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Abstract: Mesh adaptation techniques can significantly impact Computational Fluid Dy-

namics by improving solution accuracy and reducing computational costs. In this review,

we begin by defining the concept of mesh adaptation, its core components and the ter-

minology commonly used in the community. We then categorise and evaluate the main

adaptation strategies, focusing both on error estimation and mesh modification techniques.

In particular, we analyse the two most prominent families of error estimation: feature-based

techniques, which target regions of high physical gradients and goal-oriented adjoint meth-

ods, which aim to reduce the error in a specific integral quantity of interest. Feature-based

methods are advantageous due to their reduced computational cost: they do not require

adjoint solvers, and they have a natural ability to introduce anisotropy. A substantial por-

tion of the literature relies on second-order derivatives of scalar flow quantities to construct

sensors that can be equidistributed to minimise discretisation error. However, when used

carelessly, these methods can lead to over-refinement, and they are generally outperformed

by adjoint-based techniques when improving specific target quantities. Goal-oriented

methods typically achieve higher accuracy in fewer adaptation steps with coarser meshes.

It will be seen that various approaches have been developed to incorporate anisotropy into

adjoint-based adaptation, including hybrid error sensors that combine feature-based and

goal-oriented indicators, sequential strategies and adjoint weighting of fluxes. After years

of limited progress, recent work has demonstrated promising results, including certifiable

solutions and applications to increasingly complex cases such as transonic compressor

blades and film-cooled turbines. Despite these advances, several critical challenges remain:

efficient parallelisation, robust geometry integration, application to unsteady flows and

deployment in high-order discretisation frameworks. Finally, examples of the potential role

of artificial intelligence in guiding or accelerating mesh adaptation are also discussed.

Keywords: error estimation; feature adaptation; adjoint adaptation; anisotropic adaptation;

isotropic adaptation; mesh movement; mesh refinement; mesh coarsening; mesh regeneration

1. Introduction

1.1. Background and Motivation

The use of Computational Fluid Dynamics (CFD) has steadily grown as improvements

in computer hardware, numerical accuracy and general reliability have been accomplished.

As a consequence, it is now employed on a daily basis in industrial settings, such as Airbus,

Boeing and Rolls-Royce, in the design process of a wide variety of components. As high-

lighted by [1], the simulation of steady, transonic/supersonic flows may be considered a
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solved problem, for which reason CFD is consistently utilised for preliminary aerodynamic

design. For example, Refs. [1,2] report aircraft development cases where computer sim-

ulations have or are predicted to aid the design process. In particular, during the Boeing

777 design process, CFD use was mainly related to the wing at high-speed, fuselage and

engine/wing interfaces. Interestingly, the cab design was entirely carried out utilising

computer simulations, and no further modifications were required after wind-tunnel exper-

iments. This meant that experimental testing would be unnecessary for future cab design.

Additionally, the authors state that the steady increase in CFD simulations has allowed a

consistent reduction in wind-tunnel testing in an ever-decreasing number of wing designs.

These developments have, therefore, allowed significant costs and time savings.

Concerning jet engine manufacturing, [3] describes the current status of the usage of

CFD on various components of a modern turbofan jet engine. In particular, the authors

report a 50% reduction in the experimental testing of high-pressure compressors at Pratt

& Whitney as a result of CFD simulations. Similarly, [4] shows how a Reynolds-Averaged

Navier-Stokes (RANS) study favoured the improvement of fan and low-pressure compressor

efficiency by 0.6% and 1%, respectively, with savings of 20 M$ in rig testing.

Despite these successes, a more pessimistic view was given by [5]: if CFD fails to

correctly predict the performance of turbomachinery components, the redesign and retest-

ing process cost can be of the order of 100 M$. In particular, they give an idea of the

accuracy range required in today’s designs of high-pressure turbines and compressors.

For the first item, a 1% reduction in the cooling rate will result in 0.4% cycle efficiency

increase in the gas turbine, while for the second, improving the adiabatic efficiency by

1% will yield an overall cycle efficiency increase of 0.5%. These performance gains are

becoming more difficult to obtain, and thus, accuracy is of paramount importance. For

example, the 3rd Drag-Prediction Workshop results showed significant scatter in the drag coef-

ficient (CD) predictions from various codes using different turbulence models and meshes.

As noted by [6,7], a variation of just 2.5 × 10−3 in CD computations can represent up to

±100 passengers in payload capacity for a civil aircraft. Additionally, they highlight how

the same CFD code employing the same turbulence model gave dissimilar results in mesh

independence studies starting from different grids. As stated by [8], it is very difficult to

achieve a CFD solution that properly resolves all flow features. The authors give a twofold

explanation as to why this is the case. Firstly, grid generation, having always been an issue,

has become even more intricate due to the greater complexity of the geometries modelled

today. Additionally, this will also augment the burden on the flow solver, as many more

smaller flow complexities will start to appear. The second reason for CFD shortcomings

is related to the nonlinear nature of fluid flow and the model Navier±Stokes (NS) relations.

For these reasons, the authors argue that multiple mesh independence studies are required

to achieve a reliable solution for a single case. In terms of time consumption, it should be

noted that a complete refinement of a grid will increase the simulation time sixteen-fold.

Therefore, it can be concluded that the use of an automatic approach to modify a grid to

reliably compute the flow solution would solve the issue. Moreover, as pointed out by [9], a

successful mesh adaptation and error estimation technique would allow for the reaching of

an asymptotic convergence of the flow solution, and thus reliability, on coarser grids. This,

in turn, would have a positive outcome on a variety of aspects of a generic aerodynamic

design process, such as reducing user/expert interaction, improved final design due to

more accurate solutions, increased widespread employment of CFD and so on.
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1.2. Objectives of the Review

With the need for mesh adaptation technology having been justified, the aim of this

review is to critically examine the development, implementation and future potential of

mesh adaptation techniques in CFD. The aims and objectives are as follows:

• To introduce the fundamental concepts behind mesh adaptation: error estimation,

adaptation mechanics and optimality criteria.

• To classify and evaluate the most successful mesh adaptation methodologies, generally

revolving around the feature-based and goal-oriented approaches.

• To critically assess the advantages and limitations of each adaptation technique, in-

cluding aspects such as anisotropy, solver integration and industrial deployment.

• To highlight recent advances in mesh adaptation, such as the use of fully tetrahedral

mesh regeneration for viscous flows, solution certification and industrial applications.

• To identify challenges and future research directions that could enable the more

widespread adoption of mesh adaptation, including the role of artificial intelligence,

high-order methods, unsteady flows and parallel computations.

By fulfilling these points, this paper aims to provide a reference for researchers who

wish to implement mesh adaptation techniques in their CFD workflows.

This paper is an updated version of the material presented in the first author’s

thesis [10].

2. Understanding Mesh Adaptation

The birth of mesh adaptation as an individual research theme dates back to the early

1980s, with the first conferences dedicated to this subject taking place in 1982 [11]. It consists

of the automatic modification of a grid based on some sensor to reduce the discretisation error

(de) without the need to refine the mesh uniformly. According to [12,13], this type of error

is the most difficult to estimate and the main source of inaccuracy in a CFD solution, with

others being round-off, iterative and statistical sampling errors. In a more general framework,

ref. [14] also includes modelling inaccuracies, input uncertainties and post-processing

errors as causes of solution inexactness.

The de of a partial differential equation (pde) is defined as the difference between the

continuous analytical solution and that of the discretised system [12]. The very same

author is able to show how this quantity acts as a local source of error than for the NS

relations and is then transported via the convection terms throughout the domain. To this

end, two different test cases to show this behaviour are illustrated: in subsonic flow, the

de is propagated along the streamlines, while, for hypersonic cases, it is convected along

Mach lines.

Apart from the automated accuracy improvement with minimal node count, optimal

mesh adaptation can be beneficial to other aspects. As stated by [15], without mesh

adaptation, the grid generation process is far too complex. In fact, if it is not employed in

the overall CFD procedure, a significant amount of time has to be spent by the engineer

to generate an appropriate mesh. Moreover, unless the user has a basic knowledge of the

test-case aerodynamics and the flow solver’s numerical performance, the overall process

can require iteratively modifying the grid and running the solver to achieve an appreciable

level of convergence of the parameters of interest and resolution of the main flow features.

There are two main branches concerning mesh adaptation. These are divided accord-

ing to the flow solution availability: a-priori techniques do not utilise any data other than

the grid itself, while a-posteriori approaches will require an initial evaluation of the flow

solution. The former techniques concern mainly the geometric characteristics of the mesh,

such as cell aspect ratio, skewness and size transition. Due to the fact that important regions

of the flow are unknown, it is not possible to add, remove or move nodes strategically,
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which is why these techniques have found limited use. On the other hand, a-posteriori pro-

cedures have shown consistent solution improvement with limited node addition, as they

target the flow regions where most complex features appear. The latter mesh adaptation

process can be considered a classical closed-loop feedback system, as shown in Figure 1.

In fact, once the flow solution is evaluated, an error estimation procedure follows. This is

where the main diversity of the mesh adaptation technology resides, with a large number of

possible strategies being currently available from published work. Once the error has been

determined, it is employed to add/remove/move nodes in the domain or regenerate the

mesh entirely, with the procedure being repeated for a user-specified number of iterations

or error convergence level.

Feature
error estimation

Adjoint Solution

m,h,p,r adaptationInterpolate
flow solution

User-generated
grid

Flow solution

Post-processing

Standard CFD process

Adjoint
solution?

Adjoint error
estimation

No

Yes

Mesh adaptation augmented CFD process

Figure 1. CFD process augmented with an a-posteriori mesh adaptation feedback system. Blue arrows

relate to feature-based approaches, red to goal-oriented ones.

In general, mesh adaptation can be seen as an automated control system to drive

a car. The fact that it has to remain within the carriage delimiters and avoid hitting the

opposing traffic on one side or the pedestrian pavement on the other represents the stability

limits of the flow solver. Repeated readings from the vehicle status allow the control

algorithm to limit the car’s movement within the boundaries equidistant from each side,

with slight over- and under-shoots being corrected. Similarly, the iterative application

of the grid modification technique should achieve flow accuracy convergence, with the

solution oscillating within the limits of flow solver stability. Historically, this last point has

represented one of the main complexities when employing mesh adaptation techniques. In

fact, often, the initial flow solution is not in asymptotic range; i.e., it does not capture all the

physical features present in the flow (regardless of their sharpness). Grid modification in

one region may cause new, previously undetected complexities to appear. These may distort

the mesh too much or fall in portions of the mesh that are unsuitable for solver stability,

therefore impeding any further analysis. This has probably been one of the main reasons

behind the limited use of mesh adaptation in industrial settings. Nowadays, however,

this issue has been, for a particular meshing strategy and modelling, solved, and it will be

discussed later on in more detail.

The overall mesh adaptation process can be split into three components [11]:

1. Optimal mesh determination;

2. Error estimation;

3. Adaptation mechanics.
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2.1. Optimality Criteria

To appropriately modify a mesh, it is necessary to be able to determine when it reaches

its optimal state. This means that the solution is sufficiently accurate that no further change

is required. In fact, the user will generally not know when this point has been reached,

as the location and intensity of flow characteristics may only be guessed in either case,

requiring a significant amount of experience.

