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Figure 1. Hypotheses to explain correlated trait divergence. (A) Phenotypes for this hypothetical example. (B) 
Example of when population divergence in wing and in body color are not correlated. (C) Example of correlated trait 
divergence among populations. Greater divergence in wing size is correlated with greater divergence in body color. Two 
general and not mutually exclusive hypotheses are proposed to explain correlated trait divergence. (D) The ‘genetic 
covariation’ hypothesis predicts that genetic covariance between traits leads to correlated trait divergence. In this 
example, linkage disequilibrium (LD) between the gene controlling body color (BC) and the three genes controlling wing 
size (WS1-3) generates positive genetic covariance. (E) The ‘environmental covariation’ hypothesis predicts that 
correlated selective pressures lead to correlated trait divergence. In this example, background color influences body 
color, while precipitation levels (precip.) influence wing size across populations.  
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A. T. cristinae host-plant ecotypes

green-striped morph

B. Color-pattern morphs C. Cuticular hydrocarbons (CHCs)

Figure 2. Timema cristinae ecotypes and the traits investigated in this study. (A) Host-plant species which define 
the ecotypes. (B) Color-pattern morphs in T. cristinae, mainly selected by host-plant species. (C) Female cuticular 
hydrocarbons (CHCs), with functions in chemical communication and water balance. Cuticular hydrocarbons are 
associated with climatic adaptation and they affect mate choice, thus are also influenced by sexual selection. (D) The 
relative abundance of different host-plant species and climatic variables both tend to vary with elevation across the 
landscape where T. cristinae is found. (E) Map of the populations used in this study. The association between host-plant 
species and climate was taken into account in the selection of study sites (i.e., populations on Adenostoma and 
Ceanothus across different elevations).
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Figure 3. Hypothesis of misalignment between natural (NS) and sexual (SS) selection to explain lack of 
correlation between trait divergence. In this example, wing size is influenced by NS and SS (pink and purple, 
respectively). When these two pressures are aligned (A), correlated trait divergence can occur between wing size and 
body color. However, when NS and SS are misaligned (B), the phenotypic means can be shifted away from natural 
selection’s optimal adaptive peak. Consequently, SS disrupts the correlated NS effects in wing size and body color, 
resulting in their divergence to not be correlated.
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 Color-pattern vs. Pentacosanes Color-pattern vs. Heptacosanes Color-pattern vs. Nonacosanes

Population divergence between color-pattern and different CHC traits

Figure 4. Correlated divergence between color-pattern and female CHC traits. Population divergence between 
color-pattern and pentacosanes (r=0.11, P=0.27), heptacosanes (r=0.38, P=0.10), and  nonacosanes (r=0.82, P<0.001, 
Mantel tests). Among the CHC traits, nonacosanes are the trait with strongest correlated divergence with color-pattern.
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A. Genetic covariance B. Environmental covariation across T. cristinae populations

Climate vs. Host Climate vs. Elevation

Figure 5. Processes explaining correlated trait divergence between color-pattern and CHC traits, especially 
nonacosanes. (A) Genetic covariance between color-pattern and the three different female CHC traits (yellow), 
represented by Pearson correlation coefficients. Based on these results, genetic covariance is unlikely to explain 
correlated trait divergence between color-pattern and CHC traits. Heritability in color-pattern (i.e., the diagonal of the 
correlation matrix) is represented in red. (B) Environmental axes influencing color-pattern (host-plant species) and 
CHCs (climate). Host-plant species are strongly influenced by climate, represented by the first principal component axis 
summarizing 19 WorldClim variables (PC1=67% of variance explained; W = 7872, P < 0.001 , Wilcoxon signed-rank 
test). This relationship is explained by the common association between each environmental variable and elevation 
(host-plant species and elevation; W = 7932, P < 0.001 , Wilcoxon signed-rank test; PC1 summarizing climatic variables 
and elevation; r = 0.96, P < 0.001, Pearson correlation). These correlated selective pressures can explain correlated 
trait divergence.  Abbreviations: A= Adenostoma, C=Ceanothus.
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Pentacosanes vs. Sexual isolation Heptacosanes vs. Sexual isolation Nonacosanes vs. Sexual isolation

Relationship between T. cristinae CHCs traits and sexual isolation

Figure 6. Association between the different CHC traits and sexual isolation. Divergence in pentacosanes shows 
strong association with the degree of sexual isolation between population pairs, estimated using experimental mating 
trials (Bayesian linear mixed models, BLMM, linear β=0.76 [0.49, 1.03, 95% ETPI], , quadratic β=0.40 [0.07, 0.73, 95% 
ETPI]), suggesting a role for sexual selection. Meanwhile, divergence in heptacosanes (β=0.09 [-0.38, 0.56, 95% ETPI]) 
and nonacosanes (β=0.02 [-0.45, 0.48, 95% ETPI]) are not significantly correlated with sexual isolation (see Table S6 
for best models’ fit in BLMM). The strong correlation between pentacosane divergence and sexual isolation suggests 
that a misalignment between sexual and natural selection (the latter exerted by climate) could be disrupting the effects 
of environmental covariation, thus resulting in uncorrelated divergence between pentacosanes and color-pattern. 
Abbreviations: pop. = populations, penta = pentacosanes; hepta = heptacosanes; nona = nonacosanes

Se
xu

al
 is

ol
at

io
n 

(Ip
si

)

CHC divergence (penta) CHC divergence (hepta) CHC divergence (nona)
Se

xu
al

 is
ol

at
io

n 
(Ip

si
)

Se
xu

al
 is

ol
at

io
n 

(Ip
si

)


