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Abstract: The utility of Unmanned Aerial Vehicles (UAVs) for routine pavement 19 

distresses inspection has been increasingly recognized due to their efficiency, flexibility, 20 

safety, and low-cost automation. However, UAV-acquired high-altitude images present 21 

unique challenges for deep learning-based semantic segmentation models, such as 22 

minute crack details, blurred boundaries, and high levels of environmental noise. We 23 

propose GLoU-MiT, a lightweight segmentation model designed to address the 24 

difficulties of UAV-based pavement crack segmentation. Our model integrates a U-25 

shaped Mix Transformer architecture for efficient hierarchical feature extraction, a 26 

Global-Local Mamba-Guided Skip Connection for improved feature alignment and 27 

computational efficiency, and a Boundary/Semantic Deep Supervision Refinement 28 

Module to enhance segmentation precision in complex scenarios. Extensive 29 

experiments on UAV-Crack500, CrackSC and Crack500 datasets demonstrate that 30 

GLoU-MiT effectively improves segmentation accuracy, particularly in low-contrast 31 

and complex background environments, making it a robust solution for UAV-based 32 

pavement crack inspection tasks. Furthermore, inference speed and energy 33 

consumption evaluations conducted on the Jetson Orin Nano (8GB) show that our 34 

model achieves an excellent balance between accuracy, energy efficiency, and speed. 35 

The code will be released at: https://github.com/SHAN-JH/GLoU-MiT. 36 

 37 

Keywords: Pavement crack, Vision mamba, Vison Transformer, Semantic 38 

segmentation, Skip connection 39 

 40 
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1. Introduction 41 

During the operation of pavement, early micro-cracks often emerge in the 42 

pavement structure under the dual influence of vehicular loads and climatic variations, 43 

as well as the underlying geological conditions [1–4]. Although these initial cracks may 44 

not significantly impact the usability of the pavement, their progression, especially 45 

under the combined effects of rainwater penetration and recurrent vehicular pressures, 46 

can rapidly evolve into various forms of distresses such as potholes, subsidence, and 47 

scouring, severely undermining the overall performance of asphalt pavements. 48 

Therefore, early detection and timely intervention of such pavement distresses are 49 

crucial, not only reducing the maintenance costs but also effectively extending the 50 

lifespan of the pavement [5]. However, the tasks of regular road inspection and accurate 51 

diagnosis of pavement distresses demand substantial manpower and financial resources 52 

from road maintenance departments. 53 

With significant breakthroughs in computer science in recent years, especially the 54 

efficiency and efficacy demonstrated by artificial intelligence in handling labor-55 

intensive and repetitive tasks, there are new avenues for achieving automated, high-56 

precision, and cost-effective pavement disease detection [6–10]. This includes, but is 57 

not limited to, automated inspections using drones [11–13] or autonomous vehicles 58 

[14–16], and distresses identification using advanced algorithms like object detection 59 

and semantic segmentation [17–19]. 60 

Accurate maintenance decision-making relies heavily on high-quality disease data, 61 

which in turn depends on efficient automated detection technologies and precision 62 

image capturing strategies. For instance, drones, known for their flexibility and high 63 

level of automation, can work in conjunction with automated charging stations to 64 

facilitate continuous inspection operations [20]. However, there are three main 65 

challenges in semantic segmentation of pavement distresses like cracks using drone-66 

captured images: class imbalance, irregularity of edges, and scene noise. The constraint 67 

of safe flying altitude results in a lower proportion of cracks in the captured images, 68 
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thereby limiting the performance of detection algorithms. Additionally, pavement crack 69 

areas, characterized by random, sparse, and diverse pixel compositions along with 70 

uncommon textures and edges, further increase the difficulty of accurate crack 71 

segmentation. Most current detection algorithms and datasets are designed for close-72 

range photographed images (Fig. 1 (b)), hence applying them directly to high-altitude 73 

drone images yields suboptimal results. Inappropriate choices of loss functions or 74 

network architecture might prevent the model from effectively capturing minute cracks, 75 

and in extreme cases, the model might predict all pixels as background, resulting in 76 

entirely black images. Moreover, the limitations in flying altitude mean that the 77 

captured images contain considerable noise and are heavily influenced by 78 

environmental factors such as changes in lighting, which makes it challenging to 79 

achieve effective segmentation results with limited training datasets (Fig. 1 (a)). 80 

 

   

   

 

   

   

Fig. 1 (a) UAV-captured image of UAV-Crack500 dataset, and (b) Phone-captured 81 

image of Crack500 dataset 82 

The introduction of Vision Transformers significantly enhances the model's 83 

capability to capture global contextual information, allowing it to transcend the 84 

limitations of a local perspective and greatly improve its ability to detect cracks in 85 

complex scenarios [21–24]. However, the quadratic computational complexity of 86 

Vision Transformers significantly restricts their deployment and application on edge 87 

devices. Mamba [25], as an efficient sequence modeling architecture, has attracted 88 
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considerable attention after being introduced into the visual domain. With its linear 89 

computational complexity and robust long-range dependency modeling, Mamba has 90 

demonstrated outstanding performance in various visual tasks. Despite these 91 

advantages, Vision Mamba's application in crack semantic segmentation remains 92 

limited. Recent studies have explored different Mamba-based architectures for crack 93 

detection, aiming to balance efficiency and segmentation accuracy. ULNet [26] 94 

introduced a cross-visual Mamba feature extraction module and a frequency-domain 95 

feature extraction branch, enhancing fine crack detection while maintaining low 96 

computational costs. CrackMamba [27] leveraged VMambaV2 as the encoder and 97 

introduced a Snake Scan module, which reshapes crack feature sequences based on 98 

their natural development patterns, improving feature extraction for complex crack 99 

structures. MambaCrackNet [28] integrated Vision Mamba with depthwise separable 100 

residual convolutions, forming a hybrid CNN-Mamba segmentation network, which 101 

significantly improved crack detection accuracy while maintaining robustness to patch 102 

size and training sample variations. SCSegamba [29] further optimized Mamba-based 103 

segmentation by proposing a Structure-Aware Visual State Space module, which 104 

combines Gated Bottleneck Convolution (GBC) and a Structure-Aware Scanning 105 

Strategy (SASS) to enhance morphological feature modeling and semantic continuity 106 

of cracks, achieving high segmentation accuracy with only 2.8M parameters and 107 

demonstrating excellent real-world deployment performance. 108 

Despite these advancements, existing studies indicate that Vision Mamba has not 109 

yet achieved performance on par with traditional Convolutional Neural Networks 110 

(CNNs) and Transformers in crack segmentation tasks [30]. One of the key reasons for 111 

this limitation is the unique nature of crack segmentation. Slender cracks in complex 112 

environments require both long-range dependency modeling to differentiate them from 113 

background textures and local feature extraction to precisely delineate their boundaries. 114 

Current Mamba-based models struggle to balance these two aspects effectively, leading 115 

to performance gaps compared to CNNs and Transformers. Therefore, further 116 
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architectural improvements are necessary to fully unlock Mamba's potential for crack 117 

segmentation. Another limitation of Mamba-based crack segmentation models is their 118 

lack of evaluation on edge devices. This is primarily because Mamba relies on custom 119 

CUDA kernels for its scan operations, which are difficult to track and optimize via 120 

TorchScript. As a result, pure Mamba models exhibit slower inference speeds on 121 

resource-constrained devices, limiting their practicality for real-time crack detection 122 

and UAV-based inspections. 123 

To address these challenges, we propose integrating Mamba with traditional CNN 124 

and Transformer models, leveraging their complementary strengths. CNNs excel at 125 

capturing local texture and edge details, while Transformers efficiently model global 126 

dependencies. By incorporating Mamba into this hybrid framework, our model can 127 

enhance long-range contextual understanding while preserving fine structural details, 128 

achieving a better balance between accuracy and computational efficiency in complex 129 

crack segmentation scenarios. We first introduce a U-shaped segmentation framework 130 

based on Mix Transformer, which leverages the hierarchical structure and efficient self-131 

attention mechanisms of SegFormer for feature extraction, progressively upsampling 132 

and using skip connections to restore crack details. Next, a lightweight Global-Local 133 

Mamba-Guided Skip Connection based on Vision Mamba is employed to progressively 134 

filter out redundant information from the encoder, reducing the dimensionality of 135 

feature maps through direct addition operations, thereby lowering computational 136 

complexity in the decoder. Finally, a Boundary/Semantic Deep Supervision 137 

Refinement Module is integrated to refine crack boundaries and semantic information, 138 

enhancing the model's performance on UAV images. We conduct a comparative 139 

analysis of the commonly used close-range pavement defect datasets (Crack500 [29] 140 

and CrackSC [21]) and our collected UAV-based pavement defect dataset (UAV-141 

Crack500 [30]). This comparison helps to understand the distributional differences 142 

between datasets and provides a theoretical foundation for model improvements. 143 

Our contributions can be summarized as follows: 144 
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(1) We propose GLoU-MiT, a lightweight and efficient UAV-based pavement 145 

crack segmentation model. Built on a U-shaped Mix Transformer framework, it 146 

balances local and global feature extraction while reducing computational cost, 147 

making it suitable for edge deployment. 148 

(2) We introduce a Global-Local Mamba-Guided Skip Connection to enhance 149 

feature alignment while reducing computational complexity. By progressively 150 

filtering redundant encoder details and directly adding feature maps instead of 151 

concatenation, this mechanism improves both efficiency and segmentation 152 

accuracy. 153 

(3) To refine crack segmentation, particularly in low-contrast or complex 154 

backgrounds, we integrate a Boundary/Semantic Deep Supervision Refinement 155 

Module. This module enhances fine-grained crack boundary detection and 156 

semantic consistency, leading to improved F1-score and Crack IoU, especially 157 

for thin and indistinct cracks. 158 

(4) Extensive experiments on UAV-Crack500, CrackSC, and Crack500 datasets 159 

demonstrate moderate improvements in F1-score and Crack IoU while 160 

maintaining high efficiency. Furthermore, inference speed and energy 161 

consumption evaluations on Jetson Orin Nano (8GB) confirm the model’s 162 

practical deployment feasibility. 163 

2. Related Works 164 

To address the challenges of minute crack details, blurred boundaries, and high 165 

levels of environmental noise in crack segmentation tasks, deep learning model design 166 

has primarily focused on three key enhancements. First, multi-scale feature extraction 167 

and fusion techniques are employed to effectively capture cracks of varying sizes and 168 

intricate patterns[31–34]. Second, advanced attention mechanisms are integrated to 169 

highlight critical crack regions and suppress irrelevant background noise[35–38]. Third, 170 

boundary refinement strategies are developed to improve the precision of segmentation 171 

along crack edges, ensuring accurate delineation even in complex scenarios[39,40]. 172 
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These design considerations have become essential for advancing the performance of 173 

deep learning models in crack segmentation. This section summarizes these 174 

foundational improvements while introducing the design philosophy of the proposed 175 

model. 176 

2.1 Multi-scale Feature Extraction and Fusion 177 

In Convolutional Neural Networks (CNNs), feature extraction transforms raw 178 

input data into higher-level representations, aiding subsequent higher-level tasks. This 179 

extraction is typically achieved through the convolution, pooling, and other basic 180 

modules of the backbone network, enabling understanding of higher-level semantics. 181 

Efficient backbone models are crucial for effective feature extraction and high-level 182 

semantic representation. Downsampling in backbones, though reducing parameter 183 

count and boosting robustness, also diminishes feature map dimensions. For semantic 184 

segmentation tasks, mapping high-level segmentation back to original image sizes 185 

without losing edge and detail information is essential. FCN [41] first combined 186 

features from different stages with transposed convolutional upsampling for end-to-end 187 

per-pixel semantic segmentation. U-Net [42], with skip connections, conjoins encoder 188 

and decoder stage feature maps, enabling the decoder to relearn details lost during 189 

encoding. DeepLabv3+ [43] utilized Atrous Spatial Pyramid Pooling to grasp multi-190 

scale contextual information, merging high-level with low-level feature maps for better 191 

edge and detail detection. The skip connections in U-Net not only serve to obtain richer 192 

feature information during the decoding stage but also help alleviate the vanishing 193 

gradient problem during training, accelerate network convergence, and preserve 194 

detailed information in images. These functions of skip connections are what enable U-195 

Net to perform exceptionally well in tasks such as medical image segmentation.  196 

In this paper, we enhance the skip connections by integrating Local and Global 197 

Mamba into the skip connections at different layers, allowing the model to fully 198 

leverage the information from the encoder. This approach facilitates the extraction of 199 
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effective local and global information, thereby improving the accuracy of crack 200 

segmentation in complex backgrounds. 201 

2.2 Enhancements in Attention Mechanisms and Long-Range Dependency 202 

In Convolutional Neural Networks (CNNs), a sequence of convolutional and 203 

nonlinear layers is employed for feature extraction from a global receptive field. 204 

However, this method traditionally treats all input regions uniformly, potentially 205 

leading to substantial noise in complex backgrounds and thereby impairing network 206 

efficacy. Deep learning has integrated attention mechanisms, inspired by the neural 207 

attention processes of the human brain, to address this issue. These mechanisms allow 208 

for differential weighting of features, focusing the network on more effective feature 209 

representations while inhibiting less discriminative ones. This approach effectively 210 

minimizes distractions from background noise and irrelevant areas, consequently 211 

augmenting model performance. 212 

Attention mechanisms can be divided into categories like channel attention, spatial 213 

attention, and self-attention, depending on their area of focus. Squeeze-and-Excitation 214 

Networks (SENet) [44] apply global average pooling and fully connected layers to 215 

discern channel-wise feature dependencies. The Bottleneck Attention Module (BAM) 216 

[45] combines channel and spatial attentions, effectively enhancing feature extraction 217 

without augmenting network depth. The Convolutional Block Attention Module 218 

(CBAM) [46] integrates and decouples spatial and channel attentions, improving 219 

computational efficiency. Originating in natural language processing, self-attention 220 

mechanisms have been adeptly transposed to the realm of computer vision. These 221 

mechanisms, through queries, keys, and values, assign varying weights based on inter-222 

feature relationships across different positions, thus aiding models in more effectively 223 

capturing contextual data within sequences. The Swin Transformer [47] incorporates a 224 

window-based self-attention mechanism, blending traditional CNN structures with 225 

attention strategies. This model leverages hierarchical attention mechanisms to 226 

assimilate both global and local image information, markedly enhancing its 227 
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performance. Vision Mamba [48–50] is built upon a state space model (SSM) 228 

architecture, which has been adapted for vision tasks. This model incorporates a form 229 

of linear attention, making it efficient for processing high-resolution images and 230 

handling long-range dependencies.  231 

In this paper, we introduce Global-Local Mamba-Guided Skip Connection. This 232 

approach leverages the long-range dependency capabilities and linear complexity of the 233 

Mamba model, thereby enhancing the model's spatial information perception efficiently 234 

without significantly increasing computational overhead. This strategy ensures that the 235 

model can effectively capture both local details and global context, improving overall 236 

performance in handling complex scenarios. 237 

2.3 Refinement of Segmentation Edges 238 

In the field of deep learning, particularly for semantic segmentation tasks, 239 

downsampling is crucial for extracting high-level semantic features. However, this 240 

process typically results in the loss of edge detail information. High-level semantic 241 

features, while effective for classifying categories, suffer from low resolution. In 242 

contrast, lower-level features, although higher in resolution and capable of generating 243 

sharp, detailed boundaries, also contain significant background noise. Thus, bridging 244 

the information flow between high and low-level features is essential for achieving 245 

precise edge segmentation. To effectively combine low and high-level information, 246 

focusing on edge information through specific convolutional architectures and loss 247 

functions is also crucial for improving boundary segmentation precision. Gated-SCNN 248 

[51] employs a dual-branch structure to separately process semantic and edge 249 

information, incorporating boundary loss to enhance edge definition in the prediction 250 

output. The Boundary-Aware Segmentation Network (BASNet) [52] combines a 251 

prediction network with a refinement module, using a hybrid loss function to capture 252 

predictions at various resolutions and post-refinement losses. Given that edge points 253 

often exhibit uncertainty in segmentation predictions (with confidence levels around 254 

0.5), PointRend [53] identifies these uncertain points in coarse segmentation maps. It 255 
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then re-predicts these points using a Multi-Layer Perceptron (MLP) that integrates both 256 

coarse and detailed features, thereby refining the edges. Deformable Convolution [54] 257 

introduces a learnable offset into its receptive field, enhancing the flexibility of 258 

convolution to align with actual boundary shapes more closely, thus improving feature 259 

extraction and boundary prediction capabilities. Additionally, the boundary loss [55] 260 

proposed by Hoel Kervadec et al. focuses on minimizing the interface area between 261 

segmentation boundaries and ground truth, thereby enhancing the network's capability 262 

in contour space prediction. 263 

Inspired by deep supervision and refinement techniques, we effectively 264 

amalgamate boundary and semantic details from various refinement layers using a 265 

boundary/semantic fusion head, thereby substantially improving the performance of 266 

model to discern boundary and semantic nuances at different scales. This advancement 267 

not only bolsters crack segmentation accuracy but also systematically mitigates the 268 

interference caused by environmental noise pixels. 269 

3. Proposed Architecture 270 

3.1 Preliminaries 271 

State Space Model (SSM): The state space model is a mathematical framework 272 

used to describe the representation of the current state and predict future states based 273 

on given inputs. Specifically, the model derives a predicted output function y t ( ) R  274 

from the continuous input function x t ( ) R   and the hidden state representation 275 

N
h t ( ) R , as shown in Equation (1). 276 

 
( ) A ( ) B ( )

( ) C ( ) D ( )

h t h t x t

y t h t x t

  = +


= +
 (1) 277 

where h t( )  is the time derivative of the state h t( ) , indicating how the state evolves 278 

over time; A N NR   is the state transition matrix, determines how the hidden state 279 

updates over time.; 1B NR   is the input control matrix, defining how the input 280 
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influences the state; 1C NR   is the output matrix, which translates the state to the 281 

output; D R  is the direct transmission matrix, representing the direct influence of the 282 

input on the output; N   represents the latent state dimension. The former part of 283 

