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A B S T R A C T

We present a survey of deformation in the Ecuadorian Inter-Andean valley and surrounding regions from satellite 
radar and GNSS between 2017 and 2023, including anthropogenic, tectonic, landsliding and volcanic processes. 
Major anthropogenic signals include urban subsidence associated with water and resource extraction in Quito 
(− 3.5 mm/yr), Cañar (+1.8 mm/yr) and Guayaquil (+~8 mm/yr). We also observe significant horizontal 
deformation caused by the interaction between the subduction zone and active tectonic faults. Four of Ecuador’s 
21 continental volcanoes are actively deforming and we also observed the continued subsidence of old volcano- 
sedimentary deposits in the northeast of the city of Cuenca. We examine the portion of the Chingual-Cosanga- 
Pallatanga-Puna right-lateral fault (CCPP) between the cities of Pallatanga and Riobamba and determine the 
geodetic slip rate and strain rate of this particular segment of the fault system and subsequently compare it with 
previously estimated geological slip rates. We estimated a slip rate of 3.1 ± 0.6 mm/yr, with shear strain ranging 
from 50 to 100 nst/yr, extending beyond the primary fault trace. Furthermore, shear strain extends southeast-
ward (within a range of 16–30 km), where significant active branches of this complex fault system exist, with a 
slip rate of 2.7 ± 0.3 mm/yr. This study highlights specific areas for future monitoring of geohazards and 
infrastructure resilience in Ecuador, with particular relevance for similar Andean settings.

1. Introduction

Subduction zones, where tectonic plates converge, cause compres-
sion, uplift, and mountain-building (Stern, 2002). This process generates 
magma, fueling volcanic activity (Perfit et al., 2000; LaFemina, 2015), 
and leads to earthquakes and crustal changes due to stress release 
(Rikitake, 1976; Choy and Kirby, 2004; Ruff, 2013; Elliott et al., 2016). 
These dynamics link tectonics with mountain growth, volcanism, and 
landscape evolution (Kennan, 2000; Schellart, 2007; Huntington and 
Klepeis, 2017; Palin and Santosh, 2021).

Geodetic measurements, crucial for understanding Earth’s current 
surface deformation and assessing natural hazards, utilize advanced 
technologies like Global Navigation Satellite Systems (GNSS) and 
Interferometric SyntheticAperture Radar (InSAR) (Krüger et al., 1994; 
Hofmann-Wellenhof et al., 2007; Herring et al., 2016). GNSS provides 
precise point measurements with high accuracy (Jarrin et al., 2022, 
2023; Richter et al., 2016; Stamps and Kreemer, 2024), while InSAR 

offers broader coverage with lower precision (e.g. Weiss et al., (2019)). 
Integrating GNSS and InSAR data offers a comprehensive understanding 
of surface deformation, aiding in the estimation of strain rates and fault 
dynamics (Chlieh et al., 2004; Daout et al., 2016, 2019, 2023; Dodds 
et al., 2022; Grandin et al., 2012; Parizzi et al., 2021; Weiss et al., 2020).

Ecuador, located on the Pacific coast of northwestern South America 
(Fig. 1), is significantly influenced by the subduction of the Nazca plate 
beneath the South American continent, with a convergence rate of 
55–58 mm/yr (Trenkamp et al., 2002; Nocquet et al., 2014; Alvarado 
et al., 2016). This tectonic activity leads to intense seismic events, such 
as the 2016 Mw 7.8 Pedernales earthquake that ruptured the subductive 
megathrust and the 1859 Mw 7.2 Quito thrust faulting earthquake 
considered a deep event within the subducting slab beneath the Andean 
Range (Beauval et al., 2010). The largest subduction event recorded was 
the 1906 Esmeraldas ~8.8 magnitude earthquake near the northern 
border with Colombia (Kanamori and McNally, 1982).

The interaction between the Nazca plate, the South American plate, 
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Fig. 1. a) Tectonic Setting of the Ecuadorian Subduction zone and the Andean Cordillera. The blue arrow indicates the direction of motion of the oceanic subducting 
Nazca towards South American plate (Nocquet et al., 2014; Yepes et al., 2016; Jarrin et al., 2022). Red arrows illustrate the motion of the North Andean Sliver (NAS) 
and Inca Sliver (INS) relative to South America (Nocquet et al., 2014; Villegas-Lanza et al., 2016; Jarrin et al., 2023). Abbreviations, CCPP: 
Chingual-Cosanga-Pallatanga-Puna Fault System, ASF: Afiladores-Sibundoy Fault, ESB: Eastern Sub-Andean Belt; QFS: Quito Faults System; LF: Latacunga Fault; OA: 
Otavalo-El Angel Fault system, Pe-Ce: Peltetec-Cebada dextral faults. The blue dashed square delineates the area between the cities of Pallatanga and Riobamba, 
where our focus lies and where we estimate the interseismic slip rate for short distances/wavelengths. b) Land cover map (based on Sentinel-2 data, from Brown et al. 
(2022)) with the GNSS network locations overlaid: blue dots represent the National network of GPS (RENGEO), while black dots denote GNSS from Jarrin et al. 
(2022), complementing the southern part of Ecuador. The green oval polygon delineates the North Volcanic Zone (NVZ) in Ecuador, and the white areas indicate the 
presence of some Holocene volcanoes. Average mean InSAR coherence from the c) Descending and d) Ascending Sentinel-1 interferograms. Blue and red outline 
boxes (c, d) delineate the extent of the Sentinel 1 LiCSAR frames. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.)
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and the Carnegie Ridge (Fig. 1a) has created two tectonic blocks: the 
North Andean Sliver (NAS), moving at 8–10 mm/yr, and the Inca Sliver 
(INS) moving at 4–5 mm/yr (Nocquet et al., 2014; Alvarado et al., 2016; 
Villegas-Lanza et al., 2016; Jarrin, 2021). The NAS is bounded by the 
Chingual-Cosanga-Pallatanga-Puná fault system, extending from the 
Gulf of Guayaquil to Colombia (Baize et al., 2015; Alvarado et al., 2016). 
This fault system slips at rates of 2–7.6 mm/yr (Nocquet et al., 2014; 
Arias-Gallegos et al., 2023). Other significant faults include the Quito 
fault system (Alvarado, 2012; Alvarado et al., 2014; Mariniere et al., 
2020; Reyes et al., 2020), the Latacunga fold-and-thrust belt system 
(Lavenu et al., 1995b), and the Otavalo-El Angel strike-slip fault system 
to the north (Yepes et al., 2016; Jarrin, 2021).

Ecuador’s diverse land cover introduces unique challenges to 
geodetic studies, particularly those relying on InSAR data. Dense vege-
tation, prevalent in the Amazonian and Coastal regions, significantly 
reduces coherence at C-band due to radar wave scattering and absorp-
tion. This decorrelation is amplified by vegetation water content and soil 
moisture, which can bias deformation measurements in interferograms 
with short temporal baselines (Ansari et al., 2021; Maghsoudi et al., 
2021; Purcell et al., 2022). These environmental factors interact with 
the tectonic processes to create a complex setting for precise deforma-
tion monitoring, requiring advanced processing techniques (Westerhoff 
and Steyn-Ross, 2020; Cao et al., 2022).

Volcanism in continental Ecuador exemplifies the interplay between 
tectonics and geological processes, driven by the subduction of the 
Nazca plate beneath the South American plate. This process forms the 
Ecuadorian segment of the Northern Andean Volcanic Zone (NVZ), a 
350 km arc comprising 84 Plio-Quaternary volcanoes (Ramon et al., 
2021; Bablon et al., 2019). The volcanoes, varying in petrographic, 
geochemical, and eruptive characteristics, are classified by activity into 
1) extinct, 2) potentially active, 3) active, and 4) in eruption 
(Santamaria 2017; Ramon et al., 2021; Instituto Geofísico, 2024). These 
volcanic systems, influenced by the tectonic framework, further under-
score the intricate relationship between Ecuador’s geodynamics and its 
landforms (Hall et al., 2008).

Surface deformation maps are essential for providing crucial infor-
mation by detecting subtle changes in ground elevation or horizontal 
displacements and identifying potential hazards associated with tectonic 
activity (Elliott et al., 2016; Elliott, 2020), volcanic processes (Biggs 
et al. 2017; Poland and Zebker, 2022; Lundgren and Bato, 2021), and 
anthropogenic effects such as groundwater extraction (e.g. Hussain et al. 
(2022) and Babaee et al. (2024)) or mining (e.g. Chen et al. (2021) and 
Declercq et al. (2023)). The value of InSAR extends across various global 
regions, where it has been employed to monitor volcanic systems, 
providing crucial data on magma chamber inflation and deflation. For 
example, significant findings have been reported in Iceland (Pedersen 
and Sigmundsson, 2006; Ofeigsson et al., 2011), Hawaii (Kundu et al., 
2020; Bemelmans et al., 2021), and in detecting pre-eruptive signals at 
Agung volcano (Bemelmans et al., 2023). InSAR-based deformation 
maps also have significantly enhanced our understanding of fault dy-
namics and the associated seismic hazards. For instance, studies of the 
San Andreas Fault in California (Fialko, 2006; Scott et al., 2020), the 
creeping behaviour along the Haiyuan Fault in China (Jolivet et al., 
2013), and interseismic coupling in subduction zones in Mexico 
(Maubant et al., 2022) illustrate the critical role of these maps in 
advancing our knowledge of seismic activity.

