forest. Winners-take-all
hypothesis: If increase in resources benefits the largest trees, asymmetric
competition for light willincrease, leading to greater light suppressionin the
understorey. This willincrease the mean tree size but will not affect the median
size, potentially decrease stem numbers (N), increase the scale parameter
(scale) and raise the Gini coefficient. Carbon-limited benefit hypothesis: If

CO, stimulates growth in understorey trees, improving their carbon balance,
smaller trees will grow more, increasing recruitment in smaller size classes.
This will raise stem numbers, decrease median tree size (with little effect on the
mean), increase the Gini coefficient and decrease the scale parameter. Shared
benefits hypothesis: Ifincrease in resources benefits all trees equally, we expect
anincrease in mean and median tree sizes and number of stems, a larger scale
parameter and no change in the Gini coefficient. Large trees lose hypothesis:
Ifincreasing heat, drought, lightning or wind disproportionately impact the
mortality of large trees, the mean tree size would decrease, median size would
remain unchanged, stem numbers would decline and the scale parameter would
lower, with lower inequality (greater Gini coefficient).

availability would offer substantial growth advantages. This would
further increase light suppression in the understory causing a reduc-
tioningrowth and potentially an increase in mortality of small trees'.
Consequently, the structure of the size-class distribution is expected
toshift, with more trees observed within the largest size classes and an
increase in mean tree size across the forest (Fig. 1).

Alternatively, additional resources could favour the most sup-
pressed trees, facilitatingincreased growth and survival rates in smaller
size classes®*?. In tropical forests light limitationin the understoreyis so
strongthatunderstorey trees live close to their light compensation point,
that is, on the edge between positive and negative carbon balance” >,
Therefore, a smallincrease in CO, may make a large relative difference
to net carbon balance by reducing photorespiration and stimulating
photosynthesis, so that the growth of understorey treesincreases and,
potentially, some trees that would otherwise have died survive”*. If
these effectsareimportant, higher CO, levels would weaken the effects

of asymmetric competition for lightleading to a carbon-limited benefit
response (Fig. 1). If this is the case, we expect a greater number of trees
within smaller size classes and changes in size on a relative basis to be
greater insmaller stems. These potential responses are not necessarily
mutually exclusive. Through a combination of the above processes, an
increasein resources can have similarimpacts across trees regardless of
their size leading to a benefits-shared response (Fig. 1).

In parallelto theincrease in resource availability, climate-related
drivers of change, such as drought, lightning, fire and windthrow
are increasing in frequency?. Overall, these changes are expected to
decrease productivity and increase tree mortality rates, in contrast to
the effects of increased resources®**, These impacts are expected to
be greatest for large trees, which tend to be most vulnerable to these
climatedrivers®?*°, and may resultin declinesin the size and frequency
of large trees. Under this scenario, where large trees lose, we expect a
redistribution of basal area (BA) towards smaller-size classes, result-
ing in biomass stocks being increasingly concentrated in small- and
medium-sized trees. Whether the structure of natural tree communities
in Amazoniahasbeenrespondingtoincreaseinresourcesand changing
climateinaccordance with any of these expectations remains untested.

In this Article, we assess the changes in tree size structure in the
Amazonoverthree decades. Awidespread, long-term dataset of mature
tropical forest plots is interrogated for structural change, and this
information is used to help understand the potential influence of
ongoing environmental change on forest structure. Specifically, we
test the winners-take-all, carbon-limited-benefit, benefits-shared and
large-trees-lose hypotheses by analysing changes in simple size struc-
ture parameters (Fig. 1) including mean and median tree size, the size
frequency distribution of trees within plots and the distribution of area
occupied by individual trees in a plot measured by the Gini coefficient.

Results

Atthestand level, mean treesize hasincreased across the whole domain
of Amazon forests (Figs. 2a, 3 and 4). Mean tree BA increased at a rate
of 1.45 x10™* m? yr', a3.3% gain per decade compared to initial sizes of
average 4.78 x 10”2 m% Median tree BA increased by 1.9% per decade,
while maximum tree size increased by 5.8% per decade (Table 1 and
Extended Data Figs.1and 2).