Equation (1) is referred to as the state equation, while the latter part is called the output 284 

equation. x tD ( )   directly influences the output y t( )   by bypassing the state variable 285 

h t( )  , in a manner similar to a shortcut connection. Consequently, SSM further 286 

simplifies Equation (1) and omits D  (or equivalently, sets D=0 ), as shown in Equation 287 

(2). 288 

 
h t h t x t

y t h t

  = +


=

( ) A ( ) B ( )

( ) C ( )
 (2) 289 

Discretization: In Equation (2), the input is a continuous time-based signal. 290 

However, since real-world data is typically discrete, it is necessary to derive an 291 

equivalent equation in the discrete-time domain, as shown in Equation (3). 292 

 
1k k k

k k

h h x

y h

− = +


=

A B

C
 (3) 293 

where k
h  is the hidden state, representing the system's state at time step k; k

x  is the 294 

input signal, representing the input provided to the system at time step k; k
y   is the 295 

output signal, representing the output computed from the hidden state k
h  ; A   is the 296 

discrete state transition matrix; B  is the discrete input control matrix; C  is the discrete 297 

output matrix. 298 

Mamba (S6 model) adopted the Zero-Order Hold (ZOH) discretization method to 299 

convert the continuous-time state equations into discrete form. The ZOH method 300 

assumes that the input remains constant within each sampling interval, effectively 301 

transforming the continuous-time system into a discrete-time system by holding the last 302 

known input value constant until the next sampling point. 303 

(1)   Discrete state transition matrix A  304 
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Assuming that the input signal remains constant within a time step    (ZOH 305 

method), i.e., ( )
k

x t x=  (  , ( 1)t k k  +  ). The solution for h t( )  of Equation (2) can be 306 

obtained using the matrix exponential method: 307 

 ( )

0
( )

t k
t k

k kh t e h e x d
 

− − = + A A B  (4) 308 

where   is integration variable representing continuous time within a single time step. 309 

At ( 1)t k= +  , i.e., after discretization to the next step: 310 

 1
0

( )k k kh e h e d x
 


+ = + A A B  (5) 311 

Thus, according to Equation (3), the discrete transition matrix is: 312 

 e
= AA  (6) 313 

(2) Discrete input control matrix B  314 

According to Equation (3) and (5), the discrete input control matrix is: 315 

 
0

( )e d
 


=  AB B  (7) 316 

In control theory, this integral has an analytical solution: 317 

 
1

0
( )e d e

 
 − = − A AA Ι  (8) 318 

Thus, the discrete input matrix is: 319 

 1( )e
− = −AB A Ι B  (9) 320 

where Ι  represents the identity matrix. Using the first-order Taylor expansion for e
A

321 

( e
  + A I A ), matrix B  can be further simplified: 322 

 1 1( ) ( )e
−  −= −   = AB A Ι B A A B B  (10) 323 

(3) Discrete output matrix C  324 

In a state space model, the temporal evolution of the system is primarily governed 325 

by the state equation, while the output equation serves as an instantaneous mapping and 326 

does not influence the state evolution. This equation merely describes how the current 327 

state h t( )  is mapped to the output y t( ) , without involving differentiation with respect 328 
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to t   or any temporal accumulation effects. Therefore, it represents a static 329 

(instantaneous) linear transformation that does not contribute to the system’s temporal 330 

dynamics. As a result, the output matrix remains unchanged after discretization: 331 

 C = C  (11) 332 

Initialization ( A ): In Equation (2), if matrix A  is initialized with random values 333 

during training, the model may struggle to achieve optimal results. This is because the 334 

next state is not only influenced by the current state but also by prior states. To address 335 

this, the High-order Polynomial Projection Operators (HiPPO) method is introduced, 336 

which produces a hidden state that effectively memorizes its history. This enhances the 337 

model's ability to handle long-range dependencies, allowing it to capture recent tokens 338 

efficiently while attenuating the influence of older tokens. Such a design helps the 339 

model maintain long-term memory while focusing more on recent information. Based 340 

on this, Mamba introduces two simplified initialization methods for both the complex 341 

and real cases [56], aiming to optimize the handling of long-range dependencies in 342 

different scenarios, as shown in Equation (12). 343 

 
init

1
, S4D-Lin

2

1 , S4D-Real

ni

n

− += 
− +

A

( )

 (12) 344 

where n is state dimension index of N, and i is imaginary unit ( 2 1i = − ). 345 

Selection Mechanisms ( B , C  and  ): The SSM and S4 model (Structured SSM) 346 

exhibit limitations in certain key tasks due to their fixed linear time-invariant (LTI) 347 

nature. In these models, the entire historical state is compressed into a single 348 

representation, and the state evolution matrices A , B , C  remain static, meaning they 349 

cannot dynamically adjust to different inputs. This inherent limitation prevents the 350 

model from selectively focusing on or ignoring specific inputs, reducing its adaptability 351 

in complex tasks requiring contextual awareness. To overcome this limitation, Mamba 352 

(Selective SSM, S6 model) introduces an input-dependent selection mechanism, where 353 
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B  , C  ,    are dynamically adjusted based on the input sequence, while A   remains 354 

fixed. Specifically: 355 

(1) Fixed parameters A : 356 

The matrix A  , which governs the evolution of the hidden state, is initialized 357 

(Equation (12)) and remains input-invariant throughout training. This design ensures 358 

stable memory retention and structured state dynamics, allowing the model to 359 

efficiently encode long-range dependencies while maintaining numerical stability. 360 

However, A  can still adapt indirectly through changes in   (Equation (6)). 361 

(2) Input-dependent parameters B , C ,  : 362 

In contrast, B , C  and   are all input-dependent and adapt dynamically, as shown 363 

in Equation (13). This mechanism dynamically adjusts the weights over time based on 364 

the input, improving the model's efficiency in handling long-range dependencies. 365 

 

S x

S x

S x 

=
 =
 = +

B

C

B ( )

C ( )

(Parameter ( ))

 (13) 366 

where, 
N

S x x=
B
( ) Linear ( )   and 

N
S x x=

C
( ) Linear ( )   are fully connected layers that 367 

project the input to dimension N  ;     represents the Softplus activation function, 368 

ensuring numerical stability; Parameter   refers to a learnable bias term that is 369 

independent of the input sequence x  ;
1D

S x x =( ) Broadcast (Linear ( ))   is a linear 370 

transformation applied to x , followed by broadcasting to match the required shape D . 371 

Visual State Space (VSS) Block: Originally, the Mamba model was primarily 372 

designed for processing sequential data and demonstrated remarkable capabilities in 373 

fields such as natural language processing. To extend its application to the visual 374 

domain, researchers have proposed extended models, such as  Vim [57], VMamba [48], 375 

and LocalMamba [49]. These models transform two-dimensional image data into one-376 

dimensional sequences along various directions, thereby enabling the S6 architecture 377 

to be directly applied to visual information processing. Specifically, the Vim model 378 

employs a bidirectional scanning mechanism to simultaneously extract contextual 379 
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information with both forward and backward directions; VMamba introduces a four-380 

directional cross-scanning strategy to comprehensively capture global features from the 381 

top, bottom, left, and right; and LocalMamba is designed with a localized scanning 382 

strategy, focusing on capturing fine-grained image details. 383 

3.2 Comprehensive Architecture 384 

The following section introduces the lightweight pavement crack segmentation 385 

model GLoU-MiT we designed, as shown in Fig. 2. The model consists of three main 386 

components: (1) a U-shaped segmentation framework based on Mix Transformer for 387 

hierarchical feature extraction; (2) a lightweight Global-Local Mamba-Guided Skip 388 

Connection based on Vision Mamba for enhanced feature alignment and computational 389 

efficiency; and (3) a Boundary/Semantic Deep Supervision Refinement Module to 390 

improve segmentation precision. 391 

The U-shaped segmentation framework builds upon SegFormer’s Mix 392 

Transformer, leveraging its hierarchical structure and efficient self-attention 393 

mechanisms to extract multi-scale features. Inspired by U-Net, the model progressively 394 

upsamples feature maps in the decoder and incorporates skip connections to restore 395 

crack details while maintaining computational efficiency. The detailed implementation 396 

of this module is described in Section 3.3. 397 

Instead of direct concatenation, we introduce a Global-Local Mamba-Guided Skip 398 

Connection to enhance feature alignment and computational efficiency. This 399 

mechanism employs Local Mamba operations to refine fine-grained details and Global 400 

Mamba operations to capture long-range dependencies. Additionally, a Cascaded 401 

