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ABSTRACT
Delayed processes are ubiquitous throughout biology. These delays may arise through maturation processes or as the result of
complex multistep networks, and mathematical models with distributed delays are increasingly used to capture the heterogeneity
present in these delayed processes. Typically, these distributed delay differential equations are simulated by discretizing the
distributed delay and using existing tools for the resulting multidelay delay differential equations or by using an equivalent
representation under additional assumptions on the delayed process.Here,weuse the existing framework of functional continuous
Runge–Kutta methods to confirm the convergence of this common approach. Our analysis formalizes the intuition that the
least accurate numerical method dominates the error. We give a number of examples to illustrate the predicted convergence,
derive a new class of equivalences between distributed delay and discrete delay differential equations, and give conditions for
the existence of breaking points in the distributed delay differential equation. Finally, our work shows how recently reported
multidelay complexity collapse arises naturally from the convergence of equations with multiple discrete delays to equations with
distributed delays, offering insight into the dynamics of the Mackey–Glass equation.

1 Introduction

Delayed processes, such as maturation or circadian processes
[1–3] or transcriptional regulation [4–6], are commonly found
throughout biology and increasingly modeled using delay dif-
ferential equations (DDEs) [7]. While these DDEs typically use
discrete delays to capture the influence of the past state on
the current dynamics, it is increasingly understood that hetero-
geneity in the duration of these delayed processes can be an
important factor in understanding biological dynamics [8, 9].
Consequently, there has been increased interest in distributed
DDEs that, rather than considering the state at discrete times in
the past, consider a continuum of past states typically weighted
against a probability distribution through a convolution inte-
gral. Many recent examples consider distributed DDEs where

the delay is compactly supported; both Sargood et al. [5] and
Hong et al. [4] used compactly supported distributed DDEs to
understand the dynamics of a gene regulatory system. These
compactly supported distributed DDEs are generically given by

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐹

(
𝑥(𝑡),∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

)
𝑥(𝑠) = 𝜑(𝑠) for 𝑠 ∈ [−𝜏𝑚𝑎𝑥, 0]

⎫⎪⎪⎬⎪⎪⎭
, (1.1)

where 𝐹 is Lipschitz, 𝑘(𝑠) is a continuous function integrates to
unity (possibly after a scaling) on the interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], and 0 <
𝜏𝑚𝑖𝑛 < 𝜏𝑚𝑎𝑥 < 𝑇 < ∞.
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To simulate the distributed DDE, modelers commonly use a
quadrature method to discretize the convolution integral in
Equation (1.1) and thus obtain a multidelay discrete DDE. Then,
modelers use existing methods for discrete DDEs to simulate
the resulting system [5, 10]. However, the quadrature method
and step size in the discretization of the convolution integral are
often chosen intuitively. For example, both [11, 12] discretized
a distributed delay term in the bifurcation analysis of a state-
dependent DDEmodel of transcriptional delays where the choice
of discretization parameterswas described as delicate. Ultimately,
an analysis of how the error arising from the quadrature method
interactswith the existing numericalmethod for theDDE in these
models would need to be completed. To avoid this problem, some
authors [13–15] have used approaches similar to the linear chain
technique to show that, for specific choices of the kernel 𝑘, the
distributed DDE is equivalent to a system of discrete DDEs. We
derive a similar equivalence for kernels representing a mixture
of exponential-type distributions. However, these approaches are
unsatisfying as they rely on artificial assumptions on the kernel 𝑘.

Therefore, we develop a numerical method for the simulation of
Equation (1.1) based on existing functional continuous Runge–
Kutta (FCRK) methods. These FCRK methods were proposed
in the 1970s [16, 17], have been implemented for distributed
DDEs with possibly time-dependent, but finite, delay [18, 19],
and recently extended to gamma distributed DDEs [20]. The
convergence theory for FCRKs for equations with fixed delays
was derived in the 2000s [17, 21] along with a specific distributed
DDE formulation as an example of the convergence framework
[21]. Here, we use these ideas to show the convergence of the
common discretization method used for models with distributed
DDEs with compact support. We derive an explicit relationship
between the error introduced by approximating the convolution
integral via a quadrature method with the numerical method
for the time integration of the DDE. This relationship quantifies
the intuitive expectation that the accuracy of the simulation is
determined by the least accurate of the quadrature and Runge–
Kuttamethods. As a result, we show how accurate the quadrature
methodmust be to preserve the overall accuracy of the numerical
simulations. While this result is intuitive, establishing the precise
relationship between the error of the quadrature method and the
error of the Runge–Kutta method will be useful for modelers
who use distributed DDEs. Specifically, the conditions on the
quadrature method will allow distributed DDEs to be accurately
simulated via existing numerical methods for discrete DDEs
without model-specific analysis. Consequently, this convergence
framework will allow modelers to a priori chose the appropriate
discretization method for a distributed DDE model without
requiring problem-specific analysis.

We illustrate these theoretical results through a number of
examples of distributed DDEs with compact support. As is
often the case, our convergence proof depends on detecting
breaking points of the distributed DDE (1.1). At these breaking
points, the solution 𝑥 does not have continuous derivatives of
all orders, which may influence the error estimates of numerical
methods. In practice, it is well known that breaking points
in discrete DDEs result in a decrease of convergence order of
numerical methods [22]. We therefore give an explicit condition
on the kernel 𝑘 that ensures that the breaking point at 𝑡 = 0

does not propagate forward in time. For example, the uniform
distribution does not satisfy this condition and is an explicit
case of a distributed DDE with breaking points. We observe
the corresponding decrease in convergence order due to these
breaking points in our numerical examples.

Our convergence result explicitly demonstrates that distributed
DDEs with compact support are numerically equivalent to mul-
tidelay discrete DDEs. Importantly, this numerical equivalence
also applies in the opposite direction. Tavakoli and Longtin [10]
observed that, for a number of prototypical DDEs, including
the Lang–Kobayashi andMackey–Glass equations, increasing the
number of delays increases dynamical complexity until dynam-
ics suddenly simplify. The authors noted that this complexity
collapse is paradoxical, as increasing the number of delays in
a discrete DDE typically increases the complexity of the result-
ing dynamics, rather than leading to the observed complexity
collapse. Here, we resolve this apparent paradox by using the
ideas underlying the convergence of the numerical method to
demonstrate that this complexity collapse is due to convergence
of the multidelay discrete DDE converges to a distributed DDE
with compact support.

The remainder of the article is structured as follows. We first
describe FCRK methods for distributed DDEs and establish a
consistent FCRK for distributed DDEs with compact support. We
illustrate this convergence result through a number of numerical
examples that use the Matlab built-in DDE solver, ddesd [23, 24].
We then show that the multidelay complexity collapse for the
Mackey–Glass equation [10] can be understood as an example of a
distributed DDE having simpler behavior than amultidelay DDE.

2 FCRKMethods

A class of numerical methods, based upon the familiar Runge–
Kutta methods for ordinary differential equations, has been
developed for DDEs [17]. These FCRKs define a continuous
interpolant within each Runge–Kutta step. A number of these
FCRK methods have been developed [19, 20, 25]. We give only
the notation necessary for the convergence result with detailed
descriptions of these methods available elsewhere [17, 26]. We
define an s-stage FCRK method following Definition 6.1 of [17].

Definition 2.1 (𝑠-stage FCRK method). A 𝑠-stage FCRK
method is a triple (𝐴(𝜃), 𝑏(𝜃), 𝑐) such that𝐴 and 𝑏 are polynomial
functions intoℝ𝑠×𝑠 andℝ𝑠, respectively, with𝐴(0) = 0 and 𝑏(0) =
0, and 𝑐 ∈ ℝ𝑠 with 𝑐𝑖 ⩾ 0.