Larger trees gained more in absolute, but not relative, terms.
The rate of change in mean tree size was three times greater than
the increase in the median tree size (Table 1). This resulted in a
greater inequality in the area occupied by each tree shown by a sig-
nificant increase of 1% per decade in the Gini coefficient (Table 1 and
Extended Data Fig.2).

The scale parameter of the Weibull distribution increased by 3%
perdecade (Figs. 2b, 3 and 4) suggesting anincrease in the proportion
of large stems relative to small stems and an increase in the spread of
stem diameters across the distribution. This trend was widespread
across the Amazon basin (Fig. 2b) and observed across all four biogeo-
graphicregions (Extended Data Fig. 3 and Extended Data Table 1). We
further observed a significant increase of 1% per decade in the shape
parameter suggesting adeclineinthe frequencies of the smallest stems
and a shift towards a less right-skewed distribution (Table 1).

We found no evidence of change in total stem numbers (Fig. 4 and
Table 1), but the numbers of small stems (D <200 mm, D = diameter)
and understorey stems have both declined at rates of 1.2% and 3.6% per
decade, respectively (Table 1 and Extended Data Table 2). In parallel,
the number of large stems (D > 400 mm) hasincreased at arate of 6.6%
perdecade (Table1). Thisis consistent with the observed changesin the
Weibull distribution parameters. The number of medium-sized stems
(D =200-299 mm) has not changed.

Theincrease in tree size was observed across the whole commu-
nity. Mean tree BA increased for both the smallest (D <200 mm) and
largest (D =400 mm) size classes (Table 1), as well as for understorey
and overstorey trees (Extended Data Fig. 4 and Extended Data Table 2).
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Fig. 2| Spatial trends of mean tree size and the scale parameter across
Amazonianforests. a,b, Distribution of annual trends of mean tree BA (a) and
scale parameter (b) per inventory plot across Amazonia. Trends represent the
slope of alinear regression fit to mean tree size and scale parameter within each
inventory plot. These vary from-7.1x10™#t02.2 x 102 m?yr'and -1.1t0 3.7 yr™!
for mean tree size and scale parameter, respectively. Mean tree size changed
onaverage by 1.45 x 10™* m? yr™ across all plots, 3.3% gain per decade compared
toinitial mean size of 4.78 x 102 m2 The average change in scale parameter was
0.4 yr,3.8% per decade compared to initial mean scale parameter of 103. Arrows
show the magnitude and direction of trends at each plot location, with blue
arrows showing increasing trends and red arrows showing declining trends.

Inabsolute terms, increases in BA are greater for larger size classes and
canopy trees. However, inrelative terms, theincrease in size isnot nota-
bly different when comparing large and small trees (Table 1and Fig. 5).

Smaller stems increased in mean stem BA, with a positive trend
for relative tree size, but no change was observed in their total BA,
likely due to a reduction in the frequency of smaller stems (Table 1).
By contrast, the larger stems increased in size and in frequency. Thus,
total BA also increased by 8.4% per decade for stems in the largest
size class and by 2.8% per decade for overstorey stems (Table 1 and
Extended Data Table 2). We found no evidence of a directional trend
in plot-level wood density (Extended DataFig. 5).

Discussion
Our results show clear and pervasive changesin the structure of Ama-
zonian forests over the recent decades. We find that tree size has been

increasing across all size classes in the tree community and across
different canopy strata, although in absolute terms this change has
beengreatest for the largest stems. Asaresult, we observe directional
changes in the overall size distributions of Amazonian forests, with
distributions becomingincreasingly left-skewed, reflecting anincreas-
ing dominance and abundance of large stems. Concurrently, stem
frequencies in the smallest size classes have declined. Overall, our
findings suggest that the consistent increases in BA—and, by exten-
sion, biomass—across Amazonian forestsis increasingly concentrated
inthe largest trees.

The observed increases in tree size and BA are consistent with
previous studies reporting a carbon sink across tropical forests stim-
ulated particularly by CO, fertilization’. Given the increases in tree
size observed across the community, our findings offer support fora
combination of aresource-drivenboost for canopy trees (winners take
all), and areduction in growth suppression among understorey trees
(carbon-limited benefit). Itis worth noting that we find no evidence for
declinesintreesize or BA, suggesting that any negative climate-driven
impacts on larger trees have so far been outweighed by the effects of
increase in resources.