Gating Mechanism selectively filters redundant information while preserving key 402 

semantic features, ensuring an efficient fusion of encoder and decoder features. To 403 

further reduce computational cost, the skip connection applies channel reduction before 404 

feature processing and expands channels back after computation. The detailed 405 

implementation of this module is described in Section 3.4. 406 
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To enhance segmentation precision, particularly for narrow and low-contrast 407 

cracks, we incorporate a Boundary/Semantic Deep Supervision Refinement Module 408 

into the decoder. This module improves boundary detection and semantic consistency 409 

by leveraging multi-scale deep supervision, deformable convolutions, and attention 410 

mechanisms. By integrating both boundary-aware and semantic feature learning, the 411 

module enhances fine-grained segmentation. The detailed implementation of this 412 

module is described in Section 3.5. 413 

 414 

Fig. 2 Comprehensive Architecture 415 

3.3 U-Mix Transformer 416 

SegFormer introduces the Mix Transformer encoder, which effectively leverages 417 

Overlapped Patch Merging Process and Efficient Self-Attention Mechanism, 418 

combining the strengths of both CNNs and Transformers to capture local and global 419 

information. This significantly improves segmentation accuracy. The Efficient Self-420 

Attention mechanism reduces the dimensionality of the Key and Query using 421 

convolution, which enhances computational efficiency. However, SegFormer's decoder 422 

directly concatenates feature maps from different hierarchical levels and decodes them 423 
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through an All-MLP architecture. Although this approach reduces computational 424 

complexity, the results from concatenating feature maps of different levels tend to be 425 

suboptimal. This is because feature maps from different layers in the decoder inherently 426 

contain varied information, and directly processing them through MLP cannot fully 427 

exploit the features extracted at different levels. 428 

Inspired by U-Net, we propose a symmetric U-Mix Transformer model (Fig. 3). 429 

Unlike U-Net, to improve computational efficiency, we do not concatenate feature 430 

maps at the same resolution. Instead, we directly add them together, followed by a Mix 431 

Transformer operation. This approach enhances efficiency while maintaining the ability 432 

to capture multi-level features effectively. 433 

 434 

Fig. 3 U-Mix Transformer 435 

3.4 Global-Local Mamba-Guided Skip Connection Module 436 

Although directly adding feature maps of the same resolution but different 437 

levels—i.e., semantic-rich and detail-heavy maps—can reduce computational load, the 438 

differences in information, such as varying semantic and detail levels, may lead to 439 

suboptimal segmentation results. This is because redundant information from shallow 440 

layers can interfere with the deep semantic information. Like U-Net, the skip 441 
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connection concatenates the encoder's feature maps with those of the decoder, but this 442 

increases the feature map dimensionality, leading to a quadratic increase in computation 443 

for Transformer modules. To address this issue, we propose the Lightweight Global-444 

Local Mamba-Guided Skip Connection Module (Fig. 4). 445 

 446 

Fig. 4 Lightweight Global-Local Mamba-Guided Skip Connection Module 447 

First, each feature map from different layers of the encoder is processed through 448 

local Mamba operations to extract detailed information from different levels. 449 
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Specifically, we introduced local horizontal scans with window sizes of 2 and 7 in Stage 450 

1 and Stage 2 to construct Local VSS (L-VSS) Blocks (Fig. 4(a)). Since the window 451 

size of 2 inherently includes vertical scanning, we avoided adding additional vertical 452 

scans for the size 7 window, reducing computational cost while still capturing vertical 453 

dependencies. 454 

To better fuse detailed information with deep semantic information, we propose a 455 

Mamba-based Cascaded Gate Generator. This module starts from the deep feature 456 

maps and progressively applies Global VSS (G-VSS) Blocks to extract global 457 

information, incorporating scans in four directions: horizontal (left to right and right to 458 

left) and vertical (top to bottom and bottom to top). A Sigmoid Gate is employed as a 459 

gating mechanism to control the flow of information at each layer. By dynamically 460 

adjusting the propagation of global features through the Sigmoid function, the model 461 

multiplies these with the extracted local features, ensuring that important global 462 

information is selectively retained while noise and irrelevant parts are suppressed. 463 

Through this gating mechanism, the model effectively suppresses redundant 464 

information while maintaining global feature propagation. By cascading this process, 465 

the feature maps obtained from the encoder are better aligned with the information 466 

hierarchy in the decoder. As a result, the addition of these maps not only reduces 467 

computational load but also enhances the model's ability to capture fine details. 468 

To manage computational costs, VSS Blocks are not directly inserted into the skip 469 

connections. Instead, we first apply channel reduction, decreasing the channels to 1/4 470 

of their original number. The globally or locally scanned data is then passed into a 471 

Selective Scan State Space Models (S6) [25] for computation (Fig. 4(c)), facilitating 472 

effective global or local visual representation learning. Finally, the channels are 473 

expanded back to their original size. To further enhance feature representation and 474 

eliminate irrelevant information, we implement channel attention mechanism 475 

operations in LocalMamba [49]. This allows for weighted extraction of critical feature 476 
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channels by dynamically adjusting their importance based on the input, ensuring that 477 

the model focuses on the most informative features while suppressing less relevant ones. 478 

3.5 Deep Supervision Refinement Module 479 

In our preliminary experiments, we observed that although the aforementioned 480 

structure improved segmentation accuracy for wider and more distinct cracks, its 481 

performance remained suboptimal when dealing with narrow cracks that resemble 482 

background pixels or are located in complex backgrounds. To address this issue, we 483 

propose the Deep Supervision Refinement Module (Fig. 5), which can be integrated 484 

into any network that requires semantic and boundary supervision. In this study, the 485 

module is inserted before the upsampling operation at each layer. 486 

 487 

Fig. 5 Deep supervision refinement module 488 

This module generates three outputs: a single-channel boundary feature map, a 489 

single-channel semantic feature map, and an upsampled feature map with the same 490 

number of channels as the input. First, the input feature map undergoes three 491 

convolutions to produce a single-channel boundary feature map, which is then sent 492 

directly to the boundary fusion head for further boundary refinement and boundary loss 493 

supervision. Additionally, channel boundary attention is computed on the input feature 494 

map to determine the boundary attention weights that need to be applied to each channel, 495 

and this result is added to the input feature map. 496 
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Next, the boundary-enhanced feature map is sent to the semantic calculation 497 

module, where two standard convolutions are applied to extract semantic features and 498 

reduce the channel dimensions. This is followed by a deformable convolution 499 

(Deformable Convolution v3) [42] to capture the non-uniform shapes of crack 500 

semantics. The output is a single-channel semantic feature map, which is passed to the 501 

semantic fusion head for further crack semantic feature extraction and semantic loss 502 

computation. Subsequently, semantic attention is calculated for the input feature map, 503 

weighted using the semantic feature map, and then added to the input feature map. 504 

Finally, the feature map is upsampled to seamlessly connect with the next layer’s 505 

module. 506 

The main idea behind this module is that feature maps after convolution and 507 

downsampling contain rich semantic information, but because their dimensions are 508 

smaller than the original image, directly upsampling them may result in inaccurate 509 

boundary information. By performing boundary and semantic supervision based on 510 

high-level semantic information, this module refines the boundary and semantic details 511 

at each layer. Additionally, a shortcut branch adds the supervised output back to the 512 

original feature map, preserving the original information while enhancing boundary and 513 

semantic channel supervision. This module can be integrated into any intermediate 514 

feature map calculation to supervise both boundary and semantic information. To 515 

capture boundary and semantic information at different scales, it is recommended to 516 

apply the module before each upsampling operation.  517 

Furthermore, the boundary and semantic feature maps extracted at each layer are 518 

fed into the boundary and semantic fusion head for further refinement (Fig. 6). First, 519 

the boundary prediction result is upsampled to the original image size and concatenated, 520 

followed by a standard convolution layer and a deformable convolution layer, which 521 

refine the boundary segmentation information. The boundary-refined result is then 522 

concatenated with the semantic prediction result, passed through another standard 523 

convolution layer and deformable convolution layer, and the boundary information is 524 
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used to constrain the semantic information, resulting in the final refined crack 525 

segmentation output. 526 

 527 

Fig. 6 Boundary and Semantic Fusion Head 528 

4. Experimental Details 529 

4.1 Datasets 530 

To evaluate the versatility of data acquisition methods for pavement inspection 531 

and to validate the robustness and adaptability of the proposed algorithm, this study 532 

used three distinct datasets: our UAV-Crack500 [58], which is based on long-distance 533 

pavement distresses images captured by drones, the Crack500 [59], which is based on 534 

close-distance taken with cell phones, and the CrackSC [23], which features pavement 535 

cracks captured by cell phones in the presence of complex background noise. 536 

For the UAV-Crack500 dataset, given urban scenario flight altitude restrictions, 537 

the drone flying altitude was set to 50 meters. To ensure high precision and efficient 538 

image data collection covering at least a width of three lanes in one direction, a camera 539 

with 4 zoom capabilities was used at a flying speed of 2.5 m/s. The collected images 540 

have a resolution of 2688  1512 pixels, corresponding to a ground coverage area of 16 541 

m  9 m, which equates to an actual size of 6 mm  6 mm per pixel (Fig. 7). Due to the 542 

minor proportion that cracks occupy in drone images, directly training on full-543 

resolution images results in the model being biased toward background predictions. To 544 

alleviate this issue and improve the proportion of crack pixels within each sample, we 545 

adopted a uniform, non-overlapping cropping strategy that divides each image into 16 546 