In Ecuador, the Instituto Geofísico has strengthened these efforts 
through the National Geodesy Network (RENGEO), comprising 85 per-
manent GNSS stations (Alvarado et al., 2018; Mothes et al., 2018). This 
network supplies crucial data on phenomena such as the NAS velocity 
(Nocquet et al., 2014; Alvarado et al., 2016; Jarrin, 2021; Jarrin et al. 
2022, 2023; Arias-Gallegos et al., 2023), interseismic coupling (Chlieh 
et al., 2014), postseismic deformation (Nocquet et al., 2017; Twardzik 
et al., 2019), and slow slip events in the Ecuadorian subduction zone 
(Rolandone et al., 2018; Vaca et al., 2019). Complementing these efforts, 
InSAR data have advanced the understanding of tectonic deformation in 

the central-northern region of Ecuador and southern Colombia between 
2017 and 2023 (Marconato et al., 2024a). However, unlike this inves-
tigation, our study emphasizes the integration of diverse datasets to 
capture both short-and long-wavelength deformation phenomena, thus 
contributing novel insights into volcanic, tectonic, and anthropogenic 
processes across Ecuador. We stress that INSAR studied in the Ecua-
dorian territory contribute to studies of tectonic faults (e.g., Pisayambo 
(Champenois et al., 2017), Pallatanga (Baize et al., 2015; Marconato 
et al., 2024b), Quito Fault system (Espín et al., 2018; Mariniere et al., 
2020), subduction earthquakes (e.g., Pedernales earthquake 
(Béjar-Pizarro et al., 2018; Chalumeau et al., 2021)), volcanic defor-
mation (Ebmeier et al., 2016; Mirzaee and Amelung, 2017; Espín Bedón 
et al., 2022; Espıń Bedón et al., 2024), and mining subsidence (e.g., 
Zaruma City, Cando Jácome et al., 2020).

A comprehensive large-scale deformation map is crucial for over-
coming the limitations of localized studies and providing a broader 
perspective for monitoring tectonic and volcanic activity. For example, 
strain rate maps across the entire Alpine-Himalayan Belt enhance the 
understanding of seismic hazards (Hooper et al., 2020), contribute to the 
analysis of slow slip events on a regional scale in Mexico (Maubant et al., 
2020), and improve insights into magmatic processes, as demonstrated 
by extensive surveys in the East African Rift System (Albino and Biggs, 
2021) or Turkish volcanoes (Biggs et al., 2021). In Ecuador, the creation 
of a nationwide deformation map is crucial for filling the gaps left by 
localized analyses and for offering a thorough understanding of the re-
gion’s geodynamic activity. Such a map would not only enhance our 
comprehension of the tectonic and volcanic processes at play but also 
improve hazard assessment and disaster preparedness on a national 
scale. By systematically mapping deformation throughout Ecuador, it 
will be possible to identify previously unknown areas of concern, better 
assess risks in populated regions, and inform infrastructure development 
and land use planning with real-time data.

Here, we use radar (SAR) data from the European Space Agency’s 
(ESA) Sentinel-1 C-band satellite to generate a line-of-sight time series 
and measure displacements across Ecuador in both ascending and 
descending tracks. Additionally, we use the GNSS time series recorded 
by RENGEO stations to estimate the velocity components. By integrating 
the InSAR time series spanning 6 years with the GNSS data between 
December 2017 and August 2023, we produce high-resolution surface 
east-west and vertical velocity data for Ecuador at a general scale of 250 
m. This approach demonstrates the potential of comprehensive frame 
coverage to capture tectonic, volcanic, and anthropogenic deformation 
phenomena. Specifically, we use vertical component data from both 
ascending and descending tracks to identify deforming areas related to 
volcanic activity, subsidence from mining or groundwater extraction, 
and, additionally, to estimate the interseismic slip rate and strain rate in 
the Pallatanga area (blue dashed square in Fig. 1a) capturing short- 
wavelength deformation in the shallow crust, while long-wavelength 
signals in the deeper crust and lithosphere reflect the interseismic 
period with traces of postseismic deformation.

2. Ecuador country-scale velocity field and components of 
motion: data and methodology

2.1. Identification of the interseismic period following the Pedernales 
earthquake

We determined the interseismic period following the postseismic 
phase caused by the Pedernales earthquake manually/empirically by 
identifying the boundary where one ends and the other begins in the GPS 
station data (e.g., QUEM and ESMR stations, Supplementary Figs. S1 and 
S2). This was achieved by seeking a constant velocity in the East 
component. To accomplish this, we began our linear trend analysis on 
the time series, varying the start date for the linear regression from June 
2017 onwards, and estimating the RMS for each month’s start. The 
lowest RMS was found for the start of December. This approach provides 
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the interseismic period for the shallow crust, as reflected in the short- 
wavelength deformation. In contrast, the deeper crust and lithospheric 
deformation, which is associated with long wavelengths, continues to 
show the interseismic period but contains a remnant of postseismic 
deformation that persists to the present day.

2.2. Sentinel-1 data and InSAR processing

We measure 6.1 years of ground displacement across Ecuador using 
InSAR time series from ~2470 Sentinel-1 SAR acquisitions. We create 
~19,147 unwrapped geocoded interferograms and coherence data at 56 
m resolution using the Looking Into Continents from Space with Syn-
thetic Aperture Radar (LiCSAR) system (Lazecký et al., 2020). We create 
short and longer interferograms with time spans of 6, 12, 24 days and 1, 
2, 3, 6, 9 months, and 1 year in between each epoch (Supplementary 
Fig. S3) using the GAMMA software (Werner et al., 2000) (Note that, 
since December 2021, due to the failure of Sentinel-1B, it has not been 
possible to form 6-day interferograms).Subsequently, we analyse the 
most effective strategy for combining these interferograms to construct 
our final time series, following the approach outlined by Espıń Bedón 
et al., (2024), in the relevant area (Section 3.1), and finally we use only 
interferograms with a time span of 12 days or more. We used the 
Copernicus DEM data set to remove topographic phase contributions 
(European Space AgencySinergise, 2021). The interferograms are mul-
tilooked by a factor of 20 in range and 4 in azimuth during the pro-
cessing. For our analysis, we use fifteen LiCSAR frames of approximately 
250 km by 250 km extent (7 ascending (Supplementary Table S1) and 8 

descending (Supplementary Table S2), as shown in Fig. 1c and d) that 
cover the entire country using data acquired between November 2017 
and August 2023. We focus on this period because we have complete 
data coverage for both tracks during that time.

We estimate the line-of-sight (LOS) velocities and time series for each 
frame (Fig. 2) using the LiCSBAS approach (Morishita et al., 2020; 
Lazecký et al., 2024) that estimates ground displacements at acquisition 
epochs on a pixel-by-pixel basis from the network of interferograms. 
Subsequently, we downsample our interferometric data from ~56 m to 
~250 m resolution to decrease processing demands while preserving 
adequate resolution for detect ing tectonic deformation signals (e.g. 
Watson et al., (2022)). Secondly, we mask out and remove pixels with an 
average coherence of less than 0.05. This threshold primarily excludes 
vegetated areas, such as the Amazonian region. We test an atmospheric 
correction approach using the Generic Atmospheric Correction Online 
Service (GACOS) correction (Yu et al., 2018).

GACOS uses numerical weather models (European Centre for 
Medium-Range Weather Forecasts (ECMWF) data) to predict atmo-
spheric phase delays. We observed that the quality of the interferograms, 
as evaluated by phase standard deviation, deteriorated following the 
correction (e.g. Supplementary Fig. S4), this decline may be attributed 
to the influence of steep topography on local water vapour distribution 
and hydrostatic pressure, as well as the limited availability of ECMWF 
input data in the region (e.g. Dogru et al., 2023. and Espıń Bedón et al., 
(2024)). We have decided not to proceed due to the degradation of 
correction in over 50 % of our interferograms.

In the next step, we identified and removed bad interferograms from 

Fig. 2. Average line-of-sight velocities depicted for (a) descending and (b) ascending frames at a resolution of 260 m. Motion towards the satellite in the line-of-sight 
(LOS) is indicated in red, while motion away from it is denoted in blue. In this figure, each frame has its own distinct local zero velocity reference. Blue and red 
dashed outline boxes delineate the extents of the Sentinel 1 LiCSAR frames. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.)

P.A. Espín Bedón et al.                                                                                                                                                                                                                        Journal of South American Earth Sciences 163 (2025) 105588 

4 



the network based on quality statistics thresholds. We set a threshold of 
0.3 (30 % coverage threshold) for unwrapping data to determine the 
minimum acceptable coverage of valid unwrapped pixels of interfero-
grams and 0.05 for the average coherence. Furthermore, we identify 
errors in the unwrapping process by applying a phase closure technique 
(Biggs et al., 2007) pixel by pixel and drop unwrapped pixels with at 
least one erroneous loop closure (Lazecký et al., 2024) (e.g. Wang et al. 
(2024)). We ingest the improved and masked interferograms in the small 
baseline inversion approach (Morishita et al., 2020) to construct the 
time series. We use the bootstrapping method (Efron et al. 1986) to 
estimate the uncertainties associated with each LOS velocity 
(Supplementary Figs. S5 a,b).

We mask the remaining noisy pixels using a threshold derived from a 
statistical quality check (e.g. RMS of the residuals in the inversion, 
Morishita et al., 2020). We improve the signal-noise ratio of the data by 
employ ing spatio-temporal-filtering (Hooper et al., 2012), with a tem-
poral window width of 18 days and a spatial width of 5 km (testing of 
filtering approaches shown in Supplementary Figs. S6 and S7). Finally, 
we apply a linear elevation-phase correction to subtract the 
topography-correlated component of the atmospheric signal, accounting 
for the lowest and highest elevation of each frame. The LiCSBAS input 
parameter settings used in this study are presented in Supplementary 
Table S3.

2.3. Fitting velocities for GNSS

We employ 48 sets of GNSS processing time series data sourced from 
RENGEO-IGEPN originally in the Nazca (NAS) reference frame (Mothes 
et al., 2013; Alvarado et al., 2018) and converted to the South American 
plate (SOAM) reference frame, covering the identical timeframe as our 
InSAR data (December 2017–August 2023). Furthermore, we integrate 6 
GNSS velocities located in the southern region of Ecuador, referenced to 
the SOAM, as obtained from Jarrin et al., (2022). This facilitated 
coverage of the southern region of Ecuador during the GNSS time series 
period from 2008 to 2020 (Fig. 1b), where the effect of the Pedernales 
earthquake has been corrected (Jarrin et al., 2022). We adopt a 
least-squares approach to derive a model that accurately fits the East (E) 
and North (N) component of GNSS data (e.g. Arias-Gallegos et al., 
(2023); Blewitt et al., (2016); Jarrin, (2021); Jarrin et al., (2022); Liu 
et al., (2021)).

Our model incorporates a linear regression representing the overall 
trend, an annual oscillation, and offsets associated with earthquakes, as 
described by the following equation: 

Y(t)=Vt+ b +
∑n

i=2
H(t − ti)Ci + [A sin(2πt)+B cos(2πt)] (1) 

where Y (t) represents the displacement as a function on time of the 
north and east components; V is the long-term linear deformation rate, t 
represents time, b is the reference position, H(*) is a Heaviside step 
function, Ci represents the coseismic deformation of each earthquake (n 
= 2 in this study, ti is the event time), and A and B are the magnitudes of 
the seasonal signal.

Two major earthquakes were identified as events impacting all sta-
tions and time series for the period under study: 1) the earthquake that 
occurred on February 22, 2019 (magnitude Mw 7.5) in Palora-Ecuador, 
and 2) the earthquake on May 26, 2019 (magnitude Mw 8) in Peru (U.S. 
Geological Survey, 2023). Furthermore, a third event has been incor-
porated for June 6, 2021 in Manta (magnitude Mw 4.6). This earthquake 
was recorded and exclusively affected nearby stations, specifically 
SLGO, MHLA, MLEC, ISPT, SALN, AYAN, and CABP, particularly in the 
eastern component (refer to Supplementary Methods 9.1.1 and 
Figure Supplementary S8).

As well as estimating the velocities for the East and North compo-
nents at each GNSS station (see Supplementary Table S4), we evaluate 
the quality of our data fit by estimating the root-mean-square (RMS) 

error between the observed data and the fitted model, as well as eval-
uating the differences between them (e.g. QUEM and BAEZ stations in 
Fig. 3 and Supplementary Fig. S8). We convert the velocities of the GNSS 
stations from within the NAS reference frame to that of SOAM (as pre-
sented in Table Supplementary S5) removing the trend predicted by the 
Euler pole defined by Jarrin (2021) to eliminate the plate movement and 
determine the surface displacements. Additionally, to constrain the edge 
for data interpolation at the eastern border of our GNSS network, we 
include 32 artificial boundary stations with zero velocity beyond 78◦W, 
following the methodology proposed by Watson et al. (2022)
(Supplementary Table S6). This assumption is based on the crustal sta-
bility and lack of movement of this area within the South American 
reference frame. Then, we interpolate the North and East GNSS veloc-
ities and artificial zero velocities (shown in Fig. 4c and d) using a uni-
versal kriging algorithm implemented with the PyKrige Python Package 
(Murphy et al., 2021). This generates a continuous velocity field that 
captures both local variations and broader spatial trends. We employed 
a Gaussian variogram model to achieve a continuous and smooth spatial 
pattern in our interpolation, in comparison to the spherical or expo-
nential models (e.g. Ou et al. (2022) and Fang et al. (2022)).

2.4. Decomposed velocity fields

We employ the approach defined by Watson et al. (2022) for 
combining and decomposing our InSAR velocities and interpolated 
GNSS velocities into east (VE) and vertical (VU) velocity components (e. 
g. Hussain et al. (2016), Ou et al. (2022), and Wright et al. (2023)). 
Initially, the line-of-sight velocities obtained from each InSAR frame 
have their own independent references (Fig. 2). Therefore, we adjust the 
LOS velocities to the SOAM reference frame using the interpolated GNSS 
velocities (Fig. S21). To achieve this, we project the East and North 
GNSS velocities onto the satellite LOS direction. We subtract and 
determine the residual between our LOS GNSS and LOS InSAR velocities 
(e.g. Watson et al. (2022), Wright et al. (2023), Watson et al. (2024), and 
Wang et al. (2024)). We use a median filter for each InSAR frame (e.g. Xu 
et al. (2021) and Watson et al. (2022)) to smooth the residual and 
subtract it from the InSAR velocities to align them with the reference 
frame of the GNSS velocities (SOAM). We also refine the LOS un-
certainties for each frame using a distance-dependent scaling factor 
based on a spherical model fit to correct the frame reference effect 
follow the method defined by Ou et al., (2022) (e.g. Fang et al., (2022); 
Watson et al., (2022)) (Suplementary Figure S5 c,d and S9). We merge 
along-track using the median function in the overlapping LOS velocities 
by subtracting the difference of the median values between tracks.

We estimate vertical (VU) and east-west velocities (VE) at a pixel 
scale of approximately 250 m, incorporating the interpolated North 
GNSS velocities and their associated uncertainties into our decomposi-
tion. We solve for VE and VU using weighted least squares and the data 
variance-covariance matrix (VCM) (Watson et al., 2022). The correla-
tion between InSAR and GNSS VE exhibits an R2 value of 0.5 and a root 
mean square (RMS) of 1.9 mm (Figure Supplementary S10). The un-
certainties associated with the decomposed velocities (Supplementary 
Fig. S12 and Supplementary information 9.2) typically range from 0.1 to 
1.7 mm/yr in the east component and from 0.3 to 1.4 mm/yr in the 
vertical component. Lowest uncertainties are found in the regions where 
tracks overlap. We have grouped and estimated the standard deviation 
in the overlap areas (e.g. Watson et al. (2022)), with values ranging from 
1.3 to 1.9 mm/yr for the descending track and from 1.4 to 2.2 mm/yr for 
the ascending track. However, significantly higher values are observed 
near the Chiles volcano, where the standard deviation reaches 5.60 
mm/yr, due to volcanic activity and the earthquake that occurred on 25 
July 2022. Regarding the across-tracks overlap (between frames on 
different tracks), the standard deviation is observed to be 2.4 mm/yr for 
the descending track and 1.7 mm/yr for the ascending track 
(Supplementary Fig. S11). Next, we decompose to the vertical and 
horizontal components of the uncertainties in the along-track zones 
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using the incidence angle and the heading of each track, respectively 
(Supplementary Fig. S13).

3. Ecuador country-wide surface velocity: results

The overall measured vertical velocities of the country (Fig. 5) are 
primarily influenced by volcanic deformation, such as Cayambe 
(Butcher et al., 2021; Espín Bedón et al., 2022) (Fig. 5b), Sangay 
(Hidalgo et al., 2022; Espıń Bedón et al., 2024) (Fig. 5e), and Guagua 
Pichincha (Yepez et al., 2020; Mirzaee et al., 2023) (Fig. 5j), as well as 
tectonic-volcanic deformation, like Chiles-Cerro Negro (Gómez Cruz, 

2020; Mirzaee et al. 2021) (Fig. 5a). Subsidence or contraction in vol-
cano deposits is observed in the northeastern ravine of the Tungurahua 
Volcano (Fig. 5d) and Reventador volcano (Fig. 5m). In addition, sub-
sidence can be observed in cities such as Guayaquil (Fig. 5h), southern 
Quito (Fig. 5i), and Cañar (Fig. 5g). There are also effects of mining to 
the north of Quito (Fig. 5k). In the coastal region where coherence and 
deformation data are very limited, only a small area and amount of uplift 
is observed in the city of Manta (5q). Furthermore, subsidence occurs in 
volcanic sediments deposits between Cuenca and Azoguez in the south 
(Fig. 5f). The CCPP fault system (Fig. 5l) does not exhibit significant 
vertical deformation.