This 𝑠-stage FCRK method (𝐴(𝜃), 𝑏(𝜃), 𝑐) can be represented by
its Butcher tableau

𝑐𝑖 𝐴𝑖,𝑗(𝜃)

𝑏𝑗(𝜃)
,

where 𝑖, 𝑗 = 1, 2, 3, … , 𝑠 and 𝐴𝑖,𝑗 and 𝑏𝑗 are the components of 𝐴
and 𝑏. For a given step size ℎ, the 𝑠-stage FCRK method creates
a continuous approximation 𝜂(𝑡) of the solution of the IVP (1.1)
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𝑥(𝑡) through

𝜂(𝑡) =

{
𝜂𝑛(ℎ𝜃) for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1), and 𝜃 = 𝑡−𝑡𝑛

ℎ

𝜑 for 𝑡 ⩽ 𝑡0.
(2.1)

The stage interpolant 𝜂𝑛 is a continuous approximation of the
solution 𝑥(𝑡𝑛 + ℎ𝜃) over the 𝑛th stage and is defined by

𝜂𝑛(ℎ𝜃) = 𝑥𝑛 + ℎ

𝑠∑
𝑖=1

𝑏𝑖(𝜃)𝐾𝑛,𝑖 , 𝜃 ∈ (0, 1) 𝜂0 = 𝜑(𝑡0),

and 𝑥𝑛 = 𝜂𝑛−1(ℎ), (2.2)

where

𝐾𝑛,𝑖 = 𝐹

(
𝑌𝑛,𝑖(𝑐𝑖),∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝜂(𝑡𝑛 + 𝑐𝑖ℎ − 𝑢)𝑘(𝑢)𝑑𝑢

)
(2.3)

are the stage variables, 𝜂 represents the numerical approximation
of the solution up to the current stage, and 𝑌𝑛,𝑖 is the continuous
approximation of 𝑥(𝑡) in the stage given by

𝑌𝑛,𝑖 = 𝑥𝑛 + ℎ

𝑖−1∑
𝑘=1

𝐴𝑖,𝑘(𝜃)𝐾𝑛,𝑘, 𝜃 ∈ [0, 𝑐𝑖].

These piecewise interpolants 𝜂𝑛(𝑡) agree with 𝑥𝑛 at the collo-
cation points 𝑡 = {𝑗ℎ}𝑁𝑗=1 and define the piecewise continuous
polynomial function 𝜂. For Equation (1.1) with history function
𝜑 and step size ℎ computed up to 𝑡𝑚, the local error function is
given by

𝐸(𝑎, 𝑡𝑚, 𝜑) = ‖𝜂(𝑡𝑚 + 𝑎) − 𝑥(𝑡𝑚 + 𝑎)‖, 𝑎 ∈ [0, ℎ].

The uniform order of a FCRK method is intrinsically related to
this local error function [21] as the maximal error incurred over a
single time step.

Definition 2.2 (Uniform order). Let 𝑑 be a positive integer
and let 𝜂 be the approximation of the solution 𝑥 of an IVP
with sufficiently smooth right-hand side obtained using an FCRK
method with step size ℎ. The FCRK method has uniform order 𝑑
if

max
𝛼∈(0,1)

𝐸(𝛼ℎ, 𝑡𝑚, 𝜑) = (ℎ𝑑+1).

Conversely, the discrete order of an FCRK method is the error
incurred at the collocation points 𝑡 = 𝑗ℎ, which corresponds to
𝑎 = ℎ in the definition of 𝐸.

Definition 2.3 (Discrete order). Let 𝑑 be a positive integer
and let 𝜂 be the approximation of the solution 𝑥 of an IVP
with sufficiently smooth right-hand side obtained using an FCRK
method with step size ℎ. The FCRK method has discrete order 𝑑
if

𝐸(ℎ, 𝑡𝑚, 𝜑) = (ℎ𝑑+1).
The global order of the numerical method is the absolute
error incurred throughout the simulation when considering the

solution 𝑥 and 𝜂 as continuous functions on the interval 𝑡 ∈
[𝑡0, 𝑇].

Definition 2.4 (Global order). An 𝑠-stage method has global
order 𝑝 if

max
𝑡∈[𝑡0,𝑇]

‖𝜂(𝑡) − 𝑥(𝑡)‖ = (ℎ𝑝).

If the 𝑠-stage method has global order 𝑝 on [𝑡0, 𝑇], then 𝜂 is a 𝑝th
order approximation of 𝑥 as [17, 26]

max
𝑡∈[𝑡0,𝑇]

‖𝜂(𝑡) − 𝑥(𝑡)‖ < 𝐶ℎ𝑝.

2.1 Quadrature Approximations of Delayed Term

Existing FCRK methods are, in theory, directly applicable to
the distributed DDE case under the assumption of being able
to accurately calculate the right-hand side of Equation (1.1). In
what follows, we assume that we are using a known, existing
FCRK method of order 𝑝, such as those considered in [21]. The
main difficulty in adapting these FCRK methods to distributed
DDEs such as Equation (1.1) is the numerical calculation of the
convolution integral

𝐼(𝑡) = ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠. (2.4)

At each Runge–Kutta step, we must numerically evaluate this
convolution integral where the integrand explicitly depends
on 𝑥(𝑡) over the interval [𝜏𝑚𝑎𝑥, 𝜏𝑚𝑖𝑛]. Now, consider an FCRK
method where the corresponding interpolant 𝜂 is an order 𝑝
approximation of the solution 𝑥 in each stage. As the history
function 𝜑 is assumed to be evaluated exactly, we calculate

|(𝑋 ∗ 𝑘)(𝑡𝑛) − (𝜂 ∗ 𝑘)(𝑡𝑛)| = |||||∫
𝑡𝑛−𝜏𝑚𝑎𝑥

𝑡𝑛−𝜏𝑚𝑖𝑛
(𝑥(𝑠) − 𝜂(𝑠))𝑘(𝑡𝑛 − 𝑠)𝑑𝑠

|||||
⩽ ‖𝑥(𝑠) − 𝜂(𝑠)‖𝐿∞[𝑡0,𝑇] ∫

𝑡𝑛−𝜏𝑚𝑎𝑥

𝑡𝑛−𝜏𝑚𝑖𝑛

× 𝑘(𝑡𝑛 − 𝑠)𝑑𝑠

⩽ 𝐶ℎ𝑝 ∫
𝑡𝑛−𝜏𝑚𝑎𝑥

𝑡𝑛−𝜏𝑚𝑖𝑛
𝑘(𝑡𝑛 − 𝑠)𝑑𝑠 = 𝐶ℎ𝑝.

Now, if we were to calculate 𝐼(𝑡) exactly, then we would evaluate
the right-hand side of Equation (1.1) to order 𝑝 due to the error
introduced via the Runge–Kutta steps.

However, we do not wish to evaluate the convolution integral
Equation (2.4) exactly. As the numerical solution 𝜂𝑛 is a 𝑝th
order approximation of 𝑥(𝑡), it is not computationally efficient to
evaluate the convolution integral 𝐼(𝑡) to precision beyond order𝑝,
as this additional accuracy is washed-out by the interpolant error.
Rather, a composite quadrature method should be sufficiently
accurate to preserve the global order of the method, but not so
accurate as to be computationally inefficient. To illustrate this
balance, assume thatwe evaluate 𝐼(𝑡) to order 𝑞 using a composite
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quadrature method with step size ℎ𝑖𝑛𝑡 , so

𝐼(𝑡) = 𝐼(𝑡) + (ℎ𝑞𝑖𝑛𝑡),
where 𝐼(𝑡) denotes the quadrature approximation of the convolu-
tion integral. Then, we use Taylor’s theorem to find

𝐾̂𝑛,1 = 𝐹(𝑥𝑛−1, 𝐼(𝑡𝑛−1)) = 𝐹(𝑥𝑛−1, 𝐼(𝑡𝑛−1) + (ℎ𝑞𝑖𝑛𝑡))
= 𝐹(𝑥𝑛−1, 𝐼(𝑡𝑛−1)) + 𝜕𝑥2𝐹(𝑥

𝑛−1, 𝐼(𝑡𝑛−1))(ℎ𝑞𝑖𝑛𝑡) + (ℎ2𝑞𝑖𝑛𝑡)
= 𝐾𝑛,1 + (ℎ𝑞𝑖𝑛𝑡) , (2.5)

where 𝜕𝑥2𝐹 is the partial derivative of𝐹 with respect to the second
argument. Consequently, the first-stage step 𝑌̂1 has the same
accuracy as the quadraturemethod andwe can approximate each
𝑌̂𝑖 and 𝐾̂𝑖 with accuracy (ℎ𝑞𝑖𝑛𝑡). Each evaluation of 𝐹, and thus
𝐼(𝑡), occurs within the calculation of 𝐾𝑛,𝑖 , so we therefore gain
an extra order of accuracy due to the factor ℎ in Equation (2.2),
where we recall that ℎ is the step size of the FCRK method.
Then, denoting the approximate interpolant obtained via the
quadrature approximation by 𝜂, we find

𝜂𝑛(ℎ𝜃) = 𝑥𝑛 + ℎ

𝑠∑
𝑖=1

𝑏𝑖(𝜃)𝐾̂𝑛,𝑖 = 𝑥𝑛 + ℎ

𝑠∑
𝑖=1

𝑏𝑖(𝜃)𝐾𝑛,𝑖 + (ℎ × ℎ𝑞𝑖𝑛𝑡).

