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Abstract: Multispectral reconstruction is an important way to acquire spectral images
with a high spatial resolution as snapshots. Current deep learning-based multispectral
reconstruction models perform well under symmetric conditions, where the exposure of
training and testing images is consistent. However, further research has shown that these
models are sensitive to exposure changes. When the exposure symmetry is not maintained
and testing images are input into the multispectral reconstruction model under different
exposure conditions, the reconstructed multispectral images tend to deviate from the real
ground truth to varying degrees. This limitation restricts the robustness and applicability
of the model in practical scenarios. To address this challenge, we propose an exposure
estimation multispectral reconstruction model of EFMST++ with data augmentation and
optimized deep learning architecture, where Retinex decomposition and a wavelet trans-
form are introduced into the proposed model. Based on the currently available dataset in
this field, a comprehensive comparison is made between the proposed and existing models.
The results show that after the current multispectral reconstruction models are retrained
using the augmented datasets, the average MRAE and RMSE of the current most advanced
model of MST++ are reduced from 0.570 and 0.064 to 0.236 and 0.040, respectively. The
proposed method further reduces the average MRAE and RMSE to 0.229 and 0.037, with
the average PSNR increasing from 27.94 to 31.43. The proposed model supports the use of
multispectral reconstruction in open environments.

Keywords: digital imaging; RGB images; multispectral reconstruction; deep learning;
exposure asymmetry

1. Introduction
Compared to RGB images, multispectral images encompass more bands, providing

richer information that allows for characterizing the physical and chemical properties of
materials in detail, while overcoming the metamerism problem in colorimetry. There-
fore, multispectral imaging is widely used in material identification, high-fidelity color
reproduction, agriculture monitoring, remote sensing, and so on [1–3]. Regarding spectral
acquisition, current multispectral imaging devices still face challenges such as having
insufficient spatial resolution and being time-consuming, limiting their applications. To
improve the efficiency of acquiring multispectral images and reduce costs, there have been
widespread investigations into multispectral reconstruction (SR) from RGB images in the
past twenty years [4–12]. The principle is to construct a mapping model from response
to spectral reflectance using a spectral reconstruction algorithm under specified imaging
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conditions using training samples with known spectral reflectance and RGB response,
which can be applied to test samples under the same imaging conditions for spectral
reconstruction to generate a multispectral image of the test target.

The key to this technique lies in multispectral reconstruction methods, which can
be broadly categorized into machine learning-based and deep learning-based methods.
The former category mainly includes pseudo-inverse, interpolation, principal component
analysis (PCA), and kernel-based methods [4–6]. With the advancement of deep learning,
numerous network models have also been proposed to address multispectral reconstruction
problems, achieving remarkable results. Notably, the NTIRE Spectral Recovery Challenge,
organized by the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
has showcased many impressive reconstruction models, significantly boosting the develop-
ment of deep learning-based multispectral reconstruction models.

Shi et al. proposed the HSCNN+ network based on HSCNN by replacing conventional
convolutional layers with residual blocks and deepening the network structure, which
ranked first and second in the ‘clean’ and ‘real’ tracks of the NTIRE 2018 Spectral Recon-
struction Challenge, respectively [7]. Li et al. introduced a new weighted adaptive network
(AWAN) by considering the interdependence between the camera spectral sensitivity (CSS)
and intermediate features [8]. Zhao et al. proposed a four-level hierarchical regression
network (HRNet), utilizing residual dense blocks to remove artifacts from real-world RGB
images and employing residual global blocks to construct an attention mechanism that
extends the perceptual domain [9]. These two networks were ranked first in the ‘clean’
and ‘real’ tracks of the NTIRE 2020 Spectral Reconstruction Challenge. In recent years,
the Transformer has gained widespread attention for its advantages in capturing long-
range correlations between spatial regions [10], which has opened new opportunities for
multispectral reconstruction algorithms. Cai et al. improved the MSA in Transformer by
adopting a U-shaped structure in tandem to extract multi-scale contextual information, and
proposed the MST++ network, which was ranked first in the 2022 Spectral Reconstruction
Challenge [11], further enhancing the accuracy of spectral reconstruction algorithms. Wang
et al. proposed the SSTU network, which combines the Swin Transformer with U-net to
overcome the high computational cost of the Transformer architecture while preserving
spatial features, thereby providing high-quality data with both high spatial and spectral
resolution for tissue pathology [12].