Fig. 3. Examples of the fitted time series and root mean square (RMS) values for the east and north components at two stations using equation (1): a) QUEM and b) 
BAEZ (see location in Fig. 1b). The dotted red line represents the data fit, the orange line represents the linear term rate, and the dotted grey vertical lines indicate 
fixed offsets for the two earthquakes: February 22, 2019 (Mw 7.5) in Palora-Ecaudor and May 26, 2019 (Mw 8) in Peru (U.S. Geological Survey, 2023). Note that the 
plotted uncertainties are formal uncertainties derived from the linear fit to many points. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.)
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Fig. 4. GNSS horizontal velocities depicted as arrows. a) with respect to NAS; b) with respect to stable South America plate (SOAM). Spatially interpolated GNSS 
velocities were generated by using a universal kriging algorithm for c) North (VN) and d) East (VE) components with respect to SOAM. GNSS components are shown in 
coloured dots respectively. Red dashed line shows the trace of the CCPP: Chingual-Cosanga-Pallatanga-Puna Fault System. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Vertical velocity from the velocity field decomposition shows the deformation related to tectonic-volcanic activity: a) Chiles-Cerro Negro; Volcanoes: b) 
Cayambe; c) Cotopaxi; e) Sangay; j) Guagua Pichincha, m) Reventador; as well as anthropogenic processes such as subsidence in: d) Tungurahua ravine; f) Tarqui 
volcanic deposits; g) Cañar city; h) Guayaquil city; i) Southern Quito city; k) North Quito sand mining; n) Zaruma city and l) represents the area of CCPP that is the 
eastern boundary and is associated with the relative movement of the NAS. In the coastal area we have deformation zones identified only in the cities where 
coherence is maintained: o) Esmeraldas, p) Santo Domingo and q) Manta. The dashed red line is a simplified representation of major fault CCPP. The color palette in 
the middle left corresponds to the scale of the zoomed-in subplots, while the one in the lower left corresponds to the entire map of the country. The magenta numbers 
and blue markers indicate the cumulative time series points for the anthropogenic deformation signals. Active fault trace from Alvarado et al. (2014). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The horizontal velocity (Fig. 6) demonstrates a general east-west 
gradient, illustrating how ongoing convergence and the locked behav-
iour of the subduction interface deforms the entire country. Higher ve-
locities are observed in coastal cities and in the northern region of the 
CCPP, as opposed to the southern region (Fig. 6i), as indicated by GNSS 
studies (e.g. Nocquet et al. (2014), Jarrin (2021), Jarrin et al. (2022), 
and Arias-Gallegos et al. (2023)). However, a noticeable deformation 
associated with the fault system further south, including the Guamote, 
Cebada, and Peltetec faults, is also observable (Fig. 6l). This deformation 
likely represents the effects of interseismic slip, which may not have 
been captured in GPS studies due to limitations in coverage compared to 
that of the InSAR methodology and also the lack of stations installed in 
this sector. Additionally, clear deformation is observed in volcanic re-
gions such as Sangay (Fig. 6e), Chiles-Cerro Negro (Fig. 6a), and Coto-
paxi (Fig. 6c). Notably, only the Holocene volcanic areas exhibit clear 
horizontal deformation (Fig. 6f). In the following sections we discuss the 
deformation sources in more detail.

3.1. Volcanic activity (December 2017–August 2023)

Volcanic activity during this period in Ecuador has been character-
ized by three erupting volcanoes: Reventador, Sangay and Cotopaxi. In 
the same time period, the Chiles-Cerro Negro volcanic complex exhibi-
ted seismic activity that exceeded the typical thresholds associated with 
normal volcanic behavior, indicating a possible state of unrest. The 
specific references for each volcano’s activity are summarized in Sup-
plementary Table S7. The identification of deformation in line-of-sight 
(LOS) measurements for both tracks reveal uplift associated with San-
gay Figs. 5 and 6 e) (e.g. Espıń Bedón et al., (2024)) and Chiles-Cerro 
Negro volcanic centers (Fig. 5 a), and subsidence in Reventador 
(Fig. 5 m).

In the Chiles-Cerro Negro area (Figs. 5 and 6 a), which encompasses 
the Potrerillos region to the southwest, we observe maximum uplift rates 
of approximately ~15 mm/yr. Yepez et al. (2021) reported a maximum 
line-of-sight (LOS) deformation of 2.5–3 cm/yr in the area between 2014 
and 2019, which they interpreted as uplift. However, in our analysis of 
the east-west component, we identify a significant deformation of ~6 
mm/yr towards the east in the area between the Chiles-Cerro Negro 
volcano and Potrerillos. This deformation is probably associated with 
the hydrothermal system in the region (Sierra, 2015; Ebmeier et al., 
2016; Gómez Cruz, 2020; Yepez et al., 2021; Mirzaee et al. 2021). This 
area is also affected by seismic activity, including a Mw 5.6 earthquake 
on 25 July 2022 with depth 2 km (Instituto Geofıśico IG-EPN, 2022) 
(Supplementary Fig. S14a).

Sangay exhibits a maximum uplift rate of approximately 9 mm/yr, 
accompanied by horizontal movement (Figs. 5 and 6e), with the western 
flank shifting westward at a rate of 10 mm/yr, and the eastern flank 
moving east-ward at approximately 12 mm/yr, predominantly associ-
ated with the new activity initiated in 2019 and persisting until 2023 
(Vasconez et al., 2022; Hidalgo et al., 2022; Espıń Bedón et al., 2024). 
Furthermore, the horizontal component indicates that the deformation 
on the southeast flank would be related to the new deposits and the 
movement of the older deposits on this flank (Espıń Bedón et al., 2024). 
Reventador exhibits subsidence (Fig. 5m and Supplementary Fig. S14b), 
potentially linked to the compaction of volcanic deposits (Arnold et al., 
2017; Instituto Geofisico, 2020). Tungurahua is subsiding in the area of 
the pyroclastic deposits from 2013 to 2016 (Fig. 5d and Supplementary 
Fig. S14d) (Hall et al., 2015), which can be attributed to the con-
traction/compaction of these deposits (e.g Naranjo et al. (2016) and 
McAlpin et al. (2017)). Cotopaxi displays a minor westward movement 
pattern, consistent with observations made by Morales et al. (2017).

Regions of vertical deformation were also observed in volcanic 
centers that did not culminate in eruptions, as exemplified by Guagua 
Pichincha, which displayed inflation (as also reported by Yepez et al. 
(2020) and Mirzaee et al. (2023)). Cayambe volcano exhibits inflation 
around its edifice at a rate of approximately 4 mm/yr in the southeast 

direction (as reported by Espín Bedón et al. (2022)) between 2015 and 
2019 (Fig. 5 b). There have been no reports of heightened gas emissions 
or seismic activity during the study period for either volcano, and no 
distinct deformation in the east-west direction was observed throughout 
the study period.

3.2. Anthropogenic-related deformation

We have identified seven distinct locations that exhibit significant 
vertical velocities associated with non-tectonic processes. Three of these 
are related to cities experiencing subsidence: Guayaquil (Fig. 5h), Cañar 
(Fig. 5g), and Zaruma (Fig. 5n), as well as the southern portion of Quito 
(Fig. 5i). Subsidence signals occurred in zones composed by volcano- 
sedimentary substratum to the east of Cuenca (Fig. 5g), and to the 
north of Quito in the San Antonio de Pichincha sector (Fig. 5k).

We have extracted time series at each location for both ascending 
and descending tracks, using a local reference pixel within the area of 
the anthropogenic signals (Supplementary Fig. S15). Each ascending 
and descending LOS series was first compared by aligning the dates, 
followed by interpolation using a weekly interval (7 days) for the 
common dates. Additionally, a linear trend was estimated to closely 
match the initial un-interpolated LOS data (e.g. Supplementary 
Fig. S16). Finally, the combination was performed using the same 
method described by Wright et al. (2004), resulting in the time series for 
both the vertical and horizontal (east-west) components for each area 
(Fig. 7).

The Zaruma time series illustrates a vertical velocity of − 3.3 mm/yr 
(− 2.6 and − 1.3 mm/yr LOS rates for the descending and descending 
trajectories, respectively, Supplementary Fig. S15i). The most signifi-
cant deformation is observed between 2018 and mid-2021. Cando 
Jácome et al. (2020) correlate this subsidence, occurring from 2016 to 
2019, with mining activity in the region.

