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Supporting text

Bayesian linear mixed models to test correlated trait divergence

While Mantel tests are appropriate for our distance-based analysis of non-autocorrelated color-

pattern data (Guillot & Rousset, 2013; Legendre et al., 2015; Raufaste & Rousset, 2001), we 

implemented Bayesian linear mixed models (BLMMs) as a complementary approach to estimate 

the degree of association between color-pattern divergence and CHC divergence, which include 

random effects accounting for the pairwise nature of the variables (Clarke et al., 2002; Gompert et 

al., 2014). The Bayesian approach uses a Markov chain Monte Carlo framework to estimate the 

regression coefficients. The model was fitted via the rjags R package (Plummer, 2018), where 

divergence in color-pattern was the explanatory variable and each CHC trait was used as the 

response variable, separately. The variables were scaled and centered before the analyses. We 

ran three chains of the model, with 10,000 iterations, a burn-in of 2,000 iterations, and a thinning 

interval of 5.

Principal component analysis in the FHA population

To evaluate population structure in the FHA population, used for genetic covariance estimation, we 

conducted a principal component analysis (PCA). We included 183 striped and unstriped female 

individuals (excluding males and melanistic individuals) and performed PCA using the BIMBAM file

in R (R Core Team, 2023). Results are shown in Fig. S1 and Fig. S2.

Jackknife re-sampling procedure

To evaluate the consistency of the genetic covariance estimates using genomic prediction across 

traits, we performed a jackknife re-sampling procedure. For each trait, we generated 100 jackknife 

replicates. In each replicate, we randomly sampled 95% of individuals from both the genotype and 

corresponding phenotype matrices, as well as 95% of SNPs, all without replacement. Individual 

identities were preserved and used to ensure matching between genotype and phenotype subsets.

Each replicate was analyzed using BSLMM implemented in gemma (Zhou et al., 2013). We ran 

five chains per replicate, each with 1,000,000 sampling steps, a burn-in of 200,000 steps; and 

minor allele frequency threshold of zero. The breeding values (BVs) were estimated on the model-

averaged effect sizes, which incorporate both the main (sparse) effect and the polygenic 

component of SNP effects. We calculated the Pearson correlation of BVs across traits for each 

matching jackknife replicates, thereby generating a distribution of genetic covariances for each trait

pair. 

Bayesian hierarchical linear models to test phenotypic covariance

In addition to the phenotypic covariance tests between color-pattern and CHC traits, we performed 

Bayesian hierarchical linear models with the R package brms (Bürkner, 2017) by modeling the 

association between color-pattern morphs and the PCs describing CHC variation across the 10 

populations. These models allowed us to pool data across populations while accounting for 

population-level random effects. Specifically, we fitted a Bayesian hierarchical linear model to 

assess the fixed effects of morph and sex on the principal component axes for each CHC trait. The

model included random intercepts for population to account for population-level variability. 
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We used weakly informative priors for all parameters, with flat (uniform) priors for fixed effects 

(morph and sex) to allow the data to fully determine the posterior estimates. In addition, a 

Student’s t (3, 0.3, 2.5) prior was assigned for the global intercept (hierarchical mean), and half-

Student’s t (3, 0, 2.5) priors were used for both the standard deviation of population-specific 

deviations (hierarchical standard deviation) and the residual standard deviation (sigma). The 

models were fitted using Hamiltonian Monte Carlo (HMC) sampling via the brms package in R, with

5 chains of 2000 iterations each (1000 warmup). All parameters showed good convergence, with 

Rhat values close to 1 and high effective sample sizes, suggesting reliable posterior sampling.