However, these algorithms or models have focused on improving the accuracy of
multispectral reconstruction while neglecting the robustness of these models to expose
changes in practical applications. Lin and Finlayson et al. found that existing multispectral
reconstruction algorithms are sensitive to exposure [13]. As shown in Figure 1, even under
the same light source, using a model constructed at one specific exposure level (such
as Exposure*1) to reconstruct the spectral reflectance of objects at other exposure levels
(such as Exposure*K) can cause the reconstructed spectral curves to deviate from the truth
spectral curves to varying degrees when the exposure conditions are asymmetric.

This deviation prevents the accurate application of reconstructed spectra for object
analysis and identification. A proposed multispectral reconstruction model that can coun-
teract the effects of exposure asymmetry should satisfy Equations (1) and (2):

SR(d) ≈ rrec, (1)

SR(K · d) ≈ K · rrec, (2)

where SR() is the reconstruction model, d is the camera response value, rrec is the recon-
structed multispectral data, and K is the exposure adjustment factor. Lin et al. tested the
traditional algorithm and the HSCNN++ model, and they found that the highly nonlin-
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ear network model’s performance is dependent on the exposure. They then introduced
the exposure factor scaling to the proposed HSCNN-Rpd model, which sacrifices spectral
reconstruction accuracy for improved ability to cope with exposure inconsistency [14].
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Figure 1. Schematic diagram of the multispectral reconstruction algorithms’ sensitivity to changes in
exposure level. Using a multispectral reconstruction algorithm of exposure asymmetry to establish
a reconstruction model at one exposure level (Exposure*1) to reconstruct the spectral reflectance of
objects at different exposure levels (Exposure*1, Exposure*K) can cause the reconstructed spectral
curves (orange curves for Exposure*1, blue curves for Exposure*K) to deviate from the ground truth
(black curve) to varying degrees.

Liang et al. enhanced Zhang’s model by augmenting the training data and
adding the attention mechanism to realize the exposure invariant and to improve its
performance [15,16]. However, their study was based on the linear synthesized raw images
and cannot fully represent the nonlinear real captured images. Additionally, in their study,
the reconstructed multispectral images should be multiplied by 1/K to achieve the right
results regarding the ground truth. This is difficult to implement in reality as the value of
K is often unknown. Some unsupervised learning models have also been investigated to
enhance the practical feasibility of the SR model [17,18], but this requires more consistency
in the RGB images and is difficult to adapt to situations such as exposure changes.

In image processing, some methods have been used to solve image quality problems
caused by over- or under-exposure. Histogram equalization improves the visual effect
by redistributing the gray levels of an image to enhance contrast and brightness [19,20].
However, these methods usually ignore structural information in the image, which can
lead to a loss of detail. High dynamic range (HDR) restoration [21,22] and image fusion
techniques [23,24] recover exposure levels by fusing multiple images under different
exposure conditions, but the high data requirements limit their popularity in practical
applications. Techniques based on Retinex theory [25,26] decompose images into reflectance
and illumination components to improve the visual quality of images. However, these
methods often fail to adequately account for the corruption of exposure error images,
leading to severe noise and color distortion in the enhancement process. There are likewise
many neural network models [27–29] active in exposure correction tasks, but these models
usually focus on dealing with low-light image enhancement and are applied to the field of
spectral reconstruction with unknown effectiveness.

In this study, we first tested the current advanced deep learning-based multispectral
reconstruction models and found that they are all sensitive to exposure changes. Therefore,
we augmented the dataset and used it to retrain the current advanced models. Although
there is still some degradation in the models’ performance in tests on their exposure to their
original version, MST++ performs within an acceptable range. After that, by using data
augmentation and introducing a Transformer-based Retinex decomposition mechanism to
reduce the impact caused by exposure changes and using wavelet transform convolution
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to emphasize the low-frequency information, we propose a new end-to-end network to
improve its exposure symmetry performance.

2. Methodology
Unlike Lin’s assumptions in Equations (1) and (2), we define the ability to combat

exposure variations as Equation (3) using deep learning’s advanced data representation and
processing capabilities. In other words, our objective, similar to the image enhancement
task [30], is to directly reconstruct the multispectral image under different exposure settings.