24 

equal-sized blocks of 672  378 pixels. These patches are then filtered to exclude those 547 

without visible cracks. A total of 500 image patches with representative and complex 548 

crack scenarios were meticulously selected and annotated. The selection process 549 

emphasized diversity and real-world complexity, including the presence of road 550 

markings, shadows, curbstones, trees, manhole covers, and road dividers (Fig. 1(a)). 551 

The dataset was randomly split into a training set (250 images), a validation set (50 552 

images), and a test set (200 images). As depicted, the dataset presents elongated, fine-553 

grained crack structures, where crack widths are often only a few pixels wide, 554 

embedded within complex urban environments. 555 

 556 

Fig. 7 Flight parameters for long-distance pavement monitoring 557 

The Crack500 dataset comprises 500 high-resolution images of pavement captured 558 

at close range using a cell phone camera, each with dimensions of 2000 × 1500 pixels. 559 

For practicality in model training and evaluation, these images have been subdivided 560 

into 16 non-overlapping regions. The dataset is stratified into different subsets for the 561 

purposes of model development and performance assessment: 1896 regions are 562 

allocated for training, 348 for validation, and 1124 for testing. Visual inspection of the 563 

dataset reveals that the images feature relatively wide cracks, which occupy a more 564 

significant proportion of the image area compared to those in UAV-based datasets. 565 

Additionally, the images in the Crack500 dataset exhibit minimal variation in lighting 566 

conditions and are less affected by environmental noise (Fig. 1(b)). 567 
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The CrackSC dataset is a newly introduced pavement crack image dataset 568 

designed to address the challenges of detecting cracks in local roads with heavy 569 

shadows and dense crack formations, commonly found in low-maintenance areas. The 570 

dataset consists of 197 images of pavement surfaces collected using an iPhone 8 around 571 

Enoree Ave, Columbia, SC. Since the dataset is provided as a whole, we randomly split 572 

it into training, validation, and test sets in a 5:1:4 ratio to facilitate model evaluation. 573 

4.2 Implementation Details 574 

Our models were developed based on the MMSegmentation v1.2.0 framework 575 

[60], which provides a standardized and modular implementation for semantic 576 

segmentation. To ensure a fair and reliable comparison, all models, including our 577 

proposed model and the comparison models, were trained and evaluated under the same 578 

hardware and experimental settings. Specifically, all models were trained and inferred 579 

on an NVIDIA Tesla T4 GPU (16GB), with only the backbone and head components 580 

modified, while all other experimental settings remained identical. The backbone 581 

parameters were initialized using pre-trained weights from the official repository, 582 

ensuring that each model benefited from a strong initialization aligned with its 583 

architecture. 584 

During training, we adopted a batch size of 16 and a learning rate of 6e-5, training 585 

each model for 30,000 iterations. To improve the generalization capability of the models, 586 

we applied data augmentation techniques, including flipping, rotation, color jittering, 587 

and random size cropping. The cropped images were then resized to 256 × 256 pixels 588 

before being used for training. Additionally, all models shared the same data 589 

preprocessing pipeline, training strategy, optimizer settings, loss function, learning rate 590 

schedule, and evaluation metrics, ensuring that the observed performance differences 591 

were solely attributed to the architectural variations rather than training discrepancies. 592 

To facilitate efficient model training, the study adopts AdamW ( 1
0 9 = . , 

2
0 999 = . , 593 

0 01weight decay = . ) as the optimizer of choice due to its effectiveness in handling 594 

sparse gradients and its adaptive learning rate capabilities, which are conducive for 595 
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faster convergence. Additionally, a two-stage learning rate scheduling strategy was 596 

implemented. In the initial 1,500 iterations, a linear warm-up was applied, gradually 597 

increasing the learning rate from 1e-6 to the base learning rate 6e-5. Subsequently, a 598 

polynomial learning rate decay (power = 1.0) was adopted, ensuring a linear reduction 599 

in the learning rate from iteration 1,500 to 30,000, eventually reaching 0.0 at the end of 600 

training. 601 

4.3 Loss Functions 602 

The prevalent class imbalance, marked by a minor fraction of crack pixels 603 

compared to the overall image, severely hinders the capacity of models to discern crack 604 

features using a conventional Binary Cross-Entropy (BCE) loss function. This 605 

challenge is further pronounced in images obtained via UAVs, where the proportion of 606 

crack pixels is notably diminutive, leading to predictions with excessively fine or 607 

interrupted cracks, or in extreme cases, a complete bias towards background 608 

classification. To counteract this, Weighted Binary Cross-Entropy (wBCE) and Dice 609 

Loss have been advocated as effective loss functions to tackle the class imbalance issue.  610 

The wBCE approach involves differential weighting for the positive (crack) and 611 

negative (background) classes, incentivizing the model to focus more on the sparsely 612 

represented crack class (Equation (14)). Although wBCE can mitigate the class 613 

imbalance problem, its effectiveness heavily depends on the weight parameter 614 

adjustment, often requiring extensive experimentation to determine the optimal setting 615 

for ensuring model stability and generalization. 616 
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where N   represents the number of image pixels; 1w   represents the weight for the 618 

positive samples; 0w represents the weight for the negative samples; iy  represents the 619 

actual probability of the positive samples; 
i

y  represents the predicted probability of the 620 
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positive samples. When 
0 1 1w w= =  , wBCE   reduces to the standard Binary Cross-621 

Entropy (BCE) loss BCE . 622 

The Dice Loss effectively measures the degree of overlap between the predicted 623 

segmentation mask and the ground truth. It is inherently robust to class imbalance 624 

(Equation (15)). However, it is prone to gradient instability during training, especially 625 

when the intersection of the segmentation masks is minimal, potentially leading to 626 

oscillatory behaviors or convergence issues in the learning process. 627 
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To address the respective shortcomings of traditional BCE, wBCE, and Dice Loss, 629 

this study follows the approach in [61–65] and adopts a combined BCE and Dice loss 630 

strategy as the overall semantic loss function s  (Equation (16)). This method has been 631 

demonstrated to achieve better segmentation performance, particularly for fine crack 632 

detection. 633 

 s BCE Dice
= +  (16) 634 

Inspired by the CE2P model [66], we propose an approach to address boundary 635 

loss by first detecting the boundaries between different semantic regions through 636 

comparing the semantic categories of adjacent pixels in the segmentation map. These 637 

boundaries are then marked as edges. To further refine the edge information, a dilation 638 

operation is applied, which widens the edges and produces an expanded edge map (with 639 

an edge width of 4). This wider edge representation helps the model capture and learn 640 

complex semantic boundary information more effectively. Given that boundary pixels 641 

constitute a smaller proportion of the total pixels, we assign a weight of 20 (α=20) to 642 

the boundary BCE loss b , following the empirical setting in the PIDNet model [67], 643 
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before combining it with the semantic loss to form the final loss function (Equation 644 

(17)): 645 

 s b= +  (17) 646 

4.4 Evaluation Metrics 647 

This study employs a suite of metrics for model evaluation, comprising pixel 648 

accuracy (PA), precision (Pr), recall (Re), F1-score (F1), and Crack Intersection over 649 

Union (IoU). Pixel accuracy quantifies the proportion of pixels correctly classified by 650 

the model relative to the total pixel count, serving as a measure of the model's overall 651 

classification efficacy (Equation (18)). Precision is defined as the ratio of true positive 652 

predictions to the total number of positive predictions made by the model, gauging the 653 

precision with which the model discerns positive cases (Equation (19)). Recall is the 654 

ratio of true positive predictions to the actual number of positive instances, evaluating 655 

the model's proficiency in detecting all positive cases (Equation (20)). The F1-score, a 656 

weighted harmonic mean of precision and recall, balances the two metrics for a holistic 657 

performance assessment (Equation (21)). The Crack IoU metric assesses segmentation 658 

accuracy by calculating the ratio of the intersection to the union of the predicted and 659 

actual crack regions (Equation (22)). 660 
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where TP (True Positive) refers to the case when the actual class is positive and the 666 

model predicts it as positive; TN (True Negative) refers to the case when the actual class 667 

is negative and the model predicts it as negative; FP (False Positive) refers to the case 668 

when the actual class is negative but the model incorrectly predicts it as positive; FN 669 
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(False Negative) refers to the case when the actual class is positive but the model 670 

incorrectly predicts it as negative. 671 

Params (the number of parameters) and FLOPs (floating point operations) are used 672 

in this paper as common metrics to evaluate the parameter complexity and 673 

computational complexity of the model. Params refers to the total number of trainable 674 

parameters in the model, typically including weights and biases, which are used to 675 

measure the model’s storage requirements and memory consumption during training. 676 

FLOPs represent the number of floating-point operations required during a single 677 

inference, which reflects the computational resources needed by the model to process 678 

data. 679 

Due to the unclear boundaries of cracks, along with the subjectivity and lack of 680 

repeatability in manual annotations, this study, following other research [68–70], also 681 

adopts a 2-pixel tolerance. To enhance the model's ability to accurately segment cracks, 682 

we use the approach where a prediction is considered positive if it falls within the 2-683 

pixel dilated region of the ground truth. 684 

4.5 Reference Evaluation on Jetson Orin Nano 685 

This study systematically evaluates the deployment performance of deep learning 686 

models on the NVIDIA Jetson Orin Nano (8GB) platform (Fig. 8), which delivers 40 687 