Genome-wide genetic differentiation between Timema species

To illustrate patterns of genetic differentiation representative of different species in Timema, we 

estimated patterns of genome-wide genetic differentiation between two Timema species that co-

occur in nature: T. californicum and T. poppensis (Riesch et al., 2017). To this end, we used 

previously published whole genome sequence, using allele frequency estimates from sympatric 

populations of T. californicum and T. poppensis (locality LP, see Supplementary Table 3 from 

(Riesch et al., 2017) for 5,018,138 SNPs (filtered from a set of 5,074,942 SNPs to retain only SNPs

with data for at least five individuals per species). The allele frequency estimates were taken 

directly from this past study and were based on an earlier, more fragmented genome assembly for 

a melanic T. cristinae with scaffolds combined into linkage groups based on inheritance patterns in 

mapping families (see Nosil et al., 2018).To quantify genetic differentiation, we estimated FST in 100

SNP windows as FST = Σi(HT-HS)/Σi(HT), where HS and HT are the mean subpopulation expected 

heterozygosity and the total expected heterozygosity given the mean allele frequencies, 

respectively. This analysis was conducted in R (R Core Team, 2023).

Patterns of CHC variation within and among Timema species

We conducted new analyses to summarize patterns of CHC variation within and among Timema 

species based on previously published data (Schwander et al., 2013). The data were obtained 

from Dryad (https://doi.org/10.5061/dryad.98f8c) and comprised relative abundances of seven 

cuticular hydrocarbons of the heptacosane class for 76 individuals from nine Timema species (stick

insects were sampled from two populations in most species). Using R, we performed a PCA 

ordination of five of the CHCs (two of the CHCs were excluded as they were not scored in three 

species, i.e., were missing data): 13Me27, 7Me27, 5Me27, 3Me27, 9Me27+11Me27 (these are all 

27 carbon molecules with methyl (Me) groups on different carbons). For this analysis, we centered 

and standardized the CHC data. The first two PCs explained 54.2% and 21.9% of the CHC 

variation, respectively. 90% data ellipses for PC scores for each species were computed using the 

ordiellipse function in the R package vegan (Oksanen et al., 2022).

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

https://doi.org/10.5061/dryad.98f8c


Supplementary Figures

Figure S1. First four principal component axes for the 183 individuals used to estimate 
genetic covariance in FHA. The axes contribute minimally to the variance explained to the 
population, implying there is no population structure in FHA.

Figure S2. Cumulative variance explained by principal components (PCs) in FHA. The 
gradual increase in variance contribution with each PC suggests no significant population structure
in FHA. Red line represents 90% of cumulative variance explained.
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Figure S3. Kinship matrix for the 183 individuals used to estimate genetic covariance in 
FHA. The large panel displays the kinship matrix, showing generally low kinship values (near 
zero), as further highlighted in the smaller panel depicting the histogram of kinship values. The 
kinship matrix was estimated using gemma, which uses Bayesian sparse linear mixed models 
(BSLMM; Zhou et al., 2013).
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Figure S4. Association between female CHCs traits and climatic variables. CHCs traits from 
15 populations (Table S2) were summarized for each CHC class using a principal component 
analysis (PCA). Here, we used the first PC axis (representing 50.3%, 88.5%, and 92.0% of the 
variation in female pentacosanes, heptacosanes, and nonacosanes, respectively). We used the 
first PC summarizing the 19 WorldClim bioclimatic variables to represent climatic variation (PC1 
represents 67.9% of the variation). We used linear models to describe the regression, with the 
adjusted R2 and corresponding p-value represented in each graph. Abbreviations: fpenta = female 
pentacosanes; fhepta = female heptacosanes; fnona = female nonacosanes.

Figure S5. Association between female CHCs traits and elevation. CHCs traits from 15 
populations (Table S2) were summarized for each CHC class using a principal component analysis
(PCA), as in Fig. S1. We used linear models to describe the regression, with the adjusted R2 and 
corresponding p-value represented in each graph. Abbreviations: fpenta = female pentacosanes; 
fhepta = female heptacosanes; fnona = female nonacosanes.
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Figure S6. Species differences among Timema. (A) Manhattan plot depicting 100 SNP window 
estimates of FST between sympatric Timema species, T. califonricum and T. poppensis, from whole 
genome sequence data (data from Riesch et al., 2017). (B) Principal component analysis 
ordination of CHC variation within and among Timema species. Each point represents a stick 
insect and is colored by species. 90% data ellipses are shown for each species (data from 
Schwander et al., 2013). 
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Supplementary Tables