In the case of Guayaquil, the area of most pronounced deformation is 
situated in the southwest (Fig. 5h), exhibiting a significant vertical 
displacement of − 7 to − 8.8 mm/yr. This trend persists steadily from 
2018 to 2023 (Fig. 7d), characterized by a linear velocity in Line-of- 
Sight (LOS) measurements of − 6.2 (descending) and − 3.6 mm/yr 
(ascending) (Supplementary Fig. S15d). This deformation is likely 
attributable to the compression of clay deposits (Cuervas-Mons et al., 
2021; Carrillo Bravo et al., 2021).

In the city of Cañar, a subsidence rate of − 1.8 mm/yr is observed in 
the decomposed vertical velocity (Fig. 5g), with a consistent trend of 
− 3.6 mm/yr in the ascending track and - 1.8 mm/yr in the descending 
track (Supplementary Fig. S16a). Our interpolated vertical series shows 
a subsidence rate of − 3.8 mm/year (Fig. 7a). Despite the absence of 
reports or studies addressing the causes of this deformation, geological 
maps suggest a potential correlation with with the city’s infrastructure 
and the terrain type, specifically lake and river terraces (Bourgois et al. 
2006).

The city of Manta experiences uplift ranging between 1 and 5 mm/yr 
in the decomposed vertical velocity (Fig. 5q). The interpolated series of 
components shows a subsidence of 3.5 mm/yr (Fig. 7e). The time series 
reveal a linear LOS velocity of 3.3 mm/yr in the descending track and 
1.7 mm/yr in the ascending track (Supplementary Fig. S15e). This uplift 
may be linked to the marine formation, estimated by Pedoja et al. (2006, 
2009) and Cisneros Medina (2017) due to active tectonic activity in the 
northern region and erosion on the Manta peninsula.

In the Quito area, we have extracted a time series in the southern 
Santo Tomas sector (Fig. 5i), where the area exhibits subsidence, with a 
maximum rate of − 3.5 mm/yr (Fig. 7g). The time series in LOS indicates 
a constant linear velocity of − 1.9 mm/yr in the descending track and 
− 3.4 mm/yr in the ascending track (Supplementary Fig. S16g). The 
signal found along the reverse fault boundary at the edge is sharp, 
becoming smoother to the north, which may indicate a fault-controlled 
water aquifer. The hydrological model of the city of Quito in the south 
shows that this zone is affected by the reverse faulting and may be the 
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Fig. 6. Decomposed East-West velocity shows the deformation related to tectonic-volcanic activity: a) Chiles-Cerro Negro; Volcanoes: b) Cayambe; c) Cotopaxi; e) 
Sangay; j) Guagua Pichincha, m) Reventador; subsidence in volcano deposits: d) Tungurahua ravines; as well as anthropogenic processes such as subsidence in: f) 
Tarqui volcanic deposits; g) Cañar city; h) Guayaquil city; i) Southern Quito city; k) North Quito sand mining; n) Zaruma city; and l) represents the area of CCPP that 
is the eastern boundary and is associated with the movement of the NAS. In the coastal area we have deformation zones only in the cities: o) Esmeraldas, p) Santo 
Domingo and q) Manta. The dashed red line is a simplified representation of major fault CCPP. The color palette in the middle left corresponds to the scale of the 
zoomed-in subplots, while the one in the lower left corresponds to the entire map of the country. Active fault trace from Alvarado et al.(2014). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Interpolated time series of vertical and east-west displacement components for the areas exhibiting anthropogenic and coast signals assuming the methodology define by Wright et al. (2004), with the average 
linear velocity for horizontal (east-west in red) and vertical (blue) shown. The location points for each time series are shown in Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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barrier of the water body (Catolica, 2021).
Finally, two signals associated with mining of volcano-sedimentary 

deposits have been identified. The first is located in the northern part 
of Quito (Fig. 5k), where material is extracted for construction. This 
activity likely destabilizes the slopes and has led to land slip behaviour 
with deformation of − 3.6 mm/yr in the vertical component. The second 
signal is north-northeast of Cuenca (Fig. 5f), where volcanic tuffs, 
sandstones and shales/mudrocks crop out (Egüez et al., 2017). This re-
gion exhibits a subsidence rate of 20.3 mm/yr (Fig. 7b), with a linear 
velocity in the line of sight (LOS) of − 20.6 mm/yr on the descending 
track (Supplementary Fig. S16b).

3.3. Coast cities deformation

In the coastal zone, the cities of Esmeraldas (Fig. 5o), Manta 
(Fig. 5q), and Santa Elena (Fig. 5) exhibit good coherence and significant 
deformation in the horizontal component is observed. Two cities on the 
Ecuadorian coast, Esmeraldas and Santa Elena, exhibit horizontal east-
ward velocities of 16 mm/yr and 12 mm/yr, respectively, in our 
decomposed east-west velocity, which would be associated with the 
north-eastern movement of the NAS due to the subduction. In addition, 
the interpolated series of components shows a vertical displacement of 
1.9 mm/yr and a horizontal displacement of 0.4 mm/yr for both 
Esmeraldas and Santa Elena (Fig. 7c–h).

Similarly, the LOS (line-of-sight) time series for Esmeraldas indicates 
constant linear velocities on two tracks: 1.5 mm/yr on the descending 
track and 1 mm/yr on the ascending track (Supplementary Fig. S16c). In 
contrast, for Santa Elena, both tracks exhibit line-of-sight velocities of 
approximately 1 mm/yr (Supplementary Fig. S16h). These differences 
are primarily due to the fact that our choice of reference for the time 
series is a local site, as compared to the reference of decomposed 
velocity.

3.4. Slip rate and locking depth modeling of the Pallatanga fault section

Our regional derived horizontal (east-west) velocity displays a gen-
eral east-west gradient in the northern region of the Cosanga-Chingual- 
Pallatanga-Pisayambo (CCPP), accompanied by significant deformation 
extending southward, which correlates with the fault system located 
further south, encompassing the Guamote, Cebada, and Peltetec faults. 
To analyse this in terms of estimating a fault slip and potentially the 
depth extent of the locked fault, we model fault-perpendicular profiles 
based on our estimated east-west velocity field near Pallatanga (indi-
cated by the blue dashed square in Fig. 1a), a segment of the CCPP 
(Fig. 6). We do this using a simple analytical elastic screw dislocation 
model (Savage and Burford, 1973). We utilize two dislocation models 
(as described in Equation (2)) because our map reveals a velocity vari-
ation in this region associated with both the main Pallatanga fault and 
the southern fault trace, which comprises the Guamote, Columbe, Pila-
loma, La Moya, Alausi, Cebada, and Peltetec fault segments situated 
further to the southeast (abbreviations of the labelled faults are pre-
sented in Fig. 9). 
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(
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)
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where Vpara is the horizontal velocities parallel to the fault, x is the 
perpendicular distance from the fault, S1 and d1 are the slip rate and 
locking depth of the main CCPP fault, S2 and d2 are the slip rate and 
locking depth of the southern fault, C1 is an offset in the location of the 
southern fault relative to the fixed main fault and C2 is a velocity offset.

We determine the optimal values for each model parameter using a 
Bayesian affine invariant ensemble Markov Chain Monte Carlo (MCMC) 
approach defined by (Goodman and Weare, 2010). We adopt a uniform 
prior distribution for all parameters, with bounds set at 1 ≤ S1 ≤ 6 
mm/yr, 0.1 ≤ d1 ≤ 15 km, 1 ≤ S2 ≤ 5 mm/yr, 0.1 ≤ d2 ≤ 1 km, − 16 ≤ C1 

≤ − 17 km, and 4 ≤ C2 ≤ 7 mm/yr. Our MCMC sampler employs 200 
walkers and iterates for 300,000 steps. We discard the initial 20 % of 
iterations from each walker as burn-in. To incorporate uncertainties, we 
assign weights to the velocities using a variance-covariance matrix 
derived from an exponential covariogram, with parameters set as fol-
lows: range = 2.0 km, sill = 0.27 (mm/yr)2, and nugget = 0.055 
(mm/yr)2. We estimate these values by fitting an exponential function 
(Supplementary Fig. S17) with a nugget to the isotropic experimental 
semi-variogram, as described in Bagnardi and Hooper (2018), focusing 
on the data coverage in the northeastern region where there is minimal 
deformation and the noise in the east velocity is representative of the 
noise we expect in this region.

The fault-parallel velocity profile, calculated from the east-west ve-
locity data within a 120-km-wide swath, reveals additional strain 
distributed over the southern fault system, wherein the Guamote, 
Cebada, and Peltetec faults are situated. Additionally, we project the 
GPS data onto the fault-parallel profiles, demonstrating a reasonable fit 
with the InSAR data (see Fig. 8). The interseismic modeling, which 
combines two screw dislocation models, indicates a slip rate of 3.2 ±
0.6 mm/yr with a locking depth of 5.4 ± 4 km for the main fault (CCPP), 
and a slip rate of 2.7 ± 0.3 mm/yr beneath a locking depth of 0.3 ± 0.2 
km for the southern fault trace (SFT). The distance between the sec-
ondary fault and the fixed location of the main fault is 16 ± 0.1 km. 
Supplementary Fig. S18 illustrates the marginal posterior probability 
(MAP) distributions for each parameter. The MAP solutions and un-
certainties for each parameter are provided in Supplementary Table S8.

Additionally, we tested using the interpolated North component 
from our GNSS and the East component from InSAR (e.g. Wang et al. 
(2024)) to extract the fault-parallel velocities and model them using 
Equation (2) (Supplementary Figs. S19 and S20). However, we fixed the 
locking depth of the first fault at an estimated depth of 14 km, as re-
ported by Jarrin et al. (2023). This approach resulted in a small 
discrepancy in the estimation of slip related to CCPP, which was 2.2 ±
1.1 mm/yr, lower than our estimate derived solely from the East 
component (3.1 ± 0.7 mm/yr). In the southern region, we observed a 
slip rate of 1.7 ± 0.5 mm/yr, compared to 2.7 ± 0.3 mm/yr of our es-
timate derived solely from the East component. The model is likely 
underestimating in the near field due to topographically correlated noise 
in the northwest along the profile, specifically between 2 km and 50 km, 
where Chimborazo Volcano is located. Additionally, this discrepancy 
may be attributed to the smooth interpolation of the north component 
and the assumption of a fixed fault depth.

3.5. Strain rate estimation across Pallatanga-Riobamba area

We estimate the horizontal strain rate field from our InSAR east 
velocities (VE) and interpolated GNSS north velocities (VN) across the 
Pallatanga area following the method outlined by Ou et al., (2022). First, 
we apply a sliding median spatial filter (tested over wavelengths of 
varying 10’s km in scale) to our VE data to suppress noise and 
non-tectonic short-wavelength signals (e.g. Fang et al., (2022)). We test 
various window sizes for the median filter window in order to determine 
the optimal trade-off between noise suppression and signal preservation. 
Subsequently, we estimate the horizontal gradients of the filtered VE 
(∂VE/∂x and ∂VE/∂y) and interpolated VN (∂VN/∂x and ∂VN/∂y). From 
these four gradient tensors, we derive the horizontal strain-rate tensor, 
horizontal dilatation rate, maximum shear rate, and the second 
invariant of the horizontal strain-rate tensor (Figure Supplementary 
S22). We explored applying several filter window widths (10, 15, 20, 30, 
40, 60, and 80 km) (e.g. Watson et al. (2024)). Supplementary Fig. S23
illustrates the effects of using various window sizes and their corre-
sponding profiles. The absence of filtering and the use of smaller win-
dow sizes (10–15 km) resulted in random noise dominating between 
adjacent pixels, which led to elevated strain rates (≥100 nst/yr). This 
obscured the underlying tectonic signals across the CCPP, as well as in 
the Latacunga-Pujilí reverse faults to the north of our study area (see 
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Fig. 8. a) The east-west component of surface velocity between the cities of Pallatanga, Riobamba and Baños, with the black rectangle denoting the extent of the 
velocity profile A-A′ across the CCPP (red line). These profiles are superimposed onto hill-shaded topography (Copernicus DEM), featuring city locations (marked by 
white-red triangles), GNSS locations (indicated by red circles), geological slip rates (denoted by black stars), and the slip rate estimated from GNSS (illustrated by the 
green star). b) Fault-perpendicular profile of fault-parallel velocities (coloured circles) calculated from the east-west InSAR velocities within a 120-km-wide profile, 
with modeling results (coloured lines) using two screw dislocation models of fault slip beneath a locked elastic lid. GNSS velocities within each profile are depicted by 
red pentagons. The vertical red line delineates the trace of CCPP faults, while blue dashed lines indicate the fault locations to the southeast. The black line represents 
the mean value of the data profile, with the red line indicating the model (Equation (2)). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 9. Interpolated InSAR East velocities (a), smoothed with a 20 km median filter used to calculate (b) the maximum shear strain rate, (c) the second invariant of 
the strain rate tensor, and (d) the dilatation rate, for the area of CCPP Fault. Negative dilatation indicates contraction. (e) Profiles A-A′ for filtered East velocities, max 
shear strain rate, second invariant and dilatation rate (profile location shown in a). Abbreviations, Towns: Co=Colta, Ca=Cajabamba, SA=San Andres, 
R=Riobambam Al=Alausi, G = Guamote, Pa=Palmira, Ce=Cebada, L = Latacunga, Pu=Pujili, S=Salcedo. Faults: CCPP=Cosanga-Chingual-Pallatanga-Pisayambo, 
Pe-Ce= Peltetec-Cebada, LM-Gu = La Moya-Guamote.
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Figure Supplementary S23b, e, h, q). Conversely, window sizes between 
40 and 80 km excessively smoothed the eastward component of velocity 
(Supplementary Figs. S23a,f,g,h), leading to the loss of the localised 
interseismic signal and impacting the estimation strain rates (≤50 
nst/yr) and dilatation, thus resulting in decreased peak magnitudes and 
increased spatial simplification of the signals (Supplementary Fig. S24). 
We found that a 20 km filter window (Fig. 9a) yielded optimal results for 
preserving the interseismic fault signal and reducing noise in our InSAR 
VE data.

The strain rate signals identified (Fig. 9) align with the CCPP fault 
trace (illustrated by the red line in Fig. 9), predominantly concentrated 
within the vicinity encompassing Cajabamba, San Andres, and Colta. 
This region exhibits maximum shear strain rates ranging between 50 and 
70 nst/yr (Fig. 9b–e). Additionally, significant rates of strain are 
discernible towards the southeast, coinciding with the southern fault 
trace extending from Alausi to Palmira (indicated by the blue line in 

Fig. 9b), with shear rates between 30 and 70 nst/yr (Fig. 9b–e). The 
manifestation of this signal progressively reduces as it extends south-
eastward towards the Peltetec-Cebada fault trace, as demonstrated by 
both the unfiltered (Fig. 8) and filtered east-west velocity profiles. 
Noteworthy signals also emerge in association with the thrust fault 
Latacunga-La Victoria system and anticlinal folds (Lavenu et al., 1995b), 
traversing northward of the CCPP between the cities of Latacunga, 
Pujili, and Salcedo, with shear rates ranging from 40 to 70 nst/yr. In 
areas along the fault trace where high shear strain prevails, the dilata-
tion rate demonstrates contraction (Fig. 9d and e).

4. Discussion

We have successfully obtained contemporary surface movements for 
19 % (~55, 359 km2) of the land surface area of Ecuador, with coverage 
greatest along the inter-Andean valley and some coastal cities. This was 

Fig. 10. Velocity field results and interfeogram networks between different combinations of short only and combined short and longer interferograms for a 
descending frame (142D 09148 131313). (a), (b) ≤ 40 days; (c), (d) ≥ 12 days, (e) Difference between both velocities. (f) Time series comparison between the InSAR 
from (a),(b) and the projected GNSS-LOS from the points of GNSS station BILB relative to a reference station RIOP, (g) Time series comparison between the InSAR 
from (a),(c) and the project GNSS-LOS from the points of GNSS station RIOP relative to a reference station PSTC.
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a challenging task due to the country’s diverse vegetation and the 
decorrelation it induces in C-band interferometry, thereby affecting data 
coherence and the atmospheric variations. Through the implementation 
of a robust network of interferograms, we have been able to discern 
signals associated with volcanic activity, tectonic activities, and human- 
induced phenomena such as urban subsidence and mining activities. In 
terms of tectonics, our analysis has focused on the slip rate and strain 
rate at a broader scale within the border region between the North 
Andean block and the South American plate, specifically within the 
Pallatanga and Riobamba area.

4.1. Time series network strategy

The optimal network and processing strategy should involve utilizing 
short time-span interferograms in regions like Ecuador to maintain 
coherence in areas with high decorrelation (e.g. ≤ 40 days, Fig. 10b). 
However, these types of networks introduce systematic effects into our 
velocity and time series, consistent with the concept of a ‘fading signal’ 
as defined by Ansari et al. (2021). Fading signal is a source of error in the 
phase of InSAR. This signal or bias accumulates in surface velocities 
derived from short-baseline networks of multi-looked interferograms 
(De Zan et al., 2015; Ansari et al., 2021; Maghsoudi et al., 2021). 
Although this error may be small in each interferogram, it has a signif-
icant impact over the time series, particularly when the measurement is 
very small, in the millimetric range. We have observed that this signal 
intensifies in areas with dense vegetation and specific soil and land cover 
types (e.g. Purcell et al. (2022) and Daout et al. (2023)). Furthermore, it 
also manifests in urban areas characterized by good coherence (see 
Fig. 10a).

