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Abstract—In this paper, we propose a deep reinforcement
learning (DRL)-based framework to jointly minimize the ergodic
age of information (AoI) and the total transmit power in an
uplink (UL) cell-free massive multiple-input multiple-output (CF-
mMIMO) system. In particular, the multiple-objective resource
allocation problem is formulated into an optimization problem
subject to quality-of-service (QoS) and maximum transmit power
constraints. Due to the long-term nature of the problem, it is
challenging to solve using conventional convex optimization tech-
niques. Therefore, the problem is reformulated as a reinforcement
learning (RL) environment and a novel state space and reward
function are developed. Finally, the soft actor-critic DRL agent is
developed to solve the reformulated problem. Simulation results
demonstrate that the proposed scheme achieves significant power
savings while maintaining a relatively low average AoI score
compared to the benchmark schemes.

Index Terms—CF-mMIMO, age of information, power control,
DRL, SAC.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (CF-

mMIMO) has been identified as one of the promising technolo-

gies for next-generation wireless networks [1]. The cell-less

architecture is realized by distributing a sufficiently large num-

ber of access points (APs) connected through high-capacity

fronthaul links across the coverage area. This leads to more

favourable radio propagation channels for all user equipment

(UEs) in the system, thereby eliminating intercell interference

which is one of the main challenges in conventional cellu-

lar networks. Consequently, CF-mMIMO systems have been

proven to outperform their cellular counterparts for different

system objectives including spectral efficiency (SE), energy

efficiency (EE), and fairness [2]–[7].

Recently, the age of information (AoI) which defines the

information freshness in a communications link has been

identified as a new performance metric [8]. In particular, AoI

is defined as the time elapsed since the latest update from

the perspective of the destination. Hence, AoI gauges the
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information freshness delay in a particular communications

system which is of utmost importance in low-latency and

mission-critical applications [9]. However, the ideal case of

having zero AoI is extremely challenging to achieve given the

adverse nature of the wireless communication channel. Hence,

the average AoI over the long term is often used in the AoI

literature. In addition, a typical use case for the AoI objective

often involves energy-constrained devices [10]. As a result,

minimizing the power consumption of such devices through

accurate power control in the uplink (UL) is crucial.

Thanks to the additional gains brought about by power control,

both UL and downlink (DL) power allocation have been

studied extensively in the CF-mMIMO literature. The work

in [2] proposed power control algorithms to solve the signal-

to-interference-plus-noise-ratio (SINR) balancing problem in

both DL and UL CF-mMIMO systems. In addition, power

control algorithms have been proposed for EE maximization in

CF-mMIMO networks [3], [11]. Moreover, the transmit power

minimization (TPM) problem for DL CF-mMIMO systems has

been studied in [12]. However, most of the optimal solutions

proposed in the aforementioned works suffer from relatively

higher computational complexity and thus may be deemed

non-scalable.

Machine learning-based techniques have proven useful in

learning complex problem features with relatively lower de-

ployment complexity. In particular, the deep reinforcement

learning (DRL) framework has been utilized to deal with some

of the most challenging problems in CF-mMIMO systems

[13]–[15]. Nevertheless, the contributions in the area of AoI-

related CF-mMIMO systems are limited. The recent work in

[16] proposed a safety-aware AoI for collision risk minimiza-

tion for automated vehicle applications. However, the area of

multi-objective optimization in CF-mMIMO systems is rarely

explored.

In this paper, we propose a DRL-based framework to jointly

minimize the average AoI and the transmit power in the

UL. In particular, the multi-objective optimization problem

is considered in the context of energy-constrained devices in

an UL CF-mMIMO system with quality-of-service (QoS) and

maximum power constraints. To the best of our knowledge,

this is the first work to consider this multi-objective problem
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Fig. 1. An UL CF-mMIMO system.

for CF-mMIMO systems. Thus, the contributions of this work

are summarized as follows: 1) The long-term AoI and TPM

optimization problem with QoS and power constraints is

reformulated as a reinforcement learning (RL) environment

to allow for the development of low-complexity algorithms.

2) The action space along with novel state space and reward

function design is developed for the reformulated problem, and

then, a soft actor-critic (SAC)-based algorithm is developed to

learn and efficiently solve the new problem environment. 3)
Through simulation results, we demonstrate the convergence

properties of the proposed agent and the average performance

after testing. In addition, we show the adaptivity of the

proposed scheme to different QoS requirements in terms of

the average AoI and transmit power.

II. SYSTEM MODEL

We consider a centralized UL CF-mMIMO with M uni-

formly distributed antennas throughout the service area. Those

antennas serve as APs to provide coherent data reception

service to K UE as shown in Figure 1. We assume that the M

APs are connected to a logical central processing unit (CPU)

via ideal fronthaul links with infinite capacity [2], [3]. For the

CF-mMIMO system, we consider a line-of-sight (LoS) Rician

fading channel model with both small and large-scale fading

components [17]. Hence, the channel between APm and UEk

is expressed as

hmk =
√

(βmk)
√

(
L

1 + L
)bLoS

mk +
√

(βmk)
√

(
1

1 + L
)bNLoS

mk ,

∀m, ∀k,
(1)

where L is the Rician factor of the channel, βmk, bLoS
mk ,

and bNLoS
mk represent the large-scale fading, LoS small-scale

fading and non-LoS small-scale fading for the APm-UEk link,

respectively. In this paper, the small-scale fading is assumed

to be uncorrelated with zero-mean and unit variance, i.e.,

{bLoS
mk , bNLoS

mk } ∼ CN (0, 1).
During the UL data transmission phase, the network schedules

all K UEs to transmit their data symbols simultaneously. Thus,

the transmitted signal by UEk is expressed as

xk =
√

(qk)sk, ∀k, (2)

where qk and sk represent the transmit power and information-

bearing symbol of UEk, respectively. Moreover, we assume a

normalized symbol power, i.e., E{|sk|} = 1, ∀k. Then, the

received signal at APm is expressed as

ym =

K
∑

k=1

√

(qk)hmksk + nm, (3)

where nm ∼ CN (0, σ2) is the thermal noise. In order to

reduce the system complexity, we utilize the matched filter

(MF) combiner design in the UL. In addition, we use vector

notation to represent the concatenated channel and combiner

elements. Therefore, the network estimates the data symbol

for UEk from the following expression

vH
k y =

√

(qk)v
H
k hksk +

K
∑

i=1
i 6=k

√

(qi)v
H
k hisi + vH

k n, ∀k,

(4)

where y = [y1, ..., yM ]T ,∈ C
M×1 is the received signal

across all the APs, hk = [hk1, ..., hkM ]T ,∈ C
M×1, ∀k, is

the concatenated channel vector, vk = [h∗
k1, ..., h

∗
kM ]T ,∈

C
M×1 is the MF combiner vector with normalized power,

i.e., ||vk||2 = 1, ∀k, and n = [n1, ..., nM ]T ,∈ C
M×1 is

the thermal noise vector. Since the CPU does not know the

channel estimate in the distributed combiner design case, the

use-and-then-forget SINR expression is utilized in this work

as follows [5]

γk =
|E{vH

k hk}|
2qk

∑K

i=1 E{|v
H
k hi|2}qi − |E{vH

k hk}|2qk + σ2
, ∀k. (5)

Moreover, the achievable SE by UEk is expressed as

SEk = B(1−
τp

τc
)log2(1 + γk), ∀k, (6)

where B is the system bandwidth, τp and τc represent the

number of pilots and the coherence block length in samples,

respectively.

The AoI quantifies how old the source’s information is from

the destination’s perspective. Hence the AoI of UEk at time t

is denoted by Ak(t). The AoI at any given time is dependent

on the successful delivery of an update packet from UEk to

the network, which is conditioned by achieving a threshold

rate value Rth
k (t). Thus, if the packet has been successfully

delivered to the network, the AoI for UEk is set to 1, i.e.,

Ak(t) = 1. Alternatively, if the packet has failed to be decoded

successfully at the network due to a lower achieved rate, the

AoI for UEk is increased to reflect that the latest information

is even more outdated, i.e., Ak(t) = Ak(t − 1) + 1. Thus, it

is evident that due to the dynamic channel nature of wireless

communication systems, it is not guaranteed that the threshold

rate for each device can always be achieved. Hence, the AoI

minimization framework is often considered over the long

term. In this work, we assume that the generate at will model

is used where a packet is generated at the beginning of the

time slot and the transmission takes place in the same slot

[18].