SR(K · d) ≈ rrec, (3)

Our model architecture is shown in Figure 2, consisting of an exposure estimator (EE,
Figure 2a) and a spectral reconstruction module (EFMST++, Figure 2b). The EE module is
composed of three convolutional blocks. The core components of EFMST++ are the EGT
and SST modules, as detailed in Figure 2c,d.
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Figure 2. Architecture of our model: (a) exposure estimator; (b) spectral reconstructor; (c) EGT and
SST; (d) EGAB and SAB. The entire network consists of two components, (a,b). The input image I
undergoes exposure correction through (a) to obtain the corrected image Iea, which is then processed
by (b) to generate the final multispectral image. (c,d) provide detailed structures of the module in (b).

Our model aims to first recover the image from the exposure and then reconstruct the
multispectral image from the recovered image. For this purpose, we try to integrate the
Retina theory [31,32], which is commonly used in the field of image enhancement, into
our reconstruction model. The traditional Retinex algorithm simulates the human visual
perception of luminance and color, decomposing the image I∈RH×W×3 into an indication
of the reflectance R∈RH×W×3 and the exposure component E∈RH×W as in Equation (4):

I = R ⊙ E (4)

where ⊙ denotes element-wise multiplication, R is the intrinsic property of the object, and
E denotes the illumination condition. As shown in Equation (4), the algorithm does not
account for the noise and artifacts introduced during image acquisition. In addition, over-
exposure and under-exposure can further exacerbate image quality degradation. Therefore,
we adopt the uptake model proposed by Cai et al. [33] and incorporate the exposure
components Ẽ∈RH×W and reflection components R̃∈RH×W×3 into the original equation.
By incorporating these components into Equation (4), we obtain Equation (5). Then, by
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multiplying both sides by the exposure-adj map Ê to ensure that Ê ⊙ E = 1, we derive
Equation (6).

I =
(

R + R̃
)
⊙

(
E + Ẽ

)
(5)

I ⊙ Ê = R + R ⊙ (Ê ⊙ Ẽ) +
(

R̃ ⊙ (E + Ê)
)
⊙ Ê (6)

where
(

R̃ ⊙ (E + Ê)
)
⊙ Ê denotes noise and artifacts after being affected by the exposure-

adj map, and R ⊙ (Ê ⊙ Ẽ) denotes over-exposure or under-exposure as well as color
distortion caused by the Ê adjustment process. We can simplify Equation (6) as

Iea = I ⊙ Ê = R + C (7)

where Iea∈RH×W×3 denotes the image adjusted by the exposure estimator and C∈RH×W×3

denotes the overall corruption term. Thus, our network can be represented as

(Iea, Fea) = EE(I, Ep), (8)

Rrec = EFMST(Iea, Fea), (9)

where EE denotes the exposure estimator and EFMST denotes the spectral reconstructor.
The image I and illumination priori Ep (Ep = meanc(I)) are input into EE to obtain the
exposure-adjusted image Iea and the exposure-adjusted feature Fea, which are then input
into the EFMST++ module for spectral reconstruction to obtain Rrec.

2.1. Exposure Estimator (EE)

The architecture of EE is shown in Figure 2a. First, we fuse the inputs I and Ep and
apply a 1 × 1 convolution to expand the channel dimension. Instead of using traditional
convolutions that focus on high-frequency information [34], we employ the third-order
WTConv [35], which is more focused on low-frequency information (as shown in Figure 3a).
This also expands the receptive field to further extract features. Finally, another 1 × 1
convolution is applied to recover the three-channel exposure adjustment map Ê. The
exposure-adjusted image Iea is then obtained using element-wise multiplication of EE and I.
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2.2. Exposure-Fused Multi-Stage Spectral-Wise Transformer (EFMST++)