In general, all techniques do employ the so-called error-equidistribution principle. This

states that the optimal mesh is reached once the error sensor employed is equal over all

elements in the mesh [16]. Here, the author also reviews the proof of this concept. From

a more intuitive point of view, [15] expresses it as a mapping from the physical space,

where cell sizes may have any value, to a computational domain, where the grid elements

have uniform size. During the mesh adaptation process, a threshold is then determined to

equidistribute the inaccuracies in the grid, and once the statistical average error in the mesh

has a relatively constant behaviour, it is possible to terminate the procedure (see, e.g., [17]

for a feature-based approach and [18] for an adjoint-related case). A statistical analysis is not

always employed, though. In fact, a final inaccuracy level may be determined starting with

the application of the equidistribution principle ([19]), while in other cases, a limit on the

number of adaptation steps or final node count may be preferred. This is sometimes referred

to as complexity, and the use of such philosophy to control the adaptation process may be

found in [20]. In [21], the adaptation stopping criteria considered were the variation in the

quantities of interest (i.e., lift coefficient, pressure and viscous drag) over three consecutive

adaptation cycles: if this was below 0.1% to 1% (depending on the quantity), the adaptation

was stopped.

2.2. Error Estimation

In general terms, there are two popular branches of error estimation techniques

published in the literature. The oldest of these two methods is the feature-based approach. In

this case, the data of interest relate to physical values of the nonlinear flow, such as density

or static pressure, to capture shocks present in the solution. Ideally, the best parameter to

apply is one that enables the identification of all the flow intricacies, thus allowing node

clustering to occur where they appear. On the other hand, the chosen physical variable

should also be able to identify where fewer nodes are needed, as the solution has a linear

behaviour and thus can be easily replicated using a coarser grid.

The other main mesh error estimation is generically called goal-oriented and makes

use of adjoint technology. Originally, this technique was devised to optimise geometry

with an attenuated computational effort with respect to (wrt) other approaches, such as

the finite-difference method (FDM). Once the nonlinear flow solution has been achieved, an

adjoint solver is employed to determine the sensitivity of an integral quantity of interest

(e.g., lift) wrt multiple design parameters. This is written as follows:

∂R

∂Q
Ψ

T = −
∂ f

∂Q
(1)

where the adjoint state vector is Ψ
T = − ∂ f

∂R , f is the quantity to be optimised, such as

lift or drag, R is the residual vector and Q is the vector of conservative variables. As

Figure 2 shows, the overarching philosophy of the adjoint method is visible. Instead of

perturbing a design variable, α, and observing how this propagates through the system (via

the NS relations) in forward mode to affect a functional f , the method works in reverse.

This means that it perturbs f to determine which changes in α would influence it most. In

general, there are more design parameters, α, than there are performance quantities f ; therefore

the adjoint approach allows for a reduction in computations. As will be seen later, this
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extra computation can provide an indication as to where solution imbalances are most

influential on the functional level; therefore, it specifies which regions of the mesh ought to

be modified.

System Model
Navier-Stokes Eq.

R(Q) = 0

Design
Variables

Perfomance
Quantities

δ̂αi
Direct Solver

δfj
Adjoint Solver

Single Functional
Perturbation

Single Design
Variable Perturbation

−→
̂α

−→

f

Figure 2. Direct and adjoint sensitivity computation. From [10].

At this point, it should be highlighted that feature-based approaches will attempt to

improve the overall flow solution, while adjoint techniques will only better the quantity

they were evaluated for. Naively, it is easy to conclude that the former approaches should be

pursued, as they are designed to modify the mesh to predict the overall flow solution more

accurately, not just a single value. Significant research has shown, however, that adjoint

approaches are more reliable and end up generating coarser grids (see, for example, [20,22±24]).

In this section, feature and goal-based methods have been touched upon, providing the

generic definition. Due to their importance and the large number of applications, a more

in-depth analysis will be provided in Sections 3 and 4, respectively. A summary of the main

characteristics of both approaches is provided in Table 1.

Another class of mesh adaptation sensors is truncation error (te)-based, with this being

defined as the difference between the continuous pde and the discretised version [13]. It may

be determined by employing the Taylor-Series expansion, but this can be quite complicated

and long-winded unless the pde at hand is relatively simple [25]. To this end, [26,27]

employed the Taylor-Series to derive expressions relating mesh quality and te for typical 2D

and 3D CFD grids. Despite the validity of the technique elaborated, it is relatively complex

even in its 2D formulation. The te effect was studied in detail by [12]. In his work, the

author showed how this quantity is actually a source of error that arises for the NS relations

and is then transported to other regions of the domain. To this end, the Continuous and

Discrete versions of the Linear Error Transport Equation were derived. The first te estimation

approach suggested by the author would require either the exact continuous solution or, in

its absence, a Richardson Extrapolation. The second technique necessitates the construction

of the continuous operator. While this process is feasible for the case of Finite Element

Method (FEM) discretisations, for FDM and the Finite Volume Method (FVM), the procedure

is more involved, as it would require a curve fitting process. Another example of the te-

based error estimation procedure is the so-called τ methodology [28], related to multigrid

approaches [25]. For other material concerning te-based approaches, the interested reader

is referred to the references in [29], while other examples relating the te to adjoint adapted

techniques can be found in [30].

A final mention should be made regarding the difference between isotropic and

anisotropic approaches. Both words are derived from the Greek language with the prefix iso-,

meaning identical, and ani-, meaning different. The suffix -tropos translates to direction. There-

fore, in a mesh adaptation setting, the use of these words refers to the directionality of the

error estimation and the grid modification technique. In fact, isotropic mesh adaptation will

lead to the same error in all three directions, while an anisotropic technique will be able to

differentiate whether one direction has a greater error/requires more clustering wrt others.
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Again, it is easy to understand that the latter will be more efficient, only refining/clustering

nodes in the main direction, not in all.

2.3. Adaptation Mechanics

According to [11], there are mainly 4 grid modification approaches:

• r-methods ⇒ nodal movement;

• h-methods ⇒ refinement and coarsening;

• p-methods ⇒ order enrichment;

• m-methods ⇒ regeneration.

As discussed by [31], a mesh movement algorithm comprises three components:

1. Monitor function ⇒ quantity driving the node relocation (error);

2. Mesh equations ⇒ map between computational and physical domains;

3. Interpolation ⇒ solution estimate at the new nodal position.

The monitor function may be determined in three ways: a-priori (see Figure 3), a-

posteriori and based on physical arguments [32]. In the case of an isotropic movement, the node

relocation driving quantity is a scalar, as it does not convey any directionality information.

On the other hand, to achieve anisotropy a matrix-valued quantity is required. Once the

monitor function has been determined, it is necessary to equidistribute it over the physical

domain. This can be achieved in different manners, i.e., geometric conservation laws, optimal

transport or moving mesh pdes [32]. The resulting equation is then discretised and can be

solved simultaneously with the physical problem at hand. Alternatively, it can be evaluated

sequentially. It is clear that it is the latter approach that requires the interpolation of the

flow field. Once the movement equation has been solved, it will produce either the node

velocity or location for the adapted mesh.

(a) (b)

Figure 3. Example of a-priori mesh movement using control volume-based Laplacian smoothing as the

monitor function: (a) Before. (b) After. From [10].

As described by [33], an alternative approach to equidistribution to derive mesh equa-

tions is that employing error direct minimisation. By formulating the minimisation in

terms of node locations and pde variables, an extra equation may be solved simultaneously

with those of the problem at hand. This adds a further unknown to the overall system,

i.e., the node position. This technique is generally known as the Moving FEM. One of the

most successful mesh movement methods employs a spring-stiffness approach (Figure 4). In

this case, the grid edge lengths are the spring-stiffness, while the error can be seen as the

potential energy at each node Pi [34]:

Pi =
1

2

Ei

∑
j=1

κij(
−→x i −

−→x j)
2 (2)
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where kij is the spring-stiffness representing the error between nodes ij, j is the list of

neighbours connected to node i through edges Ei and −→x is each node’s displacement

vector. Minimising this quantity and considering a smooth relocation of each node to its

optimal position leads to the following:

∆
−→x i =

−→x new
i −−→x old

i =
∑
Ei
j=1(

−→x old
j −−→x old

i )κij

∑
Ei
j=1 κij

(3)

−→x new
i = −→x old

i + ω∆
−→x i (4)

with ω being a user-defined relaxation factor. Equidistribution is achieved by determining

the node locations to achieve system equilibrium. The spring potential energy equations

are solved separately from that of the NS relations and in an iterative fashion. Therefore,

they will require interpolation of the flow solution or error quantity. An example of its

usage on a mesh at mid-span of a transonic compressor blade is reported in Figure 5:

the right mesh shows clustering towards a shock. According to [11], there is a further

r-adaptation approach: once the error has been determined, this may be employed in an

optimisation approach determining the node location minimising the error. An example of

such a method is that employed by [35].

Node 1

Node 2

Node 3

Node 4

Node 5

Node 0

κ̃01

κ̃02

κ̃03

κ̃04

κ̃05

Node 1

Node 2

Node 3

Node 4

Node 5

Node 0

Spring stiffness analogy

Spring Stiffness

Figure 4. Mesh movement spring analogy. From [10].

Figure 5. Initial and mesh-movement anisotropic-adapted meshes. From [10].

A final mention should be made for the mesh movement/deformation methods

devised to account for geometry changes. In fact, this may apply in the case of optimisation,

or in an unsteady simulation with moving items (e.g., to study fluid-structure interaction).

Examples of these techniques are the linear spring method and elasticity, Laplacian smoothing

and procedures using the interpolation analogy [36]. The very same authors also provide

an overview and classification of the various methodologies.

From a historical perspective, refinement (Figure 6) and coarsening (Figures 7 and 8)

methods are possibly the most popular mesh adaptation approaches, having found
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widespread use in the CFD community. A while back, [37] summarised the advantages of

h-adaptation as follows:

1. Physical conservation of quantities;

2. Robustness;

3. Parallelisation.

1. Mark edges 2. Split cell into faces 3. Check face templates

4. Propagate marking 5. Re-assemble and
check cell template

6. Split and
determine connectivity

Added face centroid

Added to meet template

High error

Figure 6. Mesh refinement procedure example. From [10].

Stored as 8 different nodes Stored as 8 nodes (2 repeated)

Stored as 8 nodes (3 repeated)Stored as 8 nodes (4 repeated)

Edges to be collapsed

Figure 7. Repeated mesh coarsening by means of edge collapse. From [10].
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(a) (b)

(c) (d)

Figure 8. Example of mesh coarsening via repeated edge collapsing: (a) Hand-generated mesh.

(b) Coarsening step 1. (c) Coarsening step 2. (d) Final coarsening step. From [10].

In their study on tetrahedral meshes, only 3 refinement patterns were allowed. In

the subsequent splitting, these templates would be further constrained. The aim was to

maintain mesh quality. On the other hand, for the coarsening, they allowed more possi-

bilities, independently of whether adaptation had been previously applied to the cells.

An interesting point concerning their work, is the effort to try to reduce the amount of

information stored from the previous grid in an attempt to minimise the memory burden.

Again employing tetrahedral grids, [38] studied the refinement effect on the resulting

element’s quality and showed that, regardless of the number of adaptation steps, a limited

set of similar tetrahedra can be created.