Even though the presented system model could be generalized

for various scenarios, in this paper we focus on energy-

constrained devices where both the average AoI and the trans-

mit power need to be minimized to sustain the information

freshness and preserve the energy of the device. Therefore, this

is expressed mathematically using the following optimization

problem:

minimize
qk

E

{ 1

T

T
∑

t=1

K
∑

i=1

Ak(t)
}

+ E

{

K
∑

i=1

qk(t)
}

(7a)

subject to Rk(t) ≥ Rth
k (t), ∀k, (7b)

qk(t) ≤ Pmax, ∀k, (7c)

where the expectation operators in the objective (7a) are

included to signify the long-term aim of the considered

problem. The constraint (7b) represents the QoS requirement

to successfully deliver the update information packet while

constraint (7c) guarantees that the selected power allocation

strategy adheres to the maximum transmit power of the

device. It is clear that the two functions in the objectives

contradict each other in the sense that more transmit power

is required in general to satisfy higher QoS thresholds. In

addition, since the problem may not always be feasible, it

is extremely challenging to approximate the objective in (7a)

using closed-form expressions. Therefore, in the next Section,

an RL reformulation of the problem is proposed based on the

Markov decision process (MDP) to tackle these challenges.

III. PROPOSED SOLUTION

RL is considered one of the more effective tools for solving

long-term decision-making problems in the wireless communi-

cations domain. In the RL framework, the problem is defined

as an environment which has three main entities; the state

space, the action space, and the reward function. At time-step

t and for a given system state st, an RL agent takes an action

at based on a policy π(st). The environment then provides a

feedback signal according to the reward function which might

be a positive or a negative scalar. Through trial and error,

the agent aims to maximize the cumulative reward by taking

actions that yield positive rewards. Hence, in order to solve the

optimization problem in (7a) efficiently, we propose a problem

reformulation based on the RL framework. In particular, the

optimization problem is defined as an RL environment where

the state and action space along with the reward function are

clearly defined. Then, a SAC-based DRL agent is developed

to learn how to solve the problem environment efficiently. We

define the RL environment entities as follows:

• Action space: since the decision variables of the opti-

mization problem are the power allocation coefficients

qk, ∀k, they are selected as the action space. Therefore,

the action space vector is expressed as

at = [q1, ..., qK ]T , (8)

where at ∈ R
K×1.

• State space: to ensure the accuracy of the developed state

space, important information about the problem must be

included. Even though we assume that the CPU has no

access to the channel estimates of the individual UEs, it

posses the information about the statistics of the channels

and therefore the effective combined desired signal, i.e.,

E{|vH
k hk|}, ∀k. Moreover, the action, achieved rates and

AoI of the previous time step are also taken as part of

the state space to help the agent assess itself throughout

the training process. Hence, the state space vector is

expressed as

st =
[

at−1, |vH
1 h1|, ..., |v

H
KhK |, R

t−1
1 , ..., Rt−1

K ,

K
∑

i=1

Ak(t)
]T

,
(9)

where st ∈ R
(3K+1)×1.

• Reward function: the reward function is the main de-

cisive factor in determining the success of the agent

during training. In this work, we propose a QoS-based

reward function where the agent is given a positive

reward for achieving the threshold rates for minimizing

the average AoI. Conversely, the agent is given a negative

reward when the generated power allocation vector fails

to achieve the requested QoS. To ensure that the agent

remains aware of the power consumption, the positive

reward function is designed based on the total power

consumed by the UEs. This is expressed as follows:

rt = exp
(

KPmax −
K
∑

i=1

qk(t)
)

. (10)

In addition, if the agent fails to achieve the requested

QoS thresholds, the following negative reward function

is applied:

rt =
K
∑

i=1

min(Rt
i −Rth

i , 0). (11)

The SAC is an advanced actor-critic DRL agent, blending

the stability and inherent exploration capability of on-policy

actor-critic agents with the sample efficiency and precision of

off-policy actor-critic methods. This makes the SAC an off-

policy DRL agent that is dedicated to optimizing a stochastic

policy. Furthermore, the SAC has been demonstrated to sur-

pass proximal policy optimization (PPO), deep deterministic

policy gradient (DDPG), and twin-delayed DDPG (TD3) due

to its superior exploration policy [19]. The SAC agent is made

up of two main entities; the actor or the policy π(at|st;φ)
deep neural network (DNN) which is responsible for taking

actions, and the critic DNN Q(s, a;ϕ) which assesses those

actions. Note that in this paper, we implement the twin version

of the SAC which uses two critic networks to combat the

overestimation bias and enhance stability during training. For a



given training tuple {st,at, rt, st+1}, the critic’s DNN training

target is calculated as follows:

y(rt, st+1) = rt + δ

[

min
n
Q
(

st+1, π(st+1;φ);ϕ−
n

)