Our results are not consistent with trends that would be expected
if late successional recovery from past disturbance—due to occu-
pation of these forests by early Amazonian peoples® > or natural
disturbances®***—was the dominant driver of change. As succession
advances, self-thinning takes place and the number of trees drops
as space is occupied by fewer larger trees, leading to an increase in
mean tree size*®. Simultaneously, there is floristic turnover from
lighter-wooded pioneers to denser-wooded late successional species®.
If our results were primarily driven by recovery from disturbance, we
would expect the increase in size to be more pronounced in forests at
earlier stages of succession with smaller initial mean tree size, and to
observe floristic compositional shifts towards lighter wooded species.
However, we find no relationship between the change in tree size and
floristic turnover towards denser-wooded trees (Extended Data Fig. 5),
consistent with a previous analysis of compositional change across
mature Amazonian forests”, and the increase in tree size was inde-
pendent of the initial mean tree size (Extended Data fig. 6). Overall, our
analyses indicate that the pervasive increase in tree size observed
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Fig. 3| Changes in stem BA distribution between1990 and 2010. Data are
plotted for 30 ha of forest across 22 plots, all censused before 1990 and after
2010, and illustrate an increase in the frequencies and size (shown by the stem BA)
ofthe largest stems.
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Fig.4|Changesin mean stem BA, scale parameter and stem numbers across
mature Amazonian forests. Left: individual plot-level linear trends in size
structure parameters across the full interval each plot was censused for. For
visualization purposes, only 92 of the 188 plots are included, with the most
strongly weighted plots based on area and monitoring period length included.

Rate of change in stem numbers (ha™ year™)

Positive trend lines are coloured blue, and negative trend lines are coloured red.
Right: annual rate of change of size structure parameters. Red vertical lines show
the overall bootstrapped mean (solid lines) and 95% CI (dashed lines). Blue lines
are positioned at O, that is, no change.

here is unlikely to be driven by an Amazon-wide recovery from previ-
ousdisturbances.

The observed patterns match the expectations from increase
in resources either by CO, fertilization or by nitrogen deposition.
Although atmospheric nitrogen depositionis amajor driver of change
inforests of temperate regions®, there is weaker evidence of itsimpact
on tropical mature forests, particularly in remote regions®. First,
mature Amazonian forests tend to be phosphorus and not nitrogen
limited*°, meaning that increases in nitrogen would not necessar-
ily translate into greater productivity**. Second, although nitro-
gen deposition rates are expected to increase, they remain quite
low”*? and concentrated across the fragmented southern border of
Amazonia®. On the contrary, atmospheric CO, has progressively
increased year after year globally and across all tropical forests,
consistent with the Amazonian-wide tree size increase’ (Fig. 2).
Thus, we conclude that the increase in atmospheric CO, is the most
likely, although potentially not only, driver of the observed increase
intreesize.

The winners-take-all hypothesis predicts that under greater
resource availability, the asymmetric competition for light intensifies
and the competitive advantage for large canopy trees increases”. Con-
sistent with this hypothesis, we observe anincrease inthe dominance of
large canopy trees across multiple metrics, including maximum stemsize
and total BA. Thisindicates that asymmetric growth responses are caus-
ing biomass to become increasingly concentrated in the largest stems.
However, anincrease inasymmetric competitionaloneisinsufficient to
explainallthe observed trends. Althoughlarge treesincreased the most
in absolute terms, relative changes in size were approximately equal
acrosssize classes and strata (Fig. 5, Table 1and Extended DataFig. 4). Size
increases in smaller and understorey trees are consistent with experi-
mental studies in which additional atmospheric CO, alleviated sup-
pression of understorey trees, including releasing them from negative
carbon balance at low light levels******, We demonstrate this for forest
trees in a non-experimental setting, and our findings add to evidence
suggesting an important role for smaller and understorey trees as a
long-term component of the forest carbon sink***,
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Table 1| Trends in tree size across the Amazon basin

Mean(t,) Absolute annual Relative annual

trend trend (%)

Stem BA

Mean (m?) 478x102  1.45x10™ 0.33 D
(1.08x10™t0 1.82x107%) (0.24 to 0.41)