TOPS of AI computational power—an 80-fold increase compared to the NVIDIA 688 

Jetson Nano. Due to the limited support for ONNX and TensorRT operators in certain 689 

model implementations, we adopted two deployment strategies utilizing PyTorch Just-690 

In-Time (JIT) at FP32 precision: Python-based PyTorch inference and C++-based 691 

LibTorch inference. The JIT compilation process converts dynamic models from 692 

Python environments into the TorchScript format, enabling cross-platform serialization 693 

and optimized execution. Each deployment approach offers unique advantages. Python-694 

based PyTorch inference features short development cycles and flexible iterations, 695 

making it ideal for rapid prototyping and validation. Conversely, C++-based LibTorch 696 

inference is optimized for latency-sensitive applications and resource-constrained 697 
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environments. Performance evaluation was conducted under a standardized protocol, 698 

which included setting the Jetson platform to maximum performance mode with the 699 

highest operating frequency. Each test consisted of a 10-sample warm-up phase 700 

followed by 50 inference samples. The evaluation metrics included Energy Per Sample 701 

(EPS) (Equation (23)), Inference Latency Per Sample (LPS) (Equation (24)), 702 

Throughput (Equation (25)), and the Energy Delay Product (EDP) (Equation (26)). 703 
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where ( )V t  and ( )I t are real-time voltage and current measurements from the Jetson 708 

INA3221 sensor; N is the total number of samples; 
inference_endT  and 

inference_startT represent 709 

the end and start times of the model inference phase only; 
total_endT  and 

total_startT represent 710 

the end and start times of the complete pipeline of data preprocessing, model inference, 711 

and post-processing stages. During the training process, the model employed a crop 712 

size of (256, 256). To ensure consistency, the same crop size was applied during 713 

inference on edge devices. For test images with a resolution of (512, 512), we utilized 714 

a non-overlapping sliding window approach to divide the image into four patches. 715 

These patches were simultaneously input as a single batch for model inference. Finally, 716 

the prediction results were reassembled to restore the original image size, ensuring 717 

consistency and completeness of the output. 718 
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 719 

Fig. 8 NVIDIA Jetson Orin Nano (8GB) platform and specifications 720 

5. Results and Discussion 721 

5.1 Quantitative Evaluation 722 

To rigorously evaluate the effectiveness of our model, we conducted a comparative 723 

analysis against state-of-the-art semantic segmentation models. These included CNN-724 

based models (U-Net [42], SegNeXt [71], RHACrackNet [72], TV-net (U-NetSmall) 725 

[58], CDS-Net [73]), Transformer-based models (SegFormer [74], U-MixFormer [75]), 726 

as well as advanced mamba-based models (LocalVMamba [49], Manba-UNet [50], 727 

SCSegamba [29]). Tables 1 to 3 summarize the performance comparison of state-of-728 

the-art methods on UAV-Crack500, CrackSC, and Crack500 datasets. Table 4 presents 729 

a comparison of model parameters and FLOPs with a fixed input size of 3×512×512 730 

during testing. 731 

 732 

Table 1 Performance comparison with the state-of-the-art methods on UAV-Crack500 733 

Method PA Pr Re F1 IoU 

U-Net 99.12 89.52 70.65 78.97 65.25 

SegNeXt-T 99.21 91.25 75.11 82.40 70.06 

RHACrackNet 99.11 87.96 72.44 79.45 65.91 

TV-Net 99.12 87.42 73.23 79.70 66.25 

CDS-Net 99.11 87.52 72.83 79.50 65.97 

SegFormer-MiT-B0 99.21 90.51 74.57 81.77 69.16 

U-MixFormer-MiT-B0 99.22 90.39 75.36 82.20 69.77 

SCSegamba 99.00 91.31 64.31 75.47 60.60 

LocalVMamba-T 99.16 89.56 73.09 80.49 67.36 

Mamba-UNet 98.92 87.80 61.40 72.26 56.57 

GLoU-MiT (Ours) 99.19 89.32 76.49 82.41 70.08 

GLoU-MiT-DS (Ours) 99.20 88.82 77.89 83.00 70.94 

 734 
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Table 2 Performance comparison with the state-of-the-art methods on CrackSC 735 

Method PA Pr Re F1 IoU 

U-Net 98.76 86.56 59.85 70.77 54.76 

SegNeXt-T 98.63 88.53 51.28 64.94 48.08 

RHACrackNet 98.70 87.02 56.78 68.72 52.35 

TV-Net 98.76 86.62 60.49 71.24 55.32 

CDS-Net 98.78 88.29 59.26 70.92 54.94 

SegFormer-MiT-B0 98.81 88.65 61.91 72.90 57.36 

U-MixFormer-MiT-B0 98.84 88.48 64.05 74.31 59.12 

SCSegamba 98.64 88.29 51.70 65.21 48.38 

LocalVMamba-T 98.72 87.44 57.42 69.32 53.04 

Mamba-UNet 98.34 82.41 29.04 42.94 27.34 

GLoU-MiT (Ours) 98.80 87.64 64.35 74.21 59.00 

GLoU-MiT-DS (Ours) 98.82 87.71 64.78 74.52 59.39 

 736 

Table 3 Performance comparison with the state-of-the-art methods on Crack500 737 

Method PA Pr Re F1 IoU 

U-Net 97.48 83.81 72.57 77.79 63.65 

SegNeXt-T 97.43 79.55 78.63 79.08 65.40 

RHACrackNet 97.29 79.63 74.93 77.21 62.87 

TV-Net 97.42 80.33 76.44 78.34 64.39 

CDS-Net 97.47 82.45 74.28 78.15 64.14 

SegFormer-MiT-B0 97.50 81.28 77.07 79.12 65.45 

U-MixFormer-MiT-B0 97.56 81.21 78.46 79.81 66.40 

SCSegamba 97.33 82.04 71.96 76.61 62.09 

LocalVMamba-T 97.55 82.15 76.57 79.26 65.64 

Mamba-UNet 97.41 81.20 75.02 77.98 63.91 

GLoU-MiT (Ours) 97.59 80.79 80.39 80.59 67.49 

GLoU-MiT-DS (Ours) 97.62 82.40 77.72 79.99 66.66 

 738 

Table 4 Efficiency comparison 739 

Method Params (M) Flops (G) 

U-Net 29.0 203.0 

SegNeXt-T 4.2 6.3 

RHACrackNet 1.7 7.3 

TV-Net 17.8 87.3 

CDS-Net 7.2 48.5 

SegFormer-MiT-B0 3.7 7.9 

U-MixFormer-MiT-B0 6.4 5.2 

SCSegamba 3.1 23.5 

LocalVMamba-T 56.2 230.7 

Mamba-UNet 19.2 1.5 

GLoU-MiT (Ours) 6.6 6.5 

GLoU-MiT-DS (Ours) 7.0 7.2 

UAV-Crack500: This dataset consists of aerial images of pavement captured by 740 

drones. Due to the high altitude of capture, the images have relatively low resolution, 741 

with fine cracks and low contrast between the pavement and cracks, making it 742 

challenging to accurately segment the cracks. Although U-Net and Mamba-UNet 743 
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perform well in medical imaging, their segmentation performance on this dataset is 744 

suboptimal. Our proposed GLoU-MiT model surpasses existing state-of-the-art models 745 

based on CNNs, transformers, and Mamba architecture, outperforming the advanced 746 

Vision Mamba model, LocalVMamba, with a 1.98% improvement in F1-score and a 747 

2.72% increase in Crack IoU. After incorporating the DS module, GLoU-MiT-DS 748 

achieves additional gains of 0.59% in F1-score and 0.86% in Crack IoU with a slight 749 

increase of approximately 0.4M parameters and 0.7 GFLOPs. 750 

CrackSC: The CrackSC dataset contains narrow cracks with significant 751 

environmental interference. Strong models like SegNeXt-T and Mamba-UNet perform 752 

worse than the traditional U-Net on this dataset. This is likely because U-Net applies 753 

convolutions and downsampling directly at higher resolutions, which is advantageous 754 

for detecting small cracks. However, U-Net’s convolution and downsampling at the 755 

original resolution result in a substantial overhead in parameters and FLOPs. The 756 

lightweight model U-MixFormer, which is carefully designed, achieved promising 757 

results. In comparison, our GLoU-MiT model experienced a slight performance 758 

decrease of approximately 0.1% in both F1 and IoU. However, after incorporating the 759 

DS supervision module, GLoU-MiT showed significant improvements, with F1 and IoU 760 

increasing by 0.21% and 0.27%, respectively. 761 

Crack500: In Crack500, the cracks occupy a larger portion of the image and the 762 

background is relatively simple, leading to smaller performance differences among 763 

various SOTA models. Under these circumstances, traditional U-Net is outperformed 764 

by more lightweight models. Our GLoU-MiT model achieves the best results, 765 

improving upon the advanced transformer model U-MixFormer by 0.78% in F1 and 766 

1.09% in IoU. However, after adding the DS supervision module, the segmentation 767 

performance decreased. This could be attributed to the edge supervision in the DS 768 

module, which is generated by dilating the edges by 4 pixels. This approach may have 769 

had a negative impact on the segmentation of clearly defined crack boundaries. 770 