The structure of EFMST++ is shown in Figure 2b. It consists of two 3*3 convolutions,
one EGT module, and two SST modules connected in series. The first 3*3 convolution
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performs the dimensional transformation, then the features are further extracted by the
EGT and SST modules, and the last 3*3 convolution obtains the final spectral image. The
U-shaped structure of SST and EGT is shown in Figure 2c, which consists of a symmetric
encoder and decoder, with embedding and mapping blocks as a single 3*3 convolutional
layer. The encoder reduces computational complexity and extracts deep features through
two layers of down-sampling. Each layer consists of an attention block (EGT or SST) and
a 4 × 4 strided convolution. After each layer, the width and height of the features are
halved, while the feature dimension is doubled. The decoder is symmetric to the encoder
and performs two layers of up-sampling on the features. Each layer contains a deconv
2 × 2 operation and an attention block. After each convolutional layer, the width and
height of the features are doubled, while the feature dimension is halved. Additionally,
skip connections are used between the encoder and decoder to minimize information loss
during the sampling process.

2.3. EGT and SST Modules

The difference between EGT and SST lies in the EGAB and SAB, while the difference
between EGAB and SAB lies in the EG-MSA and S-MSA, whose structures are shown
in Figures 2d and 3. Both EGAB and SAB consist of two normalization layers, a self-
attention block (EG-MSA or S-MSA), and a feed-forward network. The intrinsic principle
of the S-MSA [8] is to transpose the input features before the self-attention calculation to
compute the self-attention along the spectral dimension. However, considering that there
may be different exposure conditions in the same image, regions with better exposure
conditions can provide semantic contextual representations to help regions with weak
exposure conditions. Therefore, we used EG-MSA with the exposure feature Fea added to
S-MSA to allow regions with different exposure conditions to interact with each other to
guide the computation of self-attention.

3. Experiment
The dataset ARAD_1K provided by NTIRE 2022 was used [36], which contains

1000 data pairs, and was divided into training, validation, and test sets at a ratio of 18:1:1.
Each HSI at a size of 482 × 512 has 31 wavelengths from 400 nm to 700 nm. Due to the
nature of the competition, the test set data are not public, and we also used the validation
set results to judge the model effect, just as with other participating models.

We first chose the models that won the Spectral Reconstruction Challenge as test
targets. For each model, the hyperparameters, learning rate, and other settings were kept
consistent with their original version. It is worth noting that, unlike earlier models, MST++
uses max/min normalization to process the data and achieve excellent reconstruction
accuracy. We were inspired by this, as the operation means that incorrectly exposed images
undergo an initial exposure correction before being fed into the model, opening up more
possibilities for the model to combat exposure variations. We then used the same max/min
normalization to process the data when testing other models. The model performance
is evaluated using three different metrics as usual. The first metric is the mean relative
absolute error (MRAE) the second is the root-mean-square error (RMSE), as shown in
Equations (10) and (11), and the third metric is the peak signal-to-noise ratio (PSNR).

MRAE =
1
N

N

∑
p=1

(∣∣∣Ip
HSI − Ip

SR

∣∣∣/Ip
HSI

)
, (10)

RMSE =

√√√√ 1
N

N

∑
p=1

(
Ip

HSI − Ip
SR

)2
, (11)
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where IHSI and ISR denote the ground truth and reconstructed spectral reflectance, respec-
tively, and N is the number of reflectance samples; for spectral wavelengths ranging from
400 nm to 700 nm with sampling intervals of 10 nm, N is equal to 31. The smaller the MRAE
or RMSE, the better the performance of the model.

The adaptability of these models to variations in input image exposure was initially
evaluated. Using the published version of each model, we adjusted the exposure level of
all tested images with different values of K (K = 0.2, 0.75, 1, 1.5, 2.5) and fed them into the
released reconstruction model. After that, we calculated the average reconstruction error
of all the tested images; a summary of the results is presented in Table 1. We can see that
the reconstruction error of the four advanced models increased with the value change of K,
and the higher the exposure deviation from K = 1, the larger the reconstruction error. The
results in Table 1 show that the current deep learning models are all exposure-dependent.

Table 1. Results of different published models tested with different exposure coefficients.