Median (m?) 218x102  3.75x107° 0.19 »
(211%x107° t0 5.38%107%) (01210 0.27)

Maximum (m?) 1.03 4.55x107° 0.58 N
(1.92x107° to 7.23x107%) (0.38t0 0.78)

Total BA (m?ha™) 26.53 5.52x107? 0.24 »
(3.49x1072t0 7.54%107?) (01610 0.33)

Gini coefficient 0.57 478x107° 0.09 D
(8.09x10™t0 6.48x10™) (0.06 to 0.1)

Shape parameter(y) 0.92 817x10™ 0.09 0
(3.46x10™ 10 1.28x107°) (0.04 t0 0.14)

Scale parameter (8) 104.99 0.28 0.30 0
(0.20 t0 0.36) (0.22t0 0.37)

Stem numbers

Total stems (ha™) 565.74 -0.45 -0.06
(-0.90 t00.01) (-0.14 t00.02)

<200mm (ha™) 359.07 -0.54 -0.12 v
(-0.93t0 -0.15) (-0.22t0-0.02)

200-399mm(ha™)  164.20 -0.08 0.04
(-0.25t00.09) (-0.08 t00.17)

>400mm (ha™) 42.47 0.18 0.66 T
(01110 0.23) (0.40t0 0.92)

Mean stem BA by size class

<200mm (m?) 1.56x102%  1.3x107° 0.09 T
(7.5%x10°t0 1.9x10°°) (0.05t00.12)

200-399mm (m?) 6.97x102  2.02x107° 0.04
(-3.7x107° t04.4x107°) (-0.01t00.08)

> 400mm (m?) 0.26 4.6x10™ 0.19 T
(2.5x10™t0 6.6x10™%) (011t0 0.27)

Total stem BA by size class

<200mm (m?ha™)  5.60 -4.16x107° -0.03(-0.14
(-1.02x1072 t01.82x107%) t00.07)

200-399mm 9.83 -2.39x107° 0.07

(m?ha™) (-1.26x1072 t07.92x107°) (-0.05 t00.20)

2400mm (m?ha™) 1110 6.23x1072 0.84 T

(4.61x102t0 7.84x1072) (0.60t0 1.09)

Bootstrapped mean and 95% ClI (in brackets) of absolute and relative trends in tree size
parameters. Non-significant trends are in italics. Arrows show direction of trends for those
that are significant.

Theincreasing dominance of large treesis consistent with the evi-
dence of asubstantial carbon sink inmany forests>* and runs counter to
thelarge-trees-lose hypothesis thatlarger trees should be decreasing
inabundance because of their greater susceptibility to climate-related
drivers of mortality, such as drought and windthrow*>°*%, Across
Amazonia, we find no evidence for declines in the abundance or size
of the largest trees. This suggests that, while mortality risks for large
trees may be increasing®’, the impact of this on forest structure has
been outweighed by forest responses to increased CO,.

While the increase in tree size was observed for different size
classes, we find diverging trends in stem frequencies among size
classes. The per-area density of large stems has increased, but the
numbers of smaller stems have declined. This may be related to the
stabilization of recruitment rates across Amazonia®, meaning that
increases in growth rates are not being matched by ingrowth from
recruitment. However, declines in stem numbers may also be linked
to rising mortality rates, with increasing in growth rates expected to
accelerate tree life cycles leading to rise in mortality rates*>*°, Similar

changes in stand structure have been observed in temperate forests
and are thought to be related to changes in competitive self-thinning
relationships®’. Regardless of the cause, declines in stem frequencies
at smaller sizes have implications for the permanence of the observed
trends and for the resilience of the overall ecosystem.

Our findings offer an important benchmark for understanding
historic and future dynamics of the Amazonian carbon sink. Over
recent decades, both growthrates and mortality rates haveincreased
in Amazonian forests, with the increases in mortality lagging the
increases in growth®. Our results are consistent with these changes.
However, theincreases in tree size may diminish and cease in coming
decades, consistent with recent projections indicating future declines
in the tropical forest carbon sink, if carbon losses increase’. Our find-
ings provide areference point for developing projections further, for
example, by revealing that biomass is increasingly concentrated in
thelargest trees. The future growth and mortality dynamics of large
trees will therefore be increasingly critical for the trajectory of the
net carbon balance™.