Shortly afterwards, [39] attempted to refine fully tetrahedral grids in an isotropic

fashion to improve control over mesh quality. One of the author’s conclusions relates to the

difficulty in employing the refinement of simplicial elements while achieving alignment

with the flow anisotropy. Therefore, they concluded that hexahedral elements would be

better suited for this purpose. Moreover, in a later article [40], they claimed that, by using

these cell types, a gain is achieved in terms of accuracy and resulting grid quality. In

this work, an anisotropic h-refinement strategy was developed: edges below a user-defined

threshold would be removed (coarsening), while those above it would be split (refinement).

It should be noted that the coarsening of the grid was only carried out on elements marked

to be removed that appeared as a consequence of previous adaptation steps’ refinement.

This means that no parts of the mesh were coarser than the starting grid. Additionally, to

avoid hanging nodes, hybrid elements were employed at the interface between finer and

coarser regions of the mesh. If these elements required subdivision in future refinement

steps, they were removed, and the starting hexahedra would be split instead. An important

mention concerns the refinement propagation into undesired regions: in fact, it was noted

that extra edges would be marked in an attempt to fulfil the splitting templates available.
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To avoid this issue, unless the edge marking allowed hexahedra to be split into smaller

hexahedra, the cell was subdivided into 6 pyramids by placing a node at its centroid.

As for the previous case, [41] used a hierarchical approach requiring template-splitting

definition. Concerning tetrahedral volumes, only three valid configurations were chosen:

each of these cell types could only be refined once without splitting it in an isotropic fashion.

A similar approach was chosen for hexahedral elements; these could only be split into

smaller cubes unless they formed the interface between fine and coarse mesh zones. In

total, the refinement algorithm allowed 8 possible subdivisions of hexahedral and pyramidal

cells, while 9 were permitted for prisms. The actual code implementation consisted of

splitting each volume into its faces and determining the new cells according to the face

marking combinations. To avoid coding repeated templates for different orientations of

each cell, a rotation of their connectivity data was applied. In [42,43], the authors developed

a methodology to be able to refine a fully hexahedral mesh without introducing new types

of cells, yet they maintained the grid conformal (see Figure 9). This was an extension

of the approach discussed in [44,45]. The process consisted of splitting each edge of a

hexahedron into three and applying a ªshrinkingº of the hexahedral layers. In the final

step, the grid connectivity was updated. Shortly afterwards, [46] extended the method

just outlined by allowing the local refinement of either nodes, edges, faces and cells, thus

increasing the flexibility. As a progression of this work, [47], included the possibility of

coarsening, maintaining a conformal grid with solely hexahedral elements. Two ways of

doing this were proposed; the first one, a global process, consisted of removing a sheet of

connected cells. However, given that this could cause issues further away from the actual

coarsening region, they also devised a local operation. In [48], a further improvement of

the sheet-refinement algorithm of [46] was achieved by including the element-by-element

enrichment approach of [44].

Refinement

Wall Wall

All elements
remain quadrilateral

Figure 9. Example of quadrilateral-to-quadrilateral refinement. Valid in 3D also.

The issue relating to the generation of hanging nodes and different levels of refinement

when fully hexahedral grids are employed was also discussed by [49]. As in previous

cases, the interface elements between finer and coarser regions were never refined: in

subsequent adaptation steps, they would be removed to minimise poor quality. Moreover,

the authors managed to reduce the amount of possible transition cases between the two

different mesh-density regions.

The effect of over-refinement due to the error directionality not being parallel to the

cell faces was discussed by [49]. In this case, the refinement templates were defined by their

edges, but the constraints on the possible combinations were governed by the faces; e.g., in

their case, they allowed a quadrilateral to have all 4, 2 parallel or 2 adjacent (i.e., sharing
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a node) and a single edge to be marked, but not 3, and in this case, the fourth would be

forced to be split, propagating the refinement. Again, as in previous articles, the authors

decided to remove any interface element between the refined hexahedral and the coarser

mesh regions at the start of the next adaptation step. Another publication of interest is [50]:

here, a discussion of the differences between splitting edges of a fully hexahedral mesh

into 2 or 3 sub-edges is explored, with particular attention to the parallel implementation

of the former. In fact, once the domain has been split, it is difficult to achieve the same

refined mesh, regardless of how the parallel division is carried out. Another refinement

methodology of interest is that relating to Cartesian meshes: in this case, starting from a

fully quadrilateral or hexahedral grid, it is possible to maintain the element type even

after adaptation (see Figure 10). This requires a modification of the solver to be able to

handle hanging nodes. Successful examples of Cartesian mesh adaptation are [51±53]. An

important advantage of these methods relates to their speed. p-methods are sometimes

called order enrichment, and they consist of the increase or reduction in the polynomial order

in the flow solver. From an intuitive point of view, it is a ªflow solver refinementº process,

as no change is applied to the physical grid. These techniques are generally applicable

to high-order methods (in general high-order methods have an order greater than 2, i.e.,

that of standard FVM approaches). These methods include FEM or related methods (e.g.,

Spectral Elements). For this reason, according to [11], in the past, they have found limited

use in CFD since, in general, higher-order solvers involve greater complications in terms of

monotonicity near discontinuities and in turbulent flow (examples as to how these have

been solved can be found in [54] for incompressible flows and [55] for compressible ones).

Additionally, the author states that they are more difficult to code since there are more

possible templates for each type of cell. Nevertheless, in more recent years, much of the

flow solver-related research has been carried out with high-order methods, meaning that

p-adaptation techniques have started to gain more and more momentum. Examples of the

use of order enrichment can be found in [6,14].

Wall WallRefinement

Hanging
Node

Figure 10. Example of Cartesian mesh refinement.

Mesh regeneration is now considered the best choice for grid adaptation, as it allows

the greatest freedom, flexibility and accuracy in achieving a suitably modified mesh for a

given amount of nodes. As discussed by [56], there are several paths one may take. The

simplest approach consists of a partial regeneration of the grid. Once features have been

detected, portions of the starting mesh are removed and filled with good-quality elements,

ideally aligned with the feature. An example of such an approach is provided by [57].

In their work, the authors employed a sensor to determine the feature location and then

locally reconstructed the mesh around it using an advancing front approach. Effectively,

extracting flow complexities and defining them as geometrical entities, allows this infor-

mation to be employed in a complete mesh regeneration process. Therefore, the procedure

may consist of placing a good-quality, aligned quadrilateral/hexahedral mesh around the

flagged complexity. The rest of the domain can then be filled with any combination of

hybrid elements, as long as no hanging nodes or negative volumes appear. Examples of mesh
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regeneration treating the flow features as geometrical entities and regenerating the entire

mesh are [58±60].

Over time, fully triangular/tetrahedral approaches to mesh regeneration have started

to gain popularity due to the shape flexibility in handling very complex solutions and the

feasibility of coding such methods. Unlike the previously mentioned techniques, these

do not require any pseudo-geometrical information identifying the location of shocks or

wakes; they simply employ a continuous metric field, as is described in Section 3. In this

approach, given a number of nodes, the distribution of the elements may be optimised to

allow alignment and clustering towards the regions of interest. For a detailed, up-to-date

analysis of these techniques, the reader is referred to [61,62].

3. Feature-Based Mesh Adaptation

Possibly the most popular feature-related techniques attempt to highlight solution

complexities as sources of inaccuracies. Therefore, flow quantities, such as density or

Mach number, are generally utilised as sensors. According to [11], common feature-based

approaches are differences in variables, the Hessian matrix of flow quantities or a comparison

of derivatives.

An example of the calculation of the Hessian of the Mach number at the mid-span

of a compressor blade before and after adaptation is shown in Figure 11: clearly, the

adaptation has sharpened the sensor where the flow features are (shock, its interaction with

the boundary layer and shear layers). One of the main issues regarding these techniques

was the inability to handle complexities of different magnitudes [11,15,63]. From a physical

standpoint, there is no single flow quantity that has a significant variation over all possible

features appearing. For example, in a turbulent transonic flow, the Mach number is able to

capture the shock, wake and boundary layer, but is uniformly zero at the wall. Therefore, it

would miss, for example, the shock propagation at the wall, unlike the static pressure. On

the other hand, this quantity does not vary across any wake, separation and boundary layer

present in the solution. To this end, [11,15] suggest using multiple flow parameters with

non-dimensionalisation of each indicator. In particular [63], merges multiple flow quantities

into a single mesh metric with a local rather than global approach, while [58] utilises the

static pressure and Mach number to capture all flow quantities. A similar approach is taken

by [59,60], where shocks and wakes are extracted separately by employing a combination of

velocity, density, Mach number and static pressure. The solution to this particular problem

was provided by [64]: the authors developed the metric definition, such that multiscale

phenomena (e.g., turbulence and shock/boundary interaction) could be captured via a

unique error sensor.

(a) (b)

Figure 11. xx-component of the Mach number Hessian matrix: (a) Before adaptation. (b) After

adaptation. From [10].
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One of the main characteristics of feature-based approaches relates to the amount of

research that has been carried out to determine anisotropic error sensors. In fact, most flow

features display directionality in the sense that variations in quantities across them is far

greater than in the tangential direction. Moreover, the ability to align the grid with solution

complexities such as shocks will allow for the satisfaction of Rankine±Hugoniot relationships,

thus improving accuracy [58]. Being able to determine a directional error estimator will

allow for the achievement of a higher density of nodes where they are actually needed,

hence also improving the solution. On the other hand, isotropic approaches do not place

any relative importance on the error directionality. This is not a disadvantage in terms

of achieving improved accuracy, but it concerns the larger amount of nodes required to

achieve the same solution wrt anisotropic approaches. It is, therefore, mainly a question

of the efficiency of the resulting adapted grid that has pushed the research community

towards these techniques. As discussed by [61], the concept of anisotropic mesh adaptation

appeared towards the end of the 1980s in [65]. In this case, grid generation was modified to

be able to produce elements with different stretching in 2D. Three-dimensional versions

were developed a few years later, in [66,67], but according to [61], the visible anisotropy

was minimal. A far more powerful approach to capturing the flow features directions

was developed by [68]. In this case, the authors argued that the absolute value of the

Hessian matrix of a scalar quantity of the flow could be adopted to map the edge length

to a Riemannian metric. Obviously, the Hessian matrix represents the error in the linear

interpolation over an element [34]. Considering a flow scalar quantity, q, the Hessian matrix,

H, can be written as follows:
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This can be eigen-decomposed into eigenvalues λ and eigenvectors −→v as follows:

H = −→v |λ|−→v T (5)

where the absolute value of eigenvalues, λ, is considered to ensure positive semi-definiteness

to achieve a Riemannian metric. The eigenvectors now indicate the directionality of the error,

while the eigenvalues are the error magnitude.

Since then, this technique has been the source of significant research. This process was

later employed by [69] in a combined movement and refinement development. The fact that

this error estimator can be deployed to move the grid nodes and generate an anisotropic

grid makes it suitable in a structured data setting, as no connectivity between the elements

is changed. Therefore, [34] made use of it to determine a new edge length that could be

fed into a spring-stiffness-based mesh movement procedure, thus allowing equidistribution.

Their results showed that the starting mesh had been significantly stretched and clustered

towards the main flow features. As previously mentioned, flow quantities are difficult to

utilise on their own to adapt the mesh successfully. Therefore, [63] not only combined the

metrics of multiple variables but also modified these at the wall and in its vicinity to achieve

good orthogonality and allow the user to select a certain wall distance. The finalised error

was then used in an edge swap, collapse, split and movement process. The same strategy

in terms of grid mechanics, but without any artificial modification of the Hessian matrix

or derived metrics, was employed by [17,70±73]. In their work, they iteratively applied

the mesh adaptation process based on the Riemannian metric and were able to show how,
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starting from different grids, the same final solution could be achieved. Moreover, the

final adapted grid produced the same answer when utilised with different flow solvers.