Method
K = 0.2 K = 0.75 K = 1 K = 1.5 K = 2.5 Average

MRAE RMSE PSNR MRAE RMSE PSNR MRAE RMSE PSNR MRAE RMSE PSNR MRAE RMSE PSNR MRAE RMSE PSNR

HSCNN++ 0.546 0.086 23.74 0.404 0.061 26.12 0.381 0.059 26.36 0.477 0.069 24.64 0.931 0.116 19.81 0.548 0.078 24.12
AWAN 0.415 0.054 27.67 0.275 0.040 30.29 0.250 0.037 31.22 0.477 0.049 28.06 0.994 0.101 22.32 0.482 0.056 27.91
HRNet 0.432 0.064 25.82 0.361 0.055 26.74 0.348 0.055 26.89 0.539 0.069 24.98 1.013 0.120 20.12 0.539 0.073 24.91
Liang 0.466 0.062 25.71 0.415 0.056 26.51 0.408 0.054 26.62 0.545 0.071 24.16 1.211 0.140 18.52 0.609 0.077 24.30

MST++ 0.352 0.046 28.75 0.205 0.029 32.38 0.165 0.025 34.32 0.566 0.062 26.23 1.563 0.156 18.04 0.570 0.064 27.94

To solve the defect in current models, as shown in Table 1, we treat the multispectral
reconstruction as the image enhancement task and, at the same time, try to make these mod-
els exposure-invariant, to improve the reconstruction accuracy. This calls for a new image
dataset containing various exposure levels for each image, along with the corresponding
ground truth multispectral images. However, no such dataset is currently available.

Therefore, we created an augmented dataset based on the ARAD 1K dataset by
multiplying the original image with four random values of K (random Seed = 0). To keep
the data balance of over-exposed and under-exposed images in the augmented dataset,
two random values of K between 0 and 1 and two values of K between 1 and 3 were set in
creating the database. Therefore, together with the original image, we obtained five random
exposures of each original image, and a total of 4500 training images and 250 validation
digital images, corresponding to 900 training and 50 validation multispectral images, were
included in the augmented data. Some of the digital images are shown in Figure 4.
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We retrained these models using the augmented dataset, adjusting the batch size to 10
for memory reasons and keeping all other settings unchanged. The results are summarized
in Table 2. We can see that the models trained with the new dataset show a significant
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increase in reconstruction error, compared with the results of K = 1 in Table 1. Among them,
the SOTA model MST++ for spectral reconstruction from RGB in NTIRE 2022 still showed
the best results among these advanced models. However, the reconstruction errors of
MRAE and RMSE still significantly increased from 0.165 and 0.025 to 0.236 and 0.040, while
the PSNR decreased from 34.32 to 30.96. For the other tested models, even though they were
retrained using the augmented dataset and may have a certain ability to combat exposure
changes (compared with the overall results of other K values in Table 1), except for the
AWAN model, they showed relatively poor results. All the models apart from the MST++
model are based on traditional CNN architectures, which have limitations in capturing
long-range dependencies between spatial regions. This is the reason for their relatively poor
performance in terms of accuracy. In contrast, the MST++ model introduces a global spatial-
wise MSA, which leverages long-range dependencies in the spectral dimension to enhance
reconstruction accuracy. However, it overlooks the relationships between local regions in
the spatial domain, which is particularly critical for images requiring exposure correction.

Table 2. Results of training and testing of different models using the augmented dataset.

Method MRAE RMSE PSNR

HSCNN++ 0.459 0.078 24.45
AWAN 0.306 0.051 28.88
HRNet 0.429 0.071 25.39
Liang 0.516 0.089 23.37

MST++ 0.236 0.040 30.96

The proposed model in Figure 2 was also trained with the augmented dataset. The
parameter optimization algorithm was the Adam modification. The learning rate was
initialized as 0.0004 and the cosine annealing scheme was adopted for 300 epochs. The
results are shown in Table 3 and compared with those for the MST++ model.

Table 3. Comparison of reconstruction results for two models.

Method MRAE RMSE PSNR

Ours 0.229 0.037 31.43
MST++ 0.236 0.040 30.96

The results in Table 3 show that our model was better than the MST++ for all three
evaluation metrics. In addition, for a more intuitive comparison of the multispectral
reconstruction results between these two models, we also show some examples of the
results. Figure 5 illustrates the reconstructed results of the test image ARAD_1K_0933 in
different and random exposure levels. The column furthest to the left in Figure 5 is a digital
image of the ARAD_1K_0933, and the comparison of reconstructed spectral reflectance
curves of ROI is indicated by the yellow square.

