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Renormalized charged scalar current on a Reissner-Nordström black hole
in the presence of charge superradiance

George Montagnon * and Elizabeth Winstanley †

School of Mathematical and Physical Sciences, The University of Sheffield,

Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom

(Received 7 February 2025; accepted 13 April 2025; published 29 May 2025)

We compute the renormalized charge current for a massless, minimally coupled, charged quantum scalar
field on a charged Reissner-Nordström black hole space-time, using the method of pragmatic mode-sum
renormalization. Since the field exhibits superradiance, we consider the past Unruh, Boulware and
Candelas-Chrzanowski-Howard states and study how the renormalized current in these states depends on
the charges of the black hole and scalar field. We also study the backreaction of the charge current on the
electromagnetic field.

DOI: 10.1103/PhysRevD.111.105026

I. INTRODUCTION

Isolated, nonextremal black holes formed by gravita-
tional collapse emit Hawking radiation [1,2], a thermal
flux of quantum particles. If the black hole is static and
uncharged (or we consider just the emission of neutral
particles from a charged black hole), the Hawking radiation
switches off in the extremal limit as the black hole
temperature goes to zero. This is not the case for a rotating
black hole: in addition to the Hawking radiation, the black
hole also emits Unruh-Starobinskii radiation [3,4] which
persists even if the temperature of the black hole vanishes.
The Unruh-Starobinskii radiation is the quantum analog of
the classical phenomenon of superradiance [5], whereby
low-frequency modes of a bosonic field are amplified on
scattering by the black hole. Even in the absence of
Hawking radiation, a rotating black hole spontaneously
emits particles in precisely those field modes which exhibit
classical superradiance.
Similar classical superradiance phenomena occur for

charged bosonic fields interacting with a static, charged
black hole [5–8]. While charged fermionic fields do not
experience classical superradiance [9], the corresponding
quantum process occurs for both bosonic [10,11] and
fermionic [12] charged fields.
A classical static, electrically charged black hole has, in

addition to a background space-time metric, a nonzero

background electrostatic field with which the quantum field
interacts. The expectation value of the charge current
operator hĴμi of the charged quantum field will, in turn,
act as a source in the semiclassical Maxwell equations (we
use Gaussian units),

∇μF
μν ¼ 4πhĴνi; ð1:1Þ

where Fμν is the electromagnetic field strength tensor, and
thus (1.1) governs the backreaction of a charged quantum
field on the electromagnetic field.
In this paper we compute the renormalized charge

current for a massless, charged, quantum scalar field
propagating on an electrically charged, nonextremal
Reissner-Nordström (RN) black hole. We treat both the
space-time metric and the corresponding electrostatic field
as fixed, classical, background quantities. Only the
charged scalar field is quantized.
The first step in finding the renormalized current is to

define a suitable quantum state for the scalar field. This is
complicated by the presence of classically superradiant
scalar field modes [13], and a plethora of putative quantum
states can be defined. In this paper we focus on three
(uncontroversial) states. All three states are “past” states in
the nomenclature of [13], in that they are defined by
considering the charged scalar field modes in the distant
past. Specifically, we consider the following states [13]:

Boulware state jBi: This state is as empty as possible far
from the black hole in the distant past; in the distant
future, far from the black hole, there is an outgoing flux
of particles in the classically superradiant modes only.

Unruh state jUi: This state is also as empty as possible
far from the black hole in the distant past; however, in
the distant future it contains the outgoing thermal
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Hawking radiation flux (in addition to the superradiant
particle flux).

Candelas-Chrzanowski-Howard state jCCHi: This state
is not empty far from the black hole in the distant past;
it contains an ingoing flux of thermally distributed
particles. In the distant future, far from the black hole,
there is also an outgoing thermal flux of particles, as
well as the superradiant emission.

All three states also have analogs for a neutral quantum
scalar field (respectively, the Boulware [14], Unruh [15]
and Hartle-Hawking [16] states), which have been com-
prehensively studied and whose properties for neutral
scalar fields are well understood. For a neutral scalar field,
the Boulware state [14] corresponds to a vacuum state for a
static observer far from the black hole, in both the distant
past and distant future, while, for a charged scalar field on a
charged black hole, the state jBi is no longer a vacuum state
in the far future [10,11]. In contrast, the properties of the
Unruh state jUi are very similar for both neutral and
charged fields on a charged black hole; both contain the
thermal Hawking radiation. In the limit in which the
charged black hole becomes extremal, the Hawking radi-
ation disappears, and the Unruh state jUi becomes the
Boulware state jBi. The Hartle-Hawking state [16] for a
neutral scalar field is not a vacuum state far from the black
hole; it describes a thermal state at the Hawking temper-
ature of the black hole. Due to charge superradiance, it does
not seem to be possible, at least within a conventional
quantization scheme, to define a corresponding thermal
equilibrium state for a charged scalar field on a charged
black hole space-time (the “Hartle-Hawking”-like state
defined in [13] relies on a nonstandard treatment of the
superradiant modes). While the Candelas-Chrzanowski-
Howard (CCH) state jCCHi contains both in- and outgoing
thermal radiation, this radiation is not in thermal equilib-
rium [13], due to the different thermal factors for the in- and
outgoing scalar field modes.
Having selected suitable quantum states, we can proceed

to the computation of the renormalized expectation value
of the charged scalar current operator Ĵμ. Formally, the
divergences which arise due to Ĵμ involving products of
operators at the same space-time point can be regularized
by point splitting [17,18], which involves applying an
appropriate differential operator to the point-split Green’s
function. The divergences which then arise in the limit in
which the points are brought together are removed by
subtracting from the Green’s function a suitable singular
parametrix, then applying the differential operator, and
finally the coincidence limit can be taken, resulting in a
finite expectation value. In this work we use the Hadamard
parametrix [19,20] to regularize the Green’s function. This
parametrix is independent of the quantum state under
consideration and depends only on the details of the
space-time geometry and background electromagnetic
field. For a general background and two points lying in

a normal neighborhood (so that they are connected by a
unique geodesic), the Hadamard parametrix can be written
as a covariant series expansion in the separation of the
points; the coefficients in this expansion depending on the
metric, curvature tensors, electrostatic potential and deriv-
atives of these quantities [20]. As an alternative, one can
consider the DeWitt-Schwinger expansion of the Green’s
function [21], which has, by necessity, the same singular
terms as the Hadamard parametrix, but contains different
finite terms [22].
The remaining technical challenge is then to subtract the

chosen parametrix from the point-split Green’s function,
which, for the quantum states of interest, is given as an
infinite sum over scalar field modes, each of which can only
be computed numerically. Practical implementations,
which enable the resulting renormalized expectation values
to be computed efficiently, have been developed recently
for a charged scalar field (see [21,23] for early work in this
direction). In the literature to date, there are two main
approaches to the computation of the renormalized current
for a charged scalar field on a charged black hole. First, one
can perform a Wick rotation of the static black hole metric
and work on a Euclideanized space-time. This has the
advantage that there are no null geodesics, and therefore
the singularities in the Green’s function arise only in the
coincidence limit. In contrast, the Green’s function on
the original Lorentzian space-time is singular also when the
points are connected by a null geodesic. The Euclidean
approach naturally applies to a quantum field in the thermal
equilibrium Hartle-Hawking state, due to the periodicity of
such a state in imaginary time. Recently, the “extended
coordinates” methodology developed in [24–27] for a
neutral scalar field has been generalized to the case of a
massive charged quantum scalar field on a charged black
hole background [28]. If the scalar field is sufficiently
massive that classical superradiance is absent [8], the
Hartle-Hawking state can be defined, and in [28], the
renormalized expectation value of the charge current (and
also the stress-energy tensor) is computed in this state.
Since differences in expectation values between two states
do not require renormalization (as the Hadamard para-
metrix is state independent), it is comparatively straightfor-
ward to then find the renormalized current in other quantum
states (see also [29] for a direct computation for a neutral
scalar field in the Boulware state using the extended
coordinates method).
The second possibility is to work on the original

Lorentzian space-time, which avoids the requirement to
perform a Wick rotation and circumvents potential diffi-
culties in situations where the thermal equilibrium Hartle-
Hawking state does not exist. The “pragmatic mode-sum”

approach [30–34], developed for a neutral scalar field, has
enabled the renormalized stress-energy tensor to be com-
puted on a variety of black hole backgrounds, notably
including the rotating Kerr black hole [34]. In this paper we
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extend the pragmatic mode-sum methodology to the
computation of the renormalized current for a massless
charged scalar field on a charged RN black hole back-
ground. Previous computations of the renormalized
charged scalar current [35,36] have considered a
Reissner-Nordström–de Sitter black hole, with the renor-
malized current on the outer and inner horizons of an
RN black hole considered only very recently [37].
Central to the method employed in [35,36] is the choice
of gauge for the electrostatic potential, as a result of
which only finite renormalization terms are required to
find the charged scalar current. In the approach of
[35,36], a different choice of gauge is required at each
space-time point exterior to the event horizon. In this
work, we use the same gauge throughout space-time, and
therefore have to perform a renormalization procedure
involving singular renormalization terms.
The outline of the paper is as follows. In Sec. II we

review the salient features of a classical charged scalar field
on a nonextremal RN black hole, before outlining the
canonical quantization of the scalar field and defining
the three quantum states of interest. In Sec. III we extend
the t-splitting variant of the pragmatic mode-sum method-
ology [30] to find the renormalized charged scalar current
(and the square of the scalar field operator). Our numerical
results are presented in Sec. IV, and we study the back-
reaction of the charged quantum scalar field on the
electromagnetic field by solving the backreaction equa-
tions (1.1) in Sec. V. Finally, our conclusions can be found
in Sec. VI.

II. CHARGED QUANTUM SCALAR FIELD ON

AN RN BLACK HOLE

In this paper we are concerned with the behavior of a
massless, minimally coupled, charged quantum scalar field
on the subextremal RN space-time, as described by the line
element (in the usual spherical polar coordinates)

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð2:1Þ

where dΩ2 denotes the line element on S2

dΩ2 ¼ dθ2 þ sin2 θdφ2; ð2:2Þ

and the metric function fðrÞ takes the form

fðrÞ ¼ 1 −
2M

r
þQ2

r2
: ð2:3Þ

The parameters M and Q are the black hole mass and
charge, respectively, for which we have Q < M in the
subextremal case. The zeros of the metric function fðrÞ are

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

ð2:4Þ

and correspond to the event (rþ) and inner (r−) horizons.
Here, and throughout this paper, the metric has signature
ð−;þ;þ;þÞ and we use units in which G ¼ ℏ ¼ c ¼
kB ¼ 1.
The coordinates in which the line element (2.1) is

expressed cover the exterior region of the black hole
(r > rþ), however, we will later require a coordinate
system that is regular across the event horizon. For this
purpose, we introduce in- and outgoing Eddington-
Finkelstein coordinates

v ¼ tþ r�; u ¼ t − r�; ð2:5Þ

where r� is the usual tortoise coordinate defined by

dr�
dr

¼ 1

fðrÞ : ð2:6Þ

The coordinate systems ðv; r; θ;φÞ and ðu; r; θ;φÞ are
regular across the future and past event horizons, respec-
tively. We then define the coordinates

U ¼ −
1

κ
e−κu; V ¼ 1

κ
eκv; ð2:7Þ

where

κ ¼ 1

2
f0ðrþÞ ð2:8Þ

is the surface gravity of the event horizon. The coordinates
ðU;V; θ;φÞ are regular across both the future Hþ and past
H− event horizons.
The massless, minimally coupled, charged scalar field

satisfies the equation of motion

DμD
μ
Φ ¼ 0; ð2:9Þ

where Dμ ¼ ∇μ − iqAμ is the gauge covariant derivative, q
is the field charge and Aμ is the gauge field, which, via a
choice of gauge, we take to have the form

A ¼ −
Q

r
dt: ð2:10Þ

The scalar field equation (2.9) admits an orthonormal basis
of “in” and “up” mode solutions of the form [13]

ϕin
ωlmðxÞ ¼

e−iωt

r
ffiffiffiffiffiffiffiffiffiffiffi

4πjωj
p Xin

ωlðrÞYlmðθ;φÞ; ð2:11aÞ

ϕ
up
ωlmðxÞ ¼

e−iωt

r
ffiffiffiffiffiffiffiffiffiffiffi

4πjω̃j
p X

up
ωlðrÞYlmðθ;φÞ; ð2:11bÞ

RENORMALIZED CHARGED SCALAR CURRENT ON A … PHYS. REV. D 111, 105026 (2025)

105026-3



where

ω̃ ¼ ω −
qQ

rþ
; ð2:12Þ

and Ylmðθ;φÞ is a spherical harmonic. The quantum
number l ¼ 0; 1; 2… and m ¼ −l;−lþ 1;…;l − 1;l.

The radial functions Xin=up
ωl ðrÞ satisfy the one-dimensional

scattering equation

�

d2

dr2�
þ VðrÞ

�

X
in=up
ωl ðrÞ ¼ 0; ð2:13Þ

where the effective potential is given by

VðrÞ ¼
�

ω −
qQ

r

�

2

−
fðrÞ
r2

½lðlþ 1Þ þ rf0ðrÞ�: ð2:14Þ

In the asymptotic regions close to the event horizon
(r → rþ, r� → −∞) and at infinity (r → ∞, r� → ∞),
the radial functions take the form

Xin
ωlðrÞ ¼

(

Bin
ωle

−iω̃r� ; r� → −∞;

e−iωr� þ Ain
ωle

iωr� ; r� →∞;
ð2:15aÞ

X
up
ωlðrÞ ¼

(

eiω̃r� þ A
up
ωle

−iω̃r� ; r� → −∞;

B
up
ωle

iωr� ; r� → ∞:
ð2:15bÞ

The complex coefficients A
in=up
ωl , B

in=up
ωl satisfy the

relations [13]

ω̃jBin
ωlj2 ¼ ω

�

1 − jAin
ωlj2

�

; ð2:16aÞ

ωjBup
ωlj2 ¼ ω̃

�

1 − jAup
ωlj2

�

; ð2:16bÞ

ω̃Bin
ωl ¼ ωB

up
ωl; ð2:16cÞ

ω̃A
up�
ωl B

in
ωl ¼ −ωAin

ωlB
up�
ωl ; ð2:16dÞ

from which we observe that for values of ω for which

ωω̃ < 0; ð2:17Þ

we have jAin=up
ωl j > 1. This is the classical phenomenon

of charge superradiance: a charged scalar field wave is
scattered off the potential (2.14) in such a way that the
reflection coefficient is greater than unity, in other words
the reflected part of the wave has a larger amplitude than
the incident part of the wave, see Fig. 1 for an example
illustrating this effect.
The canonical quantization of a massless charged scalar

field and the corresponding construction of states, was

investigated in detail in [13]. Here we consider three of the
states constructed in [13], namely the past Boulware jBi,
Unruh jUi and CCH jCCHi states. Hereafter, we drop the
past prefix in discussing the states. The full construction of
these states can be found in [13]; here we briefly review the
key aspects.
To construct the Boulware state jBi, the quantum

charged scalar field operator Φ̂ is expanded in terms of
the basis modes (2.11) as

Φ̂ðxÞ ¼
X

∞

l¼0

X

l

m¼−l

	
Z

∞

0

dωâinωlmϕ
in
ωlmðxÞ

þ
Z

0

−∞

dωb̂in†ωlmϕ
in
ωlmðxÞ þ

Z

∞

0

dω̃â
up
ωlmϕ

up
ωlmðxÞ

þ
Z

0

−∞

dω̃b̂
up†
ωlmϕ

up
ωlmðxÞ




; ð2:18Þ

where the operators satisfy the standard commutation
relations (all commutation relations not given explicitly
below vanish identically)

h

âinωlm; â
in†
ω0
l
0m0

i

¼ δll0δmm0δðω − ω0Þ; ω > 0;
h

b̂inωlm; b̂
in†
ω0
l
0m0

i

¼ δll0δmm0δðω − ω0Þ; ω < 0;
h

â
up
ωlm; â

up†
ω0
l
0m0

i

¼ δll0δmm0δðω − ω0Þ; ω̃ > 0;
h

b̂
up
ωlm; b̂

up†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ω̃ < 0: ð2:19Þ

The Boulware state jBi is annihilated by all the annihilation
operators,

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Reflection jAin
ωlj2 and transmission ðω̃=ωÞjBin

ωlj2 co-
efficients for an in charged scalar field mode with l ¼ 0. The
scalar field has charge qM ¼ 0.4 and the black hole parameters
are Q=M ¼ 0.99. The reflection coefficient is greater than unity
for small positive frequency ω satisfying (2.17), and in this
regime classical charge superradiance occurs.
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âinωlmjBi ¼ 0; ω > 0;

b̂inωlmjBi ¼ 0; ω < 0;

â
up
ωlmjBi ¼ 0; ω̃ > 0;

b̂
up
ωlmjBi ¼ 0; ω̃ < 0: ð2:20Þ

We interpret the Boulware state jBi as being devoid of
particles in either the in or up modes in the distant past.
However, this state is not empty at future null infinity; it
contains an outgoing flux of up mode particles in the
superradiant regime [11].
To construct the Unruh state jUi, the quantum scalar

field is expanded in an orthonormal basis of field modes
consisting of the same in modes as for the Boulware state,
but an alternative set of up modes. These are defined to
have positive/negative frequency with respect to the
Kruskal coordinate U (2.7) in the vicinity of the past event
horizon (see [13] for details). The resulting field expansion
is, in the region exterior to the event horizon,

Φ̂ðxÞ¼
X

∞

l¼0

X

l

m¼−l

	
Z

∞

0

dωĉinωlmϕ
in
ωlmðxÞ

þ
Z

0

−∞

dωd̂in†ωlmϕ
in
ωlmðxÞþ

Z

∞

−∞

dω̃
ϕ
up
ωlmðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q

×
h

e
πω̃
2κ ĉ

up
ωlmþe−

πω̃
2κ d̂

up†
ωlm

i




: ð2:21Þ

The nonzero commutators between the operators appearing
in the expansion (2.21) are

h

ĉinωlm; ĉ
in†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ω > 0;
h

d̂inωlm; d̂
in†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ω < 0;
h

ĉ
up
ωlm; ĉ

up†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ∀ ω̃;
h

d̂
up
ωlm; d̂

up†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ∀ ω̃; ð2:22Þ

and the Unruh state jUi is annihilated by all the annihilation
operators,

ĉinωlmjUi ¼ 0; ω > 0;

d̂inωlmjUi ¼ 0; ω < 0;

ĉ
up
ωlmjUi ¼ 0; ∀ ω̃;

d̂
up
ωlmjUi ¼ 0; ∀ ω̃: ð2:23Þ

Like the Boulware state, the Unruh state jUi, in the distant
past, contains no incoming particles in the in modes. The up
modes are thermally populated, corresponding to the
Hawking radiation at temperature T ¼ κ=2π, where κ is

the surface gravity of the black hole (2.8). Note that the
frequency appearing in the argument of the sinh function
in (2.21) (which will give a thermal factor for the up modes
in the corresponding expectation values) is the shifted
frequency ω̃ (2.12).
Finally, we construct the CCH state jCCHi using the

same set of up modes as for the Unruh state, but a new set
of in modes, which have positive/negative frequency with
respect to the Kruskal coordinate V (2.7) in the vicinity of
the future event horizon. In the region exterior to the event
horizon, the field expansion takes the form

Φ̂ðxÞ¼
X

∞

l¼0

X

l

m¼−l

	
Z

∞

−∞

dω
ϕin
ωlmðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω
κ
Þj

p

×
h

e
πω
2κ f̂inωlmþe−

πω
2κ ĝin†ωlm

i

þ
Z

∞

−∞

dω̃
ϕ
up
ωlmðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jsinhðπω̃
κ
Þj

q

×
h

e
πω̃
2κ f̂

up
ωlmþe−

πω̃
2κ ĝ

up†
ωlm

i




; ð2:24Þ

with the operators in the expansion satisfying the nonzero
commutation relations

h

f̂inωlm; f̂
in†
ω0
l
0m0

i

¼ δll0δmm0δðω − ω0Þ; ∀ ω;
h

ĝinωlm; ĝ
in†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ∀ ω;
h

f̂
up
ωlm; f̂

up†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ∀ ω̃;
h

ĝ
up
ωlm; ĝ

up†
ω0l0m0

i

¼ δll0δmm0δðω − ω0Þ; ∀ ω̃; ð2:25Þ

and the CCH state jCCHi being annihilated by all the
annihilation operators,

f̂inωlmjCCHi ¼ 0; ∀ ω;

ĝinωlmjCCHi ¼ 0; ∀ ω;

f̂
up
ωlmjCCHi ¼ 0; ∀ ω̃;

ĝ
up
ωlmjCCHi ¼ 0; ∀ ω̃: ð2:26Þ

The expansion (2.24) will result in thermal factors for both
the in and up modes in the expectation values we study in
the remainder of this paper. We note however that the
arguments of the sinh functions in (2.24) for the in and up
modes are not the same: for the in modes the argument
involves the frequency ω, while, for the up modes, as in the
expansion (2.21) leading to the Unruh state, we have the
shifted frequency ω̃ (2.12). As a result, the CCH state will
not be a thermal equilibrium state.
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III. RENORMALIZED EXPECTATION VALUES

In this section we outline our method, utilizing the
t-splitting variant of pragmatic mode-sum regularization
[30] to obtain the renormalized expectation value of the
charged scalar current (and also the square of the scalar
field operator) for a massless charged quantum scalar field
in the three states reviewed in the previous section. The
classical expression for the current is given by (in our
conventions this has the opposite sign to the conventions
of [35,36])

Jμ ¼ −
q

4π
Im ðΦ�DμΦÞ; ð3:1Þ

and therefore, due to the field products, naive calculations
of the expectation value of its corresponding operator in the
quantum theory will be ill defined. It is therefore necessary
to employ a renormalization procedure in order to remove
these divergences and obtain meaningful results.

A. Hadamard renormalization

In this paper, we adopt the Hadamard renormalization
scheme which involves working with Hadamard states—
the defining feature of which is that the short-distance
singular behavior of their two-point functions is captured
by the Hadamard parametrix. Let the two space-time points
x, x0 lie in a normal neighborhood (so that they are
connected by a unique geodesic). Then, for a Hadamard
state jΨi, one has

hΨjΦ̂ðxÞΦ̂†ðx0ÞjΨi ¼ Kðx; x0Þ þWΨðx; x0Þ; ð3:2Þ

whereWΨ is a regular biscalar which depends on the details
of the state jΨi, and Kðx; x0Þ denotes the Hadamard
parametrix in four space-time dimensions [20,38],

Kðx;x0Þ¼ 1

8π2

�

Uðx;x0Þ
σεðx;x0Þ

þVðx;x0Þ ln
�

σεðx;x0Þ
L2

��

: ð3:3Þ

Here, L2 is an arbitrary renormalization length scale,
Uðx; x0Þ and Vðx; x0Þ are regular biscalars, and σεðx; x0Þ
is the Synge world function, defined by

2σ ¼ σμσμ; ð3:4Þ

where σμ ¼ ∂μσ, and equipped with the usual iε prescrip-
tion to account for points connected via null geodesics,

σεðx; x0Þ ¼ σðx; x0Þ þ 2iεðt − t0Þ þ ε2: ð3:5Þ

The biscalars Uðx; x0Þ and Vðx; x0Þ are independent of
the quantum state under consideration; they depend only on
the background metric, curvature, electromagnetic poten-
tial and derivatives of these quantities. The biscalar Vðx; x0Þ
is expanded as a series in the Synge world function,

Vðx; x0Þ ¼
X

k

Vkðx; x0Þσðx; x0Þk: ð3:6Þ

The coefficients of this expansion and the biscalar Uðx; x0Þ
are subsequently expanded as covariant Taylor series,

Uðx; x0Þ ¼
X

j

Uα1…αj
ðxÞσα1ðx; x0Þ…σαjðx; x0Þ; ð3:7aÞ

Vkðx; x0Þ ¼
X

j

Vkjα1…αj
ðxÞσα1ðx; x0Þ…σαjðx; x0Þ: ð3:7bÞ

From the equation of motion for the charged scalar field
(2.9), the expansion coefficients Uα1…αj

ðxÞ, Vkjα1…αj
ðxÞ

can be determined from the transport equations [20]

0 ¼ ½2σαDα þ□σ − 4�Uðx; x0Þ; ð3:8aÞ

0 ¼ ½2σαDα þ□σ − 2�V0ðx; x0Þ þDαD
αUðx; x0Þ; ð3:8bÞ

0 ¼ ðkþ 1Þ½2σαDα þ□σ þ 2k�Vkþ1ðx; x0Þ
þDαD

αVkðx; x0Þ; ð3:8cÞ

together with the boundary condition

Uðx; xÞ ¼ 1: ð3:8dÞ

Expressions for the first few coefficients, sufficient for the
renormalization of the stress-energy tensor operator, can be
found in [20].
To perform Hadamard renormalization of the charged

scalar field current, we first consider the unrenormalized
expectation value with the two space-time points separated,
namely,

hΨjĴμ0 jΨiunren ¼
iq

8π
lim
x→x0

hΨjfΦ̂†ðxÞ; Dμ0Φ̂ðx0Þg

−

n

Φ̂ðxÞ; ½Dμ0Φ̂ðx0Þ�†
o

jΨi; ð3:9Þ

where fA;Bg ¼ 1
2
ðABþ BAÞ denotes the symmetrized

product. Expanding the gauge derivative, this may be
written as

hΨjĴμ0 jΨiunren ¼
iq

8π
lim
x→x0

�

hΨj
n

Φ̂
†ðxÞ;

h

∂μ0Φ̂ðx0Þ
io

−

n

Φ̂ðxÞ;
h

∂μ0Φ̂ðx0Þ
i

†
o

jΨi

− iqAμ0ðx0ÞhΨjfΦ̂†ðxÞ; Φ̂ðx0Þg

þ fΦ̂ðxÞ; Φ̂†ðx0ÞgjΨi
�

: ð3:10Þ

Therefore, in order to calculate the renormalized expect-
ation value of the charged scalar current, we must renorm-
alize the quantities
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hΨj
n

Φ̂
†ðxÞ; ½∂μ0Φ̂ðx0Þ�

o

−

n

Φ̂ðxÞ; ½∂μ0Φ̂ðx0Þ�†
o

jΨi

ð3:11aÞ

and

hΨjfΦ̂†ðxÞ; Φ̂ðx0Þg þ fΦ̂ðxÞ; Φ̂†ðx0ÞgjΨi: ð3:11bÞ

The second of these expressions (3.11b) is proportional to the
squared magnitude of the scalar field operator, which from
now on we call the “vacuum polarization,” which is of
interest in its own right. In the following two subsections, we
first describe our methodology for computing the vacuum
polarization [that is, renormalizing (3.11b)] and then the
charged scalar current [that is, renormalizing (3.11a)].
In outline, for both quantities the basic strategy is the

same. Following [30], we choose space-time points which
are separated in the t-direction only. We subtract from the
unrenormalized expectation values (3.11) a set of suitable
counterterms which includes all local divergences. In
Hadamard renormalization, these counterterms are con-
structed from Kðx; x0Þ (3.3). Having fixed our point
splitting, we write the required counterterms as expansions
in the time separation ðt − t0Þ.
The challenge is then to write the resulting renormalized

expectation values in a form which can be computed
numerically. The unrenormalized expectation values (3.11)
will be written as sums over the charged scalar field modes
(2.11), from which we need to subtract the counterterm
expansions in ðt − t0Þ. We tackle this problem by extending,
to a charged scalar field, the t-splitting variant of the
pragmatic mode-sum method developed for a neutral scalar
field [30]. In [30] DeWitt-Schwinger rather than Hadamard
renormalization is employed. The relationship between
DeWitt-Schwinger and Hadamard renormalization for a
charged quantum scalar field is elucidated in Ref. [22].
In particular, the counterterms in DeWitt-Schwinger and
Hadamard renormalization have the same divergences (as
they must, in order to yield finite renormalized expectation
values), and hence both give physically meaningful results.
We have chosen Hadamard rather than DeWitt-Schwinger
counterterms as we can use the readily available expressions
for the former in Ref. [20], which were also employed in the
recent work [28].
Before describing the details of our methodology, we

note that we have chosen to fix the gauge potential (2.10)
from the outset, unlike the approach in [35], where a
judicious choice of gauge means that only finite renorm-
alization terms are required to find the expectation value
of the charged scalar current. The latter choice of gauge
corresponds, at each space-time point where the expect-
ation value is to be computed, to setting the gauge potential
Aμ to vanish. Since the gauge potential appears in the radial
equation (2.13), this entails computing a separate set
of radial functions appearing in the charged scalar field

modes (2.11) for each value of the radial coordinate r under
consideration. Given that finding the radial functions is the
most computationally intensive part of the method, and we
are interested in a large number of values of the radial
coordinate, we have found it more palatable to carry out the
renormalization.

B. Vacuum polarization

The expression for the unrenormalized expectation value
of the vacuum polarization hjΦ̂j2i may be written as

hjΦ̂j2i ¼ lim
x→x0

Re½hfΦ̂ðxÞ; Φ̂†ðx0Þgi�: ð3:12Þ

Following [30], we wish to write this as a mode sum over
the quantum numbers l andm, and an integral over positive
values of the frequency ω. Considering the quantum field in
the Boulware, Unruh and CCH states, and our choice of
point splitting in the t-direction, the unrenormalized expect-
ation values (3.12) take the form

hBjjΦ̂j2jBi ¼ 1

2
lim
x→x0

Z

∞

0

dω cosðωϵÞ

× ½Finðω; rÞ þ Finð−ω; rÞ
þ Fupðω; rÞ þ Fupð−ω; rÞ�; ð3:13aÞ

hUjjΦ̂j2jUi ¼ 1

2
lim
x→x0

Z

∞

0

dω cos ðωϵÞ

×
h

Finðω; rÞ þ Finð−ω; rÞ

þ Fupðω; rÞ coth
�

�

�

πω̃

κ

�

�

�

þ Fupð−ω; rÞ coth
�

�

�

πω̄

κ

�

�

�

i

; ð3:13bÞ

hCCHjjΦ̂j2jCCHi¼ 1

2
lim
x→x0

Z

∞

0

dωcosðωϵÞ

×
h

fFinðω;rÞþFinð−ω;rÞgcoth
�

�

�

πω

κ

�

�

�

þFupðω;rÞcoth
�

�

�

πω̃

κ

�

�

�

þFupð−ω;rÞcoth
�

�

�

πω̄

κ

�

�

�

i

; ð3:13cÞ

where we have defined [cf. (2.12)]

ω̄ ¼ ωþ qQ

rþ
: ð3:14Þ

In (3.13) we have defined the following functions, employ-
ing similar notation to that in Ref. [30],

Finðω; rÞ ¼ 1

16π2

X

∞

l¼0

ð2lþ 1Þ
jωjr2 jXin

ωlðrÞj2; ð3:15aÞ
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Fupðω; rÞ ¼ 1

16π2

X

∞

l¼0

ð2lþ 1Þ
jω̃jr2 jXup

ωlðrÞj2: ð3:15bÞ

For a neutral scalar field, we have Fin=upð−ω; rÞ ¼
Fin=upðω; rÞ because in that case the radial functions satisfy
X−ωlðrÞ ¼ X�

ωlðrÞ, where a star � denotes the complex
conjugate. However, this does not hold for the charged
scalar field modes, because the radial equation (2.13) is not
invariant under the transformation ω → −ω. Therefore our
mode sums in (3.13) have separate contributions from the
positive and negative frequency modes, and we have to
compute almost twice as many scalar field modes as in the
neutral case. The unrenormalized expectation values
hUjjΦ̂j2jUi and hCCHjjΦ̂j2jCCHi contain thermal coth
factors. In the Unruh state, this thermal factor is present
only for the up modes. For the positive frequency modes,
the thermal factor depends on the shifted frequency ω̃

(2.12), corresponding to thermal emission of particles with
a chemical potential equal to qQ=rþ [10]. The thermal
factor for the negative frequency modes depends, instead,
on ω̄ (3.14), corresponding to a change in sign of the
chemical potential [10,13]. The CCH state also contains a
thermal factor for the in modes, but this depends only on
the frequency ω and the chemical potential is absent.
The renormalization terms required for the vacuum

polarization are simply given by taking the real part of
the Hadamard parametrix (3.3). To renormalize the vacuum
polarization we need to expand (3.3) up to (and including)
terms which are finite in the coincidence limit. For a
massless, minimally coupled scalar field, we see from the
expressions provided in [20] that the Hadamard coefficients

we require, for a massless and minimally coupled charged
scalar field, are

R½U0ðxÞ� ¼ 1; ð3:16aÞ

R½U1μðxÞ� ¼ 0; ð3:16bÞ

R½U2μνðxÞ� ¼
1

12
Rμν −

q2

2
AðμAνÞ; ð3:16cÞ

R½V00ðxÞ� ¼ 0; ð3:16dÞ

R½V01μðxÞ� ¼ 0; ð3:16eÞ

where R denotes the real part. We also need to expand the
Synge world function and its derivatives in powers of the
time separation ðt − t0Þ ¼ ϵ. For points separated in the
time direction, from [39] we have

σ ¼ −
1

2
fðrÞϵ2 − 1

96
fðrÞf0ðrÞ2ϵ4 þOðϵ6Þ; ð3:17aÞ

σt ¼ ϵþ f0ðrÞ2
24

ϵ3 þOðϵ5Þ; ð3:17bÞ

σr ¼ −
1

4
fðrÞf0ðrÞϵ2 þOðϵ4Þ; ð3:17cÞ

σθ ¼ σφ ¼ 0: ð3:17dÞ

Combining (3.16) and (3.17), the Hadamard counterterms
that we need to subtract to renormalize the vacuum
polarization are

R½Kðx; x0Þ� ¼ −
1

4π2ϵ2fðrÞ þ
24q2rAtðrÞ2 − 4fðrÞf0ðrÞ þ rf0ðrÞ2 − 2rfðrÞf00ðrÞ

192π2rfðrÞ : ð3:18Þ

We note that (3.18) takes a very similar form to that for a
neutral scalar field, with the gauge potential contributing
only to the first term in the numerator of the second term.
To find the renormalized vacuum polarization, we need

to subtract (3.18) from the mode sums in (3.13). To achieve
this subtraction, following [30], we write the singular part
of (3.18) as an integral over frequency, using the identity

1

ϵ2
¼ −

Z

∞

0

ω cos ðωϵÞdω; ð3:19Þ

which gives

−
1

4π2ϵ2fðrÞ ¼
Z

∞

0

FVP
singðω; rÞ cos ðωϵÞdω; ð3:20Þ

where we have defined

FVP
singðω; rÞ ¼

ω

4π2fðrÞ ; ð3:21Þ

and “VP” stands for vacuum polarization.
We now demonstrate the complete procedure for com-

puting the expectation value of the vacuum polarization for
the charged scalar field in the Boulware state jBi, at a single
radial point. The calculation in the other two states, jUi and
jCCHi, and at other values of the radial coordinate follows
in exactly the same way. In the following we set M ¼ 1,
Q ¼ 4M=5 and qM ¼ 8=25, and take jωj∈ ½0; 4�, with a
grid spacing δω ¼ 1=300. We set the radial point to be
r0 ≈ 5.96158M.
Subtracting the renormalization terms (3.18) [with the

first term written as the integral (3.20)] from the unrenor-
malized expectation value (3.13a), the quantity we seek to
compute is
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hBjjΦ̂j2jBi ¼
Z

∞

0

dωFVP
regðω; rÞ −

24q2rAtðrÞ2 − 4fðrÞf0ðrÞ þ rf0ðrÞ2 − 2rfðrÞf00ðrÞ
192π2rfðrÞ ; ð3:22Þ

where we have defined

FVP
regðω; rÞ ¼ FVP

totalðω; rÞ − FVP
singðω; rÞ; ð3:23Þ

with

FVP
totalðω; rÞ ¼

1

2
½Finðω; rÞ þ Finð−ω; rÞ þ Fupðω; rÞ

þ Fupð−ω; rÞ�; ð3:24Þ

and Fin=upðω; rÞ are given in (3.15).
The first step is to compute Fin=upð�ω; r0Þ. Since these

are given as mode sums, we first integrate the radial
equation (2.13) to obtain the in and up modes. In this
section we focus on the renormalization procedure, so we
postpone discussion of the details of this integration to
Sec. IVA. We find the radial mode functions for all values
of ω in the frequency grid and for 0 ≤ l ≤ lmax, where
lmax is the value of l at which we truncate the sums in
Fin=upð�ω; r0Þ (3.15). Following [30], we truncate the
sums over l at a value lmax, beyond which the contribution
to each sum is less than 10−10.
Figure 2 shows FVP

totalðω; r0Þ (3.24) as a function of ω, for
the particular value of the radial coordinate we are using to
illustrate our procedure. As is the case for a neutral scalar
field on a Schwarzschild black hole background [30], we
see that FVP

totalðω; r0Þ grows linearly as ω increases, with
oscillations around this linear growth. The linear diver-
gence is removed by subtracting from FVP

totalðω; r0Þ the
singular term FVP

singðω; r0Þ (3.21), as can be seen in Fig. 3.

However, on subtracting the linear divergence, in Fig. 3
we see that FVP

regðω; r0Þ is oscillating as a function of the
frequency ω, with the amplitude of the oscillations increas-
ing as ω increases. Thus the integral in (3.22) is still
divergent. As discussed in [30], the origin of these
oscillations is the existence of an additional singularity
in the unrenormalized vacuum polarization (3.13a), that is,
a singularity which arises while the points are still
separated. This singularity arises when there are pairs of
space-time points ðt;xÞ and ðt0;xÞ which are connected by
a null geodesic which orbits the event horizon one (or
more) times. For black hole space-times, there will be an
infinite number of such geodesics, orbiting the event
horizon an integer number of times, before returning to
the same point in space (but at a different coordinate time).
The Hadamard parametrix (3.3) only captures the local
singular behavior and not the nonlocal singularities result-
ing from these null geodesics.
Following the method of [30], we evaluate the integral

in (3.22) as a generalized, “self-cancellation” integral,
defined as follows. Let

HðωÞ ¼
Z

ω

0

hðxÞdx ð3:25Þ

denote the integral we wish to evaluate in the limit ω → ∞.
Then, if the integrand hðxÞ oscillates with a wavelength λ,
we define the self-cancellation integral to be

Z

∞ðscÞ

0

hðωÞdω ¼ lim
ω→∞

1

2

�

HðωÞ þH

�

ωþ λ

2

��

; ð3:26Þ

1 2 3 4

0.05

0.10

0.15

FIG. 2. Mode-sum contribution FVP
totalðω; r0Þ (3.24) to the

vacuum polarization for the Boulware state jBi for a charged
scalar field on an RN black hole background, as a function of
frequency ω at fixed radial coordinate r0 ≈ 5.96158M. The RN
black hole has mass M ¼ 1 and charge Q ¼ 4M=5, while the
scalar field has charge qM ¼ 8=25.

1 2 3 4

0.004

0.002

0.002

0.004

FIG. 3. Regularized mode-sum contribution FVP
regðω; r0Þ (3.23)

to the vacuum polarization for the Boulware state jBi for a
charged scalar field on an RN black hole background, as a
function of frequency ω at fixed radial coordinate
r0 ≈ 5.96158M. The black hole and scalar field parameters are
as in Fig. 2.
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where we use lowercase sc to denote self-cancellation. This
procedure will completely cancel constant amplitude oscil-
lations with wavelength λ, enabling the limit on the right-
hand side to be taken, yielding a finite result. In our case,
each null geodesic wrapping round the black hole and
connecting space-time points with the same spatial com-
ponents will contribute oscillations in FVP

regðω; r0Þ having a
wavelength equal to the orbital period of the geodesic.
Given that there is a countably infinite number of null

geodesics orbiting the black hole, each with a different
wavelength, in principle the self-cancellation procedure
would need to be performed separately for each wave-
length. However, the amplitude of the oscillations resulting
from a null geodesic decreases rapidly as the number of
times the geodesic orbits the black hole increases. As in
[30], we find that performing the self-cancellation pro-
cedure for the first four wavelengths is sufficient for our
purposes.
The next step in the computation is to apply self-

cancellation to the integral in (3.22). For this, we need
to find the relevant wavelengths λi, for i ¼ 1, 2, 3, 4. These
are given by

λi ¼
2π

εi
; ð3:27Þ

where εi is the coordinate time taken for a null geodesic to
complete i closed orbits of the black hole round the black
hole and return to the same spatial location. We find these
orbital periods by numerically integrating the geodesic
equations. For our representative radial coordinate
r0 ≈ 5.96158M, we find that the first four wavelengths

are given approximately by

λ1 ≈ 0.1795; λ2 ≈ 0.0988;

λ3 ≈ 0.0682; λ4 ≈ 0.0493: ð3:28Þ

If the amplitude of the oscillations in the integrand
in (3.22) were constant, then, for each wavelength, it would
be necessary to apply the self-cancellation procedure just
once. However, as can be seen in Fig. 3, the amplitude of
the oscillations is in fact growing as ω increases. Therefore,
in order to cancel the oscillations, it is necessary to apply
the self-cancellation procedure multiple times for each
wavelength. As in [30], we find that we need to apply
self-cancellation four times for each wavelength in order to
cancel the oscillations.
The final answer for the renormalized vacuum polari-

zation in the Boulware state is then written in terms of a
self-cancellation generalized integral. We define the self-
cancellation operator Tλ, for an oscillation having wave-
length λ, applied to the integral HðωÞ (3.25) to be [30]

Tλ½HðωÞ� ¼ 1

2

�

HðωÞ þH

�

ωþ λ

2

��

; ð3:29Þ

and the regularized quantity resulting from applying this
operator four times for each wavelength to be

H�ðω; rÞ ≔ ðTλ1
Þ4ðTλ2

Þ4ðTλ3
Þ4ðTλ4

Þ4½Hðω; rÞ�: ð3:30Þ

With this notation, the renormalized vacuum polarization in
the Boulware state is

hBjjΦ̂j2jBi ¼
Z

∞ðscÞ

0

FVP
regðω; rÞdω −

24q2rAtðrÞ2 − 4fðrÞf0ðrÞ þ rf0ðrÞ2 − 2rfðrÞf00ðrÞ
192π2rfðrÞ ; ð3:31Þ

where now

Z

∞ðscÞ

0

FVP
regðω; rÞdω ¼ lim

ω→∞
HVP

� ðω; rÞ; ð3:32Þ

with HVP
� ðω; rÞ given by (3.30) for Hðω; rÞ ¼ HVPðω; rÞ

and

HVPðω; rÞ ¼
Z

ω

0

FVP
regðω0; rÞdω0: ð3:33Þ

Figure 4 shows the result of performing the self-
cancellation integral for our example value of the radial
coordinate, r ¼ r0. It can be seen that we are left with a
function devoid of oscillations, that is rapidly convergent as
ω→ ∞. From this, one can readily deduce the value of the
renormalized vacuum polarization for the particular state
and radial coordinate under consideration.

0.5 1.0 1.5 2.0 2.5

0.00006665

0.00006670

0.00006675

0.00006680

0.00006685

FIG. 4. Self-cancellation generalized integralHVP
� ðω; rÞ [(3.30)

and (3.33)] for the charged vacuum polarization in the Boulware
state jBi, as a function of frequency ω at fixed radial coordinate
r0 ≈ 5.96158M. The black hole and charged scalar field param-
eters are as in Fig. 2.
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C. Renormalized charge current

As a result of the spherical symmetry inherited by our
three quantum states of interest, the angular components
of the expectation value of the charge current vanish
identically [13],

0 ¼ hBjĴθjBi ¼ hUjĴθjUi ¼ hCCHjĴθjCCHi; ð3:34aÞ

0 ¼ hBjĴφjBi ¼ hUjĴφjUi ¼ hCCHjĴφjCCHi: ð3:34bÞ

The radial component of the charge current does not require
renormalization [13] and is thus given by the mode sums

hBjĴrjBi ¼ −
q

8π
lim
x→x0

Z

∞

0

dω½Ginðω; rÞ

þ Ginð−ω; rÞ þGupðω; rÞ
þ Gupð−ω; rÞ�; ð3:35aÞ

hUjĴrjUi ¼ −
q

8π
lim
x→x0

Z

∞

0

dω

�

Ginðω; rÞ þGinð−ω; rÞ

þ Gupðω; rÞ coth
�

�

�

�

πω̃

κ

�

�

�

�

þ Gupð−ω; rÞ

× coth

�

�

�

�

πω̄

κ

�

�

�

�

�

; ð3:35bÞ

hCCHjĴrjCCHi ¼ −
q

8π
lim
x→x0

Z

∞

0

dω

�

fGinðω; rÞ

þGinð−ω; rÞg coth
�

�

�

�

πω

κ

�

�

�

�

þGupðω; rÞ coth
�

�

�

�

πω̃

κ

�

�

�

�

þGupð−ω; rÞ coth
�

�

�

�

πω̄

κ

�

�

�

�

�

; ð3:35cÞ

where, analogous to (3.15), we have defined

Ginðω; rÞ ¼
X

∞

l¼0

ð2lþ 1Þ
16π2jωj I

�

Xin�
ωlðrÞ
r

d

dr

�

Xin
ωlðrÞ
r

��

;

ð3:36aÞ

Gupðω; rÞ ¼
X

∞

l¼0

ð2lþ 1Þ
16π2jω̃j I

�

X
up�
ωl ðrÞ
r

d

dr

�

X
up
ωlðrÞ
r

��

:

ð3:36bÞ

I denotes the imaginary part, and the shifted frequencies ω̃
and ω̄ are given in (2.12) and (3.14), respectively. From the
semiclassical Maxwell equations (1.1), it must be the case
that the expectation value of the charge current in any
quantum state satisfies the conservation equation

∇μhĴμi ¼ 0: ð3:37Þ

Since the charge current expectation value is independent
of time and the angular components vanish (3.34), solving
(3.37) gives that the radial component of the charge current
expectation value takes the form [13]

hĴri ¼ −
K

r2
; ð3:38Þ

where K is some state-dependent constant, interpreted as
the flux of charge from the black hole in the particular state
under consideration. We could use (3.38) to simplify the
computations and find hĴri at just one value of the radial
coordinate r (which would be sufficient to determine K).
However, since we have already generated the charged
scalar field modes, we find hĴri by evaluating the mode
sums (3.35) at each value of the radial coordinate under
consideration, in which case (3.38) provides a useful check
on the accuracy of our numerical results.
Thus, to obtain the renormalized expectation value of

the current in its entirety, it suffices to renormalize the
t-component. We now extend the renormalization pro-
cedure outlined in Sec. III B for the vacuum polarization,
to renormalize the t-component of (3.11a). Including the
factor of i from (3.10), we write the quantity we seek to
renormalize as

iðhfΦ̂†ðxÞ; ½∂t0Φ̂ðx0Þ�g − fΦ̂ðxÞ; ½∂t0Φ̂ðx0Þ�†giÞ
¼ 2IhfΦ̂ðxÞ; ½∂t0Φ̂ðx0Þ�†gi: ð3:39Þ

In the three quantum states of interest, the unrenormalized
expectation values of this quantity can be written as the
following mode sums [analogous to (3.13)]:

2IhBjfΦ̂ðxÞ; ½∂tΦ̂ðxÞ�†gjBi

¼ lim
x→x0

Z

∞

0

dωω cosðωϵÞ½Finðω; rÞ

− Finð−ω; rÞ þ Fupðω; rÞ − Fupð−ω; rÞ�; ð3:40aÞ

2IhUjfΦ̂ðxÞ; ½∂tΦ̂ðxÞ�†gjUi

¼ lim
x→x0

Z

∞

0

dωωcosðωϵÞ
h

Finðω;rÞ−Finð−ω;rÞ

þFupðω;rÞcoth
�

�

�

�

πω̃

κ

�

�

�

�

−Fupð−ω;rÞcoth
�

�

�

�

πω̄

κ

�

�

�

�

�

; ð3:40bÞ

2IhCCHjfΦ̂ðxÞ;½∂tΦ̂ðxÞ�†gjCCHi

¼ lim
x→x0

Z

∞

0

dωωcosðωϵÞ
�

fFinðω;rÞ−Finð−ω;rÞgcoth
�

�

�

�

πω

κ

�

�

�

�

þFupðω;rÞcoth
�

�

�

�

πω̃

κ

�

�

�

�

−Fupð−ω;rÞcoth
�

�

�

�

πω̄

κ

�

�

�

�

�

; ð3:40cÞ
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where the functions Fin=upðω; rÞ are those appearing in the
vacuum polarization (3.15). Notice that the mode-sum
expressions (3.40) involve the difference in contributions
from the positive and negative frequency modes. Unlike the
situation for a neutral scalar field, these do not cancel for a
charged scalar field, although we may anticipate that the
renormalized current will be smaller than the renormalized
vacuum polarization.
The relevant renormalization counterterms can be found

by taking the t0 derivative of the imaginary part of the
Hadamard parametrix (3.3). Using [20,36], we find, for a
massless and minimally coupled charged scalar field,

I½U0ðxÞ� ¼ 0; ð3:41aÞ

I½U1μðxÞ� ¼ qAμ; ð3:41bÞ

I½U2μνðxÞ� ¼ −
q

2
∇ðμAνÞ; ð3:41cÞ

I½U3μνρðxÞ� ¼
q

6
∇ðμ∇νAρÞ þ

q

12
RðμνAρÞ −

q3

6
AμAνAρ;

ð3:41dÞ

I½V00ðxÞ� ¼ 0; ð3:41eÞ

I½V01μðxÞ� ¼ 0; ð3:41fÞ

I½V02μνðxÞ� ¼ 0; ð3:41gÞ

I½V10ðxÞ� ¼ 0: ð3:41hÞ

Combining (3.41) with our expansions for σ and its
derivatives (3.17), the required renormalization counter-
term is

2∂t0 Im ½Kðx; x0Þ� ¼ −
qAtðrÞ

2π2fðrÞϵ2 −
q

96π2rfðrÞ

×
h

8q2rAtðrÞ3 − 4qAtðrÞfðrÞf0ðrÞ

− 2rA0
tðrÞfðrÞf0ðrÞ þ rAtðrÞf0ðrÞ2

− 2rAtðrÞfðrÞf00ðrÞ
i

: ð3:42Þ

As expected, (3.42) is proportional to the scalar field charge
q and vanishes when either this or the background
electrostatic potential AtðxÞ vanishes. As we found for
the renormalization of the vacuum polarization (3.18), the
singular part of the renormalization terms (3.42) only
involves a quadratic divergence in the time separation ϵ.
To subtract (3.42) from the mode sums in (3.40a), we

again employ the identity (3.19) to give

−
qAtðrÞ

2π2fðrÞϵ2 ¼
Z

∞

0

FCD
singðω; rÞ cos ðωϵÞdω; ð3:43Þ

where we have defined

FCD
singðω; rÞ ¼

qAtðrÞ
2π2fðrÞω; ð3:44Þ

and CD denotes “current derivative.” To demonstrate the
procedure for computing the renormalized quantity (and
thereby the charge current expectationvalue), as in Sec. III B,
we follow in detail an example, using the Boulware state, at a
single radial point (whose value is the same as in Sec. III B).
The procedureworks in the sameway for the other states and
other values of the radial coordinate. We also fix the black
hole mass and charge and the scalar field charge to be the
same as in Sec. III B.
Subtracting (3.43) from the mode sum (3.40a) gives the

renormalized expectation value

2I

D

Bj
n

Φ̂ðxÞ;
h

∂tΦ̂ðxÞ
i

†
o
�

�

�B
E

¼
Z

∞

0

dωFCD
reg ðω;rÞ

þ q

96π2rfðrÞ
h

8q2rAtðrÞ3−4AtðrÞfðrÞf0ðrÞ

−2rA0
tðrÞfðrÞf0ðrÞþ rAtðrÞf0ðrÞ2−2rAtðrÞfðrÞf00ðrÞ

i

;

ð3:45Þ

where we have defined

FCD
reg ðω; rÞ ¼ FCD

totalðω; rÞ − FCD
singðω; rÞ; ð3:46Þ

with

FCD
totalðω; rÞ ¼ ω½Finðω; rÞ − Finð−ω; rÞ þ Fupðω; rÞ

− Fupð−ω; rÞ�: ð3:47Þ

Figure 5 shows FCD
totalðω; rÞ as a function of the frequency

ω, computed using the same method as in Sec. III B. We see
similar behavior to the quantity FVP

totalðω; rÞ (3.24) appear-
ing in the renormalized vacuum polarization (see Fig. 2), in
particular FCD

totalðω; rÞ diverges linearly as ω increases, with
oscillations about this linear growth. As before, the linear
growth is removed by subtracting FCD

singðω; rÞ, see Fig. 6 for
the resulting quantity FCD

reg ðω; rÞ for our example. As
expected, while the linear growth is now absent, there
are oscillations in FCD

reg ðω; rÞ, whose amplitude increases as
the frequency ω increases (cf. Fig. 3).
These oscillations are dealt with in exactly the same way

as for the vacuum polarization, by a self-cancellation
procedure, giving
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2I

D

Bj
n

Φ̂ðxÞ;
h

∂tΦ̂ðxÞ
i

†
o

jB
E

¼
Z

∞ðscÞ

0

dωFCD
reg ðω; rÞ

þ q

96π2rfðrÞ
h

8q2rAtðrÞ3 − 4AtðrÞfðrÞf0ðrÞ

− 2rA0
tðrÞfðrÞf0ðrÞ þ rAtðrÞf0ðrÞ2

− 2rAtðrÞfðrÞf00ðrÞ
i

; ð3:48Þ

where, in analogy with the vacuum polarization (3.32), we
have defined the self-cancellation integral

Z

∞ðscÞ

0

FCD
reg ðω; rÞdω ¼ lim

ω→∞
HCD

� ðω; rÞ; ð3:49Þ

with

HCD
� ðω;rÞ≔ ðTλ1

Þ4ðTλ2
Þ4ðTλ3

Þ4ðTλ4
Þ4½HCDðω;rÞ�; ð3:50Þ

and

HCDðω; rÞ ¼
Z

ω

0

FCD
reg ðω0; rÞdω0; ð3:51Þ

where the self-cancellation operator Tλ½HðωÞ� is defined
in (3.29). Figure 7 shows the result of performing the self-
cancellation integral HCD

� ðω; rÞ. Again we see that the
oscillatory behavior has been quashed, and the resultant
function of the frequency ω is rapidly convergent as
ω→ ∞.
From this one can obtain the result for the renormalized

expectation value of 2IhfΦ̂ðxÞ; ½∂tΦ̂ðxÞ�†gi. Using (3.10),
to find the renormalized expectation value of hĴti, we
combine 2IhfΦ̂ðxÞ; ½∂tΦ̂ðxÞ�†gi with −iqAt=2 times the
renormalized vacuum polarization, computed in Sec. III B.
The mode sums required for the radial component hĴri

(3.35) do not require renormalization and there are no
subtleties involved in their direct computation.

IV. NUMERICAL RESULTS

In this section we present our results for the renormalized
expectation values of the vacuum polarization and the t and
r components of the renormalized charged scalar current.
We set M ¼ 1 and consider two values of the black hole
charge, Q ¼ 0.8M and Q ¼ 0.99M, the motivation for the
latter is to allow us to investigate the effects close to the
extremal limit. For Q ¼ 0.8M, the event horizon radius is
rþ ¼ 8M=5 (2.4) and we consider the scalar field charges
qM∈ f0.32; 0.48; 0.64; 0.8g, while for Q ¼ 0.99M we
have rþ ≈ 1.141M and we consider qM∈ f0.594;
0.792; 0.99g.

1 2 3 4
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0.005
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FIG. 6. Regularized mode-sum contribution FCD
reg ðω; rÞ (3.46)

required for the renormalized charge current expectation value
hBjĴtjBi in the Boulware state, as a function of frequency ω at
fixed radial coordinate r0 ≈ 5.96158M. The black hole and scalar
field parameters are as in Fig. 2.

0.5 1.0 1.5 2.0 2.53.28 10
6

3.30 10
6

3.32 10
6

3.34 10
6

3.36 10
6

3.38 10
6

3.40 10
6

3.42 10
6

FIG. 7. Self-cancellation generalized integralHCD
� ðω; rÞ [(3.50)

and (3.51)] required for the renormalized charge current expect-
ation value hBjĴtjBi in the Boulware state jBi, as a function of
frequency ω at fixed radial coordinate r0 ≈ 5.96158M. The black
hole and charged scalar field parameters are as in Fig. 2.
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FIG. 5. Mode-sum contribution FCD
totalðω; rÞ (3.47) required for

the renormalized charge current expectation value hBjĴtjBi in the
Boulware state, as a function of frequency ω at fixed radial
coordinate r0 ≈ 5.96158M. The black hole and scalar field
parameters are as in Fig. 2.
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A. Radial modes

We first outline our method for computing the scalar
field modes. As discussed in [28], the radial equation (2.13)
can be transformed into the confluent Heun equation [40].
The in radial functions Xin

ωlðrÞ=rmay be written in terms
of confluent Heun functions which are built into
Mathematica. Denoting these by X̃in

ωlðrÞ=r since they do
not (yet) have the required normalization, these are

1

r
X̃in
ωlðrÞ ¼ e−iω̃r�e

−
iqQðr−rþÞ

rþ

�

r − r−

r− − rþ

�

−
iqQr−
rþ

× HeunC

�

a1; a2; a3; a4; a5;
r − rþ
r− − rþ

�

; ð4:1Þ

where HeunCð…Þ denotes the confluent Heun function
satisfying the equation

�

zðz − 1Þ d2

dz2
þ fa3ðz − 1Þ þ a4zþ zðz − 1Þa5g

d

dz

þ ða2z − a1Þ
�

HeunCða1; a2; a3; a4; a5; zÞ ¼ 0; ð4:2Þ

with z ¼ ðr − rþÞ=ðr− − rþÞ, such that

HeunCða1; a2; a3; a4; a5; 0Þ ¼ 1: ð4:3Þ

The constants in (4.1) are given by

a1 ¼ lðlþ 1Þ − iqQþ 2irþω; ð4:4aÞ

a2 ¼ 2iωðrþ − r−Þ; ð4:4bÞ

a3 ¼
r− þ irþði − 2qQþ 2rþωÞ

r− − rþ
; ð4:4cÞ

a4 ¼
r− − rþ þ 2iqQr− − 2ir2−ω

r− − rþ
; ð4:4dÞ

a5 ¼ 2iωðrþ − r−Þ: ð4:4eÞ

The up radial functions X̃upðrÞ=r (again, these do not yet
have the required normalization) are obtained by numeri-
cally integrating the radial equation (2.13) via a procedure
analogous to that in Ref. [28]. We modify the numerical
integrationMathematica notebook of the ReggeWheeler pack-
age of the Black Hole Perturbation Toolkit [41], in which
the integration is performed using the Mathematica func-
tion NDSolve. The radial equation is integrated inward from
large r, and at large r the solution of the radial equation is
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FIG. 8. Renormalized vacuum polarization hjΦ̂j2i, multiplied by the metric function fðrÞ (2.3) for a quantum charged scalar field on
an RN black hole with Q ¼ 0.8M and a selection of values of the scalar field charge q. Three quantum states for the scalar field are
considered, namely the Boulware jBi, Unruh jUi and CCH jCCHi states.
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approximated by an expansion of the form

1

r
X̃
up
ωlðrÞ ¼

eiωr�

r1þiqQ

X

k

akr
−k; ð4:5Þ

including sufficient terms in the sum that the solution has
converged to the required precision.
To normalize the radial functions as required in (2.15),

we follow the procedure employed in [27]. We match the
asymptotic behavior of the numerically generated solutions
X̃
in=up
ωl ðrÞ, with those given in (2.15) in terms of reflection

and transmission coefficients. We obtain

Xin
ωlðrÞ ¼

Bin
ωl

rþ

�

rþ − r−

r− − rþ

�iqQr−
rþ

X̃in
ωlðrÞ; ð4:6aÞ

X
up
ωlðrÞ ¼ B

up
ωlX̃

up
ωlðrÞ: ð4:6bÞ

The transmission coefficients B
in=up
ωl are found using the

Wronskian Wωl,

Bin
ωl ¼ −

2iωrþ
Wωl

�

rþ − r−

r− − rþ

�

−
iqQr−
rþ

; ð4:7Þ

where

Wωl ¼ X̃
up
ωlðrÞ

d

dr�
X̃in
ωlðrÞ − X̃in

ωlðrÞ
d

dr�
X̃
up
ωlðrÞ; ð4:8Þ

together with the relations (2.16).
The modes are numerically calculated using a working

precision of 64 digits, over the frequency grid jωj∈ ½0; 4�,
with spacing of δω ¼ 1=300. We find modes for
0 ≤ l ≤ lmax, where lmax is the value of l beyond which
the mode contributions to the sums required in Sec. III are
< 10−10, following the example of [30].

B. Renormalized vacuum polarization

We present our numerical results for the renormalized
vacuum polarization hjΦ̂j2i in Figs. 8–11, for the black hole
and charged scalar field parameters given at the start
of Sec. IV.
We begin, in Figs. 8 and 9, by presenting hjΦ̂j2i in the

three quantum states jBi, jUi and jCCHi, when the black
hole charge is Q ¼ 0.8M. Figure 8 shows how the
renormalized vacuum polarization depends on the quantum
state for fixed scalar field charge, while Fig. 9 shows the
effect of varying the scalar field charge on the expectation
value in a particular state.
In Fig. 8 we have multiplied the vacuum polarization by

the metric function fðrÞ (2.3), so that we are plotting
quantities which are regular on the horizon for all three
quantum states. We see that, in the Unruh and CCH states,
the quantity fðrÞhjΦ̂j2i vanishes on the horizon, while for

the Boulware state it takes a nonzero, finite, value. This
implies that the vacuum polarization diverges on the
horizon for the Boulware state but is regular on the horizon
in both the Unruh and CCH states, as can be seen in Fig. 9.
Far from the black hole, Fig. 8 shows that the values of the
vacuum polarization in the Boulware and Unruh states are
very similar (and the difference between them at fixed
radial coordinate r decreases as q increases), while the
vacuum polarization in the CCH state takes a very different
(and much larger) value. This suggests that the dominant
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FIG. 9. Renormalized vacuum polarization hjΦ̂j2i for a quan-
tum charged scalar field on an RN black hole withQ ¼ 0.8M and
a selection of values of the scalar field charge q. Three quantum
states for the scalar field are considered, namely the Boulware
jBi, Unruh jUi and CCH jCCHi states.
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contribution to the vacuum polarization in the Unruh state,
far from the black hole, is coming from the superradiant
modes, while, for the CCH state, the contribution to the
vacuum polarization from the in modes is ∼4 times larger
than the contribution from the up modes.
From Fig. 9, we see that the renormalized vacuum

polarization in both the Unruh and CCH states is positive
everywhere on and outside the event horizon and is a
monotonically decreasing function of the radial coordinate
r. The values of the vacuum polarization are also mono-
tonically increasing for fixed r as the scalar field charge q
increases. In contrast, for the Boulware state the vacuum
polarization is negative close to the horizon (and diverges

on the horizon). Near the horizon, it is monotonically
increasing and takes positive values for sufficiently large
radial coordinate r. We find that the vacuum polarization
has a maximum outside the horizon and then is monoton-
ically decreasing as r increases.
Far from the event horizon, the vacuum polarization

in the Boulware and Unruh states is tending to zero.
However, for the CCH state, while the vacuum polari-
zation is decreasing as r increases, it appears to be
tending to a nonzero constant as r →∞. This indicates
that the CCH state is not a vacuum state far from the black
hole, as expected, since it contains an incoming flux of
radiation.
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FIG. 10. Renormalized vacuum polarization hjΦ̂j2i for a quantum charged scalar field on an RN black hole with Q ¼ 0.99M and a
selection of values of the scalar field charge q. Three quantum states for the scalar field are considered, namely the Boulware jBi, Unruh
jUi and CCH jCCHi states. The plots on the right-hand side show the region close to the event horizon.
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Many of these qualitative features are preserved when we
consider a larger value of the black hole charge, namely
Q ¼ 0.99M, in Figs. 10 and 11. In Fig. 10 we present
fðrÞhjΦ̂j2i for the three states under consideration and a
selection of values of the scalar field charge q. The plots on
the left-hand side show all values of the radial coordinate r
for which we have performed our computations, while the
plots on the right-hand side show just the region close to the
event horizon. From the latter plots (and those in Fig. 11),
we can see that the renormalized vacuum polarization in the

Unruh and CCH states is regular on the event horizon,
but that in the Boulware state diverges like fðrÞ−1 as the
horizon is approached. The expectation values of the
vacuum polarization in the Unruh and Boulware states
are, from Fig. 10, virtually indistinguishable on the scale
plotted, except for a region close to the horizon, while, as in
Fig. 8, the expectation value in the CCH state is signifi-
cantly larger far from the black hole.
As in Fig. 9, in Fig. 11 we see that increasing the scalar

field charge q increases the expectation value of the vacuum
polarization for fixed radial coordinate r. Finally, compar-
ing the results in Figs. 9 and 11, it can be seen that
increasing the black hole charge also results in an increase
in the vacuum polarization.
The qualitative features of the vacuum polarization

profiles shown in Figs. 8–11 are the same as those found
for a neutral scalar field on a neutral Schwarzschild black
hole (see, for example, [31]). In that situation, the vacuum
polarization is monotonically decreasing in both the Unruh
and Hartle-Hawking states and is regular on the event
horizon, while the vacuum polarization profile in the
Boulware state also has a similar shape and diverges on
the horizon.
In the extremal limit,Q → M, the temperature T ¼ κ=2π

[where κ is the surface gravity (2.8)] of the black hole
vanishes. While the Hawking radiation switches off in this
limit, the spontaneous emission in the superradiant modes
does not. In this limit the three states, Boulware, Unruh and
CCH, become the same [as can be seen from the unrenor-
malized mode sums (3.13)]. Even though we have used a
large value of Q ¼ 0.99M in Figs. 10 and 11, while it is
clear that the Unruh and Boulware states are nearly
identical, the vacuum polarization for the CCH state is
still significantly larger than that for the other two states,
although the difference between the vacuum polarizations
in the CCH and Unruh states is smaller for Q ¼ 0.99M in
Fig. 10 than for Q ¼ 0.8M in Fig. 8. It seems that one has
to be even closer to the extremal limit in order for the CCH
state to become indistinguishable from the Unruh state.

C. Renormalized charged scalar current

Our results for the renormalized expectation value of the
charge current hĴμi are presented in Figs. 12–19, for the
black hole and charged scalar field parameters given at the
start of Sec. IV.
We examine first the radial component of the current,

hĴri, in Figs. 12–15. In each of these plots, we have
multiplied the radial component of the current by r2. As
expected from (3.38), this gives a constant independent of
r, but dependent on the quantum state under consideration.
We first note that r2hĴri is at least a factor of 10 smaller
than the vacuum polarization for the same quantum state
and black hole and scalar field parameters. This was
expected, since in the mode sums (3.35) for this quantity,
the modes with positive and negative frequency contribute
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FIG. 11. Renormalized vacuum polarization hjΦ̂j2i for a
quantum charged scalar field on an RN black hole with Q ¼
0.99M and a selection of values of the scalar field charge q. Three
quantum states for the scalar field are considered, namely the
Boulware jBi, Unruh jUi and CCH jCCHi states.
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with different signs, whereas in the vacuum polarization
(3.13), the contributions from the positive and negative
frequency modes have the same sign. The charge current is
therefore a measure of the net charge in the quantum
scalar field.
The constant K in (3.38) is the flux of charge from the

black hole. We see that this is nonzero in all three states
studied, indicating that none of these quantum states is an
equilibrium state. We find thatK > 0 for all three states and
all values of the black hole and scalar field charges studied.
This means that, in all three states, the black hole is losing
charge (we only consider the situation in which both the
black hole charge q and the scalar field charge Q are
positive). This is as expected for the Boulware and Unruh
states. The former contains an outgoing flux of particles in
the superradiant modes, while the latter contains both the
superradiant flux and the outgoing Hawking radiation. For
the CCH state, there is an ingoing flux of charge in the in
modes which could potentially increase the charge of the
black hole, however, overall the black hole is losing charge
in this state also.
In Figs. 12–15 we explore how the charge flux K

depends on the quantum state, the scalar field charge q
and the black hole charge Q. Fixing the black hole charge
to beQ ¼ 0.8M, we see from Fig. 12 that the charge flux is
greatest in the CCH state and takes its smallest value in the
Boulware state. The difference between the fluxes in the

Unruh and Boulware states decreases as the scalar field
charge increases, suggesting that in this limit the super-
radiant flux is more significant than the Hawking radiation.
The flux in the CCH state is at least a factor of 2 greater
than that in the Boulware or Unruh states. Figure 13
compares the charge flux for different values of the scalar
field charge q, again for Q ¼ 0.8. As might be expected,
increasing the scalar field charge increases the flux of
charge from the black hole in each state.
A similar picture can be seen on increasing the black

hole charge to Q ¼ 0.99M. In Fig. 14, in order to compare
the charge current in the three states, the vertical axis does
not extend to the origin. As for the lower black hole charge,
the charge fluxes in the Unruh and Boulware states have
similar magnitudes for fixed scalar field charge, and the
flux in the CCH state is significantly larger, although it is
now less than double the charge flux in the other two states.
The main conclusion from Fig. 15, is that, as observed
previously, increasing the scalar field charge increases the
flux of charge from the black hole. The analytic expressions
in the very recent paper [37] for the flux of charge in the
Unruh state when the RN black hole is near extremal are
valid only in the small charge regime jqQj ≪ 1, and thus
our numerical results do not agree with those analytic
expressions.
The time component of the expectation value of the

current hĴti corresponds to the charge density in the
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FIG. 12. Radial component of the renormalized charge current hĴri multiplied by r2, for a quantum charged scalar field on an RN
black hole withQ ¼ 0.8M and a selection of values of the scalar field charge q. Three quantum states for the scalar field are considered,
namely the Boulware jBi, Unruh jUi and CCH jCCHi states.
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quantum scalar field, and is shown in Figs. 16–19. We plot
hĴti ¼ −fðrÞhĴti since hĴti is regular on the event horizon
in all three quantum states under consideration. We note
that hĴti is negative for all three quantum states and all
values of the black hole and scalar field charges that we
consider. Therefore we find that hĴti is positive.
In Fig. 16 we compare the time component of the current

hĴti in the three quantum states of interest for a black hole
with charge Q ¼ 0.8M and a selection of values of the
scalar field charge q. In every case hĴti has its maximum
magnitude at the event horizon, and, in a neighborhood of
the horizon, it is increasing (decreasing in magnitude) as

the radial coordinate increases. We see that the quantum
scalar field generates a “cloud” of charge, with a greater
charge density near the horizon of the black hole. At a fixed
value of the radial coordinate r, the charge density is largest
for the CCH state. Perhaps surprisingly, it is smallest for the
Unruh (rather than Boulware) states, even though there is a
greater charge flux in the Unruh state compared with the
Boulware state. The difference between the Unruh and
Boulware states decreases as the scalar field charge q
increases. For large values of the radial coordinate r, for the
Unruh and Boulware states, it seems to be the case that
hĴti→ 0 as r → ∞, and the cloud of charge in the quantum
field is localized in the vicinity of the event horizon. For the
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FIG. 14. Radial component of the renormalized charge current
hĴrimultiplied by r2, for a quantum charged scalar field on an RN
black hole withQ ¼ 0.99M and a selection of values of the scalar
field charge q. Three quantum states for the scalar field are
considered, namely the Boulware jBi, Unruh jUi and CCH
jCCHi states.
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r2hĴri multiplied by r2, for a quantum charged scalar field on an
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jCCHi states.

RENORMALIZED CHARGED SCALAR CURRENT ON A … PHYS. REV. D 111, 105026 (2025)

105026-19



CCH state, while hĴti is decreasing in magnitude as r
increases, there is no indication that it tends to zero as
r → ∞. This is further evidence that the CCH state is
nonempty far from the black hole. In this state the cloud of
charge in the quantum scalar field extends to infinity.
Turning now to Fig. 17, we see that, for each particular

quantum state, the time component hĴti increases in
magnitude as the scalar field charge increases. For the
Unruh state, hĴti is very small (but positive) when r=M is
larger than ≈5, hence the charge density in the quantum
scalar field is negative far from the black hole in these two
quantum states. A similar change in the sign of hĴti far

from the event horizon was observed in Ref. [36] for a
charged quantum scalar field on a Reissner-Nordström–de
Sitter black hole, in the Unruh state. The sign of hĴti in the
Boulware state also changes for sufficiently large r and
larger values of q (such as qM ¼ 0.8 in Fig. 17).
The effect of increasing the black hole charge Q to

0.99M on the expectation value hĴti can be seen in Fig. 18.
As seen for the vacuum polarization in Fig. 10, in this case
the time component of the current for the Unruh and
Boulware states is almost indistinguishable, and when the
scalar field charge is also large, qM ¼ 0.99, the expectation
value in the CCH state takes values close to those in the
other two states. The effect of the Hawking radiation is
therefore becoming less important than the superradiant
emission, as expected as the temperature of the black hole
becomes small. Figure 19 shows that, for this larger value
of the black hole charge, increasing the scalar field charge q
increases the magnitude of hĴti for each fixed quantum
state. As in Fig. 17, the expectation value hĴti is very small
but positive for large r, when we consider the states jBi and
jUi. For the state jCCHi, it remains negative for all r
considered.
The remaining question is whether the expectation value

of the current hĴμi is regular across the event horizon of
the black hole. To address this issue, since the usual
Schwarzschild coordinates ðt; r; θ;φÞ are not regular at
the horizon, we consider the in- and outgoing Eddington-
Finkelstein coordinates, ðv; r; θ;φÞ and ðu; r; θ;φÞ, respec-
tively, where u and v are defined in (2.5). Making the
change to one of these sets of coordinates, the radial
component of the charge current hĴri is unchanged, and the
time component hĴti is replaced by either hĴui or hĴvi as
applicable, where

hĴui ¼ hĴti − fðrÞ−1hĴri ¼ −
1

fðrÞ
h

hĴti þ hĴri
i

; ð4:9aÞ

hĴvi ¼ hĴti þ fðrÞ−1hĴri ¼ −
1

fðrÞ
h

hĴti − hĴri
i

; ð4:9bÞ

where fðrÞ is the metric function (2.3). For all three
quantum states studied, and the values of the black hole
and scalar field charges that we consider, we find that hĴri
is negative and finite (and nonzero) on the event horizon at
r ¼ rþ. We also find that hĴti is also negative and finite
(and nonzero) on the horizon. Therefore, it must be the case
that hĴui diverges like fðrÞ−1 as r → rþ. We deduce that all
three quantum states are divergent on the past horizon of
the black hole.
However, we cannot immediately rule out regularity on

the future horizon of the black hole. In order for hĴvi to be
regular on the future horizon, it must be the case that hĴti ¼
hĴri at r ¼ rþ. Close examination of our numerical results
reveals that, to within the accuracy of our numerical
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FIG. 15. Radial component of the renormalized charge current
hĴrimultiplied by r2, for a quantum charged scalar field on an RN
black hole withQ ¼ 0.99M and a selection of values of the scalar
field charge q. Three quantum states for the scalar field are
considered, namely the Boulware jBi, Unruh jUi and CCH
jCCHi states.
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computations, this appears to be the case in the Unruh and
CCH states, but not for the Boulware state. Therefore the
Unruh and CCH states are regular at the future (but not the
past) horizon, while the Boulware state diverges on both
the future and past horizons. This is in agreement with the
calculation of the renormalized charge current on a
Reissner-Nordström–de Sitter black hole [36], which is
also regular on the future event horizon when the field is in
the Unruh state (Ref. [36] did not consider the Boulware or
CCH states).

V. BACKREACTION

We now examine the backreaction of the charged scalar
current on the electromagnetic field, governed by the
semiclassical Maxwell equations (1.1). Adopting the
approach of [42], and temporarily reinstating the reduced
Planck constant ℏ, we consider a perturbative (in ℏ)
expansion in both the metric and electromagnetic field.
Since none of the three states we consider in this paper is an
equilibrium state, we assume that the configuration remains
spherically symmetric, but the perturbations in the metric
and electromagnetic field can depend on time t as well as
the radial coordinate r. We consider only the OðℏÞ
corrections to the metric and electromagnetic field.
For the metric, we make the following ansatz to

OðℏÞ [35]:

ds2 ¼ −½fðrÞ þ δfðt; rÞ�dt2 þ ½fðrÞ þ δfðt; rÞ�−1dr2

þ ½r2 þ 2rδRðt; rÞ�dΩ2; ð5:1Þ

where fðrÞ is the background RNmetric function (2.3), and
δfðt; rÞ, δRðt; rÞ are perturbations which we assume are
OðℏÞ. Similarly, we take the perturbed electromagnetic
potential to have the form

A ¼
�

−
Q

r
þ δAtðt; rÞ

�

dt; ð5:2Þ

where the first term is the background electrostatic potential
(2.10) and the second term is a perturbation of order OðℏÞ.
The only nonzero components of the perturbed electro-
magnetic field are then, to OðℏÞ,

δFtrðt; rÞ ¼ −δFrtðt; rÞ ¼ ∂r½δAtðt; rÞ�: ð5:3Þ

The electromagnetic field strength Fμν is a tensor, however,
with the metric ansatz (5.1), the perturbation of the field
strength [35,43] is

δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−FμνF
μν

p

¼
ffiffiffi

2
p

δFtrðt; rÞ ð5:4Þ

and this is a scalar physical quantity.
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FIG. 16. Time component of the renormalized charge current hĴti, for a quantum charged scalar field on an RN black hole with
Q ¼ 0.8M and a selection of values of the scalar field charge q. Three quantum states for the scalar field are considered, namely the
Boulware jBi, Unruh jUi and CCH jCCHi states.
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We now consider the OðℏÞ terms in the semiclassical
Maxwell equations (1.1), where the expectation value on
the right-hand side is OðℏÞ and evaluated on the back-
ground (nonperturbed) metric. For all three states we study,
the expectation values hĴθi and hĴφi vanish identically.
With our ansatz for the perturbed electromagnetic potential,
the ν ¼ θ and ν ¼ φ components of (1.1) are then trivially
satisfied at order OðℏÞ. This leaves the ν ¼ t and ν ¼ r
components, which take the following form, where we
retain only the OðℏÞ terms:

4πhĴti ¼ 1

r2
∂r½r2δFrtðt; rÞ� − 2Q

r2
∂r

�

1

r
δRðt; rÞ

�

; ð5:5aÞ

4πhĴri ¼ ∂t½δFtrðt; rÞ� þ 2Q

r3
∂t½δRðt; rÞ�: ð5:5bÞ

We note that (5.5) contain the metric perturbation δRðt; rÞ
as well as δFtrðt; rÞ ¼ −δFrtðt; rÞ, and that the expectation
values on the left-hand side depend on the radial coordinate
r only.
Since the radial component of the renormalized charged

scalar current hĴri is given by (3.38) (where K is state
dependent), the second perturbed Maxwell equation (5.5b)
simplifies to

∂t

�

r2δFtrðt; rÞ þ 2Q

r
δRðt; rÞ

�

¼ −4πK; ð5:6aÞ
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FIG. 17. Time component of the renormalized charge current
hĴti, for a quantum charged scalar field on an RN black hole with
Q ¼ 0.8M and a selection of values of the scalar field charge q.
Three quantum states for the scalar field are considered, namely
the Boulware jBi, Unruh jUi and CCH jCCHi states.
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FIG. 18. Time component of the renormalized charge current
hĴti, for a quantum charged scalar field on an RN black hole with
Q ¼ 0.99M and a selection of values of the scalar field charge q.
Three quantum states for the scalar field are considered, namely
the Boulware jBi, Unruh jUi and CCH jCCHi states.
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while the first perturbed Maxwell equation (5.5) can be
written as

∂r½r2δFtrðt; rÞ þ 2Q

r
δRðt; rÞ� ¼ −4πr2hĴti: ð5:6bÞ

We can readily integrate (5.6) to give

δFtrðt; rÞ þ 2Q

r3
δRðt; rÞ ¼ −

4π

r2
½F ðtÞ þ GðrÞ�; ð5:7aÞ

where

F ðtÞ ¼ Kt; GðrÞ ¼
Z

r

r0¼r1

r02hĴtidr0; ð5:7bÞ

and r1 is an arbitrary constant of integration. We now
examine each of the terms on the right-hand side of (5.7)
in turn.
The first term on the right-hand side corresponds to a

Coulomb electric field with a time-varying charge QðtÞ.
The rate of change of charge ∂tQðtÞ ∝ −K < 0 for all three
quantum states considered in this work. Therefore, since we
take QðtÞ > 0, the black hole is always losing electric
charge. For fixed values of the background black hole and
scalar field charges, the rate of discharge is greatest in the
CCH state. The rate of discharge also increases as either the
scalar field charge q or the initial black hole charge Q
increase.
The second term on the right-hand side of (5.7a) has, to

the best of our knowledge, not been considered previously
in the literature. Since hĴti ¼ −fðrÞ−1hĴti does not have a
closed-form dependence on the radial coordinate r, we
study the quantity GðrÞ (5.7b) numerically. To do this, we
need to perform a definite integral, fixing the lower limit of
integration to be a constant r1. Changing r1 simply
corresponds to a constant shift in the time-dependent
function F ðtÞ.
The most natural choice would be to set r1 ¼ rþ, the

event horizon radius. However, we see from Figs. 16–19
that hĴti takes a finite nonzero value on the horizon for all
three states considered in this paper, and hence hĴti ¼
−fðrÞ−1hĴti diverges like fðrÞ−1 ∼ ðr − rþÞ−1 as r → rþ
and the event horizon is approached. Therefore, on inte-
grating with respect to r, there is a logarithmic singularity
in
R

r2hĴtidr as r → rþ. Since the expectation value of hĴti
on the horizon is very small, typically ∼10−5=M4, the
coefficient of the logarithmic singularity is also very small.
Nonetheless, at first glance this seems to be an unsatis-
factory result, since we are working in a semiclassical
framework in which quantum corrections to the metric and
electromagnetic field are assumed to be small. However,
on the left-hand side of (5.7), we have a combination of
electromagnetic field and metric perturbations, namely
δFtrðt; rÞ and δRðt; rÞ. From (5.4), the electromagnetic
field strength perturbation δFtrðt; rÞ is a physical quantity
which we would expect to be regular on the event horizon
when we consider the backreaction of a quantum state
which is itself regular on the event horizon. However, the
metric function δRðt; rÞ is not directly measurable, and
there is no reason a priori to rule out a logarithmic
singularity in this quantity as the event horizon is
approached. Furthermore, the location of the event horizon
is likely to be shifted by the backreaction of the quantum
field on the space-time geometry. To explore whether the
metric perturbation δRðt; rÞ can indeed have a logarithmic
singularity, and find the shifted location of the event
horizon, it would be necessary to consider the semiclassical
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FIG. 19. Time component of the renormalized charge current
hĴti, for a quantum charged scalar field on an RN black hole with
Q ¼ 0.99M and a selection of values of the scalar field charge q.
Three quantum states for the scalar field are considered, namely
the Boulware jBi, Unruh jUi and CCH jCCHi states.
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Einstein equations giving the backreaction of the quantum
field on the space-time geometry. The semiclassical
Einstein equations involve the renormalized expectation
value of the stress-energy tensor operator, the computation
of which is beyond the scope of this present work.
To explore the properties of GðrÞ (5.7b), we therefore

need to make a choice of r1. In Figs. 20–23 we show this
integral as a function of r, for the renormalized scalar
current displayed in Figs. 16–19, respectively, setting
r1 ¼ 11rþ=10. Changing the value of r1 corresponds to
adding a constant to GðrÞ.
In Figs. 20 and 21 we show GðrÞ as a function of r for a

black hole with charge Q ¼ 0.8M and a selection of values
of the scalar field charge q. Figure 20 compares the three
states of interest at fixed scalar field charge, while Fig. 21
examines the effect of changing the scalar field charge on
GðrÞ. Looking first at Fig. 20, away from the event horizon,
it is striking that, at fixed radius, GðrÞ is larger in the
Boulware state than it is in the Unruh state. The difference
between these two states narrows as the scalar field charge
increases. This follows from our results in Fig. 16, as the
charge density is greater in the Boulware than in the Unruh
states. In all three states, GðrÞ increases as the scalar field
charge increases.
In Fig. 21, we see that, for the Unruh state, GðrÞ is

decreasing as the radial coordinate r increases far from the

black hole (this is also the case for the Boulware state for
larger values of the scalar field charge q), due to the change
in sign of the charge density in these states far from the
black hole (see comments on Fig. 17). Since GðrÞ is
multiplied by r−2 in the perturbed electromagnetic field
strength (5.7), far from the black hole, this term will be
subleading compared to the Coulomb field arising from the
function F ðtÞ in (5.7a).
The properties of the function GðrÞ for the CCH state, at

least for the values of the radial coordinate r studied, are
very different far from the black hole. In particular, from
Figs. 20 and 21 we see that GðrÞ is increasing approx-
imately linearly as the radial coordinate r increases. From
Fig. 21, the rate of increase also increases as the scalar field
charge increases. This implies that the term GðrÞ will
dominate over the Coulomb term F ðtÞ in (5.7a) far from
the black hole. Therefore, in the CCH state, at large r the
dominant contribution to the perturbed electromagnetic
field strength δFtrðt; rÞ is coming from the charged scalar
cloud rather than the flux of charge.
The perturbation of the total charge in the space-time is

given by an integral over the sphere at infinity S2
∞,

δQ ¼ 1

4π

Z

S
2
∞

�

r2δFtr þ 2Q

r
δRðt; rÞ

�

sin θdθdφ: ð5:8Þ

2 3 4 5 6 7 8

0.00002

0.00004

0.00006

0.00008

0.00010

2 3 4 5 6 7 8

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

2 3 4 5 6 7 8

0.0002

0.0004

0.0006

0.0008

2 3 4 5 6 7 8

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

FIG. 20. GðrÞ (5.7b) for a quantum charged scalar field on an RN black hole withQ ¼ 0.8M and a selection of values of the scalar field
charge q. Three quantum states for the scalar field are considered, namely the Boulware jBi, Unruh jUi and CCH jCCHi states. The
lower limit of integration is taken to be r1 ¼ 11rþ=10, where rþ ¼ 8M=5 is the event horizon radius.
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Substituting in from (5.7) gives

δQ ¼ −4π

	

F ðtÞ þ lim
r→∞

½GðrÞ�



: ð5:9Þ

The solution of the perturbed Maxwell equations (5.7)
gives this charge perturbation only up to an arbitrary
constant [corresponding to the choice of the lower limit
r1 in GðrÞ]. One natural choice of r1 is, as discussed above,
the event horizon radius rþ. Another natural choice is to set

r1 ¼ ∞, in which case the second term in (5.9) vanishes,
and the charge perturbation δQ is entirely due to the
Coulomb term F ðtÞ.
For the Unruh state (and also for the Boulware state for

some values of the scalar field charge q depicted in Figs. 20
and 21), the data available suggest that limr→∞ ½GðrÞ� ¼ 0.
For those values of the scalar charge q for which GðrÞ has a
finite (but nonzero) limit as r → ∞, we can set this limit to
be zero by an alternative choice of the integration constant.
In both these cases the total net charge in the scalar cloud
vanishes. However, for the CCH state, if the trend shown in
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FIG. 21. GðrÞ (5.7b) for a quantum charged scalar field on an
RN black hole with Q ¼ 0.8M and a selection of values of the
scalar field charge q. Three quantum states for the scalar field are
considered, namely the Boulware jBi, Unruh jUi and CCH
jCCHi states. The lower limit of integration is taken to be
r1 ¼ 11rþ=10, where rþ ¼ 8M=5 is the event horizon radius.
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FIG. 22. GðrÞ (5.7b) for a quantum charged scalar field on an
RN black hole with Q ¼ 0.99M and a selection of values of the
scalar field charge q. Three quantum states for the scalar field are
considered, namely the Boulware jBi, Unruh jUi and CCH
jCCHi states. The lower limit of integration is taken to be
r1 ¼ 11rþ=10, where rþ ≈ 1.141M is the event horizon radius.
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Figs. 20 and 21 continues for larger values of the radial
coordinate r, then this suggests that limr→∞ ½GðrÞ� → ∞

and the total scalar cloud charge is infinite, due to the
infinite volume of space-time.
The effect of increasing the black hole charge Q on the

scalar cloud can be seen in Figs. 22 and 23. As in Figs. 20,
in Fig. 22 we see that GðrÞ is greater for the Boulware state
than it is for the Unruh state, with the difference between
these two states being comparatively small. For both these
states, GðrÞ is decreasing as r increases far from the black

hole. The behavior of GðrÞ far from the black hole in the
CCH state is however qualitatively different from that seen
for the lower value of the black hole charge in Fig. 21. In
particular, the rate of increase of GðrÞ as a function is r is
much smaller in Fig. 23 than in Fig. 21. For very large
scalar field charge qM ¼ 0.99, we see that GðrÞ is in fact
decreasing as r increases far from the black hole (it may be
that we would find similar behavior for other values of Q
and q if we extended our computations to larger values
of r). When Q ¼ 0.99M, the black hole is near extremal
and, in this limit, the Hawking radiation (which vanishes in
the extremal limit) becomes subleading compared to the
superradiant emission. This means that the CCH state
approaches the Boulware and Unruh states, and the scalar
cloud becomes dominated by the superradiant flux.

VI. CONCLUSIONS

In this work we have extended the pragmatic mode-sum
methodology of [30] to compute the renormalized expect-
ation values of the charge current hĴμi for a massless
quantum charged scalar field on a charged RN black hole
background. Since the field is massless, it is subject to
classical charge superradiance. We have considered three
possible states for the scalar field (all of which are past
states in the terminology of [13]), namely the Boulware,
Unruh and CCH states. The construction of all three states
in the presence of charge superradiance is uncontroversial.
To calculate hĴμi, we employ the t-splitting variant of the

pragmatic mode-sum approach of Ref. [30]. One difference
from the work of [30] is that we use the Hadamard
parametrix in our renormalization prescription rather than
DeWitt-Schwinger renormalization. This choice does not
affect the singularity structure of the Green’s function or
the physical interpretation of our results. As in a previous
computation of the renormalized charge current on a
Reissner-Nordström–de Sitter black hole [36], we work
on the Lorentzian black hole geometry. In [36], a different
choice of gauge for the background electrostatic potential is
made at each space-time point, which has the advantage
that only finite renormalization terms are required to find
the expectation value of the current, but at the expense of
having to compute a separate set of field modes for each
space-time point considered. Here we fix the electrostatic
potential gauge from the outset, so that only one set of field
modes is needed for each value of the scalar and black hole
charges that we study. The disadvantage of our choice of
gauge is that the time component of the charge current
requires renormalization.
Finding the renormalized vacuum polarization is a

straightforward extension of the method of [30] in the
neutral scalar field case; the only difference is a small
modification in the finite renormalization terms due to the
background electrostatic potential. The renormalized cur-
rent is the sum of two terms; one is proportional to the
gauge potential multiplied by the vacuum polarization,
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FIG. 23. GðrÞ (5.7b) for a quantum charged scalar field on an
RN black hole with Q ¼ 0.99M and a selection of values of the
scalar field charge q. Three quantum states for the scalar field are
considered, namely the Boulware jBi, Unruh jUi and CCH
jCCHi states. The lower limit of integration is taken to be
r1 ¼ 11rþ=10, where rþ ≈ 1.141M is the event horizon radius.
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while the second involves a derivative of the scalar field
operator. The radial component of the charged scalar
current does not require renormalization [13], and therefore
we only need to renormalize the quantity in the charge
current which involves a time derivative of the quantum
scalar field. The key new aspect of our methodology is the
application of the pragmatic mode-sum prescription to this
quantity.
We find that none of the three states considered is an

equilibrium state; all three have a nonzero flux of charge
from the black hole, given by the radial component of the
charge current. For the Boulware state, this flux corre-
sponds to quantum emission in the classically superradiant
modes. For the Unruh state, in addition to the superradiant
flux, there is also the thermal Hawking radiation. The CCH
state has an ingoing flux of charged particles as well as the
outgoing Hawking radiation and superradiant flux, but
overall there is a net outward flux. In all three states, the
quantum scalar field is discharging the black hole.
Since we have a massless scalar field which is subject to

classical superradiance, this discharge process continues in
the extremal limit, when the temperature of the black hole
tends to zero and the Hawking radiation is absent. In this
limit the three states we study coincide. Even though we
have considered a black hole having a charge/mass ratio of
0.99, to probe the extremal limit would require studying
black holes whose charge/mass ratios are closer to unity,
which is very challenging numerically. Furthermore, it has
recently been argued [44,45] that the semiclassical approach
we employ in this work breaks down in the extremal limit,
and nonperturbative effects become dominant.
The time component of the charge current gives the

charge density in the quantum scalar field, resulting in the
formation of a quantum scalar cloud of charge surrounding
the black hole. By solving the semiclassical Maxwell
equations to leading order in ℏ, we have explored the
backreaction of this scalar cloud on the electromagnetic
field. For the Unruh and Boulware states, the charge
density tends to zero far from the black hole, so that the
total charge contained in the scalar cloud is finite, and the
dominant contribution to the electromagnetic field far from
the black hole appears to be the change in the Coulomb
term due to the discharge of the black hole. In contrast, the
total scalar cloud charge in the CCH state appears to be
potentially unbounded (at least for some of the scalar field
and black hole charges considered) since this state is
nonempty at infinity and the space-time has an infinite
volume.

Solving the semiclassical Maxwell equations gives a
combination of the perturbed electromagnetic field and a
metric perturbation. For the quantum states considered in
this paper, we find that this combination has a logarithmic
divergence at the event horizon, suggesting that the semi-
classical approximation employed here (that is, assuming
that quantum corrections are small and working with
linearized equations) may break down near the horizon.
This logarithmic divergence is a generic feature and will
occur for all nonequilibrium states of a charged scalar field
on a charged black hole background, even if the scalar field
is sufficiently massive that charge superradiance is absent.
However, the logarithmic divergence is not present for
equilibrium states, such as the Hartle-Hawking state con-
sidered in [28], which is a thermal equilibrium state that can
be constructed for a massive scalar field when there is no
charge superradiance.
The metric perturbation which arises in the semiclassical

Maxwell equations is not a directly observable quantity,
and it may be that all physical quantities (such as the
electromagnetic field strength) are regular everywhere
outside the black hole. To address this question, it is
necessary to solve the semiclassical Einstein equations
for the perturbed metric and electromagnetic field.
Similarly, in this paper we have considered only the rate
of change of charge of the black hole, whereas an adiabatic
approach provides evidence that the evolution of the
charge/mass ratio of the black hole during its evaporation
exhibits complicated behavior [46,47]. Finding the rate of
change of the black hole mass also requires solving the
semiclassical Einstein equations. However, the semiclass-
ical Einstein equations have, as their source, the renormal-
ized expectation value of the stress-energy tensor operator,
whose computation is beyond the scope of the present
work. We therefore postpone further consideration of the
backreaction problem to future research.

ACKNOWLEDGMENTS

We thank Cormac Breen and Peter Taylor for helpful
discussions. We acknowledge IT Services at The University
of Sheffield for the provision of services for High
Performance Computing. The work of E.W. is supported
by STFC Grant No. ST/X000621/1.

DATA AVAILABILITY

The data that support the findings of this article are
openly available [48].

RENORMALIZED CHARGED SCALAR CURRENT ON A … PHYS. REV. D 111, 105026 (2025)

105026-27



[1] S. W. Hawking, Black hole explosions, Nature (London)
248, 30 (1974).

[2] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[3] A. A. Starobinsky, Amplification of waves reflected from a
rotating “black hole”, Sov. Phys. JETP 37, 28 (1973).

[4] W. G. Unruh, Second quantization in the Kerr metric, Phys.
Rev. D 10, 3194 (1974).

[5] R. Brito, V. Cardoso, and P. Pani, Superradiance: New
frontiers in black hole physics, Lect. Notes Phys. 906, 1
(2015).

[6] J. D. Bekenstein, Extraction of energy and charge from a
black hole, Phys. Rev. D 7, 949 (1973).

[7] C. L. Benone and L. C. B. Crispino, Superradiance in static
black hole spacetimes, Phys. Rev. D 93, 024028 (2016).

[8] L. Di Menza and J.-P. Nicolas, Superradiance on the
Reissner–Nordstrøm metric, Classical Quantum Gravity
32, 145013 (2015).

[9] K.-i. Maeda, No superradiance of spinor wave in the Kerr-
Newman metric, Prog. Theor. Phys. 55, 1677 (1976).

[10] G.W. Gibbons, Vacuum polarization and the spontaneous
loss of charge by black holes, Commun. Math. Phys. 44,
245 (1975).

[11] V. Balakumar, E. Winstanley, R. P. Bernar, and L. C. B.
Crispino, Quantum superradiance on static black hole
space-times, Phys. Lett. B 811, 135904 (2020).

[12] A. Álvarez-Domínguez and E. Winstanley, Quantum fer-
mion superradiance and vacuum ambiguities on charged
black holes, arXiv:2411.00167.

[13] V. Balakumar, R. P. Bernar, and E. Winstanley, Quantization
of a charged scalar field on a charged black hole back-
ground, Phys. Rev. D 106, 125013 (2022).

[14] D. G. Boulware, Quantum field theory in Schwarzschild and
Rindler spaces, Phys. Rev. D 11, 1404 (1975).

[15] W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D
14, 870 (1976).

[16] J. B. Hartle and S. W. Hawking, Path integral derivation of
black hole radiance, Phys. Rev. D 13, 2188 (1976).

[17] S. M. Christensen, Vacuum expectation value of the stress
tensor in an arbitrary curved background: The covariant
point separation method, Phys. Rev. D 14, 2490 (1976).

[18] S. M. Christensen, Regularization, renormalization, and
covariant geodesic point separation, Phys. Rev. D 17,
946 (1978).

[19] S. A. Fulling, M. Sweeny, and R. M. Wald, Singularity
structure of the two point function in quantum field theory in
curved space-time, Commun. Math. Phys. 63, 257 (1978).

[20] V. Balakumar and E. Winstanley, Hadamard renormaliza-
tion for a charged scalar field, Classical Quantum Gravity
37, 065004 (2020).

[21] R. Herman and W. A. Hiscock, Renormalization of the
charged scalar field in curved space, Phys. Rev. D 53, 3285
(1996).

[22] S. Pla and E. Winstanley, Equivalence of the adiabatic
expansion and Hadamard renormalization for a charged
scalar field, Phys. Rev. D 107, 025004 (2023).

[23] R. Herman, A method for calculating the imaginary part of
the Hadamard elementary function Gð1Þ in static, spherically
symmetric space-times, Phys. Rev. D 58, 084028 (1998).

[24] P. Taylor and C. Breen, Mode-sum prescription for the
vacuum polarization in odd dimensions, Phys. Rev. D 94,
125024 (2016).

[25] P. Taylor and C. Breen, Mode-sum prescription for vacuum
polarization in black hole spacetimes in even dimensions,
Phys. Rev. D 96, 105020 (2017).

[26] P. Taylor, C. Breen, and A. Ottewill, Mode-sum prescription
for the renormalized stress energy tensor on black hole
spacetimes, Phys. Rev. D 106, 065023 (2022).

[27] J. Arrechea, C. Breen, A. Ottewill, and P. Taylor,
Renormalized stress-energy tensor for scalar fields in Har-
tle-Hawking, Boulware, and Unruh states in the Reissner-
Nordström spacetime, Phys. Rev. D 108, 125004 (2023).

[28] C. Breen, G. Montagnon, P. Taylor, and E. Winstanley,
Mode-sum prescription for renormalized expectation values
for a charged quantum scalar field on a charged black hole,
Phys. Rev. D 111, 045010 (2025).

[29] J. Arrechea, C. Breen, A. Ottewill, L. Pisani, and P. Taylor,
The renormalized stress-energy tensor for scalar fields in the
Boulware state with applications to extremal black holes,
Phys. Rev. D 111, 085009 (2025).

[30] A. Levi and A. Ori, Pragmatic mode-sum regularization
method for semiclassical black-hole spacetimes, Phys. Rev.
D 91, 104028 (2015).

[31] A. Levi and A. Ori, Mode-sum regularization of hϕ2i in the
angular-splitting method, Phys. Rev. D 94, 044054 (2016).

[32] A. Levi and A. Ori, Versatile method for renormalized
stress-energy computation in black-hole spacetimes, Phys.
Rev. Lett. 117, 231101 (2016).

[33] A. Levi, Renormalized stress-energy tensor for stationary
black holes, Phys. Rev. D 95, 025007 (2017).

[34] A. Levi, E. Eilon, A. Ori, and M. van de Meent, Renor-
malized stress-energy tensor of an evaporating spinning
black hole, Phys. Rev. Lett. 118, 141102 (2017).

[35] C. Klein, J. Zahn, and S. Hollands, Quantum (dis)charge of
black hole interiors, Phys. Rev. Lett. 127, 231301 (2021).

[36] C. Klein and J. Zahn, Renormalized charged scalar current
in the Reissner–Nordström–de Sitter spacetime, Phys. Rev.
D 104, 025009 (2021).

[37] M. Alberti and J. Zahn, Quantum effects in near-extremal
charged black hole spacetimes, arXiv:2501.05549.

[38] Y. Decanini and A. Folacci, Hadamard renormalization of
the stress-energy tensor for a quantized scalar field in a
general spacetime of arbitrary dimension, Phys. Rev. D 78,
044025 (2008).

[39] P. R. Anderson, W. A. Hiscock, and D. A. Samuel, Stress
energy tensor of quantized scalar fields in static black hole
space-times, Phys. Rev. Lett. 70, 1739 (1993).

[40] Heun’s Differential Equations, edited by A. Ronveaux,
Oxford Science Publications (The Clarendon Press, Oxford
University Press, New York, 1995) with contributions by
F. M. Arscott, S. Yu, Slavyanov, D. Schmidt, G. Wolf, P.
Maroni, and A. Duval.

[41] Black Hole Perturbation Toolkit, https://bhptoolkit.org/.
[42] E. E. Flanagan and R. M. Wald, Does back reaction enforce

the averaged null energy condition in semiclassical gravity?,
Phys. Rev. D 54, 6233 (1996).

[43] C. K. M. Klein, The effect of quantum fields on black-hole
interiors, Ph.D. thesis, Universität Leipzig, Germany, 2023.

GEORGE MONTAGNON and ELIZABETH WINSTANLEY PHYS. REV. D 111, 105026 (2025)

105026-28

https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1103/PhysRevD.7.949
https://doi.org/10.1103/PhysRevD.93.024028
https://doi.org/10.1088/0264-9381/32/14/145013
https://doi.org/10.1088/0264-9381/32/14/145013
https://doi.org/10.1143/PTP.55.1677
https://doi.org/10.1007/BF01609829
https://doi.org/10.1007/BF01609829
https://doi.org/10.1016/j.physletb.2020.135904
https://arXiv.org/abs/2411.00167
https://doi.org/10.1103/PhysRevD.106.125013
https://doi.org/10.1103/PhysRevD.11.1404
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.13.2188
https://doi.org/10.1103/PhysRevD.14.2490
https://doi.org/10.1103/PhysRevD.17.946
https://doi.org/10.1103/PhysRevD.17.946
https://doi.org/10.1007/BF01196934
https://doi.org/10.1088/1361-6382/ab6b6e
https://doi.org/10.1088/1361-6382/ab6b6e
https://doi.org/10.1103/PhysRevD.53.3285
https://doi.org/10.1103/PhysRevD.53.3285
https://doi.org/10.1103/PhysRevD.107.025004
https://doi.org/10.1103/PhysRevD.58.084028
https://doi.org/10.1103/PhysRevD.94.125024
https://doi.org/10.1103/PhysRevD.94.125024
https://doi.org/10.1103/PhysRevD.96.105020
https://doi.org/10.1103/PhysRevD.106.065023
https://doi.org/10.1103/PhysRevD.108.125004
https://doi.org/10.1103/PhysRevD.111.045010
https://doi.org/10.1103/PhysRevD.111.085009
https://doi.org/10.1103/PhysRevD.91.104028
https://doi.org/10.1103/PhysRevD.91.104028
https://doi.org/10.1103/PhysRevD.94.044054
https://doi.org/10.1103/PhysRevLett.117.231101
https://doi.org/10.1103/PhysRevLett.117.231101
https://doi.org/10.1103/PhysRevD.95.025007
https://doi.org/10.1103/PhysRevLett.118.141102
https://doi.org/10.1103/PhysRevLett.127.231301
https://doi.org/10.1103/PhysRevD.104.025009
https://doi.org/10.1103/PhysRevD.104.025009
https://arXiv.org/abs/2501.05549
https://doi.org/10.1103/PhysRevD.78.044025
https://doi.org/10.1103/PhysRevD.78.044025
https://doi.org/10.1103/PhysRevLett.70.1739
https://bhptoolkit.org/
https://bhptoolkit.org/
https://doi.org/10.1103/PhysRevD.54.6233


[44] A. R. Brown, L. V. Iliesiu, G. Penington, and M.
Usatyuk, The evaporation of charged black holes, arXiv:
2411.03447.

[45] V. Mohan and L. Thorlacius, Non-perturbative corrections
to charged black hole evaporation, J. High Energy Phys. 04
(2025) 069.

[46] W. A. Hiscock and L. D. Weems, Evolution of charged
evaporating black holes, Phys. Rev. D 41, 1142 (1990).

[47] Y. C. Ong, The attractor of evaporating Reissner–Nordström
black holes, Eur. Phys. J. Plus 136, 61 (2021).

[48] G. Montagnon and E. Winstanley, Figshare, 10.15131/shef
.data.28200005.

RENORMALIZED CHARGED SCALAR CURRENT ON A … PHYS. REV. D 111, 105026 (2025)

105026-29

https://arXiv.org/abs/2411.03447
https://arXiv.org/abs/2411.03447
https://doi.org/10.1007/JHEP04(2025)069
https://doi.org/10.1007/JHEP04(2025)069
https://doi.org/10.1103/PhysRevD.41.1142
https://doi.org/10.1140/epjp/s13360-020-00995-4
https://doi.org/10.15131/shef.data.28200005
https://doi.org/10.15131/shef.data.28200005

	Renormalized charged scalar current on a Reissner-Nordström black hole in the presence of charge superradiance
	I. INTRODUCTION
	II. CHARGED QUANTUM SCALAR FIELD ON AN RN BLACK HOLE
	III. RENORMALIZED EXPECTATION VALUES
	A. Hadamard renormalization
	B. Vacuum polarization
	C. Renormalized charge current

	IV. NUMERICAL RESULTS
	A. Radial modes
	B. Renormalized vacuum polarization
	C. Renormalized charged scalar current

	V. BACKREACTION
	VI. CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	References