 771 
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Image Ground truth 

      
SegNeXt-T U-MixFormer-MiT-B0 

      
LocalVMamba-T GLoU-MiT-DS (Ours) 

Fig. 9 Qualitative results on UAV-Crack500 772 

 773 

      
Image Ground truth 

      
TV-Net U-MixFormer-MiT-B0 

      
LocalVMamba-T GLoU-MiT-DS (Ours) 

Fig. 10 Qualitative results on CrackSC 774 

 775 

      
Image Ground truth 

      
SegNeXt-T U-MixFormer-MiT-B0 

      
LocalVMamba-T GLoU-MiT-DS (Ours) 

Fig. 11 Qualitative results on Crack500 776 

5.2 Qualitative Evaluation 777 

We selected three relatively challenging pavement images from each of the three 778 

datasets, and chose the best-performing models from the CNN, Transformer, and 779 
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Mamba network architectures for visualizing the segmentation results, as shown in Figs. 780 

9-11. From these figures, it is evident that our model excels at distinguishing crack and 781 

pavement pixels in complex scenes. For narrow and elongated cracks, segmentation 782 

models often encounter discontinuities. However, our model performs better than other 783 

models in producing continuous crack segmentations, significantly improving 784 

segmentation accuracy. 785 

5.3 Energy-Delay Performance Evaluation 786 

As shown in Fig. 12, compiling the TorchScript model into C++ using LibTorch 787 

significantly improves inference performance and efficiency by eliminating the 788 

additional overhead and dynamic scheduling issues associated with the Python 789 

interpreter. The results in Fig. 12(a) demonstrate that LibTorch-based inference 790 

significantly reduces energy consumption per sample across most models, primarily 791 

due to its static thread management strategy, which efficiently utilizes hardware 792 

resources and minimizes thread switching and synchronization overhead. 793 

However, for lightweight models such as SegFormer, U-MixFormer, and GLoU-794 

MiT, where computational loads are lower, the CUDA cores on the Jetson device are 795 

not fully utilized. In these cases, the fixed threading model of LibTorch introduces task 796 

scheduling overhead, resulting in an EDP that is not always significantly lower than 797 

Python inference (Fig. 12(d)). Conversely, in heavier models like Mamba-UNet and 798 

LocalVMamba, where computational resources are fully leveraged, LibTorch’s 799 

performance advantage becomes more pronounced. 800 

Among all models, Mamba-UNet exhibits the highest latency and energy 801 

consumption, despite having lower FLOPs, due to the computationally expensive 802 

Mamba operations applied on high-resolution inputs. In contrast, SegFormer achieves 803 

a balance between inference speed and energy efficiency. Our proposed GLoU-MiT 804 

model demonstrates competitive inference speed and energy consumption compared to 805 

SegNeXt-T, but achieves higher segmentation accuracy across all datasets. 806 
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The Energy-Delay Product (EDP), a comprehensive measure of inference 807 

efficiency, shows that after compilation into C++, GLoU-MiT achieves an EDP of 808 

8.06×10⁴, which is 9.3% lower than SegNeXt-T (8.89×10⁴), while improving the F1-809 

score on the Crack500 dataset by 1.51%. Although the EDP is slightly higher compared 810 

to U-MixFormer-MiT-B0 (2.56×10⁴), GLoU-MiT improves the F1-score on the 811 

Crack500 dataset by 0.78%, demonstrating a favorable trade-off between accuracy and 812 

efficiency. 813 

With the incorporation of the Deep Supervision Refinement (DS) module, the EDP 814 

of GLoU-MiT-DS increases to 10.77×10⁴, primarily due to the additional computation 815 

introduced by boundary and semantic supervision. However, this results in a notable 816 

improvement in segmentation performance, increasing the F1-score on the UAV-817 

Crack500 dataset to 83% (a 0.59% improvement over GLoU-MiT) and boosting the F1-818 

score on the CrackSC dataset from 74.21% to 74.52%. 819 

These findings suggest that while LibTorch inference generally reduces energy 820 

consumption, its efficiency gains vary depending on model complexity and workload 821 

distribution. Moreover, the DS module significantly enhances crack boundary 822 

segmentation, demonstrating the trade-off between accuracy and computational 823 

overhead in UAV-based crack detection scenarios. 824 

Integrating the findings from Sections 5.1 to 5.3, it becomes evident that the 825 

number of parameters and FLOPs is not necessarily indicative of a model’s real-world 826 

inference efficiency. Instead, inference performance is jointly determined by 827 

architectural design choices, the distribution and parallelizability of computation, and 828 

the ability to mitigate execution bottlenecks. For example, although Mamba-based 829 

models demonstrate favorable parameter efficiency, they exhibit suboptimal inference 830 

speed on edge devices. This discrepancy can be attributed to the current lack of mature 831 

GPU-level parallelization and hardware-specific optimization support for Mamba 832 

operators. 833 
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Therefore, the extensive deployment of Mamba modules is not advisable in 834 

latency-critical edge scenarios. Instead, our proposed architecture adopts a more 835 

pragmatic and effective approach by integrating Mamba modules within skip 836 

connections. This selective incorporation strategy enables the architecture to retain the 837 

modeling strengths of Mamba while mitigating its negative impact on inference latency. 838 

Furthermore, as Mamba currently lacks comprehensive GPU-oriented optimization and 839 

support strategies, future efforts to enhance inference speed may benefit from the 840 

integration of conventional model compression techniques, including quantization, 841 

pruning, and knowledge distillation. 842 

 
(a) Energy Per Sample (EPS) 

 
(b) Latency Per Sample (LPS) 
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(c) Throughput 

 
(d) Energy Delay Product (EDP) 

Fig. 12 Energy-Delay efficiency of Python and C++ on Jetson Orin Nano (8G) 843 

5.4 Ablation Studies 844 

The carefully designed skip connections can effectively integrate low-level feature 845 

maps rich in detail with feature maps containing high-level semantic information. To 846 

validate the superiority of our model, we explored various designs for skip connections 847 

and proposed four different types (Fig.13): 848 

(1) SC-I: The feature maps generated by the encoder are directly added to the 849 

decoder's feature maps without any additional operations. 850 

(2) GLo-SC-A: In the shallow layers (Stage 1 and Stage 2), we use a local VSS 851 

block to align the detailed feature maps with the semantic feature maps. In the 852 

deeper layers (Stage 3 and Stage 4), a global VSS block is used to align the 853 
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semantic-rich feature maps from the encoder with the semantic feature maps in 854 

the decoder. 855 

(3) GLo-SC-B: In this design, the local VSS block is applied to the high-resolution 856 

layer (Stage 1) of the encoder to extract local features, while the global VSS 857 

block is used for the low-resolution layer (Stage 4) to extract global features. 858 

The detailed and semantic feature maps are added directly at corresponding 859 

levels. 860 

(4) GLo-SC-C: As discussed in Section 3.4, we extract local features from each 861 

layer using local VSS blocks, with the low-resolution and semantically rich 862 

Layer 4 serving as the guiding layer. Through a progressive gating mechanism, 863 

we gradually control the amount of local feature information passed from each 864 

layer to its corresponding layer in the decoder. 865 

  

(a) SC-I (b) SC-A 

  

(c) SC-B (d) SC-C 

Fig. 13 Visualization of our proposed skip connection (SC) architectures 866 

As shown in Table 5, the performance improves when the Global-Local Mamba 867 

skip connection (GLo-SC) modules A, B, and C are added, compared to the identity 868 
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add method. This indicates that by extracting both global and local features from the 869 

skip connections, the semantic representation capability of the feature maps is enhanced, 870 

allowing them to align more effectively with the feature maps in the decoder. The GLo-871 

SC-C module achieves the greatest improvement by innovatively integrating 872 

hierarchical global feature extraction with an adaptive gating mechanism. This design 873 

dynamically balances the incorporation of critical global context with the suppression 874 

of redundant or noisy information, thereby enhancing semantic richness and ensuring 875 

optimal fusion between encoder and decoder features. As a result, the model attains 876 

superior predictive accuracy and improves robustness in capturing fine-grained details. 877 

Table 5 Ablation results on UAV-Crack500, CrackSC and Crack500 878 

Model 
Skip Connection 

DS 
Params 

(M) 

Flops 

(G) 