We show that the structure of Amazonian forests is changing,
with important consequences for the functioning and resilience of
this system. Our results can be understood as a sign of the resilience
of Amazonian forests, showing that any impacts of climate change on
larger trees have been more than alleviated by the effects of CO, ferti-
lization. Whether these benefits are sufficient to counteract expected
futureincreasesin climate-related risks for the largest trees—which are
more susceptible to heat, drought, lightning and windthrow—remains
tobeseen.

Methods

Vegetation data set

To describe temporal trends of forest stand structure across lowland
(<1,000 m above sealevel) tropical South American moist terra firme
forests, we selected all long-term permanent tree monitoring plots
meeting these criteria from the Amazon Forest Inventory Network
(RAINFOR), an international collaboration conducting long-term
monitoring of forestinventory plots>. Plot data were accessed via the
ForestPlots.net repository>**>. These 188 plots had an average size
of 1.2 ha (ranging 0.4 to 12 ha). Plots were monitored on average for
13 years (ranging 2 to 30 years), and the mean census interval length
was 2.98 years. The monitoring period varied between 1971 and 2015
among plots; the mean date of the first and last census was 1996 and
2010, respectively. The plots used in this study have no sign of substan-
tial human disturbance and show no detectable legacy effect of past fire
disturbance on tree composition®. Plots with known anthropogenic
disturbances such asselective logging and fire were excluded from the
analyses. All trees >10 cm diameter were marked, had their diameter
(D) measured at 1.3 m from the ground when no trunk deformities are
present, and mapped following a standardized protocol”. Lianas and
coarse herbs (Phenakospermum) were excluded from the analyses.
Palms wereincludedinthe analysis. As palms do not have radial growth,
variationin the abundance of palms within plots may influence the mag-
nitude of trends in structural parameters; we tested for this potential
influence in Appendix 1in the Supplementary Information. Further
methodological details have been published elsewhere’.

One complexity when monitoring tropical trees is that they may
have buttresses or deformities that can extend above the standard
point of measurement (POM, 1.3 m) during the monitoring period.
When there is any deformity compromising the cylindrical shape of
thetrunkat1.3 m, suchas buttresses, the POMis placed at higher parts
of the trunk, above any deformities where the trunk is cylindrical®”*®,
Over time if buttresses or deformities occasionally further develop,
the POM must be raised so that diameter measurements are not erro-
neously inflated. Such changes lead to discontinuities in growth data
for individual trees. To deal with this, we use a sequence of the mean
D estimated between the first and last POMs across the monitoring
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period, asolution reported in several previous studies****°, We tested
for any effect of the non-continuity of some POMs, and of the proce-
dureto correct forit, on our results (Appendix 2 in the Supplementary
Information).

Size structure

Toinvestigate trends intree size across Amazon basin forests, we char-
acterize the size structure of each census by (1) the mean, median and
maximum stem BA; (2) total stand BA per hectare; (3) the Gini coef-
ficient of inequality; (4) the stem diameter frequency distribution
described by the shape (y) and scale (8) parameters of atwo-parameter
Weibull distribution; (5) the mean stem BAin each of three size classes,
D <200 mm, D=200-399 mm and D =400 mm; (6) the mean stem
BA of overstorey and understorey trees (see Appendix 3 in the Sup-
plementary Information for methods to classify canopy status); (7)
the mean number of stems per hectare; (8) the mean number of stems
perhectarein each of threesize classes, D <200 mm, D =200-399 mm
and D 2400 mm; and (9) mean stand-level wood density.

The Gini coefficient, used to quantify inequality, is derived from
the Lorenz curve®, which in forest ecology is used to describe the
distribution of the total area of a plot occupied by trees®’. It represents
the area between a hypothetical line where all individuals occupy the
sameareainaplotand the Lorenz curve, which s the cumulative pro-
portion of area occupied by each tree as a function of the cumulative
proportion of the number of trees. Thereby, if all individuals occupy

thesamearea, Giniis equalto 0, while acompletely unequal situation
will be represented by Gini =1 (ref. 62). We calculated the Gini coef-
ficientineach census using the ineq R package version 0.2-13 (ref. 63).