Table S1. The seven T. cristinae populations used to estimate divergence in color-pattern
and in CHCs.  

population code locality host latitude longitude elevation (m)

LA Laurel Springs Adenostoma 34.509 -119.796 820

PRC Paradise Road Ceanothus 34.533 -119.857 364

MA Mattress Adenostoma 34.514 -119.800 848

PC Poppy Ceanothus 34.480 -119.770 287

OUTA Outlook Adenostoma 34.530 -119.840 464

OGC Open Grass Ceanothus 34.510 -119.800 847

HVA Hidden Valley Adenostoma 34.488 -119.787 376

Table S2. Phenotypic covariance between color-pattern and the principal components (PCs)
summarizing variation in the different CHC compounds across populations. Column headers
indicate the phenotypic covariance between color-pattern and the PCs for each CHC compound
class  (e.g.,  “PC1 penta”  represents  phenotypic  covariance between color-pattern and PC1 for
pentacosanes).  P-values were  estimated  using  permutation  tests  (n=1,000  permutations).  No
significant associations were observed (P> 0.05 for all tests).

Pop. latitude longitude n Prop.
striped

PC1
penta

PC2
penta

PC1
hepta

PC1
nona

PC2
nona

PC3
nona

BYA 34.500 -119.860 19 0.79 0.09, 
P=0.08

0.06, 
P=0.52

0.02, 
P=0.43

-0.01, 
P=0.86

-0.02, 
P=0.61

-0.01, 
P=0.77

ECC20A 34.505 -119.733 19 0.74 -0.21, 
P=0.06

-0.09, 
P=0.29

-0.39, 
P=0.07

-0.32, 
P=0.08

-0.19, 
P=0.09

-0.14, 
P=0.13

ECC35A 34.506 -119.768 16 0.94 0.03, 
P=0.25

-0.01, 
P=0.87

0.00, 
P=1.00

-0.01, 
P=0.75

-0.01, 
P=0.62

-0.01, 
P=0.63

HVA 34.488 -119.787 11 0.73 -0.13, 
P=0.33

-0.14, 
P=0.31

0.00, 
P=0.95

0.05, 
P=0.49

0.05, 
P=0.31

0.04, 
P=0.37

MA 34.515 -119.797 14 0.79 -0.02, 
P=0.87

-0.01, 
P=0.86

0.00, 
P=0.92

-0.01, 
P=0.89

-0.02, 
P=0.73

-0.09, 
P=0.74

OGA 34.513 -119.796 14 0.79 0.14, 
P=0.53

0.11, 
P=0.49

-0.01, 
P=0.84

-0.03, 
P=0.46

-0.03, 
P=0.52

-0.08, 
P=0.64

OGC 34.513 -119.796 14 0.57 -0.06, 
P=0.68

-0.01, 
P=0.81

0.04, 
P=0.36

0.05, 
P=0.49

0.01, 
P=0.82

0.24, 
P=0.13

OUTA 34.532 -119.843 15 0.40 -0.10, 
P=0.10

-0.02, 
P=0.43

-0.05, 
P=0.16

0.00, 
P=0.98

-0.02, 
P=0.65

0.08, 
P=0.78

PC 34.477 -119.769 13 0.08 0.00, 
P=1.00

-0.06, 
P=1.00

0.00, 
P=0.84

0.01, 
P=1.00

0.15, 
P=0.70

0.09, 
P=0.46

R12C 34.515 -120.071 19 0.16 0.01, 
P=0.72

0.04, 
P=0.64

0.00, 
P=0.91

-0.04, 
P=0.18

-0.03, 
P=0.10

0.02, 
P=0.95

Abbreviations: Pop. = populations; n = number of samples (striped or unstriped), prop. striped = 
proportion of striped in dividuals among the samples, penta = pentacosanes, hepta = 
heptacosanes, nona = nonacosanes.
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Table S3. Summary of the hyperparameters resulting from Bayesian sparse linear mixed 
models (BSLMM) to perform GWAS for color-pattern and CHC traits using gemma. The 
values represent the medians of the posteriors and the 95% ETPI values.