Therefore, if ℎ𝑞𝑖𝑛𝑡 = 𝜉ℎ𝑝 for some constant 𝜉, then (ℎ × ℎ𝑞𝑖𝑛𝑡) =(ℎ𝑝+1), which implies that the approximation error in 𝜂 does
not influence the accuracy of the method. This analysis suggests
setting ℎ𝑞𝑖𝑛𝑡 = (ℎ𝑝) to ensure we do not decrease the accuracy of
the FCRK nor perform extra computations through the quadra-
ture approximation of 𝐼(𝑡) when using a 𝑞th order, composite
quadrature rule.

These quadrature rules typically rely on the integrand being
sufficiently smooth, we must include the simulation mesh points
𝑡𝑛 preceding the current step in the quadrature mesh. Therefore,
to ensure the global accuracy of the overall FCRK method, we
divide the integration domain [𝜏𝑚𝑎𝑥, 𝜏𝑚𝑖𝑛] into subintervals of
maximal length ℎ𝑖𝑛𝑡 = ℎ that include the simulation mesh points
and any breaking points. We can then utilize results from [17, 21]
to show

Theorem 2.5 (Global order of the FCRK method). Assume
that the right-hand side of Equation (1.1) is four times continuously
differentiable and let (𝐴(𝜃), 𝑏(𝜃), 𝑐) be an explicit FCRK method
with global 𝑝th order. Assume that the simulation mesh includes
all breaking points of the DDE (1.1) and has a maximal step size
ℎΔ. If the convolution integral 𝐼(𝑡) is calculated using a composite
quadrature rule of order 𝑞 with maximal subinterval size of ℎ𝑖𝑛𝑡 ⩽
ℎΔ, then the resulting FCRK method has global ordermin(𝑝, 𝑞).

2.2 Convergence of the Resulting FCRKMethod

Here, we show that the quadrature approach described in Sec-
tion 2.1 is sufficient tomaintain the convergence of existing FCRK
methods described in Section 2 and prove Theorem 2.5. We make
extensive use of the results in Section 6 of [21] and Section 7
of [17]. We also recall Definitions 2.2, 2.3, and Definition 4.1 of
[21]. Here, we are considering the influence of using quadrature

approximations in existing FCRK methods which corresponds
precisely to the setting of Section 6 of [21]. There, the authors
considered FCRK methods for the generalized setting of all
approximations of the right-hand side of Equation (1.1), of which
the quadrature method considered here is an explicit example
[21]. In the following analysis, we consider a known FCRK
method and focus on the quadrature method. We follow [21] and
denote the approximated right-hand side of Equation (1.1) with a
tilde

𝐹̃

(
𝑥(𝑡),∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠, 𝜆

)

≈ 𝐹

(
𝑥(𝑡),∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

)
,

where 𝜆 ∈ Λ is a parameter that controls the precision of the
approximation. In our setting, Λ represents the space of com-
posite quadrature rules with a fixed number 𝑀 of steps. These
quadrature rules are defined by their weights, 𝜎𝑖 , and colloca-
tion points, 𝜋𝑖 ∈ (𝜏𝑚𝑎𝑥, 𝜏𝑚𝑖𝑛]. The quadrature rule is therefore
represented by 𝜆 = (𝜎1, … , 𝜎𝑚, 𝜋1, … , 𝜋𝑚) with

∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠 =
𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖) + (ℎ𝑞𝑖𝑛𝑡),

where ℎ𝑖𝑛𝑡 and 𝑞 are the step size and order of the composite
quadraturemethod, respectively. Accordingly, the approximation
of the right-hand side of Equation (1.1) is given by

𝐹̃

(
𝑥(𝑡),

𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖), 𝜆

)
= 𝐹

(
𝑥(𝑡),

𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖)

)
.

(2.6)

For a given continuous function 𝜑 and quadrature rule 𝜆, we
denote the accuracy of the approximation 𝐹̃ by 𝜀(𝜑, 𝜆), given by

𝜀(𝜑, 𝜆) =
||||||𝐹̃
(
𝜑(𝑡),

𝑀∑
𝑖=1

𝜎𝑖𝜑(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖), 𝜆

)

− 𝐹

(
𝜑(𝑡),∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝜑(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

)|||||| . (2.7)

The following conditions on 𝐹̃ to ensure the convergence of the
FCRK method for Equation (1.1) [21]:

Condition 1. 𝐹̃(𝜑(𝑡),
∑𝑀

𝑖=1 𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖), 𝜆) is uniformly
continuous with respect to 𝜆 and the
derivative with respect to the function 𝜑,
𝐹̃′(𝜑(𝑡),

∑𝑀

𝑖=1 𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖), 𝜆) is continuous
with respect to 𝜑 and uniformly bounded with
respect to 𝜆;

Condition 2. There exists a continuous function
𝑝 ∶ 𝐶0([𝜏𝑚𝑎𝑥, 𝜏𝑚𝑖𝑛]) → ℝ such that

||||||𝐹̃
(
𝜑(𝑡),

𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖), 𝜆

)|||||| < 𝑝(𝜑)

for all 𝜑 ∈ 𝐶0([𝜏𝑚𝑎𝑥, 𝜏𝑚𝑖𝑛]) and 𝜆 ∈ Λ;

4 of 12 Studies in Applied Mathematics, 2025
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Condition 3. 𝐹̃ (𝜑, 𝜆) is of class 𝐶2 with respect to 𝜑 for
all 𝜆 ∈ Λ and both the derivatives are bounded
uniformly with respect to 𝜆.

To state the convergence result in Theorem 6.1 of [21], let 𝑡 >
𝑡0 be the largest value 𝑡 such that the IVP (1.1) has a unique
solution with initial data 𝜑 over the interval [𝑡0, 𝑡] and denote the
simulation mesh by Δ = {𝑡𝑖}

𝑁
𝑖=1 with corresponding step size ℎΔ.

Finally, let the approximation of the solution 𝑥𝑡𝑛 obtained using
a FCRK method with mesh Δ given by 𝜂𝑛. Then, Maset et al. [21]
prove

Theorem 2.6 (Theorem 6.1 of [21]). Assume that an FCRK
method (𝐴(𝜃), 𝑏(𝜃), 𝑐) of uniform order 𝑞, discrete order 𝑝, with
𝑝, 𝑞 ∈ {1, 2, 3, 4}, and such that 𝑐𝑖 ∈ [0, 1], 𝑖 = 1, … , 𝑠, is applied
to the distributed DDE (1.1) for the computation of 𝑥(𝑡) through
(𝑡0, 𝜑) ∈ ℝ × 𝐶0([𝜏𝑚𝑎𝑥, 𝜏𝑚𝑖𝑛]). Furthermore, assume that:

A: ∑𝑠

𝑖=1 𝑏𝑖(𝜃) = 𝜃 for 𝜃 ∈ [0, 1] and
∑𝑠

𝑗=1 𝐴𝑖,𝑗(𝜃) = 𝜃 for all 𝑖 with
𝜃 ∈ [0, 𝑐𝑖];

B: Conditions 1, 2, and 3 hold;

C: The approximation error (2.7) satisfies 𝜀 = (
ℎ
min(𝑞+1,𝑝)
Δ

)
;

D: 𝑥(𝑡) is five times continuously differentiable.

Then, for a fixed 𝑇 ∈ [𝑡0, 𝑡] and simulation meshes Δ that include
all possible discontinuity points of 𝑥 in [𝑡0, 𝑡],

max
𝑡∈[𝑡0,𝑇]

‖𝜂𝑛 − 𝑥𝑡𝑛‖ = (ℎmin(𝑞+1,𝑝)Δ

)
.

We now apply the result of Theorem 2.6 to distributed DDEs
with compact support. As before, we focus on the quadrature
method and only consider existing FCRK methods that satisfy
Assumption A. Furthermore, we assume that 𝐹 is at least four
times continuously differentiable, globally Lipschitz, and that 𝐹
and its derivatives are bounded. Furthermore, we assume that all
possible breaking points are contained in the simulation mesh
Δ and the solution 𝑥(𝑡) is five times differentiable for 𝑡 > 𝑡0. We
discuss breaking points of these distributed DDEs in Section 3.
Thus, Assumption D is satisfied.

To show that 𝐹̃ in Equation (2.6) satisfies the Conditions 1, 2,
and 3, we consider arbitrary functions 𝜑 ∈ 𝐶0([𝜏𝑚𝑎𝑥, 𝜏𝑚𝑖𝑛]) and
quadrature rules with bounded weights

𝑀∑
𝑖=1

|𝜎𝑖| < 𝐶1 (2.8)

for a fixed constant 𝐶1. Now, for accurate quadrature methods
and differentiable 𝐹, the argument in Equation (2.5) suggests that
Condition 1 should hold. Indeed, the proof in the Appendix of
[20] directly verifies this condition. Similarly, Condition 2 follows
directly from the argument in [20], and both these arguments are
similar to those in Section 6 of [21].

We must now show that 𝐹̃(𝜑, 𝜆) is 𝐶2 with respect to 𝜑 for all 𝜆.
We recall that 𝐹 is at least four times continuously differentiable
and note that the integrand is linear in 𝜑. Therefore, consecutive
applications of the chain rule for Fréchet derivatives gives the

required regularity of 𝐹̃. Furthermore, the quadrature weights
𝜎𝑖 satisfy Equation (2.8) and we have assumed that 𝐹(𝑘) for 𝑘 =
1, 2, 3, 4 is bounded. Thus, 𝐹̃(𝑙) for 𝑙 = 1, 2 is uniformly bounded
with respect to 𝜆 andwe conclude that Condition 3, and therefore,
Assumption B hold.

Consequently, it only remains to verify Assumption C. We
consider composite quadrature rules 𝜆 of order 𝑞 with maximal
step size ℎ𝑖𝑛𝑡 to calculate 𝐹̃. Specifically, these quadrature rules
satisfy

𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖) − ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠 = (ℎ𝑞𝑖𝑛𝑡).

Adding zero and Taylor expanding the latter expression in
Equation (2.6) gives

𝐹

(
𝑥(𝑡),

𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖)

)
= 𝐹

(
𝑥(𝑡),∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

+

[
𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖) − ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

])

= 𝐹

(
𝑥(𝑡),∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

)

+ 𝐹′

(
𝑥,∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

)
× ℎ𝑞𝑖𝑛𝑡 + (ℎ2𝑞𝑖𝑛𝑡𝑖𝑛𝑡 ).

The boundedness of 𝐹′(𝑥, ∫ 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛
𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠) gives 𝜀𝑖(𝜑, 𝜆) =

 (
ℎ
𝑞𝑖𝑛𝑡
𝑖𝑛𝑡

)
. In Section 2, we chose ℎ𝑖𝑛𝑡 such that (

ℎ
𝑞𝑖𝑛𝑡
𝑖𝑛𝑡

)
=  (

ℎ
𝑝

Δ

)
.

It follows that 𝜀(𝜑, 𝜆) satisfies Assumption C. We therefore
conclude that Theorem 2.5 holds.

3 Numerical Implementation and Convergence
Examples

To implement the FCRK method described in the preceding
sections, we must evaluate the quadrature integrals

𝐼(𝑡) =
𝑀∑
𝑖=1

𝜎𝑖𝑥(𝑡 − 𝜋𝑖)𝑘(𝜋𝑖).

Recalling that the kernel 𝑘 and quadrature method (𝜎𝑖, 𝜋𝑖) are
assumed to be known, we evaluate 𝑥(𝑡 − 𝜋𝑖) to approximate the
distributed delay in Equation (1.1). As the quadrature method
is fixed, the quadrature points 𝜋𝑖 correspond to evaluating the
solution 𝑥 at a fixed time, 𝑡 − 𝜋𝑖 in the past. Consequently,
the numerical method for the distributed DDE is equivalent to
a numerical method for a discrete delay DDE with 𝑀 delays
corresponding to the collocation points of the quadraturemethod.

In what follows, we consider the composite Riemann, trape-
zoidal, and Simpson’s quadrature methods with respective orders
1, 2, and 4. We will solve the numerically equivalent multidelay
discrete DDE using the ddesd solver implemented inMatlab [23].
This solver is a continuous Runge–Kutta method, rather than an
FCRK method. However, we do not consider distributed DDEs

5 of 12
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with vanishing delays, so 𝜏𝑚𝑖𝑛 > ℎ, where ℎ is the step size of
the Runge–Kutta method, in any of our test problems. Therefore,
there will be no overlapping and the continuous RK method
behaves the same as the FCRKmethod [21]. Then, leveraging the
discretization of the convolution integral in the FCRK method,
we directly simulate the distributed DDE by

𝑑

𝑑𝑡
𝑢ℎ𝑖𝑛𝑡 (𝑡) = 𝐹

(
𝑢ℎ𝑖𝑛𝑡 (𝑡),

𝑀∑
𝑖=1

𝜎𝑖𝑢ℎ𝑖𝑛𝑡 (𝑡 − 𝜋𝑖)𝑘(𝜋𝑖)

)
𝑢ℎ𝑖𝑛𝑡 (𝑠) = 𝜑(𝑠) for 𝑠 ∈ [−𝜏𝑚𝑎𝑥, 0]

⎫⎪⎪⎬⎪⎪⎭
, (3.1)

where (𝜎𝑖, 𝜋𝑖) is a given quadraturemethodwith step size ℎ𝑖𝑛𝑡 and
we denote the explicit dependence of the solution on the step size
by 𝑢ℎ𝑖𝑛𝑡 (𝑡).

To evaluate the accuracy of the numerical scheme, we compare
the numerical solution of Equation (3.1), 𝑢ℎ𝑖𝑛𝑡 , against a reference
solution of the distributed DDE Equation (1.1), 𝑥(𝑡). We evaluate
the accuracy of the FCRK method by computing the 𝐿∞ global
error induced by the quadrature approximation with quadrature
step size ℎ𝑖𝑛𝑡

𝐸(ℎ𝑖𝑛𝑡) = max
𝑡∈[0,𝑇𝑓]

|𝑥(𝑡) − 𝑢ℎ𝑖𝑛𝑡 (𝑡)|. (3.2)

We obtain the reference solution 𝑥(𝑡) by simulating systems of
discrete DDEs that are equivalent to the distributed DDE (1.1)
for specific choices of distribution kernel 𝑘(𝑠). We solve the
equivalent system of DDEs using ddesdwith relative and absolute
error tolerances of 10−12 solved over the interval 𝑡 ∈ [0, 𝑡𝐹]. These
equivalent discrete DDEs are typically obtained through variants
of the linear chain technique [9, 20]. The linear chain technique,
which first appeared in [27] and was popularized by MacDonald
[28], consists of writing the convolution integral in Equation (1.1)
as the solution of a system of auxiliary differential equations.
The most used instance of the linear chain technique occurs in
the reduction of an infinite delay distributed DDE to a system
of transit compartment ODEs with possibly variable transit rates
[29]. In recent work, Guglielmi and Hairer [30] used a variant
of this idea and the fact that hypoexponential distributions are
dense in the space of positively supported distributions to propose
a numerical method for general distributed DDEs with infinite
delays. A number of authors [31, 32] have studied the conditions
on the 𝑘 that permit this reduction to a system of ODEs.

There has been increased interest in developing equivalent
systems of differential equations for distributed DDEs where
the delay has compact support. For example, in the case of
a uniform distribution over the interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], it is well-
known that the resulting distributed DDE is equivalent to a
system of two discrete DDEs [14, 15]. Furthermore, if the kernel
𝑘 is a polynomial function, such as in the case of a beta
distribution, Pulch [13] recently derived an equivalent system of
discrete DDEs. We leverage the ideas underlying the linear chain
technique to derive a (to our knowledge) novel equivalent system
of discrete DDEs in the case where the kernel 𝑘 is a sum of
exponential functions, which generalizesmixtures of exponential
distributions. In each case, the equivalent discrete DDEs can be
solved using existing techniques.

3.1 Breaking Points

Solutions of DDEs typically have discontinuous derivatives at the
initial time point 𝑡0, as there is no guarantee that the history
function 𝜑 satisfies

𝜑′(𝑡−0 ) ≠ 𝐹

(
𝜑(𝑡0),∫

∞

0

𝜑(𝑡0 − 𝑠)𝑔
𝑗
𝑎(𝑠)𝑑𝑠

)
= 𝑥′(𝑡+0 ),

where the superscript represents limits from the left and right.
These discontinuity points are called breaking points and typically
propagate throughout higher-order derivatives of the solution
through so-called smoothing. In our numerical simulations, we
use the Matlab code ddesd, which does not explicitly detect
breaking points, but rather implements residual error control
via adaptive step sizes [24]. Thompson [33] remarked that this
error control results in a method that roughly equivalent to a
(3,4) Runge–Kutta pair. As breaking points that are not explicitly
included in the simulation mesh typically result in a lower
effective order of the numerical method, ddesd may exhibit third,
rather than fourth, order convergence when solving DDEs with
breaking points.

As mentioned, the solution of the distributed DDE (1.1) 𝑥 is
typically not continuously differentiable at 𝑡0. Therefore, breaking
points occur when the delayed argument satisfies 𝑡 − 𝜏 = 𝑡0 [17].
However, distributed DDEs typically benefit from additional
smoothing due to the convolution integral Equation (2.4).Wenow
show how this additional smoothing depends on the kernel 𝑘(𝑠).
We consider the distributed DDE (1.1) and recall the convolution
integral, 𝐼(𝑡), is given in Equation (2.4). As 𝐼(𝑡) is the convolution
of a continuous function, 𝑥, with the kernel 𝑘, it is continuous.
As the majority of kernels, 𝑘, utilized in applications are differen-
tiable, 𝐼(𝑡) is typically also differentiable. We now proceed under
the assumption that 𝑘, and thus 𝐼, are differentiable.

If 𝐼(𝑡) is continuously differentiable at 𝑡 = 𝜏𝑚𝑖𝑛, then the solution
𝑥 will be twice continuously differentiable at 𝑡 = 𝜏𝑚𝑖𝑛 since 𝐹 is
assumed to be five times continuous differentiable. By rewriting
𝐼(𝑡) as

𝐼(𝑡) = ∫
𝑡−𝜏𝑚𝑖𝑛

𝑡−𝜏𝑚𝑎𝑥
𝑥(𝑠)𝑘(𝑡 − 𝑠)𝑑𝑠,

we calculate

𝑑

𝑑𝑡
𝐼(𝑡) = 𝑥(𝑡 − 𝜏𝑚𝑖𝑛)𝑘(𝜏𝑚𝑖𝑛) − 𝑥(𝑡 − 𝜏𝑚𝑎𝑥)𝑘(𝜏𝑚𝑎𝑥)

+ ∫
𝑡−𝜏𝑚𝑖𝑛

𝑡−𝜏𝑚𝑎𝑥
𝑥(𝑠)𝑘′(𝑡 − 𝑠)𝑑𝑠.

We expect a breaking point at 𝑡 = 𝑡0 + 𝜏𝑚𝑖𝑛 and 𝑡 = 𝑡0 + 𝜏𝑚𝑎𝑥 as 𝑥
is not continuously differentiable at the initial time, 𝑡0. However,
if 𝑘(𝜏𝑚𝑖𝑛) = 𝑘(𝜏𝑚𝑎𝑥) = 0, then we find

𝑑

𝑑𝑡
𝐼(𝑡) = ∫

𝑡−𝜏𝑚𝑖𝑛

𝑡−𝜏𝑚𝑎𝑥
𝑥(𝑠)𝑘′(𝑡 − 𝑠)𝑑𝑠,

6 of 12 Studies in Applied Mathematics, 2025
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so 𝐼′(𝑡), and thus 𝑥′′(𝑡), is continuous. Then, integrating by parts
and once again using 𝑘(𝜏𝑚𝑖𝑛) = 𝑘(𝜏𝑚𝑎𝑥) = 0 gives

𝑑

𝑑𝑡
𝐼(𝑡) = ∫

𝑡−𝜏𝑚𝑖𝑛

𝑡−𝜏𝑚𝑎𝑥
𝑥′(𝑠)𝑘(𝑡 − 𝑠)𝑑𝑠.

We can then repeat the same argument for higher-order deriva-
tives of 𝐼. Therefore, if 𝑘(𝜏𝑚𝑖𝑛) = 𝑘(𝜏𝑚𝑎𝑥) = 0, then 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥
are not breaking points of any order for the distributed DDE (1.1).
We immediately see, that if 𝑘(𝜏𝑚𝑖𝑛) ≠ 0 (or 𝑘(𝜏𝑚𝑎𝑥) ≠ 0) then the
distributed DDE will have a breaking point at 𝑡 = 𝑡0 + 𝜏𝑚𝑖𝑛 (or
𝑡 = 𝑡0 + 𝜏𝑚𝑎𝑥). We note that while the Matlab code dde23 does
allow for breaking point detection, it is inefficient for the relative
and absolute error tolerances of 1 × 10−12 that we use in the
following examples.

3.2 Example Problems

For each of the three explicit distributions 𝑘, we consider two test
problems solved over the interval 𝑡 ∈ [0, 10]. The first is the linear
distributed DDE

𝑑

𝑑𝑡
𝑥(𝑡) = 𝛼𝑥(𝑡) + 𝛽 ∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

𝑥(𝑠) = 𝜑(𝑠) for 𝑠 ∈ [−𝜏𝑚𝑎𝑥, 0]

⎫⎪⎬⎪⎭ (3.3)

with 𝛼 = −0.75, 𝛽 = −1.25, 𝜏𝑚𝑖𝑛 = 1.25, 𝜏𝑚𝑎𝑥 = 2.95, and a con-
stant history 𝜑(𝑠) = 1. The second test problem is a delayed
logistic equation

𝑑

𝑑𝑡
𝑥(𝑡) = 𝛼𝑥(𝑡) + 𝛽

[
∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)𝑘(𝑠)𝑑𝑠

]2

𝑥(𝑠) = 𝜑(𝑠) for 𝑠 ∈ [−𝜏𝑚𝑎𝑥, 0], 𝑦(𝑡) =

⎫⎪⎪⎬⎪⎪⎭
(3.4)

with 𝛼 = 0.35, 𝛽 = −0.25, 𝜏𝑚𝑖𝑛 = 1.25, 𝜏𝑚𝑎𝑥 = 2.95, and a constant
history 𝜑(𝑠) = 1. In both cases, we observed similar convergence
results hold for other parameterizations of both problems.

3.2.1 Uniform Distribution

We begin with the simplest example of a uniformly distributed
delay with support in the interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]. In this case, the
kernel 𝑘𝑢𝑛𝑖𝑓(𝑠) is given by

𝑘𝑢𝑛𝑖𝑓(𝑠) =

{
1

𝜏𝑚𝑎𝑥−𝜏𝑚𝑖𝑛
if 𝑠 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]

0 otherwise.
(3.5)

As mentioned, the distributed DDE (1.1) with 𝑘(𝑠) = 𝑘𝑢𝑛𝑖𝑓(𝑠) is
equivalent to a system of two discrete DDEs [14, 15]

Theorem 3.1 (Theorem 4.2 [15]). The IVP (1.1) where 𝑘𝑢𝑛𝑖𝑓(𝑠)
is the uniform distribution in Equation (3.5) is equivalent to the

system of discrete DDEs

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐹(𝑥(𝑡), 𝑦(𝑡))

𝑑

𝑑𝑡
𝑦(𝑡) = 1

𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛
[𝑥(𝑡 − 𝜏𝑚𝑖𝑛) − 𝑥(𝑡 − 𝜏𝑚𝑎𝑥)]

⎫⎪⎪⎬⎪⎪⎭
(3.6)

with initial data

𝑥(𝑠) = 𝜑(𝑠) for 𝑠 ∈ [−𝜏𝑚𝑎𝑥, 0] and

𝑦(0) = ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝜑(−𝑠)𝑘𝑢𝑛𝑖𝑓(𝑠)𝑑𝑠.

We simulate the linear Equation (3.3) and nonlinear Equa-
tion (3.4) test problems using the equivalent system of two
discrete DDEs in Equation (3.6) to obtain the reference solution
𝑥(𝑡). Then, for (𝜎𝑖, 𝜋𝑖) corresponding to the composite Riemann,
trapezoidal, and Simpson quadrature methods with step size
ℎ𝑖𝑛𝑡 , we simulate Equation (3.1) to obtain 𝑢ℎ𝑖𝑛𝑡 (𝑡) and evaluate
the error 𝐸(ℎ𝑖𝑛𝑡) in Equation (3.2). In Figure 1A, B, we plot
log(𝐸(ℎ𝑖𝑛𝑡)) as a function of the composite step size ℎ𝑖𝑛𝑡 to
illustrate the error induced by approximating Equation (3.3)
by the corresponding quadrature approximations. As expected,
we see linear convergence on the log scale with slopes of 𝑞 =
1 and 𝑞 = 2 in the Riemann and trapezoidal approximations,
respectively. The kernel 𝑘𝑢𝑛𝑖𝑓 is constant and nonzero over the
interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], so there are breaking points at both 𝑡 − 𝜏𝑚𝑖𝑛
and 𝑡 − 𝜏𝑚𝑎𝑥 . As ddesd is roughly equivalent to the (3,4) Runge–
Kutta pair due to the residual error control [33], the third-order
convergence for Simpson’s compositemethod is dominated by the
error of the Runge–Kutta, rather than the quadrature, method.
Consequently, this example illustrates the loss of accuracy of the
numerical method due to the existence of breaking points.

3.2.2 Polynomial Kernel

We next consider an 𝑛th degree polynomial kernel given by

𝑘𝑝𝑜𝑙𝑦(𝑠) =
⎧⎪⎨⎪⎩

𝑛∑
𝑖=0

𝑎𝑖𝑠
𝑖 if 𝑠 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]

0 otherwise
(3.7)

subject to the conditions 𝑘𝑝𝑜𝑙𝑦(𝑠) ⩾ 0 and ∫ 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛
𝑘𝑝𝑜𝑙𝑦(𝑠)𝑑𝑠 = 1. The

corresponding distributed DDE is equivalent to the system of
discrete DDEs [13].

Theorem 3.2 (Theorem 2 [13]). The IVP (1.1) where 𝑘𝑝𝑜𝑙𝑦(𝑠) is
a polynomial distribution defined in Equation (3.7) is equivalent to
the system of discrete DDEs

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐹(𝑥(𝑡),

𝑛∑
𝑖=0

𝑎𝑖𝑦𝑖(𝑡))

𝑑

𝑑𝑡
𝑦𝑖(𝑡) = 𝑥(𝑡 − 𝜏𝑚𝑖𝑛)(𝜏𝑚𝑖𝑛)

𝑖 − 𝑥(𝑡 − 𝜏𝑚𝑎𝑥)(𝜏𝑚𝑎𝑥)
𝑖 − 𝑖𝑦𝑖−1(𝑡),

𝑖 = 0, 1, 2, … , 𝑛 with 𝑦−1 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.8)
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FIGURE 1 Convergence of the FCRK method for distributed DDEs with compact support and comparison between the solutions 𝑥(𝑡) and 𝑢ℎ𝑖𝑛𝑡
for the linear and nonlinear test problems in Equations (3.3) and (3.4). The rows correspond to the uniform, polynomial, and exponential delay kernels,
respectively. The first and third columns show the error log10(max𝑡∈[𝑡0,𝑇] |𝑥(𝑡) − 𝑢ℎ𝑖𝑛𝑡 (𝑡)|) as a function of the quadrature step size log10(ℎ𝑖𝑛𝑡)with 𝑢ℎ𝑖𝑛𝑡 (𝑡)
obtained from Equation (3.3) with (𝜎𝑖 , 𝜋𝑖) corresponding to the Riemman, trapezoidal, and Simpson’s quadrature methods. The slope of this curve gives
the order of the corresponding numerical method and is reported in the legend for each quadrature method. The second and fourth columns show
the reference solution 𝑥(𝑡) plotted against 𝑥(𝑡 − 𝜏𝑎𝑣𝑔) in solid black and 𝑢ℎ𝑖𝑛𝑡 (𝑡) plotted against 𝑢ℎ𝑖𝑛𝑡 (𝑡 − 𝜏𝑎𝑣𝑔) for 𝑢ℎ𝑖𝑛𝑡 corresponding to the Simpson’s
composite quadrature method in dashed orange, where 𝜏𝑎𝑣𝑔 = 0.5(𝜏𝑚𝑖𝑛 + 𝜏𝑚𝑎𝑥). The solutions are obtained using ddesd in Matlab with relative and
absolute error tolerance of 1 × 10−12.

with initial data

𝑥(𝑠) = 𝜑(𝑠) for 𝑠 ∈ [−𝜏𝑚𝑎𝑥, 0] and 𝑦𝑖(0) = ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝜑(−𝑠)𝑠𝑖𝑑𝑠.

We consider the linear uniformly distributed DDE in Equa-
tion (3.3) with

𝑘𝑝𝑜𝑙𝑦(𝑠) =
(𝜏𝑚𝑖𝑛 − 𝑠)(𝜏𝑚𝑎𝑥 − 𝑠)

∫ 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛
(𝜏𝑚𝑖𝑛 − 𝜃)(𝜏𝑚𝑎𝑥 − 𝜃)𝑑𝜃

.

As before, we simulate the linear test problem Equation (3.3)
using the equivalent system of discrete DDEs in Equation (3.8)
and consider (𝜎𝑖, 𝜋𝑖) corresponding to the composite Riemann,
trapezoidal, and Simpson quadrature methods with step size
ℎ𝑖𝑛𝑡 , for 𝑢ℎ𝑖𝑛𝑡 (𝑡). We note that 𝑘𝑝𝑜𝑙𝑦(𝜏𝑚𝑖𝑛) = 𝑘𝑝𝑜𝑙𝑦(𝜏𝑚𝑎𝑥) = 0, so the
DDE has no breaking points and we expect ddesd to correspond
to the underlying fourth-order method. In Figure 1C, corre-
sponding to the linear test problem with a polynomial kernel,
we plot log(𝐸(ℎ𝑖𝑛𝑡)) as a function of the composite quadrature
step size ℎ𝑖𝑛𝑡 . The composite Riemann quadrature method only
differs from the composite trapezoidal rule due to the inclu-
sion of the end points at 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 . Therefore, these two
quadrature methods are identical in the case where 𝑘𝑝𝑜𝑙𝑦(𝜏𝑚𝑖𝑛) =

𝑘𝑝𝑜𝑙𝑦(𝜏𝑚𝑎𝑥) = 0. We therefore expect to gain an extra order of
convergence in the Riemann method, as it is identical to the
trapezoidal case in this case 𝑘𝑝𝑜𝑙𝑦(𝜏𝑚𝑖𝑛) = 𝑘𝑝𝑜𝑙𝑦(𝜏𝑚𝑎𝑥) = 0. Indeed,
we see linear convergence on the log scale with slopes 𝑞 = 2 and
𝑞 = 4 for composite trapezoidal and Simpson approximations.

We next considered the kernel

𝑘̂𝑝𝑜𝑙𝑦(𝑠) =
(0.75𝜏𝑚𝑖𝑛 − 𝑠)(𝜏𝑚𝑎𝑥 − 𝑠)

∫ 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛
(𝜏𝑚𝑖𝑛 − 𝜃)(𝜏𝑚𝑎𝑥 − 𝜃)𝑑𝜃

.

Here, 𝑘̂𝑝𝑜𝑙𝑦(𝜏𝑚𝑖𝑛) ≠ 0, so the distributed DDE has a breaking
point at 𝑡 = 𝜏𝑚𝑖𝑛. We simulate the nonlinear test problem Equa-
tion (3.4) for 𝑘̂𝑝𝑜𝑙𝑦 using the equivalent system of discrete DDEs
in Equation (3.8) to obtain the reference solution 𝑥(𝑡). For
(𝜎𝑖, 𝜋𝑖) corresponding to the composite Riemann, trapezoidal,
and Simpson quadrature methods with step size ℎ𝑖𝑛𝑡 , we simulate
Equation (3.1) to obtain𝑢ℎ𝑖𝑛𝑡 (𝑡). In Figure 1D, corresponding to the
nonlinear test problem, we plot log(𝐸(ℎ𝑖𝑛𝑡)) as a function of the
composite step size ℎ𝑖𝑛𝑡 . As expected, we see linear convergence
on the log scale with slopes of 𝑞 = 1 and 𝑞 = 2 in the Riemann
and trapezoidal quadrature methods. The breaking point at 𝑡 =
𝜏𝑚𝑖𝑛 implies that the error of the Runge–Kutta method dominates
the error of the composite Simpson’s quadrature method, which

8 of 12 Studies in Applied Mathematics, 2025
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results in the third-order convergence and a loss of accuracy of
the method due to the presence of the breaking point.

3.2.3 Exponential Kernel

Finally, we consider the kernel given by a sum of exponentially
decaying functions restricted to the domain [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥] and given
by

𝑘𝑒𝑥𝑝(𝑠) =
⎧⎪⎨⎪⎩

𝑛∑
𝑖=0

𝑎𝑖 exp(−𝜆𝑖𝑠) if 𝑠 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], 𝜆𝑖 ⩾ 0

0 otherwise
(3.9)

subject to the conditions 𝑘𝑒𝑥𝑝(𝑠) ⩾ 0 for all 𝑠 and ∫ 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛
𝑘(𝑠)𝑑𝑠 =

1. The kernel 𝑘𝑒𝑥𝑝(𝑠) is a mixture distribution of exponential
distributions restricted to [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥] if the coefficients 𝑎𝑖 are
a convex combination and 𝜆𝑖 > 0. Thus, Equation (3.9) can be
considered a generalization of this class of distributions. Now,
consider

𝐴𝑖(𝑡) = ∫
𝑡−𝜏𝑚𝑖𝑛

𝑡−𝜏𝑚𝑎𝑥
𝑥(𝑠) exp(−𝜆𝑖(𝑡 − 𝑠))𝑑𝑠,

so that, after a change of variable,

∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑘𝑒𝑥𝑝(𝑠)𝑥(𝑡 − 𝑠)𝑑𝑠 =
𝑛∑
𝑖=0

𝑎𝑖𝐴𝑖(𝑡).

Now, as in the linear chain technique, we derive a system
of auxiliary discrete DDEs for 𝐴𝑖(𝑡). Using Leibniz’s rule, we
differentiate 𝐴𝑖(𝑡) with respect to 𝑡 to find

𝑑

𝑑𝑡
𝐴𝑖(𝑡) = 𝑥(𝑡 − 𝜏𝑚𝑖𝑛) exp(−𝜆𝑖𝜏𝑚𝑖𝑛) − 𝑥(𝑡 − 𝜏𝑚𝑎𝑥) exp(−𝜆𝑖𝜏𝑚𝑎𝑥)

− 𝜆𝑖𝐴𝑖(𝑡) for 𝑖 = 1, … , 𝑛.,

with corresponding initial condition

𝐴𝑖(0) = ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝜑(𝑡 − 𝑠) exp(−𝜆𝑖(𝑠))𝑑𝑠.

Altogether, we obtain the equivalent system of discrete DDEs

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐹

(
𝑥(𝑡),

𝑛∑
𝑖=0

𝑎𝑖𝐴𝑖(𝑡)

)
𝑑

𝑑𝑡
𝐴𝑖(𝑡) = 𝑥(𝑡 − 𝜏𝑚𝑖𝑛) exp(−𝜆𝑖𝜏𝑚𝑖𝑛) − 𝑥(𝑡 − 𝜏𝑚𝑎𝑥) exp(−𝜆𝑖𝜏𝑚𝑎𝑥)

− 𝜆𝑖𝐴𝑖(𝑡) for 𝑖 = 1, … , 𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(3.10)

For the linear test problem Equation (3.3), we consider the kernel

𝑘𝑒𝑥𝑝(𝑠) =
(
0.25 − e−𝜆1𝑠

)(
0.85 − e−𝜆2𝑠

)
e−0.15𝑠

∫ 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛
(0.25 − e−𝜆1𝜃)(0.85 − e−𝜆2𝜃)e−0.15𝜃𝑑𝜃

,

where 𝜆1 = − log(0.25)∕𝜏𝑚𝑖𝑛 and 𝜆2 = − log(0.85)∕𝜏𝑚𝑎𝑥 are cho-
sen such that 𝑘𝑒𝑥𝑝(𝜏𝑚𝑖𝑛) = 𝑘𝑒𝑥𝑝(𝜏𝑚𝑎𝑥) = 0 so the DDE has no
breaking points. We simulate the linear test problem Equa-
tion (3.3) using the equivalent system of discrete DDEs in
Equation (3.10) and consider (𝜎𝑖, 𝜋𝑖) corresponding to the com-
posite Riemann, trapezoidal, and Simpson quadrature methods
with step size ℎ𝑖𝑛𝑡 , for 𝑢ℎ𝑖𝑛𝑡 (𝑡). In Figure 1E, corresponding to
the linear test problem, we plot log(𝐸(ℎ𝑖𝑛𝑡)) as a function of
the composite step size ℎ𝑖𝑛𝑡 . Again, the composite Riemann and
trapezoidal quadrature methods are once again identical in this
case.We see the expected linear convergence on the log scale with
identical slopes of 𝑞 = 2 for these two methods, indicating a gain
of accuracy for the Riemann method. The composite Simpson’s
rule displays the expected fourth-order convergence.

We next considered the kernel

𝑘̂𝑒𝑥𝑝(𝑠) =
(
0.25 − e−𝜆1𝑠

)(
0.85 − e−𝜆2𝑠

)
e−0.15𝑠 + 0.02

∫ 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛
(0.25 − e−𝜆1𝜃)(0.85 − e−𝜆2𝜃)e−0.15𝜃 + 0.02𝑑𝜃

.

Here, both 𝑘̂𝑒𝑥𝑝(𝜏𝑚𝑖𝑛) ≠ 0 and 𝑘̂𝑒𝑥𝑝(𝜏𝑚𝑎𝑥) ≠ 0, so the distributed
DDE has a breaking points at 𝑡 = 𝜏𝑚𝑖𝑛 and 𝑡 = 𝜏𝑚𝑎𝑥 . We simulate
the nonlinear test problem Equation (3.4) for 𝑘̂𝑒𝑥𝑝 using the
equivalent system of discrete DDEs in Equation (3.8) to obtain
the reference solution 𝑥(𝑡). For (𝜎𝑖, 𝜋𝑖) corresponding to the com-
posite Riemann, trapezoidal, and Simpson quadrature methods
with step size ℎ𝑖𝑛𝑡 , we simulate Equation (3.1) to obtain 𝑢ℎ𝑖𝑛𝑡 (𝑡).
In Figure 1F, corresponding to the nonlinear test problem, we
plot log(𝐸(ℎ𝑖𝑛𝑡)) as a function of the composite step size ℎ𝑖𝑛𝑡 . As
expected, we see linear convergence on the log scale with the
expected slopes of 𝑞 = 1, 2 and 𝑞 = 3 for the composite Riemann,
trapezoidal, and Simpson’s quadrature methods.

4 Complexity Collapse in the Mackey–Glass
Equation

Tavakoli and Longtin [10] considered the Mackey–Glass equa-
tion [34] with multiple discrete delays given by

𝑑

𝑑𝑡
𝑥(𝑡) = −𝛾𝑥(𝑡) +

𝛽

𝑀

𝑀∑
𝑖=1

𝑥(𝑡 − 𝜏𝑖)

1 + 𝑥(𝑡 − 𝜏𝑖)10
, (4.1)

where {𝜏𝑖}𝑀𝑖=1 is a bounded sequence of delays with mean 𝜏𝑎𝑣𝑔 =
17. The dynamics of the Mackey–Glass equation have been
extensively well-studied as an example of a DDE that exhibits
chaotic dynamics. Tavakoli andLongtin [10] considered 𝛾 = 1 and
𝛽 = 2 and observed “complexity collapse” where the dynamics of
Equation (4.1) simplify as the number of delays,𝑀, increases. The
authors noted the paradox present in this complexity collapse,
as increasing the number of delays in a discrete DDE typically
increases the complexity of the resulting dynamics. Here, we
resolve this apparent paradox by showing that the multidelay
discrete DDE is numerically indistinguishable from a distributed
DDE, and demonstrate that this complexity collapse is a further
example of distributed DDEs exhibiting less complex behavior
than discrete DDEs.
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To do so, we note that the sum of delays in Equation (4.1) is the
Riemann sum discretization of the convolution integral

𝛽

𝑀

𝑀∑
𝑖=1

𝑥(𝑡 − 𝜏𝑖)

1 + 𝑥(𝑡 − 𝜏𝑖)
10

= 𝛽
𝜏𝑀 − 𝜏1
𝑀

𝑀∑
𝑖=1

1

𝜏𝑀 − 𝜏1

𝑥(𝑡 − 𝜏𝑖)

1 + 𝑥(𝑡 − 𝜏𝑖)
10

≈ 𝛽 ∫
𝜏𝑀

𝜏1

𝑥(𝑡 − 𝑠)

1 + 𝑥(𝑡 − 𝑠)10
𝑘𝑀𝐺(𝑠)𝑑𝑠,

where 𝑘𝑀𝐺 is the uniform distribution over [𝜏1, 𝜏𝑀]. Our preced-
ing analysis has focused on numerical methods for distributed
DDEs where we discretize the convolution integral with an
appropriately accurate quadrature rule and resulting multidelay
discrete DDE and we have shown that these two representations
are numerically indistinguishable. Of course, this relationship
also works in the opposite direction, where the multidelay
discrete DDE is indistinguishable from the distributed DDE:
the multidelay discrete DDE in Equation (4.1) is the Riemann
approximation of the uniformly distributed DDE

𝑑

𝑑𝑡
𝑥(𝑡) = −𝛾𝑥(𝑡) + 𝛽 ∫

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)

1 + 𝑥(𝑡 − 𝑠)10
𝑘𝑀𝐺(𝑠)𝑑𝑠, (4.2)

where 𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛 = 1.75∕4.

To simulate Equation (4.2), we use Leibniz’s rule to write the
convolution integral

𝐼𝑀𝐺(𝑡) = ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑥(𝑡 − 𝑠)

1 + 𝑥(𝑡 − 𝑠)10
𝑘𝑀𝐺(𝑠)𝑑𝑠

as the solution of a discrete DDE via

𝑑

𝑑𝑡
𝐼𝑀𝐺(𝑡) =

𝑑

𝑑𝑡 ∫
𝑡−𝜏𝑚𝑎𝑥

𝑡−𝜏𝑚𝑎𝑥

𝑥(𝑠)

1 + 𝑥(𝑠)10
𝑘𝑀𝐺(𝑡 − 𝑠)𝑑𝑠

= 1

𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛

(
𝑥(𝑡 − 𝜏𝑚𝑖𝑛)

1 + 𝑥(𝑡 − 𝜏𝑚𝑖𝑛)10
−

𝑥(𝑡 − 𝜏𝑚𝑎𝑥)

1 + 𝑥(𝑡 − 𝜏𝑚𝑎𝑥)10

)
.

Thus, the distributed DDE (4.2) is equivalent to

𝑑

𝑑𝑡
𝑥(𝑡) = −𝛾𝑥(𝑡) + 𝛽𝐼𝑀𝐺(𝑡)

𝑑

𝑑𝑡
𝐼𝑀𝐺(𝑡) =

1

𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛

(
𝑥(𝑡 − 𝜏𝑚𝑖𝑛)

1 + 𝑥(𝑡 − 𝜏𝑚𝑖𝑛)10
−

𝑥(𝑡 − 𝜏𝑚𝑎𝑥)

1 + 𝑥(𝑡 − 𝜏𝑚𝑎𝑥)10

)
⎫⎪⎪⎬⎪⎪⎭
,

(4.3)

with initial data

𝑥(𝑠) = 𝜑(𝑠) for 𝑠 ∈ [−𝜏𝑚𝑎𝑥, 0] and

𝐼𝑀𝐺(0) = ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝜑(−𝑠)
1 + 𝜑(−𝑠)10

𝑑𝑠.

This example differs from the linear and nonlinear examples
considered in Section 3 as the integrand is nonlinear in the
solution 𝑥(𝑡). We once again simulate the equivalent distributed
DDE (4.3) using ddesd to obtain a reference solution.We simulate
the corresponding discretization of the distributed DDE (4.2)
using the Riemann, trapezoidal, and Simpson discretizations of

the convolution integral 𝐼𝑀𝐺 . In the prior examples, we used
a constant history function. Here, we consider a nonconstant
history function 𝜑 defined by the chaotic solution of theMackey–
Glass equation with a single discrete delay. Specifically, we
defined the history function 𝜑 by the solution of

𝑑

𝑑𝑡
𝜑(𝑠) = −𝛾𝜑(𝑠) + 𝛽

𝜑(𝑠 − 𝜏𝑎𝑣𝑔)

1 + 𝜑(𝑠 − 𝜏𝑎𝑣𝑔)10

𝜑(𝜉) = 1 for 𝜉 ∈ [−𝜏𝑎𝑣𝑔, 0]

⎫⎪⎬⎪⎭ (4.4)

evaluated for 𝑠 ∈ (85 − 𝜏𝑚𝑎𝑥, 85). The auxiliary initial condition
in Equation (4.3) is

𝐼𝑀𝐺(0) = ∫
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝜑(−𝑠)
1 + 𝜑(−𝑠)10

𝑘𝑀𝐺(𝑠)𝑑𝑠.

In Figure 2, we show the convergence of the multidelay DDEs
corresponding to the discretization of the convolution integral
to the true underlying solution 𝑥(𝑡). As the uniform distribution
does not vanish at 𝜏𝑚𝑖𝑛 or 𝜏𝑚𝑎𝑥, we expect the existence of breaking
points with corresponding loss of accuracy. However, we observe
linear convergence of the discretized DDE on the log scale with
the slopes of 𝑞 = 1, 2 and 𝑞 = 3 for the composite Riemann,
trapezoidal, and Simpson’s quadrature methods. In this example,
it appears that the residual error control implemented in ddesd is
able to handle the breaking point with this nonconstant history
function. We recall that the Riemann quadrature method corre-
sponds precisely to the multidelay DDE considered by Tavakoli
and Longtin [10]. We therefore conclude that the multidelay
complexity collapse observed by Tavakoli and Longtin [10] is due
to convergence of the multidelay DDE (4.1) to the distributed
DDE (4.2) and thus an example of distributed DDEs having
simpler dynamics than discrete delay DDEs, as has been observed
previously [35].

5 Discussion

In this work, we have utilized the existing framework of FCRK
methods to illustrate how multidelay discrete DDEs can be
used to accurately simulate compactly supported distributed
DDEs. This numerical method relies on combining the conver-
gence framework established by Maset et al. [21] with existing
quadrature methods to discretize the convolution integral in
Equation (1.1). We established the convergence of this numerical
method by explicitly relating the quadrature method with the
Runge–Kutta method by formalizing the intuition that the least
accurate of the quadrature or Runge–Kutta method dominates
the error. In this sense, this result is unsurprising. However,
our results justify the common approach to simulating these
distributed DDE in mathematical models that consists of dis-
cretizing the convolution integral and simulating the resulting
multidelay discrete DDE. As this discretization, which can be
delicate, corresponds to a choice of quadrature method, this
work gives an explicit condition for the number of composite
intervals needed to maintain the overall accuracy of the resulting
numerical method. As such, models with distributed delays can
be simulated by leveraging existing codes without requiring the
development of any problem-specific software and our results
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FIGURE 2 Convergence of the FCRK method and comparison between the solutions 𝑥(𝑡) and 𝑢ℎ𝑖𝑛𝑡 of the uniformly distributed Mackey–Glass
equation in Equation (4.2). Panel A shows the error log10(max𝑡∈[𝑡0,𝑇] |𝑥(𝑡) − 𝑢ℎ𝑖𝑛𝑡 (𝑡)|) as a function of the quadrature step size log10(ℎ𝑖𝑛𝑡) with 𝑢ℎ𝑖𝑛𝑡 (𝑡)
obtained from Equation (3.3) with (𝜎𝑖 , 𝜋𝑖) corresponding to the Riemman, trapezoidal, and Simpson’s quadrature methods. The slope of this curve gives
the order of the corresponding numerical method and is reported in the legend for each quadrature method. Panel B shows the reference solution
𝑥(𝑡) plotted against 𝑥(𝑡 − 𝜏𝑎𝑣𝑔) in solid black and 𝑢ℎ𝑖𝑛𝑡 (𝑡) plotted against 𝑢ℎ𝑖𝑛𝑡 (𝑡 − 𝜏𝑎𝑣𝑔) for 𝑢ℎ𝑖𝑛𝑡 corresponding to the Simpson’s composite quadrature
method in dashed orange, where 𝜏𝑎𝑣𝑔 = 0.5(𝜏𝑚𝑖𝑛 + 𝜏𝑚𝑎𝑥). The solutions are obtained using ddesd in Matlab with relative and absolute error tolerance
of 1 × 10−12.

may simplify the discretization of distributed DDEs commonly
done during numerical bifurcation studies.

We illustrate our theoretical results through linear and nonlinear
test problems for three specific types of distributions that each
admit equivalent representations as systems of discrete DDEs.
Two of these equivalent representations were known prior to
this work. However, the equivalence between a distributed DDE
where the distribution is a mixture of exponential distributions
with a system of discrete DDEs had not been previously demon-
strated. For these test problems, we used existing numerical
methods for discreteDDEs to simulate the equivalent formulation
and obtain a reference solution which we then compared against
the solution obtained using the FCRK method.

In these numerical tests, we used the Matlab solver ddesd.
This solver uses residual error control to adapt the step size of
the numerical method rather than explicitly detecting breaking
points. This is an important limitation, as our convergence
framework explicitly assumes that all the breaking points of
the DDE are included in the mesh. However, we established
sufficient conditions on the kernel 𝑘 to ensure that the resulting
distributed DDE does not have breaking points. In the case where
the distributed DDE does not have breaking points, we observed
the expected convergence rates of the resulting FCRK method,
including an additional order of accuracy for the Riemann
method. Conversely, in the case where the distributed DDE
has breaking points, our numerical tests nevertheless indicate
convergence of the FCRKmethod, however at a lower order than
the FCRK predicts, but consistent with the approximate order of
ddesd [24].

Finally, we used the numerical equivalence between the dis-
tributed DDE and the multidelay discrete DDE to understand
the complexity collapse observed by Tavakoli and Longtin [10].
Our analysis demonstrates that the multidelay DDEs considered
in that work are approximations of the underlying uniformly

distributed DDE. Consequently, our results link the observed
complexity collapse observed for discrete DDEswithmany delays
with the common intuition of simpler dynamics in distributed
DDEs. Understanding how the bifurcation structure leading to
chaotic behavior in thesemultidelay discrete DDEs, such as those
found in Tavakoli and Longtin [36], depends on the quadrature
method is an interesting avenue for future investigation.

Altogether, we have formalized the common approach to sim-
ulating distributed DDEs with compact support by using the
convergence framework of [21] to demonstrate the convergence
of the approximated distributed DDEs to the underlying model.
We showed how to utilize efficient numerical solvers to simulate
these distributed DDEs and gave a precise relationship between
the accuracy of the quadrature method and the underlying
Runge–Kutta method. Our results will therefore allow modelers
to a priori chose the discretization parameters when simulating
a distributed DDE and facilitate the use of more biologically
realistic distributed DDEs throughout mathematical biology.

Data Availability Statement

The data that support the findings of this study are openly available
in Compact_Distributed_DDEs at https://github.com/ttcassid/Compact_
Distributed_DDEs.
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