−

κlog(π(at+1|st+1;φ))

]

,

(12)

where Q
(

st+1, π(st+1;φ);ϕ−
n

)

, n = 1, 2, is the critic’s target

DNN which is a delayed version of the main critic DNN, and

κ is the entropy coefficient. After calculating the target in (12),

the critic DNNs are trained by minimizing the mean squared

error (MSE) objective over a batch B of samples as follows:

L(ϕn,B) = E
{st,at,rt,st+1}∼B

[

(

Q(st,at;ϕn)− y(rt, st+1)
)2
]

,

n = 1, 2.
(13)

The SAC policy DNN on the other hand is trained to maximize

the Q-value for the sampled states. This is expressed as

J(φ,B) = E
{s∼B,a∼π}

[

Q(s,a;ϕn)− κlog(π(a|s;φ))
]

,

n = 1, 2.
(14)

After training the policy critic DNNs, the target DNNs are

updated using the smoothing technique as follows:

ϕ−
n = ǫϕn + (1− ǫ)ϕ−

n , n = 1, 2, (15)

where 0 < ǫ ≤ 1 is the target smoothing factor.

Algorithm 1 summarizes the proposed SAC-based approach

for solving the long-term power control problem to jointly

minimize the average AoI and the transmit power. Note that

the detailed steps for training the agent are omitted for read-

ability and we refer interested readers to [19]. We assume that

the offline training complexity can be afforded. Hence, we only

focus on the inference “deployment” complexity for the trained

actor DNN. The fundamental computational complexity for the

actor DNN is a feed-forward pass for a given input. However,

since we consider the previous action as part of the state vector,

a modified computational complexity model is presented. In

particular, we can write the worst-case complexity as O

(

T ′
(

ζ ·

Card(st)+ζ2+Card(at)·ζ+N ·ζ+Card(at)
)

)

, where T ′ is

number of time-steps evaluated before taking the final action,

Card(st) and Card(at) represent the cardinality of the state

and actions spaces, respectively, and ζ is number of layers

in the actor’s DNN. Moreover, the worst-case complexity can

be further reduced to O

(

T ′
(

ζ · max(ζ,Card(st))
)

)

since

Card(st) > Card(at) always holds. Moreover, assuming that

the number of layers is fixed which is not unreasonable in

practice, the proposed algorithm has a much lower complexity

compared to conventional optimization algorithms given that

it only scales linearly with the size of the state space.

Algorithm 1 The SAC-based UL power control algorithm

1: Input: System parameters M,K,B, Pmax

2: Initialise: Agent parameters φ, ϕn, ϕ
−
n ,D,B and the en-

vironment

3: Set: ϕ−
1 ← ϕ1, ϕ

−
2 ← ϕ2

4: while Episode ≤ Total Episodes do

5: Sample the environment to obtain hk, R
th
k , ∀k

6: Calculate the initial state vector s1

7: while Step ≤ Total Steps do

8: Feed initial state to the policy network to obtain at

9: Substitute the generated qk, ∀k into (5) and (6)

10: if Rt
k ≥ Rth

k , ∀k then

11: Use reward function in (10)

12: else

13: Use reward function in (11)

14: end if

15: Save the tuple {at, st, r, st+1} to the replay

buffer D
16: Train the critic DNNs using (12) and (13)

17: Train the policy network using (14)

18: Update the critic target networks using (15)

19: Step = Step+ 1
20: Set st = st+1

21: end while

22: Set Episode = Episode+ 1
23: end while

24: Output: [q∗1 , ..., q
∗
K ]T

TABLE I
HYPERPARAMETERS OF THE SAC AGENT.

Hyperparameter Value

Actor’s learning rate 0.0001
Critics’ learning rate 0.0003

Entropy coefficient (κ) 0.1
Discount factor 0.99

Policy update frequency 1
Replay buffer size (D) 100, 000

Minibatch size (B) 128
Smoothness factor (ǫ) 0.0001

Number of episodes, time-steps 700, 500

IV. AGENT TRAINING AND SIMULATION RESULTS

The developed SAC agent uses a single actor DNN and two

critic DNNs all have two hidden layers. The ReLU activation

function is used to activate the outputs of the hidden layers. In

addition, the ADAM optimizer is used to optimize the DNNs

during training and the Tanh layer is used to activate the

actor’s output. Table I summarizes the hyperparameters used

for the developed SAC agent.