The GT column in Figure 5 shows the ground truth multispectral image at wavelengths
of 430 nm, 500 nm, 570 nm, and 640 nm from top to bottom, for the ROI indicated by the
red rectangle. The other columns show a detailed comparison between our model and the
MST++ model based on different exposure levels and different wavelengths. The lower-left
corner shows the reconstructed spectral curves for the two methods at different exposures
within the yellow matrix region of the image, including the GT values; by zooming in, we
can see that although our model has improved the multispectral reconstruction accuracy
to some extent, both our model and the MST++ model showed some noise and artifacts
of the reconstructed multispectral image in specific wavelengths, especially in the long
wavelength of the visible range. These noises and artifacts are undoubtedly caused by
errors in multispectral reconstruction.
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(ARAD_1K_0916, ARAD_1K_0923, ARAD_1K_0945) containing a larger range of expo-
sure values to observe this phenomenon in Figure 6. The presentation is the same as for 
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Figure 5. Example of multispectral reconstruction result comparison between our model and MST++
model according to different exposure levels.

The reconstructed spectral reflectance in Figure 5 shows that the reconstructed spectral
reflectance curve of ROI is significantly shifted from the ground truth after 600 nm, while
our model performs better than the MST++ model for most exposure levels. However,
for the exposure value of 1.79, the reconstructed spectral curves of both our model and
the MST++ model show serious deviation from the ground truth. This may be caused
by the over-exposure of the digital image. We also selected three validation datasets
(ARAD_1K_0916, ARAD_1K_0923, ARAD_1K_0945) containing a larger range of exposure
values to observe this phenomenon in Figure 6. The presentation is the same as for
ARAD_1K_0933, and the exposure magnification is included in the legend. At lower
exposure values, both methods still achieve better reconstruction results, but the curve
shifts significantly with increasing exposure magnification. To further analyze and compare
the performance of our model and the MST++ model, we counted their error metrics in
under-exposure (K < 1), normal exposure (K = 1), and over-exposure (K > 1). These are
summarized in Table 4. The corresponding intuitive error comparison is plotted in Figure 7.

Symmetry 2025, 17, x FOR PEER REVIEW 10 of 13 
 

 

exposure values, both methods still achieve better reconstruction results, but the curve 
shifts significantly with increasing exposure magnification. To further analyze and com-
pare the performance of our model and the MST++ model, we counted their error metrics 
in under-exposure (K < 1), normal exposure (K = 1), and over-exposure (K > 1). These are 
summarized in Table 4. The corresponding intuitive error comparison is plotted in Figure 
7. 

   

   

Figure 6. Three more examples of multispectral reconstruction result comparisons between our 
model and MST++ according to different exposure levels. From left to right: ARAD_1K_0916, 
ARAD_1K_0923, and ARAD_1K_0945. 

   

Figure 7. Intuitive error comparison of reconstruction results of two models in terms of three expo-
sure conditions: (a) under-exposure (K < 1), (b) normal exposure (K = 1), and (c) over-exposure (K > 
1). 

Table 4. Comparison of reconstruction results of two models in terms of three exposure conditions: 
under-exposure (K < 1), normal exposure (K = 1), and over-exposure (K > 1). 

Method 
Our Model MST++ 

MRAE RMSE PSNR MRAE RMSE PSNR 
K < 1 0.233 0.035 31.55 0.239 0.039 31.37 
K = 1 0.216 0.034 32.06 0.220 0.037 31.53 
K > 1 0.240 0.042 30.68 0.248 0.048 29.89 

It can be seen from Table 4 and Figure 7 that our model is slightly superior to the 
MST++ model in all three conditions. In addition, both models achieved the best results 
when K = 1, the second best results when K < 1, and the largest error when K > 1, which 
indicates that they are still slightly sensitive to exposure changes. 

D
en
sit
y

Figure 6. Three more examples of multispectral reconstruction result comparisons between our
model and MST++ according to different exposure levels. From left to right: ARAD_1K_0916,
ARAD_1K_0923, and ARAD_1K_0945.



Symmetry 2025, 17, 286 10 of 13

Table 4. Comparison of reconstruction results of two models in terms of three exposure conditions:
under-exposure (K < 1), normal exposure (K = 1), and over-exposure (K > 1).