However, they did note that, throughout the adaptation process, the solver settings had

to be changed to include higher artificial damping to allow satisfactory convergence on

the poor initial grids that were created. This requirement was then unnecessary for the

resulting grid. In particular, in [17], they show the initial and final error distribution over

the mesh. It is clear from the curves that this has been appropriately equidistributed over

the domain. Later, in [71], they actually employed the strategy they had devised for 3D

flows, yet they were not able to show the same sort of improvement as for the 2D cases

they had analysed until then. One of the possible reasons behind the reduced performance

is the treatment of turbulent regions near the wall. In fact, as is generally the case, wall

functions are used and require suitable grid spacing in order to appropriately capture the

entire velocity profile. This is generally not known during the grid generation process and,

therefore, should be taken into account in the adaptation process. This was the central

aspect of the work in [74]. Here, the authors proposed modifying the near-wall metric

derived from the Hessian matrix in two different ways to accommodate cases where wall

functions are employed and cases where they are not. To this end, they devised two

separate strategies. In cases where the near-wall velocity profile was modelled, they forced

the near-wall layers to employ a spacing equal to that specified by the user. In regions such

as stagnation points, the y+ requirement was neglected, as it would be too small, and the

actual error metric derived was employed instead. For cases where the wall functions were

not used, e.g., fully tetrahedral grids, the wall metric was modified to employ the largest

eigenvalue perpendicular to the surface, while the other two were aligned tangentially to

the wall itself. Another approach employing the Riemannian metric and applying special

modifications to the grid in the near wall region is discussed in [75,76].

A different Riemannian metric-based approach to refinement and movement was proposed

by [42,43]. In fact, nodes were added while managing to keep the grid fully quadrilateral

(in 2D or hexahedral in 3D) without any hanging nodes, thus deploying the mesh movement to

smooth out the overall grid. They employed the so-called pillowing approach, as described

by [45], alongside the ideas of [44].

Given the successful results obtained by deploying Hessian metrics to adapt the grids,

mesh regeneration techniques based on this quantity started to be favoured. It should be

clear that two different approaches may be undertaken. The first flags domain features and

attempts to build a fully quadrilateral/hexahedral block around it, essentially treating it

as a geometrical entity. The remainder of the computational field may then be filled up

with a combination of hybrid elements. Another approach which appears to have gained

more popularity is the complete grid regeneration employing the Hessian metric to guide

the location, size and orientation of tetrahedral elements. Examples of mesh generation

employing quadrilateral blocks where the detected flow features can be found in [56,58],

whilst a 3D extension of the work is reported in [59]. One of the test cases considered in [58]

showed how the grid was regenerated with good-quality quadrilateral blocks around the

aerofoil, wake and shock, while the remnant of the domain was filled with relatively smooth

triangular elements. The main advantage of the latter approach resides in the fact that

triangular/tetrahedral elements allow greater flexibility when attempting to mesh a generic

complex domain. For this reason, these latter approaches have been pursued further.

Concerning the complete 3D mesh regeneration with tetrahedral elements, much work

has been carried out at the Institut National De Recherche en Informatique et Automatique

(INRIA, France), where significant developments in the methodology have been researched.

Following the metric definition employing the Hessian matrix, they managed to determine

an upper bound to the interpolation error that is independent of the problem at hand [77].
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Moreover, they have related the anisotropic measure to the shape, size and orientation of a

tetrahedral element. However, the error field is discrete in the sense that it is only available

at the points where the solution has been evaluated using the flow solver. Given that

regenerating the mesh to cluster points according to the metric will place them in different

locations, a continuous version of the field is required. To this end [78] employs interpolation

techniques to achieve this continuous representation, while in other publications, [79±81],

rigorous mathematical derivations, along with applications, are provided. Within the mesh

regeneration process, an optimisation step has been included in order to be able to produce

a grid that minimises the linear interpolation error for a given amount of nodes [82].

One of the main characteristics of the Hessian matrix computation is the difficulty of

being able to achieve a smooth and accurate field. This is, in part, due to the test-case

complexity, along with the starting mesh resolution and the accuracy of the flow solver

(most FVM codes are O(2) accurate; therefore, the O(2) derivatives are at the limit of

the flow solver’s capability). A comparison of various approaches to carrying out the

Hessian-matrix determination is reported in [83,84]. Nevertheless, it is often necessary to

employ artificial strategies in order to be able to smooth the derivatives or the metric itself.

Examples of various techniques are provided by [85±88].

A comparison between the user-time requirements to generate fixed meshes by means

of best-practice guidelines and feature adaptation procedures utilising the Hessian of the

Mach number was presented by [89]. While the two types of procedures yielded similar

drag estimates, it was reported that the former approach would require three weeks, while

that for a coarse starting mesh for the adaptation procedure would be less than 2 days. In

terms of actual gains in the feature-adapted meshes wrt the user-generated grids presented

by [90], the authors reported reaching the same level of accuracy with a staggering 75-times

coarse mesh.

An interesting application of the anisotropic continuous meshing framework of [80] was

discussed by [91]. The authors had a look at adapting meshes for the High-Lift Common

Research Model and the JAXA Standard Model at various angles of attack: it is known that lift

prediction near a stall is complex when using RANS solvers. The grid modification strategy

used a log-Euclidean interpolation of the initial metric field (Mach number-based) with

modifications to consider near-wall y+ requirements. In all cases, they showed that the

quantities of interest converged later on user-generated meshes than on the automatically

adapted ones; moreover, the latter generally ended up being much coarser (roughly 7

times smaller). In particular, they also highlighted how, during the adaptation process,

the solver did not always reach the desired level of residuals but crucially never diverged

over the 12∼13 automatic adaptation cycles. A comparison of various adaptation and

flow solver codes was carried out by [20]. In this case, in an attempt to simplify the

convergence comparison with a standard mesh-independent solution, the 2D High-lift

Common Research Model was considered. A particularly important point that was highlighted

in this work relates to the nonlinearity of the mesh adaptation process. In other words,

starting from a coarse mesh each adaptation step will require a number of adaptation sub-

iterations (usually 5 to 10) where the number of mesh nodes is kept constant to improve the

process robustness. A recent publication [21] outlined a complete change in philosophy:

the fact that fully tetrahedral meshes cannot be used for viscous CFD high-fidelity studies

is a misconception related to the existence of a boundary layer that is localised and highly

anisotropic. They proceed to employ fully tetrahedral meshes and at every adaptation cycle

regenerate the mesh once the L2 or L4 norm multiscale errors have been computed. This

significantly simplifies the mesh adaptation procedure for complex geometries. Starting

from a generic initial coarse mesh, they were able to show that the solution-adaptive

process converges to the same solution regardless of the initial mesh or the error estimate,
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i.e., a certified mesh-independent solution. They also stated that the L4 norm was a better

option than the L2 one. An important aspect that was highlighted was the importance

of modifying the flow solver in terms of stability/robustness to be able to carry out this

procedure. Some of the upgrades concerned using a combined FVM-FEM discretisation

and implicit time-stepping. A critical aspect that was mentioned in the last paragraph

relates to achieving a certified solution. The first example of code verification related

to feature-based mesh adaptation was presented by [92]; the authors compared different

codes using the interpolation error of a scalar function on simple problems such as linear

advection±diffusion and laminar flow over a delta wing. A verification of feature-based

approaches relying on the linear interpolation of the Mach number L2 and L4 norm errors

for the well-known ONERA M6 case was carried out by [93]. In their work, they utilised

different mesh adaptation and flow solver codes and managed to show that forces and

pitching moments would converge to the same value sooner than fixed meshes designed

by means of best-practice guidelines. In particular, they also confirmed that the L4 norm

error allows for faster convergence of the quantities of interest. The flow solvers employed

in the study utilised three different discretisations: FEM, FVM and mixed FVM/FEM, and

found that the FEM solver converged to the final solution sooner.

A particular area that has received a significant amount of interest over the recent

decade is mesh adaptation for turbomachinery. The first tests were carried out by [71], who

adapted a hybrid prismatic-tetrahedral mesh for a viscous NASA Rotor 37 simulation, run

with the k − ω turbulence model. They employed the relative Mach number as their sensor

to form the Hessian matrix. A combination of movement, edge collapse, swap and split was

used to adapt the grid. Despite improving the clustering towards the main features of the

flow, the results were not completely satisfactory. More recently, [82] considered the LS89

turbine blade in 2D and NASA Rotor 37 in 3D and regenerated the mesh for both cases.

In particular, in the latter case, the authors employed prismatic elements in the boundary

layer, that were left untouched by the adaptation. The rest of the domain was filled up with

tetrahedral cells, that were actually regenerated employing a Riemannian-metric. Of note,

is also the fact that they did not modify the periodic boundary of the starting mesh, that

had a node count of 2.8M. The resulting adapted meshes show how the main flow features

are captured, however, there is no indication of how the final grid performs in terms of

quantities of interest (such as efficiency or pressure ratio). Regarding the periodic boundary,

in [94], the same research group demonstrated the necessary upgrades to be able to handle

periodic boundary mesh re-generation for gas turbine components using fully tetrahedral

meshes without hexahedral/prismatic elements. Another application of feature-based

adaptation applied to jet engines is presented in [95]: here they considered flow separation

in a nacelle under cross-wind conditions using isotropic and anisotropic adaptation with

two different solvers tuned to the different approaches. An important consideration the

authors make is that within the turbomachinery community, mesh adaptation has found

limited use due to the heavy use of structured multi-block meshes (Figure 12) that allow

good resolution of boundary layers and wakes. This particular industry has now gained

a significant experience with these methods. The authors argue, however, that other

strategies are needed to be able to handle the increase in complexity. Their results show

that both grid modification strategies provide accurate predictions starting from coarse

meshes, however, the anisotropic counterpart achieves similar accuracy at 5% size of the

isotropic counterpart. Another key statement from this publication is that mesh adaptation

is more expensive than 1 shot simulation. A very interesting turbomachinery problem

was first considered in [96,97], i.e., a film-cooled nozzle guide vane. The authors employed

feature-based Mach number interpolation error in the Lp, and despite the complexity of

the case, they achieved flow solver and mesh convergence to obtain a certifiable numerical
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solution. The ability to apply the same adaptation strategy to another challenging gas

turbine configuration was recently seen in [98], where multistage and mixing planes were

employed in the modelling. Still regarding this application area, [99] utilised Hessian-based

mesh movement in a geometrical optimisation loop of the NASA Rotor 37 test-case.
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Figure 12. Example of a structured multi-block mesh generated for a compressor blade.

4. Goal-Oriented Mesh Adaptation

Adjoint error estimation and grid adaptation techniques appeared towards the mid-90s

(see, e.g., [100,101]). They attracted particular interest, as, unlike feature-based approaches,

they allow the definition of an error threshold [102] and are more reliable in determining

an accurate quantity of interest. In fact, feature-related techniques tend to cluster nodes

in parts of the flow such as shocks, shear/boundary layers, and wakes, not taking into

account the error that may originate in other regions of the flow [103]. Moreover, the same

author argued that even te procedures do not consider the relative local effect that this may

have on the global quantity. By including the adjoint weighting into the error analysis, [103]

showed that it is possible to relate the te in the solution to that of the quantity of interest. In

particular, the superconvergent property was proven for FEM, through which the functional

achieves double the rate of convergence towards the exact solution wrt the flow quantities.