h PVE PGE PVE x PGE n-γ

Stripe
0.94
[0.88, 0.97]

0.95
[0.92, 0.97]

0.99
[0.97, 1.00]

0.90
[0.85, 0.94]

46 
[32, 61]

Pentacosanes
0.44
[0.04, 0.8]

0.39
[0.03, 0.76]

0.28
[0, 0.94]

0.16
[0.00, 0.57]

24 
[0, 258]

Heptacosanes
0.29
[0.01, 0.74]

0.26
[0.01, 0.69]

0.29
[0, 0.95]

0.07
[0.00, 0.48]

44 
[0, 276]

Nonacosanes
0.33
[0.02, 0.77]

0.29
[0.01, 0.7]

0.21
[0, 0.93]

0.08
[0.00, 0.49]

16 
[0, 242]

h=estimated heritability; PVE=proportion of phenotypic variance explained by all single nucleotide 
polymorphisms (SNPs) in the model; PGE=proportion of PVE explained by SNPs with nonzero 
effects; gamma=number of SNPs with a measurable effect on the phenotype. 
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Table S4.  Timema cristinae populations used to estimate the association between female 
CHCs and climate and elevation.

population locality host latitude longitude elevation (m)

BYA Brick yard A 34.469 -119.677 870

ECC35A East Camino Cielo 35 A 34.506 -119.768 1041

ECCCampA East Camino Cielo Camp A 34.506 -119.762 989

FHA Far Hill A 34.518 -119.801 813

HVA Hidden Valley A 34.488 -119.787 376

LA Laurel Springs A 34.509 -119.796 820

MA Mattress A 34.513 -119.796 848

OGA Open Grass A 34.513 -119.796 853

OGC Open Grass C 34.532 -119.843 847

OUTA Outlook A 34.477 -119.769 464

PC Poppy C 34.477 -119.769 287

PRC Paradise Road C 34.533 -119.857 364

R12C Refugio 12 C 34.515 -120.071 351

R23A Refugio 23 A 34.518 -120.077 438

SC Stage Coach C 34.523 -119.832 570

Abbreviations: A = Adenostoma fasciculatum; C = Ceanothus spinosus
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Table S5. WorldClim bioclimatic variables, contribution to the different axes of the principal
component  analysis,  and  correlation  with  host  plant.  Correlations  were  estimated  with
Wilcoxon signed-rank test, and the table represents the corresponding W-value and p-value. The
layer 14 (precipitation of the driest month) was excluded because it was zero across all localities.
All correlations are significant, with the exception of between ‘maximum temperature of warmest
month’ and host plant.