UAV-Crack500 CrackSC Crack500 

I A B C F1 IoU F1 IoU F1 IoU 

U-MiT √     6.2 6.2 80.98 68.04 71.31 55.41 80.01 66.68 

GLoU-MiT-A  √    6.4 6.3 81.65 68.99 71.98 56.22 80.11 66.82 

GLoU-MiT-B   √   6.6 6.3 81.39 68.62 72.22 56.52 79.78 66.36 

GLoU-MiT    √  6.6 6.5 82.41 70.08 74.21 59.00 80.59 67.49 

U-MiT-DS √    √ 6.6 7.0 81.51 68.79 71.91 56.14 79.56 66.05 

GLoU-MiT-DS-A  √   √ 6.7 7.1 81.69 69.05 73.19 57.71 80.08 66.77 

GLoU-MiT-DS-B   √  √ 6.9 7.1 82.32 69.95 72.62 57.01 79.90 66.53 

GLoU-MiT-DS    √ √ 7.0 7.2 83.00 70.94 74.52 59.39 79.99 66.66 

Furthermore, we applied deep supervision to the different skip connection models 879 

mentioned above by introducing a Boundary/Semantic Deep Supervision Refinement 880 

Module. The results show significant improvement, particularly for low-resolution, 881 

low-contrast datasets such as UAV-Crack500, and datasets with complex backgrounds 882 

such as CrackSC. This improvement is attributed to the addition of boundary and 883 

semantic supervision at each layer, which helps accelerate the learning of semantic 884 

information and enhances the representation of deeper features. As a result, the model 885 

can better understand and distinguish complex scenes or objects. However, for datasets 886 

where cracks are relatively obvious (e.g., Crack500), the addition of deep supervision 887 

leads to a decline in performance. This may be because the cracks are already prominent, 888 

and the base model structure is sufficient to capture the necessary features. In this case, 889 

deep supervision may over-constrain the learning of intermediate layers, thereby 890 

negatively affecting the overall performance. 891 
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5.5 Visualization of Activation Maps 892 

To understand the impact of our designed skip connection modules on model 893 

performance, we employed LayerCAM [76] to visualize the class activation maps of 894 

two images from the publicly available CrackSC and Crack500 datasets at different 895 

stages of our proposed GLoU-MiT models and the SegFormer model. Specifically, we 896 

visualized the feature maps in stage 1 (high-resolution layer) of our designed model, 897 

with the visualization locations shown in Fig. 14. In this figure, F1 represents the output 898 

of stage 1 in the encoder, F2 is the output after the local VSS block, F3 is the output 899 

from the previous layer followed by the global VSS block, F4 is the output after 900 

applying sigmoid to the element-wise multiplication of F2 and F3, and F5 is the final 901 

output of the decoder (corresponding to the MLP stage in SegFormer). 902 

 903 

Fig.14 Diagram of LayerCAM visualization positions 904 

As can be seen from the Fig.15, the presence of environmental interference results 905 

in suboptimal activation of crack regions during the shallow stage (F1), where only low-906 

level features are extracted, leading to significant noise around the edges. After 907 

introducing the local VSS block, the activation maps F2 become more focused around 908 

the crack regions. Compared to GLoU-MiT-B (SC-B) model that directly compute 909 

global features in stage 4, GLoU-MiT (SC-C), which gradually guides the feature 910 

extraction process through the global VSS gate, shows improved edge activation in its 911 
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feature maps F3. The feature maps F4 processed by the global VSS gate reveals more 912 

comprehensive crack region activation. As a result, the final segmentation map 913 

demonstrates better continuity and improved performance in segmenting fine cracks in 914 

complex backgrounds. 915 

Model F1 F2 F3 F4 F5/MLP Output 

SegFormer-MiT-B0 

 

N/A N/A N/A 

  

U-MiT 

 

N/A N/A N/A 

  

GLoU-MiT-A 

  

N/A N/A 

  

GLoU-MiT-B 

   

N/A 

  

GLoU-MiT 

      

(a) Image from the UAV-Crack500 dataset 

Model F1 F2 F3 F4 F5/MLP Output 

SegFormer-MiT-B0 

 

N/A N/A N/A 

  

U-MiT 

 

N/A N/A N/A 

  

GLoU-MiT-A 

  

N/A N/A 

  

GLoU-MiT-B 

   

N/A 

  

GLoU-MiT 

      

(b) Image from the CrackSC dataset 

SegFormer-MiT-B0 

 

N/A N/A N/A 
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U-MiT 

 

N/A N/A N/A 

  

GLoU-MiT-A 

  

N/A N/A 

  

GLoU-MiT-B 

   

N/A 

  

GLoU-MiT 

      

(c) Image from the Crack500 dataset 

Fig.15 LayerCAM visualizations: Comparing of GLoU-MiT and SegFormer at 916 

corresponding layers 917 

We further compare feature maps before and after the insertion of the DS module, 918 

as well as with and without the DS module. Specifically, we compare the LayerCAM 919 

visualizations across decoder Stage 2 to Stage 4 (Fig. 16). For the model with the Deep 920 

Supervision Refinement Module (GLoU-MiT-DS), the feature maps before DS 921 

insertion are denoted as Bk and those after insertion as Ak (where k indicates the stage) 922 

(Fig. 14). For the model without the DS module (GLoU-MiT), the corresponding 923 

feature maps are similarly denoted as Bk. The LayerCAM results indicate that, after DS 924 

insertion, the activation maps become more focused towards the crack centers and 925 

exhibit finer boundary delineation, which enhances the segmentation accuracy. 926 

Moreover, for datasets with finer cracks (e.g., CrackSC and UAVCrack500), the 927 

activation in the shallower B2 layer increases with the DS module, indicating that the 928 

additional boundary and semantic supervision improves the overall crack detection. For 929 

datasets with more prominent cracks (e.g., Crack500), the activation regions post-DS 930 

insertion are more concentrated within the crack regions. These observations clearly 931 

demonstrate that the deep supervision (DS) module plays a crucial role in refining the 932 

boundary and semantic features, particularly for fine and narrow cracks that are 933 

challenging to detect. 934 

 935 
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Model B4 A4 B3 A3 B2 A2  

GLoU-MiT 

 

N/A 

 

N/A 

 

N/A 

 

GLoU-MiT-DS 

       

(a) Image from the UAV-Crack500 dataset 

Model B4 A4 B3 A3 B2 A2  

GLoU-MiT 

 

N/A 

 

N/A 

 

N/A 

 

GLoU-MiT-DS 

       

(b) Image from the CrackSC dataset 

Model B4 A4 B3 A3 B2 A2  

GLoU-MiT 

 

N/A 

 

N/A 

 

N/A 

 

GLoU-MiT-DS 

       

(c) Image from the Crack500 dataset 

Fig.16 LayerCAM Visualizations: Comparison of GLoU-MiT (without DS) and GLoU-936 

MiT-DS (before and after DS insertion) 937 

6. Conclusion and Future Research 938 

In this paper, we present a novel lightweight pavement crack segmentation model, 939 

GLoU-MiT, designed to address the unique challenges posed by UAV-captured 940 

pavement images, such as low resolution, fine crack structures, and low contrast. The 941 

proposed model integrates three main components: a U-shaped segmentation 942 

framework based on Mix Transformer, a Global-Local Mamba-Guided Skip 943 

Connection mechanism, and a Deep Supervision Refinement Module. These 944 

innovations contribute to improved feature extraction, efficient computation, and 945 

precise segmentation of crack boundaries. 946 
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The U-Mix Transformer framework efficiently combines hierarchical feature 947 

extraction and attention mechanisms to enhance segmentation accuracy while reducing 948 

computational complexity. By replacing concatenation with direct addition in skip 949 

connections, the model achieves more effective multi-level feature fusion. The 950 

introduction of the Global-Local Mamba-Guided Skip Connection further improves 951 

semantic representation by dynamically filtering and fusing global and local features. 952 

Additionally, the deep supervision refinement module ensures accurate boundary and 953 

semantic supervision, particularly for fine and narrow cracks that are often difficult to 954 

detect. Comparative experiments on UAV-Crack500, CrackSC, and Crack500 datasets 955 

demonstrate that GLoU-MiT outperforms state-of-the-art CNN, Transformer, and 956 

Mamba-based models in terms of F1-score and Crack IoU, particularly in complex 957 

scenarios with challenging crack structures. 958 

Furthermore, while the absolute performance improvement of GLoU-MiT over 959 

existing models appears to be around 1% or less, this gain remains both theoretically 960 

and practically significant, particularly in UAV-based crack segmentation, where 961 

challenges such as low resolution, fine crack structures, and environmental noise make 962 

accurate detection inherently difficult. Even minor improvements in F1-score and IoU 963 

can lead to more reliable crack identification, reduced false positives, and better 964 

decision-making in automated road maintenance, ultimately enhancing infrastructure 965 

monitoring efficiency. Although Mamba-based models excel in long-range feature 966 

modeling, their high computational cost limits their feasibility for real-time edge 967 

deployment. Our approach effectively balances segmentation accuracy, computational 968 

efficiency, and inference speed, making it better suited for UAV-based applications. 969 

Additionally, the incorporation of the DS module further enhances fine crack and 970 

boundary segmentation, reinforcing the practical advantages of our method in complex 971 

and challenging environments. 972 

Looking ahead, future research will focus on further optimizing the inference 973 

speed of Mamba-based models, improving their computational efficiency to enhance 974 
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the feasibility of real-time edge deployment on UAVs, ensuring faster and more 975 

efficient crack detection in real-world infrastructure monitoring. 976 
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