At a later stage, [104] achieved the superconvergence of the performance parameter for all

types of discretisation, FDM, FVM and FEM, for both linear and nonlinear problems.

The same approach of weighting the flow residuals vector by the adjoint solution was

later employed by [105]. This was applied to a 2D subsonic/transonic flow over NACA 0012

profile. In particular, they attempted to smooth out the flow residuals due to checkerboard

behaviour they experienced by introducing a control volume gather and scatter approach.

Unfortunately, there appeared to be issues in deciding the amount of smoothing iterations

that may be applied, as too many caused solution degradation. Nevertheless, they did show

better performance of the adjoint-weighted methods wrt feature and residual-only sensors, as

these were incapable of detecting all sources of inaccuracies in the domain.

In the meantime, in a series of articles [19,22,102,106], another adjoint-based adaptation

process was presented and applied to FVM solvers. Their work was based on that of [104],

with the main difference being that the error on a grid with average spacing h1 was

evaluated on an embedded grid with spacing h2 = h1
2 . They determined two types of error:

computable correction and non-computable correction. The former is defined as follows:

errorcomp. = Ψ
h2
h1
|TRh2

(Qh2
h1
) (6)
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where both the adjoint and residual vectors are evaluated on a fine mesh, after having been

interpolated from a coarse grid solution. This quantity can then be used to improve the

functional estimate as follows:

f (Q) ≈ fh2
(Qh2

h1
)− Ψ

h2
h1
|TRh2

(Qh2
h1
) (7)

The non-computable counterpart has a much more involved formulation at

errornon-comp. =
1

2 ∑
j
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∣

∣
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(8)

where, once again, the flow and adjoint solution are interpolated from a coarse to a fine

mesh, but in this case, it is achieved with a linear ν and quadratic Υ operator and the

adjoint residuals on the fine mesh are computed as well. Operations are carried out in a

node-wise fashion.

An example of their computation at the mid-span of a transonic compressor blade is

reported in Figure 13. It may be seen that the non-computable counterpart tends to weight

much more adjoint features, unlike the computable counterpart that contains both. Both of

them were evaluated on the embedded grid, with the former simply being the flow residuals

vector multiplied by the adjoint. The non-computable correction term is an estimation of

the remaining error due to the prolongation of the adjoint solution, instead of using the

exact quantity. They argued that, as the computable version could be reliably calculated

if the grid were in asymptotic range and used to improve the functional estimate, the non-

computable version should be employed for the actual cell-based refinement. It is important

to note that their non-computable sensor is composed of the average of both primal and dual

computations of the remaining error and, therefore, can be used to reduce the duality gap,

thus highlighting nonlinearities present in the flow. One of the requirements for evaluating

the error is the need to interpolate both flow and adjoint solutions linearly and quadratically.

In [22], they also proved significant benefits wrt Hessian-metric-based procedures for 2D

inviscid flows. In an attempt to improve the drag evaluated on the lower aerofoil in a

tandem-aerofoil configuration, they proved how a pressure-sensor significantly over-refines

the grid trying to sufficiently resolve all the flow features, thus wasting valuable resources.

On the other hand, adjoint-based processes only flagged regions where the functional

was affected by errors. In particular, they highlighted how the leading edge of the two

aerofoils was refined in a different manner by the adjoint error estimate and identically

by the feature-based approach. In their final article concerning adjoint adaptation [19], 2D

viscous flow conditions were considered. In their previous work, the mesh adaptation had

been carried out by regenerating fully triangular grids by determining each element’s size

using the non-computable term. In this case, they included anisotropy in the grid regeneration

procedure. This was done utilising the standard Hessian-based Riemannian-metric calculation

(see [61,63,65,72] for examples of this error computation). In their case, they employed

the Mach number as the flow quantity of interest to be able to determine the stretching

and orientation of the mesh cells. On the other hand, the element size was computed by

equidistributing the remaining error in the adjoint adaptation formulation. One of the test

cases they employed was the RAE 2822 in turbulent flow. They were able to show the

improvement of the devised methodology wrt the pure Hessian-based mesh regeneration. In

particular, it was consistently proven that the quantity of interest is better approximated

with fewer nodes when taking the adjoint error into account. The adjoint-related processes

were better at reducing the inaccuracies in the inviscid part of the flow and also improving

the wake resolution. It should be noted that the latter clustering is probably due to the

combination of the Hessian with the flow solution residuals present in the remaining error.

In fact, adjoint approaches do not tend to highlight downstream regions as those requiring
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refinement. On the other hand, the pure Hessian technique tends to over-cluster the regions

near the geometry, thus neglecting any inaccuracy due to the rest of the domain. A similar

approach was taken by [107,108]. They employed a method to include the adjoint error

estimate as derived by [109] into a Riemannian metric formulated through the Hessian for

FEM solvers. They also managed to combine the metrics of different quantities.

(a) (b)

Figure 13. Adjoint error evaluated a mid-span of a transonic compressor blade according to the

method of [22]: (a) Computable correction. (b) Non-computable correction. From [10].

The first successful attempts at adapting the mesh based on the adjoint error in 3D

were those of [110] for inviscid simulations and [111] for viscous simulations. In [110], the

author paid particular attention to the interpolation scheme employed to transfer the flow

and adjoint solutions from coarse to embedded grids. In fact, while the linear prolongation

can be carried out by simply averaging values along edges, faces or cells, the quadratic

is more involved. Ref. [19] had originally proposed local-least squares process with error

minimisation on the coarse mesh, thus achieving a discontinuous quadratic reconstruction.

The embedded node values were then determined by averaging the coarse grid parameters

of the points to which they were connected. Ref. [110] instead proposed using a cubic

fit along each edge employing the gradients determined with the least-squares approach

(see [112] for how the gradient is calculated). However, the main finding concerned

the effect that using the linear or high-order interpolation had on the computable error

term. In the test case considered (ONERA M6), it was seen how using the lower-accuracy

interpolation for the correction factor would improve the functional estimate but not as

much as using the quadratic operator.

In [111], anisotropy was merged with the adjoint error analysis, as in [19]. This was

done by employing the Mach number Hessian and scaling the maximum eigenvalue of

each node’s second derivatives matrix by the adjoint sensor. Results for the ONERA M6

inviscid transonic case showed that this approach tends to converge to a more accurate

result sooner and with fewer nodes wrt the procedure formulated in [110]. The results

reported confirmed the improvement obtained by combining the adjoint with the feature-

based adaptation technique: it was clear that the proposed methods resulted in a coarser

mesh. It is of interest to note, however, that the inclusion of anisotropy did not cause any

visible refinement around the shock, unlike the isotropic approach, where part of the shock

structure was clearly visible. The author suggested that the cause of this may be related to

the shock location being more important than its resolution to appropriately determine the

functional of interest.
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Concerning the viscous case analysed, this consisted of the extruded NACA 0012, with

the functional of interest being drag. In this case as well, the author was able to show

how the adjoint error combined with the anisotropic approach successfully reduced the

error in the performance quantity. However, it was observed that the computable correction

evaluated on the fine grid was not as accurate as in the inviscid cases due to oscillations in

the interpolation that caused non-physical negative turbulent viscosity to appear.

A different approach combining adjoint error calculations with feature-based ap-

proaches to achieve anisotropy was proposed by [113,114]. In this case, the user-generated

grid was repeatedly adapted using the approach of [34] to move grid nodes. Once this

had converged, the adjoint sensor developed by [109] would be computed and used in

an isotropic fashion to refine the mesh. The authors reported significant benefits using the

feature preliminary step at no extra cost in terms of nodal addition (Figure 14).

(a) (b)

Figure 14. Reduction effect of feature-based adaptation on the computable correction [115]: (a) Before

adaptation. (b) After adaptation. From [10].

A detailed study on the effect of interpolation techniques relative to the adjoint solution

for computable and non-computable errors was carried out in [116]. In their simulation, they

employed an embedded-boundary Cartesian method. They applied two sets of interpolation

techniques for the adjoint solution from coarse to fine grids: a piecewise constant and

a higher-order reconstruction involving the gradients calculated using a least squares

solver with a Barth±Jespersen limiter [117]; the second procedure made use of trilinear

and triquadratic polynomials. Their results showed that using the better interpolation

approach (tricubic) improved the error correction estimate, but it was sufficient to use linear

interpolation to determine the adaptation parameter. Additionally, they also compared

the error estimate using the adjoint solution solved on the fine grid. From the data, they

concluded that the error correction is better estimated this way, but the tricubic interpolation

is close in terms of performance. Of note is also the fact that their refinement algorithm

was cell-based and that they started the adaptation process by adding a small amount of

nodes progressively increasing the quantity. They argued that, at the start, the error will

not be as accurate; therefore, limiting the node addition will avoid wasting resources. To

this end, the very same authors in [18] employed the varying threshold philosophy in an

attempt to devise a robust and generic strategy. Utilising a similar philosophy to [118],

they were able to show, for an inviscid transonic ONERA M6 simulation, that employing

a varying threshold achieved the same accuracy of the final grid with 15% fewer nodes

wrt a constant-threshold approach. In fact, their technique attempted to equidistribute the

error over the entire mesh by attacking the highest sources of it in the first few adaptation

steps. By gradually reducing the value, more and more low-error cells were split. This

procedure also allowed for relatively limited refinement in the beginning, and only in the

last few adaptation steps did the node count substantially increase. It was clear that the

changing threshold procedure always resulted in a lower node count wrt the constant
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valued procedure, still reaching the same error level. This then resulted in a reduced

run time.

As the complexity of the cases grew, there was the necessity to parallelise the adapta-

tion process. In fact, the need for an embedded mesh, along with linear and quadratically

prolonged flow and adjoint solutions, requires significant computational memory capa-

bilities. To this end, [119] were the first to employ a parallel-mesh adaptation code. In

particular, it is interesting to note that they modified the non-computable correction term

to include the quadratically interpolated flow and adjoint solution residuals. According

to the authors, this allowed a much more accurate error map, although at the expense of

the technique’s robustness. Of note is that, as they did not have flux limiters available

in the adjoint solver, the adaptation process had to be halted due to poor convergence

performance. Nevertheless, they applied the adjoint procedure to the DLR F6 case in

turbulent flow. The reported error maps showed a very noisy sensor, but in general, it did

present a combination of both flow and adjoint features.

Investigations into methods to reduce the noisiness of the sensor map were carried out

by [120]. In particular, the cases of interest were the ONERA M5 and M6, simulated with an

Euler solver. Concerning the adaptation procedure chosen, they employed the computable

error correction due to the extra burden that computing the fine grid adjoint residuals would

cause in terms of memory consumption. This was combined with its standard deviation

to determine an error threshold. The interpolation parameters from a coarse to a fine grid

were those employed by [110]. The actual refinement was carried out by marking nodes

with high error on the fine mesh and consequently any cell on the coarse mesh containing

them. There were two interesting aspects reported by their research. Firstly, they employed

the volume-weighted gather and scatter approach used by [105] to smooth out the flow

residuals, as high-frequency noise due to the interpolation was present. This allowed them

to improve the computable-correction estimate. It was seen that there was an optimal

number of residual smoothing iterations: too few, and the high-frequency interpolation will

dominate the computable error; too many, and the smoothing will dampen it. Additionally,

they also showed that using multiple refinement steps to generate the grid onto which to

interpolate and evaluate the error helps achieve a more accurate solution. Additionally,

the error calculated using linear or quadratic prolongation, with or without smoothing, is

always improved by using multiple layers of refinement.