Worldclim bioclim layer PC W p-value

Annual mean temperature PC1 2686 1.39e-09

Mean diurnal range PC2 3741.5 3.26e-04

Isothermality PC1 3044.5 1.61e-07

Temperature seasonality PC1 7431 2.38e-07

Max temperature of warmest month PC2 4911 4.33e-01

Min temperature of coldest month PC1 2800 7.58e-09

Temperature annual range PC2 7008.5 2.82e-05

Mean temperature of wettest quarter PC1 2682.5 1.43e-09

Mean temperature of driest quarter PC2 3309 4.75e-06

Mean temperature of warmest quarter PC2 3287.5 3.72e-06

Mean temperature of coldest quarter PC1 2726 2.62e-09

Annual precipitation PC1 7899 3.54e-10

Precipitation of wettest month PC1 7274 1.34e-06

Precipitation seasonality PC2 3090.5 2.12e-07

Precipitation of wettest quarter PC1 7617.5 1.96e-08

Precipitation  of driest quarter PC1 7026 8.84e-07

Precipitation of warmest quarter PC1 7757 1.84e-09

Precipitation of coldest quarter PC1 7641.5 1.44e-08
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Table S6. Summary of model comparison in Bayesian regressions evaluating the possible effects
of different female CHC classes on sexual isolation (ipsi). Here, each class is evaluated alone.
Among  them,  we  evaluate  pentacosanes  (fpenta),  heptacosanes  (fpenta)  and  nonacosanes
(fnona). We test the linear and quadratic models to explain sexual isolation. Values represented
here are the deviance information criterion (DIC), and the best models are on top highlighted in
bold.

model (fpenta vs ipsi) Deviance pD DIC ΔDIC

fpenta+fpenta² 38.73 6.59 45.32 0

fpenta 43.63 5.48 49.10 3.78

model (fnona vs ipsi) Deviance pD DIC ΔDIC

fhepta 60.83 3.95 64.77 0

fhepta+fhepta² 61.55 5.09 66.64 1.87

model (fnona vs ipsi) Deviance pD DIC ΔDIC

fnona 61.10 3.96 65.06 0.0

fnona+fnona² 61.05 5.05 66.10 1.04
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Table S7. Summary of model comparison in Bayesian regressions evaluating the possible effects
of  different  female  CHC  classes  on  sexual  isolation,  namely:  pentacosanes  (Fpenta),
heptacosanes  (Fpenta)  and  nonacosanes  (Fnona),  and  geographical  distance  (Geo).  Values
represented here are the deviance information criterion (DIC), supporting Fpenta alone as the best
model (βFPENTA= 0.28 [-0.18, 0.72; 95% ETPI]). Here, we did not consider the quadratic relationship
between the CHC classes and sexual isolation.

model Deviance pD DIC ΔDIC

Fpent 59.73 3.82 63.54 0.00

Geo 59.52 4.21 63.73 0.19

Geo+Fpent 58.99 4.94 63.93 0.39

Fnona 61.00 3.89 64.90 1.36

Geo+Fpent+Fnona 59.18 5.93 65.11 1.57

Fhept 61.12 4.00 65.12 1.58

Geo+Fnona 60.07 5.34 65.42 1.88

Fpent+Fnona 60.65 4.79 65.43 1.89

Fpent+Fhepta 60.76 4.85 65.62 2.08

Geo+Fhept 60.36 5.41 65.77 2.23

Geo+Fpent+Fhept 59.87 6.06 65.93 2.39

Fhept+Fnona 62.05 4.93 66.98 3.44

Geo+Fhept+Fnona 61.05 6.29 67.34 3.80

Fpent+Fhept+Fnona 61.67 5.95 67.62 4.08

Geo+Fpent+Fhept+Fnona 60.39 7.25 67.65 4.11
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Table S8. Posterior estimates for Bayesian hierarchical linear model examining the effects 
of color-pattern morph and sex on the principal component axes of different CHC classes. 
Estimates are reported as posterior means with 95% credible intervals in brackets. Population was 
included as random effects, and in this table are reprsented as the standard deviation (SD) of the 
random effects. There is not a significant association between color-pattern morphs and any of the 
PCs describing CHC variation.

PC1 penta PC2 penta PC1 hepta PC1 nona PC2 nona PC3 nona

Fixed 
Effects

Intercept
-0.24 
[-0.59, 0.09]

-0.44 
[-0.86, -0.04]

0.09
[-0.21, 0.40]

0.48
[0.12, 0.87]

0.50
[0.04, 1.01]

0.47
[0.04, 0.93]

Morph 
(striped)

-0.2 
[-0.5, 0.11]

-0.06 
[-0.36, 0.25]

-0.15 
[-0.47, 0.16]

-0.15 
[-0.49, 0.18]

-0.07 
[-0.35, 0.19]

0.09
[-0.22, 0.40]

Sex (male)
0.85
[0.6, 1.11]

0.94
[0.69, 1.19]