For the CF-mMIMO system, we consider a square-shaped

coverage area where M uniformly distributed APs serve K

uniformly distributed UEs in the UL. Table II summarizes

the system parameters used to generate the simulation results.

The distance-dependent large-scale fading coefficient βmk =
β0d

α
mk, where β0 = −30 dB is the path-loss at the reference

distance of 1 m, dmk is the distance between APm and UEk,



TABLE II
THE SIMULATED CF-MMIMO SYSTEM PARAMETERS.

Parameter Value

Number of APs (M ) 30
Number of UEs (K) 10

Coverage area 300× 300 m

Maximum transmit power (Pmax) 20 dBm

Bandwidth (B) 10 MHz

Rician factor (L) 3 dB

UE noise figure 7 dB

Noise power spectral density −174 dBm

τc, τp 200, 10
Path-loss factor α 4.2

AP height 15 m

UE height 1.5 m

and α is the path-loss exponent.

To assess the performance of the trained agent, we use the

following two low-complexity baselines:

• Baseline 1: this scheme assigns the maximum transmit

power to all K UEs in the system to help reduce the

overall average AoI at the expense of higher power

consumption.

• Baseline 2: this scheme randomly assigns the power

allocation coefficients to the UEs in the system. This

scheme is included to demonstrate the non-trivial policy

learned by the proposed algorithm after training.

Moreover, to ensure the statistical validity of the simulation

results, 200 different UE drops are simulated, and the agent is

tested for 2000 episodes using T ′ = 3 per episode. In addition,

the average AoI and the consumed power metrics are presented

for Rth
k = 0.5, 0.75, 1, and 1.2 Bit/s/Hz.

The convergence of the agent for different target rates is

depicted in Figure 2. There is an evident negative relation-

ship between the average reward sustained by the agent and

the threshold. Nevertheless, except for the case Rth
k = 1.2

Bit/s/Hz, the agent reaches a relatively high rewarding policy

after 200 episodes.

To quantify the resulting performance from the developed

policies by the agent trained for different threshold rates,

Figure 3 illustrates the average AoI for each target value.

The proposed agent consistently outperforms the benchmark

schemes by achieving an average AoI score of 4.08 at Rth
k =

1.2 Bit/s/Hz compared to 4.55 and 4.78 for the baselines 1
and 2, respectively. Even though Figure 3 shows the average

AoI of the system sustained by the agent, it does not provide

the complete picture. Hence, Figure 4 illustrates the average

consumed power by each of the tested algorithms. The Figure

shows significant power savings by the proposed scheme. In

particular, the proposed algorithm not only uses less than 50%
of the full power consumed by Baseline 1 while achieving

better average AoI, but it also shows the expected adaptive

behaviour according to the problem requirements. This crucial

property suggests that the agent has successfully learned a

competitive policy of how to strike a balance between the

two contradicting objectives in the optimization problem. To

further demonstrate the power consumption behaviour of the
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Fig. 2. The convergence of the proposed SAC agent.
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Fig. 3. The average AoI achieved by the proposed algorithm.

developed agent, Figure 5 shows the cumulative distribution

functions (CDFs) of the total transmit power for the threshold

values. Since baseline 1 always uses the full transmit power

for all UEs, it has the worst performance in terms of power

consumption. On the other hand, the agent capitalizes on the

reduction in the required QoS level by reducing the power

consumption. For example, by comparing the 90-th percentile

mark, the developed agent’s policy results in around 0.38 W in

total to sustain the average AoI level at Rth
k = 1.2 Bit/s/Hz.

Then, when the target rate drops to 0.5 Bit/s/Hz, the agent

intelligently reduces the total consumed power by more than

50% to just 0.18 W.

V. CONCLUSION

In this paper, we considered the multi-objective resource

allocation problem of minimizing the long-term average AoI
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Fig. 5. The CDFs of the consumed power by the proposed algorithm.

and transmit power in UL CF-mMIMO systems. Due to the

complicated structure of the objective function, the original

resource allocation problem is reformulated as an RL environ-

ment where the state and action spaces as well as the reward

function are developed. Then, an efficient algorithm based on

the SAC DRL agent is proposed to learn the reformulated

problem environment. Simulation results demonstrated the

superior performance of the proposed algorithm in terms of

the average AoI and power consumption. In addition, the

simulation results showed the QoS-awareness feature of the

developed algorithm where the agent adaptively controls the

UL transmit power in the system to achieve the required rates

while keeping the power consumption to a minimum.
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