Despite their very promising findings, the same authors were unable to show the

same improvement for viscous flow computations [121]. The performance quantity of

interest for their study was drag for the ONERA M6 case, simulated with the Spalart±

Allmaras (SA) turbulence model. The main finding of this work concerned the use of the

residuals smoothing approach. In fact, they stated that even one iteration of it would

significantly dampen the error map and remove significant features that were necessary for

appropriate adaptation.

Adjoint mesh adaptation procedures related to the technique developed by [109]

require the starting grid to be in the asymptotic range of the exact solution. This requirement

is necessary due to the interpolation to the embedded mesh (just as for the Richardson

extrapolation process [16]). While this requirement is true in a strict sense, [122] was able

to show that the process would work even when the starting mesh was too coarse. In

particular, they employed the strategy outlined by [109] to adapt a 3D Euler flow around

various conical configurations in order to accurately predict the pressure signal at a certain

location in the domain. Despite starting from a grid with a limited node count, the authors

were able to successfully adapt it. What is interesting is that they always found that the first

few adaptation steps would have relatively strong error oscillations. The reason behind this,
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they claim, relates to the starting mesh not being in asymptotic range wrt the correct solution,

and therefore, the calculated error will not decrease monotonically, as in [19,22,106].

A detailed comparison of feature and the adjoint-based error estimation (as developed

by [109]) in 3D inviscid/viscous flows can be found in [23]. The main change wrt the

approach of [109] was the calculation of the interpolated solution to the fine grid: this

was done using a moving least squares approach (e.g., see [123]). Additionally, they did

not employ mesh regeneration but, rather, isotropic refinement, as each primal volume

was marked to be split if the average of its nodal adjoint error values was greater than

the threshold. Their work showed how the adjoint adaptation procedure consistently

outperformed that using the feature-related approach. Moreover, they also discussed how

the latter was much more sensitive to the starting grid wrt the adjoint-related technique.

Similarly, [124] analysed inviscid flow around the NACA 0012, ONERA M6 and DLR

F6 wing±nacelle±pylon configuration with the DLR flow solver TAU and reached the

same conclusions. In particular, they showed how the technique proposed by [102] with

the interpolation suggested by [110] outperformed feature-based approaches in terms of

accuracy and final node count. As in [23], they too concluded that adjoint techniques are far

superior if the starting mesh is very coarse. Additionally, they compared the computable and

non-computable error effectiveness for the adaptation. In particular, they removed the adjoint

residuals multiplied by the difference of interpolated flow quantities in the non-computable

correction evaluation. From their results, they concluded that non-computable correction is

the best option for grid refinement, as it consistently created coarser meshes to match the

desired accuracy.

The burden of time and memory usage for adjoint adaptation techniques described

by [22] was considered by [125]. In their work, they devised two strategies to be able to

overcome this issue. The first consisted of what they call adaptation sub-iterations. These

were employed within the overall mesh improvement process by alternating them with

the standard and more accurate technique. The error for the sub-iterations was evaluated

using the approximate flow and adjoint solution of the adapted mesh. As usual, these are

then interpolated to an embedded grid, where the adjoint quantities are smoothed using a

block-Jacobi process. The sensor formulation they considered was that consisting of the

flow residuals multiplied by the difference of low and high-order prolonged dual solutions.

While the smoothed adjoint formed the lower accuracy term, the other was constructed

in a different manner. In fact, for every complete error estimation step, as per [22], they

actually solved the embedded grid adjoint to remove the remaining error. This expensive

solution was then recycled and interpolated to the following adaptation step’s embedded

grid to be used as the high-order term. This cheaper technique was successfully applied

to a 2D and 3D extruded NACA 0012 case, simulated using a Discontinuous Galerkin (DG,

see [126] for an overview of the methodology) steady solver. In all cases, they were able to

show the gain in terms of time without any final loss in accuracy.

The second method they proposed to reduce time and memory consumption consisted

of modifying the process of [109] by interpolating from the starting grid to a coarser one.

For their work, they utilised a lower-order interpolation state, rather than coarsening the

physical mesh. The test case used was an unsteady 2D advection Gaussian wave with inflow

on the lower and left-hand side of a quadrilateral domain. This was simulated using the

Active-Flux methodology [127] and showed positive results.



Fluids 2025, 10, 129 24 of 41

A separate mention is required for cases where the base strategy of [22] was modified.

Ref. [128] combined the use of adjoint error techniques with a defect error correction

approach. While the former employed flow and adjoint solutions, duly interpolated to a fine

grid, to increase the functional accuracy by one order of magnitude, the latter would attempt

to improve the overall flow solution. To be able to employ the defect correction approach,

a reconstructed flow solution was required (in this case, they employed cubic splines),

which was then fed into an iterative process to determine the base solution’s accuracy or

improve the functional’s estimate. However, coupling the two techniques allowed for the

achievement of a higher order of accuracy wrt the reconstruction procedure. In particular,

they proved this concept for linear and nonlinear quasi-1D and 2D inviscid problems.

Ref. [129] studied the effects of using a continuous or discrete formulation of the adjoint

solver in the grid error calculation proposed by [102]. They showed that the presence of

shocks is negligible in the mesh adaptation process for both continuous and discrete adjoint

formulations. Concerning the performance of the two different dual solver formulations,

they concluded that the discrete approach was possibly the best option, as, unless the grid

was suitably fine, the continuous counterpart would underperform.

Ref. [130] attempted to overcome the issue of having different errors occurring when

perturbing the input, thus allowing to produce insensitive grids. This is particularly impor-

tant for uncertainty quantification purposes, as these require varying the system parameters

to be able to carry out a statistical analysis. Their procedure consisted in modifying the

techniques of [22] by introducing unknown perturbations. Therefore, minimising the error

equations would also allow a reduction in the discretisation error variability. Again, the

refinement process was cell-based.

Finally, ref. [131] considered the effect of constraints in the error reduction in a function

of interest, while [132] managed to combine the errors of multiple functionals and [133]

employed adjoint error estimation techniques with the k − ω turbulence model.

Up to this point, methods and applications related to the work of [19,22,102,104]

have been outlined. As pointed out in the literature, it is an expensive process due to its

need for an embedded grid, two interpolation operators, two flow and adjoint solutions

with their relative residuals. A few attempts have been made to try to reduce the burden

of it, as previously described, however, other researchers devised completely different

adjoint-based error estimators.

One of the most original techniques is that developed by [134,135]. In this case,

the error indicator was based on the idea that artificial dissipation can be the cause of

up to 90% of the error in a function of interest [135]. The analysis was based on the

Jameson±Schmidt±Turkel (JST, [136]) flux reconstruction scheme, where the k(2) and k(4) coef-

ficients dampen the higher-order terms where the shock switch detects a flow complexity.

In fact, where strong variation in quantities or discontinuities appear, the inclusion of

high-order terms causes oscillations that can eventually lead to instability and divergence

of the solution. Apart from the error reduction, this procedure presented other advantages,

such as avoiding the generation of a fine grid and the consequent interpolation onto it.

However, not all flow solvers employ JST flux discretisation, and actually, there are more

accurate schemes wrt this, questioning the main idea behind the error formulation [135].

To avoid the necessity to run the adjoint solver and have separate adaptation

processes, [137] devised a method involving entropy variables. In their work, they showed

that these satisfy an adjoint relation, able to target regions with numerical dissipation. The

procedure to actually determine the error is equivalent to that of the computable correction

calculated by [102]; however, given the flow solver nature (DG), the embedded mesh

interpolation was substituted with the injection of the solution into a higher-order state.

Once the error had been computed, cells were marked for refinement, with all their edges
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being split. The procedure was tested on a NACA 0012 case, with a low Mach number in

either inviscid or viscous conditions. In both cases, an improvement in the flow solution

was shown, especially wrt traditional adjoint techniques. In particular, the entropy-adjoint

approach refined the grid in a noticeably different manner wrt the other adjoint cases.

Issues did arise when they adapted the same test-case run in transonic flow conditions.

In fact, the shock presence caused problems in terms of entropy production, as it was no

longer conserved. To be noted is the fact that their traditional adjoint adaptation cycles

showed oscillatory behaviour, and in some cases, they had difficulty adapting the wake,

due to the adjoint weighting.

Refs. [35,138] attempted to devise a process to be able to achieve anisotropic adjoint

mesh movement. Firstly, they defined the functional error as the difference between the coarse

value and the corrected embedded grid one, as calculated in [109]. To be noted is the linear

interpolation they employed for the prolongation of quantities from coarse to fine mesh.

Following this, they formulated a Lagrangian relationship, containing both the error value

and the NS equations as the constraint. Minimising this wrt the grid coordinates, allowed

it to be combined with the original error equation, thus producing a modified adjoint

relation. The result of this may then be utilised in a steepest descent search algorithm to

minimise the overall mesh error by moving the nodes. The procedure they devised included

also global refinement if the change in the fine grid estimate was sufficiently small. They

successfully applied it to a 2D Poisson problem and an inviscid subsonic diverging nozzle.

The procedure appeared to face greater difficulty when the case was transonic, with the

authors arguing that this was due to the shock presence. Nevertheless, apart from the

functional of interest’s adjoint, the process required an additional adjoint solution for the

error sensitivity wrt the mesh coordinates and the steepest descent algorithm for each

adaptation step.

A different approach was developed by [139±142], generally known as ªMesh Opti-

mization via Error Sampling and Synthesisº or ªMOESSº within the community. This relates

to a high-order discretisation whereby the error is computed according to the localised

dual-weighted residual [100] computed using the flow and adjoint solutions at polynomial

order p and p + 1. The error is then cast in a continuous mesh model allowing the calculation

of an optimised metric used to regenerate the mesh in an anisotropic fashion. As mentioned

in Section 3, [20] compared different mesh adaptation strategies applied to the 2D High-Lift

Common Research Model to study consistency. The authors also employed the adjoint-based

adaptation using the different approaches of [19,80,139]. The MOESS-based methods were

the fastest at reaching the mesh converged results, with this being particularly visible on

the coarser meshes. Although, when the user-defined error levels were decreased, the

difference between the adjoint-based methods becomes noticeable. Of note is that the

adjoint-based approach had the characteristic of resolving the stagnation streamlines, while

the others, as seen many times in the literature (e.g., [19]) also refined the wakes. The

authors also noticed a large variation in normal wall spacing. Finally, another major aspect

that was highlighted in this study was the rate of mesh convergence. The trajectories

were different; however, the adjoint-based approaches always outperformed the other

methods. A recent publication employing the MOESS error formulation was presented

in [143]. The main focus related to a comparison of the mesh adaptation in the continuous

and discontinuous Galerkin formulations for both high-order and linear representations of

the mesh. They were able to show that, when using second- and third-order solutions, it is

possible to achieve accurate outputs with an order of magnitude less in computational time

wrt first-order methods (especially considering continuous discretisation). The study also

showed that adapted meshes do not necessarily adhere to best-practice boundary-layer

meshing requirements: along the wall a y+ = 10 appeared in some regions and did not
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hinder the accuracy. Finally, regarding the geometry representation, high-order methods

can improve the accuracy when combined with mesh adaptation of linear and curved

surfaces, with the latter having a better performance in terms of error performance.