Therefore, we propose a region-specific strategy to mitigate these 
effects, involving: 1) the exclusion of short 6-day interferograms, and 2) 
integration with longer interferograms (e.g. Purcell et al. (2022), Daout 
et al. (2023), and Espıń Bedón et al., (2024)), considering the strategy of 
using interferograms of 12 days or longer (Fig. 10c and d). We compare 
our InSAR time series from track 142D_09148_131313, obtained using 
this network configuration, with the LOS-GNSS time series, where both 
exhibit similar deformation patterns and magnitudes (Fig. 10f and g). 
Using this strategy (Fig. 10c and d), we first compare the GNSS station 
BILB, referenced to RIOP, and RIOP, referenced to PSTC (Fig. 10e, f, g). 
The relative velocity between BILB and RIOP decreases from − 14.22 
mm/year to − 5.53 mm/year when the 6-days interferograms are 
removed, while the relative velocity between RIOP and PSTC changes 
from 22.72 mm/year to 4.13 mm/year. Additionally, we can discern 
that in regions characterized by high vegetation cover (see location in 
Fig. 10c), exemplified by the area situated to the east of the city of 
Latacunga, where the apparent deformation rate measurement di-
minishes from − 13.9 to − 4.2 mm/yr when removing shorter period 
inteferograms from the network. Similarly, in areas demonstrating 
robust coherence, such as the city of Riobamba (see location in Fig. 10c), 
the deformation rate decreases from 3.17 to 0.03 mm/yr.

4.2. Estimation of slip rates and locking depth

In geodetic and geological investigations of the region between 
Pallatanga and Riobamba, substantial focus has been placed on the fault 
trace, revealing deformation strike slip rates of 2–6 mm/yr (Winter 
et al., 1993; Baize et al. 2015, 2020; Harrichhausen et al., 2023). 
Extending this analysis using InSAR, our study covered a broader area, 
as depicted within the blue dashed square in Fig. 1a. This extension 
revealed that slip is not solely confined to the primary fault trace (the 
boundary of CCPP) but also propagates onto the southeastern segments, 
where the Guamote, Columbe, Pilaloma, La Moya, Alausi, Cebada, and 
Peltetec faults are situated. These faults are described as active trans-
current faults by Alvarado et al., (2016); Pratt et al., (2005); Eguez et al., 
(2003). The zone in question appears to include ancient structures 
derived from the primary fault system that remain active (Alvarado 

et al., 2016; Litherland et al., 1993, 1994).
Champenois et al. (2013) employed a simplified model of a locked 

strike-slip fault to estimate a slip rate of 9 mm/yr with a locking depth of 
7 km on the main fault. In contrast, Marconato et al. (2024b) using ALOS 
data, found a slip rate of 6.3 mm/yr. Moreover, using a 
decollement-ramp junction model, Marconato et al. (2024a) found a net 
slip rate of approximately 9 mm/yr. Our adoption of a two-screw 
dislocation model produced a strike-slip rate of 3.2 mm/yr consistent 
with the geological range (between 2.15 and 6.1 mm/yr, Baize et al. 
(2020)) and indicated a locking depth of 5 ± 4 km, which is notably 
lower than the 14 ± 1 km depth reported by Jarrin et al. (2023) for 
crustal faults in this region, and also less than the seismic depth of 18 km 
estimated by Beauval et al. (2018). This discrepancy may be due to stress 
readjustments during the seismic cycle (Smith-Konter et al., 2011), 
potentially influenced by recent seismic events such as the Riobamba 
earthquakes of 1797 and 1698 (Beauval et al., 2010; Beauducel et al., 
2020). Additionally, the broader distribution of strain observed when 
considering two parallel faults, as opposed to a single fault, may further 
explain this variation. Attempting to model such a broad strain pattern 
with a single fault can result in an overestimation of the locking depth, 
as the strain becomes less localized and more distributed over depth and 
along strike. However, this is very similar to the depth estimated by 
Marconato et al. (2024a), which falls within a range of 7.3 ± 2.9 km. 
Alternatively, it could reflect variations in slip distribution within the 
southeastern fault system. The observed movement of 2.7 mm/yr in this 
zone contrasts with Eguez et al. (2003) who suggested a movement of 
less than 1 mm/yr, highlighting an area of uncertainty in current slip 
rate estimations.

4.3. Patterns of strain rate and tectonic regime

The estimation of geodetic velocity fields provides constraints on 
strain rates within active fault zones (Elliott et al., 2016), which can be 
related to seismic hazard assessment aimed at identifying future seismic 
event occurrences (e.g. Zhao et al. (2022a), Fang et al. (2022), Zhao 
et al. (2022b), Wright et al. (2023), Hussain et al. (2023), and Maurer 
and Materna (2023)). As outlined in the preceding section, we estimated 
the strain rate using the methodology established by Ou et al. (2022), 
incorporating a median filter into our east velocity data and the inter-
polated North velocity. Regarding the selection of filter window size, 
both Ou et al. (2022) and Fang et al. (2022) employed a 60 km window 
to isolate interseismic strain accumulation along active faults and 
mitigate short-wavelength noise for velocities ranging from 3 to 15 
mm/yr. We selected a window size of 20 km to smooth our eastward 
velocity, aiming to retain the interseismic fault signals while effectively 
mitigating short-wavelength noise. This approach is well-suited for 
interseismic strain over short distances or wavelengths, as it maintains 
the residual post-seismic signal over long wavelengths before the Ped-
ernales subduction earthquake. Fig. 9c–e illustrates that the maximum 
peak strain rate, quantified by the second invariant, and is primarily 
localised within the north-eastern zones along the fault trace, including 
the CCPP (red dashed line in Fig. 9) and areas to its south (blue dashed 
line in Fig. 9). These values range between 50 and 100 nst/yr. Addi-
tionally, between the two primary fault lines, the values range from 30 
to 60 nst/yr. Arcila and Muñoz–Martín (2020) estimated the strain rate 
(second invariant) for the entire South American region using focal 
mechanisms and the GPS network until 2017 (Figure Supplementary 
S25b). For our study area, this estimation indicates a rate ranging be-
tween 30 and 80 nst/yr. Similarly, Vaca et al. (2019) estimated a hori-
zontal strain rate 20.8 ± 7.1 nst/yr north of the city of Riobamba based 
on data from five GPS stations up to 2014. Additionally, Staller et al. 
(2018) employed the Delaunay triangulation method on GNSS data from 
2008 to 2014, estimating a maximum shear of approximately 100 nst/yr 
(Figure Supplementary S25c). The integration of InSAR and GNSS strain 
rates enables more precise localization and accurate depiction of the 
actual distance over which velocity changes occur, compared to relying 
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solely on GNSS-based strain rate values.
Our results confirm the observations made by Vaca et al. (2019) that 

most of the deformation is absorbed by the CCPP system and NAS faults. 
However, Marconato et al. (2024a) report a strain rate exceeding 200 
nst/yr in the region. Moreover, higher strain rates observed throughout 
the Latacunga–Pujili area may capture the broad deformation of anti-
cline folds resulting from shortening due to thrust faults (Lavenu et al., 

1995b; Alvarado et al., 2014). The high shear zones do not exhibit major 
seismic events (but rather events smaller than Mw 3, (Beauval et al., 
2013; Beauval et al., 2018), indicating either continuous movement 
(CCPP major fault trace) or more effective tectonic loading (Zhao et al., 
2022a; Melosh et al., 2018), or possibly an incomplete or too-short 
seismic catalog. Historical earthquakes (Beauval et al., 2018), such as 
Ambato in 1698 (Mw 7.2) and Riobamba in 1797 (Mw 7.6) 

Fig. 11. Interpretations of vertical component of surface velocity in the area between the cities of Pallatanga, Riobamba and Baños (a). See the location in Fig. 5. (b) 
Digital elevation model (DEM) in meters from Copernicus (European Space AgencySinergise, 2021). (c) A–A′ profile (location in (a)) across Latacunga–Pujili fault 
system. (d) B–B′ profile (location in (a)) across the main trace CCPP fault system. Red lines show positive deformation and blue lines show subsidence in (c) and (d). 
Abbreviations: LV: La victoria reverse fault, La: Latacunga reverse fault, CCPP: Chingual–Cosanga–Pallatanga–Puná Fault System, LM-Gu: La Moya Guamote faults, 
Pe-Ce: Peltec-Cebada dextrals faults, IS: Isinche reverse fault, On: Once de Noviembre reverse fault, AN: Acurios–Nagsiche fold axis, Ch: Chatag reverse blind fault, Al: 
Alaquez fold axis (trace of the faults from Lavenu et al. (1995b), Eguez et al. (2003), and Alvarado et al. (2014)). In the profiles c and d, the topography is shown in 
grey shading. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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(Supplementary Fig. S26), are situated in areas with lower maximum 
shear strain rates, where locked faults could potentially generate sig-
nificant seismic events in the future.

Ecuador’s tectonic setting is highly influenced by the interaction of 
the South American Plate and the Nazca Plate. This subduction process 
drives significant east-west compression across the region, leading to the 
uplift of the Andes mountains and intense seismic activity (Pennington, 
1981; Acosta, 1983; Lavenu et al., 1995a). Focusing on the study area, 
our dilation estimate shows contraction in most of the area (negative 
values in Supplementary Fig. S26), following the direction of the fault 
traces, which would be related to the ENE-WSW shortening estimated by 
Assumpção et al. (2016) and Arcila and Muñoz–Martín (2020)
(Supplementary Fig. S25b), in agreement with negative dilatation esti-
mated by Staller et al. (2018) (Supplementary Fig. S25c).