Method
Our Model MST++

MRAE RMSE PSNR MRAE RMSE PSNR

K < 1 0.233 0.035 31.55 0.239 0.039 31.37
K = 1 0.216 0.034 32.06 0.220 0.037 31.53
K > 1 0.240 0.042 30.68 0.248 0.048 29.89
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It can be seen from Table 4 and Figure 7 that our model is slightly superior to the
MST++ model in all three conditions. In addition, both models achieved the best results
when K = 1, the second best results when K < 1, and the largest error when K > 1, which
indicates that they are still slightly sensitive to exposure changes.

The statistical results in Table 4 and Figure 7 meet our expectations as the exposure
estimation module in our model based on Retinex theory is commonly used for low-light
image enhancement, and it is hard to recover the details of serious over-exposure in a digital
image when the color information is completely covered by the illumination. Therefore, this
issue leads to a somewhat large multispectral reconstruction error for the test situation of
K > 1. This can also be verified with the reconstructed spectral reflectance curves in
Figures 4 and 6, where there are very obvious shifts from the ground truth of the recon-
structed spectral curves when K = 1.79.

To verify the validity of the model, we performed ablation experiments using
MST++ as the baseline model for the validation dataset. The EE module was divided
into two versions: EE(DWConv), which uses depth-wise separable convolution; and
EE(WTConv), which uses WTConv. The experimental results are shown in Table 5. When
the EE(DWConv) module was applied to the baseline model, the MRAE decreased by
0.003, and the PSNR increased by 0.05. Replacing EE(DWConv) with EE(WTConv) further
reduced the MRAE by 0.002 and increased the PSNR by 0.11, confirming the effectiveness
of the EE module and WTConv.

Table 5. Ablation testing results of the proposed method, with MST++ as baseline.

Ablation Params (M) MRAE RMSE PSNR

Baseline 1.62 0.236 0.040 30.96
EE(DWConv) 1.77 0.233 0.039 31.01
EE(WTConv) 1.79 0.231 0.041 31.12

EE+EGT 1.79 0.229 0.037 31.43

Afterwards, when we replaced the SST module with the EGT module with added
exposure features, the MRAE and RMSE again decreased by 0.002 and 0.04, respectively,
and the PSNR increased by 0.31. This further illustrates the effectiveness of using exposure
features to guide the computation of self-attention. Additionally, the table shows the



Symmetry 2025, 17, 286 11 of 13

changes in the number of parameters for various combinations, indicating that our model
only increased by 0.17 M parameters compared to the baseline model, demonstrating that
the performance improvement comes at the cost of only a small increase in parameters,
which does not impose significant computational pressure in practical applications.

4. Conclusions
In conclusion, we investigated the current deep learning-based advanced multispectral

reconstruction models and identified the inherent defects of their sensitivity to exposure
changes in input images, which has limited their practical use. To deal with this issue, we
decided to use an augmented exposure dataset to enhance the current models’ ability to
adapt to exposure changes. The results showed that after retraining with the augmented
dataset, most of the current advanced multispectral reconstruction models showed im-
provement in dealing with exposure changes, but they still demonstrated relatively inferior
results compared with their original models tested in unchanged exposure conditions.
Among them, MST++ showed the best performance. Although an optimized model was
proposed by referencing the MST++ model, the multispectral reconstruction accuracy still
deviated from the ground truth, especially for the tested images at high exposure levels. In
the future, for both deep learning- and machine learning-based multispectral reconstruction
studies, more efforts should be devoted to enhancing the model’s robustness by utilizing
the relationship between local exposure regions or combining deep learning with physical
exposure estimation to facilitate its application in practice.
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21. Yan, Q.; Wang, H.; Ma, Y.; Liu, Y.; Dong, W.; Woźniak, M.; Zhang, Y. Uncertainty estimation in HDR imaging with Bayesian
neural networks. Pattern Recognit. 2024, 156, 110802. [CrossRef]

22. Yan, Q.; Hu, T.; Sun, Y.; Tang, H.; Zhu, Y.; Dong, W.; Van Gool, L.; Zhang, Y. Towards high-quality hdr deghosting with conditional
diffusion models. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 4011–4026. [CrossRef]

23. Bhalla, K.; Koundal, D.; Bhatia, S.; Imam Rahmani, M.K.; Tahir, M. Fusion of Infrared and Visible Images Using Fuzzy Based
Siamese Convolutional Network. Comput. Mater. Contin. 2022, 70, 5503–5518. [CrossRef]

24. Baek, J.H.; Kim, D.; Choi, S.M.; Lee, H.J.; Kim, H.; Koh, Y.J. Luminance-aware color transform for multiple exposure correction. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 6156–6165.