Special mention is required for the methodology outlined in [144]: the authors de-

veloped a different methodology to couple anisotropy and goal-oriented error estimates. In

fact, the former can be seen as a local geometric error estimate, while the latter indicates

non-local errors. The combination of the two was achieved by weighting the inviscid

fluxes by the adjoint derivatives, which was then written in the continuous mesh form. A

calculus of variations was then employed to minimise the error that could be fed into a

metric-based mesh generator. The methodology was successfully applied to 3D Euler flows

around supersonic and transonic jets. Of note is that the authors also utilised the a-priori and

a-posteriori terminology in their manuscript: this relates to a different formulation of the

adjoint error. In fact, the former relates to the use of the continuous formulation, while the

latter refers to the discrete version. Later on, this was then upgraded to viscous formula-

tions by [145]: apart from the inviscid flux interpolation error, now, the metric includes

the viscous and temperature terms. The proposed sensor estimate was then applied to

a series of 2D and 3D aerofoils in steady, low-Reynolds-number conditions in subsonic,

transonic and supersonic regimes. The function of interest was seen to converge within

5∼10 adaptation steps. Of note is that they did not include any turbulence model in their

error formulation. An improved version of this error sensor was then provided by [21]: to

start with, the adjoint preconditioner was strengthened to be able to include the turbulence

model terms in the error formulation. Finally, in [94] periodic boundary conditions were

dealt with and turbomachinery applications were considered.

An example of the verification of adjoint-based mesh adaptation was carried out

by [146]. As a first step, the various mesh adaptation strategies considered were verified

using analytical flow and adjoint solutions to be able to decouple any solver effects and

simply compare the different formulations. The various techniques were seen to have a

consistent convergence.

In the series of articles, [147±152], the first use of the mesh adjoint output was employed

to adapt a grid. The mesh adjoint vector is defined as follows:

d f

d−→x
=

∂ f

∂−→x
+ ΨT

f

∂R

∂−→x
(9)

In ref. [147], the functional sensitivity wrt the grid coordinates was modified by

removing the normal components to the surface of integration of the quantity of interest.

The authors claimed that this was required to avoid unnecessarily strong clustering in this

region. Moreover, they also forced to 0 the sensitivity at sharp geometrical corners, but the

value in the remainder of the flow was left untouched. They showed the validity of their

approach by optimising a grid for the Poisson equation with a steepest-descent algorithm.

Interestingly, from their first tests, they realised that there was a need for smoothing of the

overall sensitivity, as nodal relocation at the leading edge of the inviscid NACA 0012 test case

proved to be erratic. Despite only allowing the relocation of small parts of the domain, the

authors showed how the functional sensitivity to the mesh reduced after the adaptation.

Shortly after, in [148], the refinement of the grid was added into the overall adaptation by

adding nodes where the mesh adjoint output was strongest. Again, as in the previous case,

the flow was set as inviscid, but most importantly, as the adaptation progressed, they were

able to confirm their previous finding, i.e., a reduction in the mesh sensitivity once the

grid had been adapted. In a later stage, [149] employed the previous findings to develop a

structured mesh regeneration strategy based on mesh adjoint sensitivity. In particular, once

the functional derivative wrt the mesh coordinates had been modified according to [147],

this was multiplied by the edge length to determine a quantity that would be fed into
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the elliptic mesh generation algorithm. Finally, [151] was able to apply the method that

had been developed to unstructured grids and showed the results for an inviscid NACA

0012 case. Interestingly, the comparison of the final adapted grid with those obtained

by [22,135] proved that their grid regeneration strategy was able to produce clustering

in the same regions of the flow. Another separate effort in utilising the mesh adjoint to

adapt the grid may be seen in [153,154]. In this case, the anisotropy of the adjoint sensor

was achieved by approximating the Hessian matrix by applying a gradient operator such

as Green±Gauss or least-squares onto the mesh sensitivities. The resulting second-order

derivative was then fed into a mesh movement strategy (an example of the error is shown in

Figure 15). Significant benefits were reported when compared with the equivalent feature-

based approach. Of interest are also the test cases considered: in fact, mesh adaptation was

applied to demanding high-Reynolds turbomachinery components.

Figure 15. Mesh adjoint error. From [10].

Finally, on a slightly different note, [155,156] carried out simultaneous adjoint mesh

adaptation and geometry optimisation. Adjoint code capabilities have been developed

to be able to optimise a geometry in a more efficient fashion. Given the availability of an

adjoint solution, it is then natural to employ it as an error estimate to improve the mesh

and provide a more accurate performance quantification. This will, in turn, help improve

the design optimisation loop’s robustness.
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Table 1. Summary and comparison of feature and goal-oriented error estimation.

Main Characteristics Variants Applications

Feature-
Based

• Employ a flow quantity to identify flow complexities: to
handle different magnitudes and ensure all feature are
captured [64] developed a multiscale sensor.

• Easier to develop and naturally suited to capture
anisotropy.

• Anisotropic metric was presented by [68] using the Hessian
of a flow quantity to represent a Riemannian metric.

• If used carelessly, as variations across discontinuities such
as shocks are infinite, they can continue to over-refine
these regions, regardless of them needing it.

• The most common flow quantity used is the Mach number.
• Successfully used with mesh refinement, regeneration and

movement.

• Hessian-based methods have shown very good
performance; however, they do suffer from
noisiness. [83±88] and require careful handling of
near-wall regions [74±76].

• Hessian-based methods have been related to
shape/size/orientation of tetrahedral elements for
complete mesh regeneration [77±82].

• Viscous solutions were successfully adapted in tetrahedral
mesh regeneration everywhere, including the boundary
layer [21], although a fully automated approach did
require flow solver robustness enhancements.

• High-Lift Common Research Model [91].
• JAXA Standard Model [91].
• 2D High-Lift Common Research Model [20].
• ONERA M6 [93].
• NASA Rotor 37 [71,82] and [99] with geometry

optimisation.
• LS89 [82].
• Jet-engine nacelle [95].
• Film-cooled nozzle guide vane [96,97].
• Multistage gas turbine [98].

Goal-
Oriented

• Easier error threshold determination [102].
• Reliable improvement of functional estimation, including

local effects [103].
• Consistently outperforms feature-based approaches when

improving a quantity of interest [20,22,23].
• Finalised adjoint-adapted meshes are coarser than their

feature counterpart [19].
• Combining adjoint and feature-based anisotropy reduces

the mesh size [111,113,114].
• Usually limited to SA turbulence model (generally the

more common, stabler option).
• Discrete adjoint is a better option than continuous

counterpart [129].
• Every adaptation step requires an extra adjoint solution.
• Complex code development.
• Successfully used with mesh refinement, regeneration and

movement.

• Calculation of computable and non-computable correction by
interpolation to embedded grid [19,22,102,106]: successful
but complicated by interpolation and noisiness.

• JST scheme-based approach [134,135]: no interpolation or
fine grid required, limited to one discretisation type.

• Entropy variables approach [137]: issues with
non-entropy-conserving flows.

• MOESS [139±142] using a dual-weighted residual [100],
along with flow and adjoint solutions, at order p and
p + 1 (requires high-order discretisation). This was then
fed into a continuous mesh model for mesh regeneration.
In [20], MOESS showed faster error convergence.

• In [144,145] anisotropy was included by weighting the
fluxes by the adjoint derivatives. The error is written in a
continuous mesh form, and its minimisation was fed into a
metric-based grid generator.

• Mesh adjoint-based methods [147±154]: these have shown
good performance in different settings and naturally
possess anisotropy, but they are only applicable when
deploying the discrete adjoint, they require an extra (short)
step and they can be noisy.

• Inviscid/viscous Onera M6 [21,111,118,124].
• Viscous extruded NACA 0012 [111].
• NASA Rotor 37 [113,114,153,154].
• Jet-engine fan blade [114,154].
• DLR F6 [119,124].
• Supersonic and transonic jets [144].
• 2D transonic RAE 2822 [21].
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5. Future Mesh Adaptation Research Trends

Today, considerable mesh adaptation improvements have been showcased [21], with

the methods being applied to increasingly complex geometries for steady turbulent

flows [94,97]. Moreover, a good level of automation and process consistency has been

seen [20]. Nevertheless, there are still many areas of mesh adaptation that require a signifi-

cant amount of research.

Geometry representation is one of them, as the mesh adaptation software requires this

information to be able to provide a modified mesh that is the most truthful copy of what

is being modelled. As seen in [157], adaptive processes require more stringent tolerances

than the grid generation process. Ref. [158] identified one of the problems as being a lack of

standard geometry format within the mesh adaptation community, with ªIGESº and ªSTEPº

being the most widespread formats. Additionally, they provide two reasons as to why there

is poor integration of the geometry information within mesh adaptation: model complexity

and geometry construction artefacts. Moreover, to be able to correct any inaccuracies in

the model representation, there is no consistent method in the CFD community. With the

increase in popularity of high-order methods, it will become increasingly crucial to be able

to achieve a robust and automated approach to interfacing with the geometry.

An area of development that will become crucial in the future deals with code par-

allelisation. In fact, more and more detailed flow features are being resolved on larger

configurations. Additionally, there is a growing interest for unsteady modelling with

implicit Large Eddy (iLES) and, in some cases, Direct Numerical Simulation (DNS) resolution.

Therefore, being able to speed-up the adaptation mechanics procedure becomes crucial.

As stated by [159] anisotropic grid adaptation is still in its infancy, unlike isotropic mesh

generation. This generally splits the domain into sub-problems that may have varying

levels of communication and synchronisation (tightly, partially, weakly or decoupled). The

authors also outline 5 points that are crucial to interface the code with new hardware and

thus for methodology development:

1. Stability ⇒ parallel and sequential executions should generate similar if not identical

meshes.

2. Reproducibility ⇒ this can be split into strong and weak, depending on how stringent

is the requirement that the code produce identical results when restarted with the

same input.

3. Robustness ⇒ the code should correctly and efficiently process any input data.

4. Scalability ⇒ the ratio of sequential to parallel run-time.

5. Code Reuse ⇒ this depends on the code implementation strategy.

The literature does describe various successful applications of mesh adaptation in

parallel. For example, [160] presented an isotropic hybrid strategy refining and coarsening all

standard cell types (tetrahedra, prisms, pyramids and hexahedra). Once the mesh had been

modified, load balancing between the processors is carried out. The method’s robustness

was proven by application to a fighter aircraft with missiles and pylons. An example of

parallel mesh adaptation algorithm involving only tetrahedral meshes to ensure maximum

flexibility was reported in [161]. This work is of particular interest as the authors report

speed-up gains in parallel; however, they do indicate that the adaptation cost is ∼60% of the

runtime, with mesh smoothing being the most time-consuming. Their adaptation algorithm

used a combination of refinement/coarsening, along with smoothing. As mentioned, parallel

mesh adaptation is particularly crucial for unsteady simulations. A recent example of

the successful application was presented in [162]. In this, they employ a Cartesian mesh

with feature-based error estimation. They claim an ªembarrassinglyº parallel algorithm

able to scale up to 4000 cores: to achieve this, they split the simulation into time-frames,

each adapted simultaneously, rather than sequentially. Another important aspect relates
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to ªtime-stepº refinement: most of this paper has dealt with spatial discretisation, as these

are the only errors present in RANS. However, unsteady simulations will also introduce

a time discretisation error, and thus the adaptation must be 4D. More recently, ref. [163]

presented an anisotropic adaptation approach carried out in parallel. The approach em-

ployed the second derivatives of a flow quantity to refine and coarsen the mesh. A different

parallelisation approach was presented in [164]. They utilised refinement/coarsening and

smoothing with a Hessian-based metric determination and geometry integration. However,

the main interest resides in the so-called ªspeculative parallelismº, and an efficiency of

more than 90% was reported. This particular technique attempts to maximise concurrency

without rigidly pre-partitioning the mesh or relying on global synchronisation, typical in

many domain-decomposition methods. Each thread attempts to acquire the necessary data

dependencies on the fly.

Until now, the discussion has mostly revolved around linear FEM or FVM, with

high-order discretisations not really mentioned. These methods are becoming increasingly

important, as they allow the same level of resolution to be reached with fewer degrees of

freedom compared to standard second-order spatial reconstructions. This results in reduced

run times (and thus costs) [165]. Recently, these techniques have gained significant interest

due to an increased accuracy requirement within industrial settings. In fact, they allow for

unsteady iLES if not DNS at a reduced cost. This type of modelling is needed to handle the

intrinsic deterministic and chaotic unsteadiness present in flows [166]. As mentioned in

Section 2, high-order discretisations allow for polynomial order enrichment. Examples of its

use for an open-source spectral/hp code can be found in [167±170]. In the first case, a goal-

oriented strategy was employed, whereby the error was determined by means of a higher

polynomial order. This was then utilised to determine in which elements the solver order

had to be increased. Interpolation error bounds were subsequently analysed for high-order

curved finite elements. Later on, a field-guided quadrilateral mesh generation method that

produces naturally curved, high-order valid meshes using an adaptive spectral element

solve was shown. The authors solved the Laplace equations, thus replacing traditional cross

fields and avoiding the smoothing requirement. More recently, a combination of polynomial-

order and mesh movement was used. A metric-based anisotropic adaptation for high-order

interpolation was shown by [171], thus extending traditional Hessian-driven techniques

beyond linear interpolation. After, [172] developed an hp continuous mesh framework for

DG schemes. [173] also used a continuous mesh model with a DG discretisation, but this had

anisotropic refinement and isotropic polynomial adaptation. [174] focused on understanding

the concept of metric conforming meshes with curved elements and extended the work

of [139,140] from linear elements to curved, high-order ones in 1D. Later on, [175] compared

the original, linear FEM MOESS and the high-order version (called HOLMES or High-Order

MOESS) and found that the latter offered a better metric-field, improved the handling of

the curved geometry and was more accurate. As expected, though the cost increased.

As mentioned earlier on, unsteady adaptation is becoming increasingly important,

and examples of its usage are present in the literature. For example, [176] used multiscale

continuous mesh model adaptation for cases with moving boundaries, including time dis-

cretisation in error formulation. In terms of grid mechanics, they utilised smoothing and

swapping, such that large deformations could be handled without any remeshing. The

very same group extended the mesh adaptation to local remeshing for inviscid flows [177],

parallelising the adaptation loop. Later on, [53] utilised a combination of user-specified

and pressure-based Hessian refinement on very large grids (70M∼250M cells) for Detached

Eddy Simulations (DESs) and Unsteady RANS (URANS). It was found that adaptation was

critical to capturing vortex onset and progression, as without it, the turbulent kinetic energy

and vortex strength were grossly under- or over-predicted. In particular, URANS models
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caused vortex diffusion without proper mesh resolution. Concerning different unsteady

turbulence modelling, ref. [178] utilised the Lp-norm interpolation error over space and

time to carry out adaptation. In space, these norms are preferred to the L∞ counterpart, as

they allow a more balanced targeting of smooth and unsmooth features. Of note is that

the Mach number Hessian averaged over multiple time steps was utilised. Transition zones

between RANS and LES were targeted via the adaptation, and they found that LES-based

metrics enabled a smoother RANS-to-LES transition for Delayed DES (DDES) and better

pressure predictions than DDES on RANS-adapted or coarser meshes.

The more recent research topic in mesh adaptation concerns the use of machine learning

techniques. A physics-informed, semi-supervised adaptive mesh refinement model was

proposed by [179]. Its aim was to predict the accurate solution on an adaptively refined mesh

using low-resolution solutions. It was shown that, despite its training on three canonical

flows, it was able to generalise to different boundary conditions and unseen geometries with

a consequent speed-up when compared to standard CFD methods. Graph Neural Networks

(GNNs) were employed by [180] to generate the initial mesh and carry out physics-informed

anisotropic adaptation using only open-source tools. The flow solution was predicted in

the end. GNNs were also used by [181] in a bid to predict the flow solution without using

any flow or structural solver. The mesh morphing in the resulting solutions following the

features’ directionality is clearly visible. Anisotropic mesh generation employing machine

learning was attempted by [182] in a bid to avoid flow and adjoint solutions. The model

was seen to perform well when compared to the MOESS meshes, refining the boundary

layer and waking 10∼15 times faster. It was also able to deal with different Reynolds/Mach

numbers and angles of attack. Due to a lack of shocks in the training data, the model did not

perform well when these were present. Ref. [183] managed to remove the need to compute

costly adjoints using Graph Convolutional networks (GCNs) to predict the local error estimator

for each cell on an advection±diffusion problem, while [184] employed a small feedforward

neural network to determine the anisotropy using MOESS data for training. It was seen

that the trained model outperformed MOESS, showing less sensitivity to noisy flow and

adjoint solutions, and was generalisable to unseen geometries. Moreover, MOESS required

more iterations, as it had to discover the features. A different approach to adaptive mesh

refinement was discussed by [185]. In their work, they employed a Markov decision process

and then deep reinforcement learning to learn mesh refinement policies. Finally, ref. [186]

employed unsupervised learning, along with Gaussian Mixture Models, to split the domain

into inviscid/irrotational regions and viscous/turbulent ones. The adaptation then varied

the polynomial order in a DG framework.

6. Conclusions

In this paper, a review and analysis of mesh adaptation techniques applied to CFD have

been presented. The need for and importance of automated grid modification strategies

were discussed, quantifying their significance in an industrial setting. Following this, the

main aspects, definitions and terminology were discussed, highlighting two solution error

calculations, namely feature-based and goal-oriented. These now form the bulk of the research,

showing very promising results for widespread use. Another important concept that has

been discussed is anisotropy: this relates to the error having directionality, thus allowing

the grid to be modified more strategically and resulting in coarser meshes. Four different

grid modification strategies have been outlined: refinement/coarsening, movement, polynomial

order increase and grid regeneration. The first two have been extensively utilised in the

past, sometimes in combination. However, as complete mesh regeneration approaches have

matured, these have appeared more and more frequently, as they allow for the greatest

level of flexibility without leading to issues such as over-refinement or problematic cells.
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The final method, p-adaptation, is limited to high-order flow solvers: while there are some

important examples of its usage, more work is required in this area. This will be crucial in

the future as industry starts to adopt these types of discretisations to carry out unsteady

iLES/DNS modelling.

Two whole sections have then been presented, discussing in more detail various feature

and goal-oriented approaches. The two methods have shown a significant amount of success

but do have important differences in terms of development and performance. Regarding

the first, the literature points to the second-order derivatives of flow quantities using the

multiscale error as a strong candidate. The combination of this with the continuous mesh

concept allows for full mesh regeneration by means of tetrahedral elements. These would

be shaped and oriented by the error, i.e., achieving anisotropy, which is more naturally

achieved using feature-based methods. This aspect is more complex to achieve when using

adjoint-based methods, but nonetheless, various attempts have been carried out, showcasing

one important aspect: adjoint approaches allow the error reduction in a quantity of interest

with reduced node counts, fewer adaptation steps and greater reliability than their feature-

based counterparts, which can waste resources when high derivatives occur. However,

the latter does not require an additional solution (i.e., adjoint), is easier to develop and

attempts to improve the solution globally, not for a single quantity of interest. In the past,

a lot of research has been undertaken relative to the method of deploying an embedded

grid to calculate the adjoint computable or non-computable correction. While this has shown

very positive results, its use has gradually reduced favouring methods that do not rely on

interpolations and finer grid computations.

An important aspect that requires mention is the continued increase in complexity of

the test cases considered. In particular, from an industrial perspective, cases such as wings,

full aircraft configurations and gas turbine compressors/turbines have been successfully

adapted. These results were achieved with minimal, if any, solver convergence issues,

with this having probably been one of the main barriers to the widespread use of mesh

adaptation technology.

A final mention concerns future trends: some are issues that need solving, while others

have the potential to improve current practices. As mentioned earlier, high-order mesh

adaptation needs to be further developed. This will introduce even more challenges when it

comes to geometry integration: this is a known problem due to inconsistent file formats and

the lack of a standard approach to ªcleanº the surface representation without introducing

errors. As computational power continues to grow, CFD has started to use increasingly

finer meshes in both steady and unsteady simulations run on multi-core architectures.

Including grid adaptation in the overall modelling pipeline will necessarily require these

algorithms to handle mesh partitioning in an efficient and repeatable way. Most of the

mesh adaptation literature has revolved around RANS modelling. As unsteady simulations

become more and more feasible, grid modification will have to be developed further and

applied to these to ensure minimal spatial discretisation errors, such that the user can

extract valid and accurate information. Finally, with the rise of artificial intelligence, methods

to automatically modify or predict the grid using such techniques have begun to appear

and are expected to have a growing impact on improving the CFD modelling pipeline.
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Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational fluid dynamics

DDES Delayed DES

de Discretisation error

DES Detached Eddy Simulation

DG Discontinuous Galerkin

DNS Direct numerical simulation

FDM Finite difference method

FEM Finite element method

FVM Finite volume method

GCN Graph convolutional networks

GMM Gaussian mixture model

GNN Graph neural networks

h-methods Mesh refinement and coarsening

HOLMES High-Order MOESS

iLES Implicit Large Eddy Simulation

INRIA Institut National de Recherche en Informatique et en Automatique (France)

JST Jameson Schmidt Turkel

m-methods Mesh regeneration

MOESS Mesh optimization via error sampling and synthesis

NS Navier±Stokes

p-methods Polynomial order enrichment

pde Partial differential equation

r-methods Mesh adaptation via node relocation

RANS Reynolds-averaged Navier±Stokes

SA Spalart Allmaras

te Truncation error

URANS Unsteady RANS

wrt wrt

CD Drag coefficient
d f

d−→x
Functional sensitivity to mesh coordinates

Ei Number of edges connected to node i

f Functional or quantity of interest

h1,2 Coarse and fine grid spacing

H Hessian matrix

κij Spring-stiffness coefficient between nodes i and j

L2,4 L2,4 Error norms

Pi Potential energy at node i

q Generic scalar field

Q Navier±Stokes conservative variables vector

R Navier±Stokes residual vector
−→v Eigenvectors
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−→x Node displacement vector

y+ Wall-normal distance

α Design variable

λ Eigenvalue

Ψ Adjoint vector

ω Relaxation parameter

ν Linear interpolation operator

Υ Quadratic interpolation operator
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