A two-parameter Weibull distribution was fitted to stem D fre-
quency distributions, with the equation

fo= %(;—;)(M exp —(;—;)y%ﬁ >0 (0]

where yis the shape parameter and S is the scale parameter. The
Weibull distribution is well suited to describing stem D frequency
distributions, as it fits a wide range of distribution shapes'>**. The
scale parameter S controls the spread of the distribution; higher scale
parameter valuesindicate stem D distributions with alarger spread of
stem D values and a higher proportion of large stems relative to small
stems. The shape parameter y controls the shape of the distribution.
Shape parameter values <1 result in a right-skewed ‘reverse-J’ distri-
bution with steadily decreasing stem frequencies. As shape param-
eter valuesincrease, the distribution becomes less right-skewed, and
the distribution approximates a normal distribution where shape
parameter values are -3.

If large trees are gaining as predicted by the winners-take-all
hypothesis, we expect the scale parameter § to increase, with stem
D distributions showing an increase in the spread of stem sizes and a
higher proportion of larger stems relative to small stems. We would also
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expectanincrease inthe shape parameter yindicatingadeclinein the
frequency of smaller stem sizes and a shift towards aless right-skewed
distribution.

To assess whether any observed trends are primarily driven by
recovery fromdisturbance, we also analyse trends in mean stand-level
wood density. As forests recover from disturbance, there is floristic
turnover from lighter-wooded pioneers to denser-wooded late suc-
cessional species®, so if Amazonian forests are recovering from distur-
bance, we would expect to observe a change in floristic composition
towards heavier wooded species. Wood density data were extracted
from the Global Wood Density database®“°, Wood density values were
obtained at specieslevel, where possible, and otherwise at the level of
genus or family. Stems which could not be assigned a wood density
value at these levels were removed from this particular analysis (2.9%
of total stems).

Analytical approach

We investigated mean linear trends of each of the above stand struc-
ture parameters across the whole dataset. First, the linear trends for
the individual plots were calculated as the linear slope of an ordinary
least-squares regression of the size-structure parameters as afunction
of time (the date when the census took place). Then, to test whether
the overall response across the Amazon basin differed from 0, boot-
strapped mean and 95% Cl were obtained by randomly resampling
values of plot-level trends, with replacement, across all plots 10,000
times® %, For the mean, median and maximum tree BA, total BA, Gini
coefficient, shape parameter (y), scale parameter () and stem density
(stems per hectare), we also analysed trends by biogeographic region
(Appendix 4 inthe Supplementary Information). These analyses were
repeatedinrelative terms, where size parameters where relativized by
thesize parameterinthefirst census. We weighted plots by the square
root of plot area times the monitoring period to reduce the influence
of potential stochastic changes, which are most likely to affect small
plots and plots monitored over short monitoring periods>*°.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source dataunderlying the analyses are available at https://doi.org/
10.24433/C0.0443999.v2.

Code availability
The codes underlying the analyses are available at https://doi.org/
10.24433/C0.0443999.v2.
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Extended Data Table 1| Regional trends in tree size parameters

Biogeographic region Mean (t,) Relative annual trend (%)
Brazilian Shield 0.04 0.48(0.23]0.72)
Western Amazon 0.05 0.35(0.20]0.50)
Mean stem BA (m?)
East Central Amazon 0.05 0.8 (0.080.28)
Guiana Shield 0.06 0.40(0.24]0.55)
Brazilian Shield 0.02 0.36 (0.08|0.64)
Western Amazon 0.02 0.18 (0.06 | 0.29)
Median stem BA (m?)
East Central Amazon 0.02 0.11(-0.0210.24)
Guiana Shield 0.02 0.24 (0.03|0.44)
Brazilian Shield 0.92 0.45(0.00]0.94)
Western Amazon 1.05 0.70 (0.341.05)
Maximum stem BA (m?)
East Central Amazon m 0.52(0.240.79)
Guiana Shield 0.92 0.49 (0131 0.84)
Brazilian Shield 2178 0.33(-0.0410.70)
Western Amazon 25.97 0.25(0.12] 0.38)
Total BA (m?ha™)
East Central Amazon 28.30 0.23(0.12]0.35)
Guiana Shield 29.35 0.16 (0.01]|0.32)
Brazilian Shield 0.54 0.12(0.01]0.23)
Western Amazon 0.56 0.13(0.0810.18)
Gini Coefficient
East Central Amazon 0.58 0.03(0.00|0.07)
Guiana Shield 0.59 0.05(-0.0110.13)
Brazilian Shield 0.92 0.19 (-0.01| 0.40)
Western Amazon 0.93 0.05(-0.02|0.12)
Shape parameter (y)
East Central Amazon 0.91 0.08 (0.00]0.16)
Guiana Shield 0.90 0.14(0.00|0.27
Brazilian Shield 90.76 0.55(0.27]0.82)
Western Amazon 102.26 0.27 (014 ] 0.40)
Scale parameter (8)
East Central Amazon 108.50 0.18 (0.06 | 0.30)
Guiana Shield 119.85 0.37(0.20]0.52)
Brazilian Shield 539.78 -0.12 (-0.441 0.20)
Western Amazon 578.94 -0.07 (-0.2010.07)
Number of stems (ha™)
East Central Amazon 57756 0.06 (-0.03] 0.15)
Guiana Shield 528.78 -0.22(-0.38 | -0.05)