4.4. Vertical surface displacements

We observe a first-order correlation in the area of the CCPP between 
vertical motion and topography, primarily focusing on the high eleva-
tion areas of the mountain range. However, as discussed in section 2.2, 
we applied a correction to reduce the atmospheric component associated 
with topography. Additionally, as detailed in Section 2.4, distinct ver-
tical movements linked to volcanic activity, land subsidence due to 
specific deposits, and mining activities can be identified (see Fig. 5).

In the profile of Fig. 11d, it is evident that positive vertical defor-
mation aligns with the topography (Fig. 11). Although there are slight 
traces of reverse movement (Baize et al., 2015), no significant vertical 
displacement are associated with the faults. However, indications of 
subsidence, ranging between 1 and 2.7 mm/yr, are noted between the 
CCPP faults and La Moya-Guamote fault trace, as well as further 
southeast of the Peltetec–Cebada fault trace. These instances of subsi-
dence likely stem from various factors such as linear ridges, drainage 
offsets, cumulative scarps, and counterscarps (Baize et al., 2015), 
indicative of shallow processes predominantly on or near the surface. 
Moreover, when juxtaposed with the landcover types (Fig. 1b), these 
areas predominantly correspond to flooded vegetation. This particular 
terrain type is prone to subsidence due to the satellite signal experi-
encing deviation upon reflection from both the vegetation and the 
flooded areas (Lu et al., 2010).

In the northern segment of the Latacunga-La Victoria reverse fault 
and fold system (see Fig. 11), which is characterized by an east-west 
compressional regime and a N-S strike (Lavenu et al., 1995b; Fiorini 
and Tibaldi, 2012), our observations of vertical deformation (depicted in 
Fig. 11a–c) reveal rates of up to 1.1 ± 0.4 mm/yr. These findings 
corroborate both geological and geodetic data, which indicate a slight 
apparent movement ranging from ≤1 to 1.4 mm/yr (Lavenu et al., 
1995b; Eguez et al., 2003; Alvarado et al., 2014).

Moreover, within the axial region of the Acurios-Nagsiche (AN) fold, 
we have detected minor subsidence (Fig. 11c), potentially correspond-
ing to the synclinal portion of this structure, attributed to blind thrust 
faults with shallow westward dip angles (Fiorini and Tibaldi, 2012).

4.5. Integrated analysis of volcanic, anthropogenic, and coastal 
deformation in Ecuador: implications and strategies

The integration of GNSS and InSAR techniques has provided an un-
precedented view of volcanic deformation in Ecuador, revealing critical 
insights into magmatic processes and surface dynamics. The uplift 
observed at Sangay and Chiles-Cerro Negro is attributable to the 
magmatic and hydrothermal proccess, with rates up to 15 mm/yr in the 
Potrerillos region. The importance of horizontal components at Sangay, 
especially for capturing volcanic flank movement, underscores the ne-
cessity of combining GNSS-InSAR and both ascending and descending 
look directions. Possible subsidence at Reventador and Tungurahua is 
dominated by deposit compaction in surface deformation. These find-
ings show the importance of multi-component observations to 

differentiate between magmatic, tectonic, and depositional influences 
on deformation patterns.

Anthropogenic deformation, particularly in urban centers, reflects 
the interplay of geological and human-induced factors. Subsidence in 
cities like Guayaquil and Cañar is tied to sediment compaction and land 
use, as seen in the subsidence of − 7 to − 8.8 mm/yr in Guayaquil’s clay 
deposits. Mining activities, such as those near Zaruma, are a clear driver 
of localized subsidence, with rates exceeding − 3 mm/yr. The applica-
tion of GNSS-InSAR techniques has enabled precise quantification of 
such deformation trends, providing a robust foundation for mitigating 
infrastructure risks. While GNSS alone might overlook many subtle de-
formations due to its limited spatial coverage, the integration with 
InSAR captures these through its higher spatial density of measurement 
points. These observations underscore the value of combining GNSS and 
InSAR data for sustainable urban planning and hazard assessment in 
regions prone to anthropogenic impacts.

Coastal cities show both tectonic and anthropogenic deformation 
signatures. The eastward horizontal movements in Esmeraldas and 
Santa Elena, with velocities of 16 mm/yr and 12 mm/yr, respectively, 
align with the north-eastward motion of the NAS plate due to subduc-
tion. In addition, the vertical displacement of 2 mm/yr in these regions 
emphasizes the importance of integrating GNSS data to contextualize 
coastal dynamics. The uplift at Manta further underscores the role of 
active tectonics, while the comparison of vertical and horizontal com-
ponents across coastal sites highlights the relative contributions of 
natural tectonic processes and anthropogenic influences. These findings 
suggest that while tectonic activity may dominate deformation patterns, 
human activities can significantly modulate or amplify these effects, 
underscoring the importance of precise GNSS-InSAR strategies tailored 
to monitor deformation in Ecuador’s complex coastal settings.

The observed deformation, whether volcanic, anthropogenic, or 
coastal, underscore the efficacy of GNSS-InSAR integration for mapping 
dynamic systems. A key implication of this work is the demonstrated 
importance of decomposed horizontal and vertical components in 
identifying subtle yet significant deformation signals, such as those seen 
at Cotopaxi, where the northern GNSS component is the sole indicator of 
movement (Instituto Geofisico (IG-EPN), 2022). To advance 
GNSS-InSAR strategies in Ecuador, future studies should prioritise 
higher temporal resolution and incorporate local GNSS networks to 
refine deformation models. This approach would not only enhance 
monitoring capabilities but also support effective mitigation of natural 
and anthropogenic hazards in this geologically active region.

5. Conclusions

In this study, we use over six years of Sentinel-1 interferograms, 
spanning seven ascending and eight descending frames, to generate 
InSAR Line-of-Sight (LOS) velocity maps covering one fifth of Ecuador. 
These are then integrated with data from the IG-EPN GNSS network to 
produce velocity components, VE and VU, at a resolution of approxi-
mately 250 m. We have identified distinct vertical surface displacements 
associated with volcanic activity, land subsidence due to specific de-
posits, and the impacts of mining activities at this scale. We employ a 
fault-parallel velocity model for the CCPP trace fault to constrain fault 
parameters. By employing a screw dislocation model, we estimate a slip 
rate of 3.1 ± 0.6 mm/yr for the main fault trace and 2.7 ± 0.3 mm/yr for 
the southern sub-parallel fault. Analysis of the second-invariant of the 
horizontal strain-rate tensor indicates that strain is accumulating along 
these major structures, particularly towards the southeast, and also 
affecting a thrust fault and fold system in the northern region. Addi-
tionally, the observed dilation suggests shortening, aligning with the 
prevailing east-west compression exerted on these fault systems. The 
proliferation of satellite data, along with the derivation of high- 
resolution velocity and strain rate maps, represents a significant 
advancement in accurately measuring the deformation of active faults. 
This technological progress enhances our ability to monitor and 
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understand seismic activity across various regions. However, it is worth 
noting that while these advancements have greatly improved our cur-
rent capabilities, the increased coverage of the country will require the 
launch of NISAR. This upcoming satellite mission is expected to provide 
even more comprehensive data at a suitable wavelength for vegetated 
areas, allowing for better analysis and monitoring of fault movements on 
a broader scale. Furthermore, this study contributes to a regional 
perspective on evaluating the hazards associated with deformation and 
its potential impacts on both eruptive and seismic activities.
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Beauval, Céline, Yepes, Hugo, Bakun, William H., Egred, José, Alvarado, Alexandra, 
Singaucho, Juan-Carlos, 2010. “Locations and magnitudes of historical earthquakes 
in the Sierra of Ecuador (1587-1996)”. en. Geophys. J. Int. https://doi.org/10.1111/ 
j.1365-246X.2010.04569.x issn: 0956540X, 1365246X. 
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Monserrat, Oriol, Chunga, Kervin, Lima, Aracely, Galve, Jorge, Díaz, José, 
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Análisis de movimientos del terreno en Guayaquil (Ecuador) mediante G-POD (A- 
DInSAR). es. Geogaceta 69, 47–50. https://doi.org/10.55407/geogaceta102382 
issn: 2173-6545, 0213-683X. 

Daout, S., Jolivet, R., Lasserre, C., Doin, M.-P., Barbot, S., Tapponnier, P., Peltzer, G., 
Socquet, A., Sun, J., 2016. “Along-strike variations of the partitioning of 
convergence across the Haiyuan fault system detected by InSAR”. en. Geophys. J. 
Int. 205 (1), 536–547. https://doi.org/10.1093/gji/ggw028 issn: 0956-540X, 1365- 
246X. 

Daout, Simon, D’Agostino, Nicola, Pathier, Erwan, Socquet, Anne, Lavé, Jérome, 
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Barón, Juan Carlos Báez, and Arturo, Echalar (2019). “Illuminating subduction zone 
rheological properties in the wake of a giant earthquake”. en. In: Science Advances 
5.12, eaax6720. issn: 2375-2548. doi: 10.1126/sciadv.aax6720.
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