-0.07 
[-0.34, 0.21]

-0.68 
[-0.96, -0.42]

-0.86 
[-1.07, -0.65]

-1.25 
[-1.51, -
0.99]

Random 
Effects

Population 
(SD)

0.32
[0.09, 0.65]

0.48
[0.25, 0.89]

0.20
[0.01, 0.48]

0.40
[0.17, 0.76]

0.68
[0.38, 1.19]

0.54
[0.28, 1.00]

Residual sigma
0.83
[0.74, 0.93]

0.79
[0.70, 0.89]

0.90
[0.80, 1.01]

0.85
[0.76, 0.96]

0.67
[0.60, 0.75

0.82 
[0.73,0.92]

Abbreviations: penta = pentacosanes, hepta = heptacosanes, nona = nonacosanes
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Table S9. Population-specific random intercepts for the Bayesian hierarchical linear model 
examining the effects of color-pattern morph and sex on the principal component axes of 
different CHC classes. Estimates represent deviations from the overall intercept, with 95% 
credible intervals.

Random 
effects 
per pop.

Pop. PC1 penta PC2 penta PC1 hepta PC1 nona PC2 nona PC3 nona

BYA 0.02 
[-0.36, 0.38]

0.24
[-0.21, 0.70]

-0.08 
[-0.42, 0.20]

-0.12 
[-0.55, 0.29]

0.01
[-0.53, 0.52]

0.27
[-0.21 , 0.77]

ECC20A 0.30
[-0.06, 0.73]

-0.65 
[-1.14, -0.21]

0.22 
[-0.06, 0.68]

0.46
[0.04, 0.93]

0.43
[-0.08, 0.95]

0.58
[0.09, 1.1]

ECC35A 0.11 
[-0.28, 0.5]

0.35
[-0.11, 0.85]

0.15
[-0.13, 0.57]

0.47
[0.01, 0.98]

0.44
[-0.07, 0.98]

0.50
[0.02, 1.05]

HVA -0.05 [-0.49, 
0.36]

-0.22 
[-0.73 , 0.26]

-0.04 
[-0.39, 0.28]

-0.07 
[-0.55, 0.40]

0.06
[-0.51, 0.62]

0.25
[-0.31, 0.81]

MA -0.32 
[-0.79, 0.06]

-0.02 
[-0.50, 0.45]

-0.01 
[-0.35, 0.31]

0.02
[-0.44, 0.47]

0.19
[-0.35, 0.72]

0.07
[-0.43, 0.60]

OGA -0.37 
[-0.85, 0.02]

-0.08 
[-0.56, 0.41]

-0.01
[-0.33, 0.32]

-0.06 
[-0.51, 0.37]

0.15
[-0.38, 0.72]

-0.63 
[-1.18, -0.13]

OGC -0.14 
[-0.56, 0.21]

-0.24 
[-0.74, 0.22]

0.02
 [-0.30, 0.37]

-0.03 
[-0.48, 0.41]

0.12
[-0.44, 0.64]

-0.01
[-0.51, 0.50]

OUTA 0.11 
[-0.26, 0.52]

0.53
[0.06, 1.03]

-0.05 
[-0.39, 0.25]

-0.21 
[-0.67, 0.21]

0.10
[-0.44, 0.63]

-0.58 
[-1.12 , -
0.08]

PC 0.24 
[-0.17, 0.73]

-0.28 
[-0.79, 0.21]

-0.03 
[-0.39, 0.30]

-0.01 
[-0.49, 0.45]

-1.53 
[-2.13, -0.98]

-0.39 
[-0.97, 0.14]

R12C 0.07
[-0.32, 0.47]

0.37
[-0.09, 0.86]

-0.15 
[-0.56, 0.12]

-0.50
[-1.00, -0.06]

-0.07 
[-0.62, 0.45]

-0.08 
[-0.60, 0.40]

Abbreviations: pop= population, penta = pentacosanes, hepta = heptacosanes, nona = 
nonacosanes
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