Bootstrapped mean and 95% ClI (in brackets) of relative annual trends in tree size parameters by biogeographic region. Non-significant trends are in italics.
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Extended Data Table 2 | Trends in tree size across the Amazon basin by tree stratum

Mean (t,) Absolute trend Relative trend (%)
Mean stem BA by stratum
Understorey (m?) 2.00x1072 574 x10°(-3.18 x10°| 8.27 x 10™°) 0.30(0.16]0.43)
Overstorey (m?) 8.67x1072 3.21x107(8.47 x 10| 5.56 x 10™) 0.35(017|0.54)
Total stem BA by stratum
Understorey (m? ha™) 6.86 -0.01(-0.0310.017) -0.05 (-0.62 ] 0.51)
Overstorey (m?ha™) 19.79 0.05 (0.03|0.07) 0.28 (0.15] 0.40)

Bootstrapped mean and 95% ClI (in brackets) of absolute and relative trends in tree size parameters. Non-significant trends are in italics.
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Extended Data Fig. 1| Spatial distribution and trends of forest structure across Amazonian forests. Distribution of mean (a) and median tree size (b), measured in
basal area terms, and scale parameter (c) calculated per inventory plot across Amazonia.
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Extended DataFig. 2| Changes in median stem BA and gini coefficient across
mature Amazonian forests. Left: individual plot-level linear trends in size
structure parameters across the full interval each plot was censused for. For
visualisation purposes, only 92 of the 188 plots are included, with the most
strongly weighted plots based on area and monitoring period length included.
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Extended Data Fig. 3| Changes in forest structure for the four Amazonian
biogeographic regions. Histograms of change in mean stem BA, the scale
parameter, and stem numbers per ha by biogeographic region, showing

consistent directional change in size distribution parameters across all four
regions. Red vertical lines show the overall bootstrapped mean (solid lines) and
95% Cl (dashed lines). Blue lines are positioned at zero, that is no change.
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Extended Data Fig. 5| Trends in plot-level wood density. (a) Histogram showing
the distribution of rates of change in plot-level mean wood density. Overall trends
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inwood density are not significantly different from zero (mean =1.51x107%,95%
Cl=-7.28x107%;1.01x10™*). (b) Relationship between trend in mean tree size and
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trend inmean wood density (two-sided t-test, t = 7.32, p-value = 0.16, R? = 0.005).
If forests were under late successional recovery, an increase in mean tree size
would be associated with an increase in wood density.
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Extended DataFig. 6 | Effect of initial values of structural parameters on
their rates of change. (a) Relationship between initial mean tree size and rate
of change in mean tree size (two-sided t-test, t =1.8, p-value = 0.89,R?= 0)

(b) Relationship between initial scale parameter and rate of change in scale
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parameter (two-sided t-test, t =2.7, p-value = 0.21, R = 0.003). If forests were
under successional recovery, we would expect the increase in size to be more

pronounced in forests with smaller initial mean tree size and lower scale
parameter values.
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We used data from the RAINFOR and PPBio networks accessed via the Forestplots.net repository.
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