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ABSTRACT
Traditional train timetabling methods typically schedule trains for
periods ranging from half an hour to a single day, often neglecting
the fluctuations in passenger demand over an entire week. To over-
come this limitation, this study proposes a weekly train timetabling
(WTT) model that schedules trains for the entire week. To effectively
implement the WTT model under practical high-speed railway (HSR)
scenarios, an Estimate-Generation-Evaluate (EGE) solution process is
introduced, incorporating a customised hierarchical train generation
strategy. Testing the EGE process on Chinese HSR lines demonstrates
its superior performance improvement over CPLEX. Compared to
manually generated timetables, the weekly timetable produced by
EGE enhances passenger travel speeds and better aligns train sched-
uleswith passenger demandpatterns. Further comparisons between
solutions for two typical HSR lines verify the universality and robust-
ness of the proposed approach.
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1. Introduction

As a keymode of transportation in modern society, aligning High-Speed Railway (HSR) ser-
vices with passenger demand fluctuations has long been a fundamental goal of HSR train
scheduling and optimisation. The HSR train optimisation process is typically divided into
sequential subproblems (Schöbel 2017). At the strategic level, the line planning problem
involves determining the origin and terminal stations, travel routes, operation frequencies,
and train stopsbasedonpassengerdemand.At the tactical level, the train timetablingprob-
lem specifies the departure and arrival times at each station the train passes or stops, aswell
as the specific departure times and travel durations for passengers. Finally, at the opera-
tional level, the vehicle and crew scheduling problem assigns vehicle units and crew to
serve the passengers. Among these planning processes, the timetabling problem plays a
critical role in providing customised services for passengers.

Passenger demand fluctuations varybetweendifferent origin anddestination (OD)pairs.
On amacro scale, annual peaks in passenger volumes can typically be observed at the start
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and end of national holidays on most HSR lines. Although these significant peaks prompt
railway companies to adjust timetables and add more trains, such occurrences are rare,
typically happening only once a year. The more frequent and critical fluctuation, however,
occurs across different days of the week and periods of the day.

Within a single day, commuter travel between city centres and surrounding areas often
creates distinctmorning and eveningpeaks on short-distanceHSR lines. Business travellers,
on the other hand, typically depart later in the morning, creating smaller peaks during
periods such as 8:00 am to 10:00 am on HSR lines connecting major metropolitan areas.
These demand features are commonly considered while scheduling trains among a day
(e.g. Martin-Iradi and Ropke 2022; Şahin et al. 2020; Yao et al. 2023). Weekly demand fluctu-
ations, which are often overlooked, also play a significant role on many HSR lines. Notable
differences can be seen betweenweekday andweekend demand characteristics. Onweek-
days, particularly from Tuesday to Thursday, passenger demand is relatively stable due
to regular work schedules. While on weekends, increased commuting demand, especially
from individualswho live andwork in different locations, canbeobserved resulting in peaks
on Friday and Sunday afternoons, as well as Saturday mornings. Additionally, tourist cities
may also experience a surge in demand during the weekend as tourists travel to these
locations.

Railway companies commonly adjust train frequencies and stops manually to align
timetables with weekly demand fluctuations. For instance, on regional lines in European
countries, weekdaymorning peak timetables often includemore short-distance trains con-
necting smaller cities tomajor urban centres. In China, where passenger flowonHSR lines is
often saturated, timetables are typically adjusted based on a saturated schedule designed
for peak periods. However, OD pairs along an HSR line vary in distance and city attributes,
leading to different proportions of commuter, tourist, andbusiness travellers, eachwith dis-
tinct demand fluctuation patterns. As a result, simply increasing or decreasing the number
of trains is not always sufficient to accommodate these varyingdemandpatterns.Moreover,
adjusting train stops could potentially disrupt the regularity of the timetable and diminish
the service quality for other OD pairs.

The limitations of manual adjustments urgently require weekly train timetabling meth-
ods, while previous train timetabling studies generally focus on periodic timetabling with
fixed train cycles (Yaoet al. 2023; ZhangandNie2016), flexible train cycles (YanandGoverde
2019), non-periodic timetabling (Cacchiani, Caprara, and Toth 2010; Robenek et al. 2016),
and combined periodic and non-periodic timetabling (Şahin et al. 2020) that consider intra-
day demand fluctuations. The typical timetabling models in these studies are based on
integer decision variables (Yuan et al. 2023; