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AbstractÐDynamic Adaptive Streaming over HTTP (DASH) is
a promising solution to enhance the Quality of Experience (QoE)
of mobile video services. In this paper, we consider an Edge-DASH
scenario where two problems of Bitrate Allocation (BrA) and user-
to-server allocation (USA) have been jointly formulated. Then, we
exploit Deep Reinforcement Learning (DRL) algorithm to solve the
USA problem and select the streaming point for users, which can
be streaming from the Edge, Macro layer or cloud, and deliver the
users the most appropriate bitrate respecting the QoE by solving
the BrA problem. In the simulation results, we have demonstrated
that our Deep Deterministic Policy Gradient (DDPG) outperforms
the traditional solution in terms of bitrate allocation.

Index TermsÐDASH, multi-access edge computing, bitrate
delivery, transcoding

I. INTRODUCTION AND RELATED WORKS

By 2025, mobile video streaming is expected to account

for 76% of mobile data traffic [1]. With mobile subscriptions

projected to reach 8.4 billion by 2029 and 5G networks

covering up to 65% of the global population, ensuring Quality

of Experience (QoE) for users has become a key research

focus. The adoption of 5G is further driving mobile data

traffic, enabling more immersive media formats. The diversity

in user demands, influenced by network conditions and device

capabilities, presents challenges for video service providers in

maintaining optimal QoE. Adaptive Bit Rate (ABR) streaming

and Dynamic Adaptive Streaming over HTTP (DASH) have

emerged as solutions [2], allowing users to stream video in

resolutions that suit their data rate and preferences. However,

a network-only strategy is inadequate, as rate adaptation must

consider user preferences and device factors like screen size

and bandwidth [3]. While cloud computing supports DASH

services, Cloud-DASH has drawbacks, such as high latency

and core network congestion [4]. Multi-access Edge Computing

(MEC) mitigates these issues by providing computation and

storage resources closer to users at the network edge [5], [6].

MEC helps meet 5G’s low-latency requirements, but an efficient

User-to-Server Allocation (USA) mechanism is necessary to

balance traffic across cloud and edge resources.

A cache hit occurs when a video chunk with the requested

resolution is available, which makes ABR-aware edge caching

more complex. In ABR streaming, having simply a video

chunk in the cache is insufficient; the chunk must be stored

at the required bit rate [7]. To address this issue, given the

limited storage at the edge, we propose incorporating transcod-

ing functionality at the Base Stations (BSs), which improves

performance by eliminating the need to cache all possible

bitrate levels. However, real-time video transcoding is highly

computationally demanding, and transcoding multiple videos

simultaneously can quickly deplete the processing capacity

of MEC servers. Therefore, it is crucial to develop a bitrate

delivery strategy that optimizes the use of processing resources.

Several studies have addressed the Bitrate Allocation (BrA)

problem. Mehrabi et al. [8] proposed a greedy-based scheduling

algorithm that periodically solves the USA and BrA problems,

aiming to balance the load while considering various QoE

metrics. However, their approach is entirely network-driven,

overlooking client-side limitations and focusing on maximizing

bitrate for all users. Bayhan et al. [9] studied BrA in WiFi

Access Points to facilitate cache delivery. Their proactive ap-

proach considered a tolerable difference between the requested

and delivered bitrates, using a compositional Pareto-algebraic

heuristic. Although their model has some similarities with ours,

they did not incorporate transcoding techniques, which play a

crucial role in enhancing QoE. Some works have also consid-

ered hybrid edge-cloud architectures. Tao et al. [10] proposed

an edge-cloud-assisted predictive adaptive streaming framework

for mobile networks with unreliable data rate predictions, using

slow fading to optimize long-term scheduling risk. Yan et

al. [11] developed a hybrid edge-cloud framework to optimize

client rate adaptation in cellular networks.

In this paper, we jointly address the problems of BrA

and USA. First, we model the system and formulate a joint

BrA-USA optimization problem. Then, we propose a Deep

Reinforcement Learning (DRL) approach to solve this problem,

determining the optimal streaming source for users, which

can be from the edge, the Macro layer, or the cloud. Our

solution ensures that users receive the most suitable bitrate

while maintaining QoE by addressing the BrA problem. The

main contributions of our work are as follows:

1) We introduce a reactive streaming strategy within a 4-tier

network topology, where users can stream from either the

edge (small cells), a Macro cell with wider coverage,

or the cloud. Additionally, we incorporate transcoding

capabilities in the edge layer,

2) We formulate a joint BrA-USA problem to optimize



bitrate delivery in a reactive, multi-layer network envi-

ronment,

3) We develop a Deep Deterministic Policy Gradient

(DDPG) method, which combines DRL and off-policy

deterministic policy gradient approaches, to solve this

joint problem. To the best of our knowledge, our approach

is novel in this area.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a macro-cellular network that covers a specific

area, where a Macro Base Station (MBS) connects to the

cloud via high-capacity links. The MBS contains a Macro Edge

Server (MES), and within the Macro cell, S Small-cell Base

Stations (SBSs) are co-located with Small-cell Edge Servers

(SESs). The network provides video streaming services to Edge

Clients (ECs), who request videos in varying resolutions. SESs

store video content at multiple bitrates, whereas the MES holds

the highest resolution versions.

Since ECs may prefer lower bitrates due to device con-

straints (e.g., battery life or data limits), our system adopts

a reactive approach that takes user requests into account to

ensure satisfactory QoE. ECs, represented by N users, connect

to the closest base station, each requesting chunks from a

video catalog, each chunk encoded at various bitrates. SESs

can transcode video chunks to lower bitrates on requests, while

the requested bitrate may differ from the delivered one.

There are N ECs scattered throughout the area, represented

by indices U = {u1, u2, . . . , uN}. Each EC connects to the

nearest BS according to signal strength. The available videos

are represented by V = {v1, v2, . . . , vM}, and each video is

divided into K chunks, each encoded at multiple bitrates. The

SESs are capable of transcoding chunks to lower bitrates. ECs

can request chunks from a range of bitrate levels, denoted as

O = {omin, omax}, and the bitrate of the kth chunk of the mth

video is denoted as om,k. Each chunk has a fixed duration,

typically between 2 and 10 seconds.

ECs’ bitrate requests are denoted as r
om,k

i (t), with the

general notation ri(t) used for simplicity. The set of all EC

requests is R(t) = {r1(t), . . . , ri(t), . . . , rN (t)}. The actual

delivered content is represented by R̂(t) = [r̂i(t)]
N
i=1, where

the delivered bitrate r̂i(t) may differ from the requested bitrate.

The SESs provide caching and transcoding capabilities. Each

SES has limited capacity, which allows it to store a certain

number of videos and chunks out of the total of M videos and

K chunks. Due to capacity constraints, not all bitrates can be

cached, so each chunk is stored at a specific bitrate if cached

at all.

At any given time t, an EC may request a video chunk

at a certain bitrate. The requested chunk may be delivered

from an SES, MES, or cloud, depending on availability. To

maximize QoE, we prioritize delivering the requested chunk

from the SES. If the SES cannot meet the request, the EC can

go back to the MES or the cloud. The MES stores all videos

at the highest bitrate, whereas the cloud stores all videos at all

bitrates. The goal is to optimize the delivered bitrate, matching

it as closely as possible to the requested bitrate while meeting

QoE requirements. The following options describe the video

delivery process:

1) Direct Edge hit: The requested chunk is cached at the

SES in the requested bitrate.

2) Transcoding Edge hit: The chunk is cached at a higher

bitrate, but is transcoded to the requested lower bitrate.

3) MES hit: The EC may access the MES if the chunk is

either not cached at the SES or cached at a lower bitrate,

or if MES provides better QoE or lower cost as MES

stores all videos only with the highest bitrate.

4) Streaming from the cloud: If none of the above options

is feasible, or if the cloud offers better QoE or lower

cost, the EC streams from the cloud. This is an option;

however, interaction with the cloud is preferred to be

limited due to the traffic burden on the backhaul.

The ability of SESs to transcode is restricted by a shortage

of computational resources. Let ηso represent the computing

resources required for transcoding a chunk at a certain cached

bitrate to a lower bitrate o. Transcoding to lower bitrates

consumes more resources, i.e., ηso < ηso− if o− < o. The

indicator function R
o
i is equal to 1 if the request of EC i requires

transcoding to bitrate o. The total computing resource constraint

on SESs for transcoding is defined as:

Ns
∑

i=1

O
∑

o=1

ηso · R
o
i ≤ Ωs ∀s (1)

where Ωs is the maximum available computing resource for

transcoding at an SES and Ns is the number of ECs covered by

an SES. We assume that the cloud does not have any limitation

in computation capacity. The cost of transcoding a chunk is

measured by CPU usage on the cache servers.

B. Problem Formulation

Our objective is to maximize EC satisfaction by delivering

the appropriate bitrate using optimal BrA and USA mecha-

nisms, while considering edge resource constraints. Since each

EC has multiple streaming sources (SBS, MBS, or cloud),

the USA decision is made independently for each request.

A key metric for effective BrA is avoiding stalling during

streaming, which directly impacts QoE. However, USA is

also tied to BrA since the choice of streaming source can

depend on whether the requested chunk needs transcoding.

Given the limited edge resources, all streaming options must

be included in the optimization of bitrate and server allocation.

In some cases, delivering a lower bitrate than requested may be

preferable to prevent stalling and meet the USA requirements.

Thus, the optimal USA decision may sometimes come at the

cost of lower bitrate delivery. Both BrA and USA decisions are

also influenced by the content cached in SESs. An effective

caching strategy can improve streaming by increasing direct

edge hits or reducing transcoding resource usage. However, due

to the cache capacity limitations of each SES, only a limited



number of chunks at specific bitrates can be stored. Since this

work does not focus on caching, we assume a random caching

strategy at the edge.

To define the cost functions, we use the Weber±Fechner law,

which explains the relationship between the actual changes

in stimuli and human perception. This law has been shown

to model user satisfaction in communication systems and

multimedia applications, particularly following a logarithmic

relationship for QoE [12], [13].

In the USA problem, each EC is assigned to a single server

(SES, MES, or cloud) for streaming. Let ai,j be a variable that

denotes whether EC ui streams from the jth node out of SES,

MES, or the cloud. The USA matrix A ∈ R
N×3 shows the

allocation for all ECs, with
∑3

j=1 ai,j = 1 for each EC. Given

the reactive approach to BrA, where ECs are served based on

their requested bitrates, and the joint optimization of BrA and

USA, the joint cost function for each EC request is defined as:

Υφm
k
(r̂i(t), ri(t)) = α log

max (r̂i(t), ri(t))

min (r̂i(t), ri(t))
(2)

where α is a positive constant that reflects the significance

of the cost, and r̂i(t) is dependent on the value of ai,j
as it identifies the streaming source, which is why it is a

joint problem. The difference between requested and delivered

bitrates at lower levels has a more significant impact on the

cost compared to higher levels. This encourages the algorithm

to allocate losses, if unavoidable, to higher bitrate levels, where

user dissatisfaction will be less pronounced. Additionally, as the

gap between the requested and delivered bitrates grows, so does

the cost. Therefore, when r̂i(t) = ri(t), the cost is zero. We

define the total joint BrA-USA cost function for all ECs:

Υ̂
(

R̂(t),R(t)
)

=

N
∑

i=1

Υφm
k
(r̂i(t), ri(t)) (3)

We define the optimization problem as

P1 : minimize
R̂,A

{

T
∑

t=1

N
∑

i=1

(

Υφm
k
(r̂i(t), ri(t))

)

}

(4)

subject to

C1 : Eq. (1) ∀s (5)

C2 :

3
∑

j=1

ai,j = 1, ∀ui ∈ U (6)

In (4), the goal is to minimize the difference between the

requested bitrate and the delivered bitrate for all ECs over

the time horizon T . The optimization focuses on the delivered

bitrate vector R̂ and the server assigned for streaming, A. The

transcoding computing constraint for each SES is represented

in (5), while the USA condition, ensuring that each EC streams

from either the SES, MES, or cloud, is shown in (6).

III. PROPOSED SOLUTION

A. Preliminaries

We assume that each EC is associated with the SES that

provides the highest SINR. In each time slot, some ECs make

a request, while others are in playback mode, having made

previous requests. Let U(t) represent the ECs connected to SES

with no request and U(t) those with new requests. The total

number of ECs in slot t is given by |U(t)|+ |U(t)| = N .

We design a DRL-based algorithm located in the MES that

generates BrA decisions for the ECs. Each small cell includes

an environment E, states S , and actions A, with a reward

function r : S × A −→ R. At each step t, the SES observes

the state st ∈ S , selects an action at ∈ A using policy π,

and receives a scalar reward rt = r(st, at) ∈ R proportional

to the QoE. The agent transitions to the next state st+1 ∈ S
with probability p(st+1|st, at). The actor’s objective is to find

the optimal policy π∗ that maximizes the long-term expected

reward:

Rt =
T
∑

i=t

γ(i−t) · r(si, ai), (7)

where γ ∈ [0, 1] is the discount factor.

The DRL framework, based on the Wolpertinger Policy [14],

includes three components:

1) The actor: The actor network finds a proto-action â ∈ A
based on the decision policy, updated after each step.

The actor is parameterized by θµ and maps states S to

actions A, providing a proto-action â for the current state

µ(s|θµ) = â.

2) K-Nearest Neighbors (KNN): The KNN maps the proto-

action â to a set of valid actions Ak to simplify action

selection in large spaces:

Ak = gk(ât), (8)

where

gk = arg
k

min
a∈A
|a− â|2. (9)

gk is a k-nearest-neighbor mapping from a continuous

space to a discrete set, and it returns the k actions in A
that are closest to â by L2 distance, i.e., |a− â|2.

3) The critic: The critic evaluates the expanded actions from

KNN and selects the one with the highest Q-value:

at = arg max
aj∈Ak

Q(st, aj). (10)

The deterministic target policy for the critic is:

Q(st, aj |θ
Q) =

Ert,st+1

[

r(st, aj) + γQ(st+1, at+1|θ
Q)
]

, (11)

where θQ are the critic network parameters. The action

at that maximizes the Q-value is:

at = arg max
aj∈Ak

Q(st, aj |θ
Q). (12)



B. DRL-based Solution for BrA-USA

We introduce a DRL-based method located in the MES

to solve P1. Using the DDPG algorithm, the MES learns a

dynamic BrA policy, selecting bitrate actions for ECs based

on the observed environment states. The agent has no prior

knowledge of the environment, which means it does not know

the number of ECs, or bitrate demand, making the learning

process model-free. The critic network V (x) and the actor

πθi(o) are parameterized by θ = {θc, θs}.
The DRL takes the demand profiles from N ECs, R(t) =

{r1(t), . . . , rN (t)}, and outputs the BrA decision vector

R̂(t) = {r̂1(t), . . . , r̂N (t)}. Only |U(t)| ECs have new demand

in slot t, while the others have an entry of 0. The DRL-based

BrA-USA DDPG is defined as follows:

State Space: Agent’s state is determined by the full system

observation includes ECs’ buffer length (B(t)), and transcoding

capacity at t, i.e. the agent’s state is st = [B(t), Ω̄].
Action Space: Agent finds an action matrix R̄(t) ∈ R

N×ν ,

where ν = 2 + |O|, representing all streaming options from

SES (considering all transcoding options) plus the two options

of MES and Cloud. The matrix is converted to vector R̂(t) ∈
R

1×N by assigning the highest probable bitrate using Softmax.

The action space becomes (N)ν , and is continuous, optimized

by DDPG.

Reward Function: The agent aims to minimize P1 while

meeting the EC constraints. The reward function rt accounts

for the allocated bitrate and the penalty on transcoding for all

SESs:

rt = −

(

w1 ·

N
∑

i=1

Υφm
k
(r̂i(t), ri(t))

+ w2 ·
∑

∀s∈S

ptrans
s

(

R̂s(t)
)

)

(13)

where R̂s(t) is the vector of delivered bitrate to the users of

the s-th SES. To address constraint violations in P1, we define

penalty function ptrans
s for transcoding resource constraints:

ptrans
s (R̂s(t)) = max

(

0,

Ns
∑

i=1

O
∑

o=1

ηsoR
o
i − Ωs

)

. (14)

We use a centralized critic-actors architecture. After selecting

an action and receiving feedback (reward and next state), the

critic updates the temporal difference (TD) error:

δπ,θ = rt + γV (xt+1)− V (xt), (15)

The critic is updated by minimizing the TD difference:

V ∗ = argmin
V

(δπθ)2, (16)

Actors are updated using policy gradients:

∇θJ(θ) = Eπθ

[

∇θ log πθ(o, a)δ
πθ
]

, (17)

θ ←− θ + α∇θ log πθ(o, a)δ
πθ, (18)

Fig. 1 illustrates our proposed architecture. The agent finds

proto-actors, expands actions via KNN, and selects the highest

Q-value actions for execution. The critic network evaluates K
possible combinations of actions and updates the networks.

The training stage (Algorithm 1) initializes the state of the

agent and ends at Tmax. Experience tuples (st, at, rt, st+1) are

stored in bufferM. After training for Emax episodes, the agent

learns the BrA policy.

In testing, the agent loads trained parameters, interacts with

the environment, and selects actions based on the output of the

actor network.

Algorithm 1 Training stages of the DRL-based Solution

Input: R(t) and ΦSES(t), and ∀i ∈ N
1: Initialize the actor and critic networks’ parameters randomly.

2: Initialize target networks θµ
′

←− θµ and θQ
′

←− θQ.
3: Initialize an empty experience memory M.
4: for each episode e = 1, 2, ..., Emax do

5: Generate an initial state s1 randomly.
6: for each step t = 1, 2, ..., Tmax do

7: Determine the BrA action at given the demand of the EC, using the
current policy network θµ and the exploration noise ϵµ.

8: Execute action at, receive the reward rt and observe the next state
st+1.

9: Store the tuple (st, at, rt, st+1) in replay memory M.
10: Sample a mini-batch of K tuples from M.
11: Update the critic network by minimizing the loss L with the samples:

L = 1

K

∑K
i=1

(ri +maxa∈A Q(s′i, a|θ
Q′

)−Q(si, ai|θ
Q))2

12: Update the actor network using the sampled policy gradient:

∇θµJ = 1

K

∑K
i=1
∇aQ(si, a|θ

Q)|a=ai∇θµµ(si|θ
µ)

13: end for

14: if t mod δ = 0 then

15: Update the target networks by θµ
′

←− τθµ+(1−τ)θµ
′

and θQ
′

←−

τθQ + (1− τ)θQ
′

.
16: end if

17: end for

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the DRL-

based algorithm through computer simulations. The simulation

setup and results are described in the following subsections.

A. Simulation Setup

A single MBS is located in the center of a circular area with

a radius of 500 m, and 5 SBSs are located within the area, each

with a radius of 200 m. ECs are distributed in an area with a

Poisson distribution with an expected density of S/N ECs per

cell. The buffer length of each EC is considered 90 s [10]. The

cache capacity at MES is enough to cache only the highest

resolution for all videos (each video will have approximately

4.8 Gb).

We consider 10 videos each having an equal length of

10 minutes [15]. We also consider that different videos have

different chunk sizes in the range [4 6] seconds. We select the

six most popular resolutions for traditional systems, i.e., 240P,

360P, 480P, 720P, 1080P, and 1440P, each with a bitrate range

which is obtained from YouTube similar to [3].

We characterize the popularity of videos using a Zipf-like

distribution and sort the videos in V in descending order of their

popularity Pm = {p1, . . . pi . . . , pM},
∑M

i=1 pi = 1, where pm



Fig. 1. Our considered architecture

represents the popularity of the ith rank video. Each EC selects

a video based on its popularity. In a heterogeneous environment,

devices have different interests in terms of resolution selection.

Hence, we consider each EC uniformly at random selects one

resolution level for its videos, however with a %5 probability

for each time slot, the selected resolution downgrades to a lower

resolution due to various reasons (e.g., interference, etc.). We

also assume ECs with a probability of %10 start streaming

from the first chunk, and with a %90 probability select a chunk

randomly from the middle of the video in order to show real-

world-like user behavior. ECs download the chunks until the

play-out buffer is full; such an aggressive approach is also

exploited on YouTube [16].

After the USA and the allocation of the bitrates, bandwidth

is fairly allocated to the ECs. The chunks are added to the

buffer after they are downloaded and the buffer decreases as

the chunks are being displayed. For processing capacity, we set

Ωs = 25GHz, which is the maximum number of CPU cycles

per second. We also set the number of CPU cycles per Byte

5900 [15].

In the DRL simulation, we use the DDPG agent consisting

of two networks: (1) the Actor network has three layers with

dimensions 400, 300, and the action dimension, and (2) the

Critic network takes as input both the state and action, with

layers 400, 300. Both networks use ReLU activations, with

Tanh activation in the output of the actor network.

The agent updates its parameters using Adam optimizers,

with learning rates of 1×10−4 for the actor and 1×10−3 for the

critic. It uses a replay buffer of size 1×106 to store experiences

and sample mini-batches of size 64 for training. The discount

factor (γ) is set to 0.99, and the soft update coefficient (τ ) for

the target networks is 0.005. The agent’s action selection is

deterministic and is bounded by the maximum action value.

B. Simulation Results

To assess the convergence of the DRL-based approach, we

conducted an experiment spanning 100 episodes. As illustrated

in Fig.2, the rewards for both BrA and transcoding converge

after approximately 25 episodes of exploration. Similarly, the

Fig. 2. Bitrate allocation, transcoding and joint rewards vs number of episodes

joint reward (as defined in (13)) reaches its maximum value

around the same point. Please note that as defined in (2), BrA

is positive but has been negated since it represents a cost.

Fig.3.a shows the bitrate error over several episodes, rep-

resenting the difference between the requested and allocated

bitrates. As observed, the error is initially high but drops to zero

after approximately 25 episodes, demonstrating the learning

and improvement in bitrate allocation over time, which is the

primary objective of this study, as defined in P1. This trend is

further illustrated in Fig.3.b, which displays the Root Mean

Square Bitrate Error (RMSBRE), highlighting the reduction

in bitrate delivery errors for video chunks over time. In both

figures, the proposed solution is compared with a randomized

bitrate delivery for clearer contrast.

In order to better understand the source of delivery/streaming

and the amount of edge transcoding, we have conducted two

experiments, and the results are shown in Figs.4 and 5. As seen,

almost all of the ECs count on streaming from the edge in

the first episodes. However, since this violates the transcoding

constraint C1, the agent learns this through time and reduces

the edge streaming; as a result, edge transcoding, and instead

streams more from the MBS and Cloud.



Fig. 3. (a) Bitrate error and (b) Root Mean Square of Bitrate error vs episodes

Fig. 4. Transcoding percentage over the edge vs number of episodes

To conclude, the agent initially struggles to deliver the correct

bitrate (as shown in Figs. 2 and 3) and exceeds its transcoding

capacity, resulting in lower rewards (having a low reward in Fig.

2). Moreover, as depicted in Figs.4 and 5 the agent transcodes

for most ECs. However, this does not lead to a lower bitrate

because the agent transcodes at an incorrect level. Over time,

the agent learns to adjust its transcoding process (both when

and how much to transcode), reducing the edge transcoding and

flexibly utilizing all tiers for efficient streaming.

V. CONCLUSION

In this paper, we proposed a DRL-based solution for the joint

optimization of BrA and USA in an Edge-DASH environment.

Our DDPG approach significantly improves the system’s ability

to effectively allocate bitrates while maintaining high QoE

standards. The simulation results validate the approach, show-

ing that the agent improves over time, reducing bitrate errors

and transcoding violations by selecting appropriate streaming

sources, thus balancing the use of edge, macro, and cloud

resources. The proposed method demonstrates superior perfor-

mance compared to traditional solutions, offering a promising

strategy for managing video streaming in 5G-enabled multi-tier

networks.
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