25. Yi, X.; Xu, H.; Zhang, H.; Tang, L.; Ma, J. Diff-retinex: Rethinking low-light image enhancement with a generative diffusion model.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October2023; pp. 12302–12311.

26. Bai, J.; Yin, Y.; He, Q.; Li, Y.; Zhang, X. Retinexmamba: Retinex-based mamba for low-light image enhancement. arXiv 2024,
arXiv:2405.03349 2024.

27. Nguyen, H.; Tran, D.; Nguyen, K.; Nguyen, R. Psenet: Progressive self-enhancement network for unsupervised extreme-light
image enhancement. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI,
USA, 2–7 January 2023; pp. 1756–1765.

28. Xu, S.; Chen, X.; Song, B.; Huang, C.; Zhou, J. CNN Injected transformer for image exposure correction. Neurocomputing 2024,
587, 127688. [CrossRef]

29. He, Q.; Zhang, J.; Chen, W.; Zhang, H.; Wang, Z.; Xu, T. OENet: An overexposure correction network fused with residual block
and transformer. Expert Syst. Appl. 2024, 250, 123709. [CrossRef]

30. Afifi, M.; Derpanis, K.G.; Ommer, B.; Brown, M.S. Learning multi-scale photo exposure correction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9157–9167.

31. Zhang, Q.; Nie, Y.; Zheng, W.S. Dual illumination estimation for robust exposure correction. Comput. Graph. Forum 2019,
38, 243–252. [CrossRef]

32. Zhang, Q.; Yuan, G.; Xiao, C.; Zhu, L.; Zheng, W.S. High-quality exposure correction of underexposed photos. In Proceedings of
the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 582–590.

33. Cai, Y.; Bian, H.; Lin, J.; Wang, H.; Timofte, R.; Zhang, Y. Retinexformer: One-stage retinex-based transformer for low-light image
enhancement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023;
pp. 12504–12513.

https://doi.org/10.1016/j.compmedimag.2024.102367
https://doi.org/10.3389/fnins.2022.1031546
https://doi.org/10.1364/OL.405061
https://doi.org/10.1364/OL.428798
https://doi.org/10.1364/OL.517007
https://www.ncbi.nlm.nih.gov/pubmed/38621059
https://doi.org/10.1016/j.mvr.2023.104477
https://www.ncbi.nlm.nih.gov/pubmed/36746364
https://doi.org/10.1023/B:VLSI.0000028532.53893.82
https://doi.org/10.1016/j.patcog.2024.110802
https://doi.org/10.1109/TCSVT.2023.3326293
https://doi.org/10.32604/cmc.2022.021125
https://doi.org/10.1016/j.neucom.2024.127688
https://doi.org/10.1016/j.eswa.2024.123709
https://doi.org/10.1111/cgf.13833


Symmetry 2025, 17, 286 13 of 13

34. Gavrikov, P.; Keuper, J. Can Biases in ImageNet Models Explain Generalization? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 22184–22194.

35. Finder, S.E.; Amoyal, R.; Treister, E.; Freifeld, O. Wavelet convolutions for large receptive fields. European Conference on Computer
Vision; Springer: Cham, Switzerland, 2025; pp. 363–380.

36. Arad, B.; Timofte, R.; Yahel, R.; Morag, N.; Bernat, A.; Cai, Y.; Lin, J.; Lin, Z.; Wang, H.; Zhang, Y.; et al. Ntire 2022 spectral
recovery challenge and data set. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New
Orleans, LA, USA, 19–20 June 2022; pp. 863–881.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Methodology 
	Exposure Estimator (EE) 
	Exposure-Fused Multi-Stage Spectral-Wise Transformer (EFMST++) 
	EGT and SST Modules 

	Experiment 
	Conclusions 
	References

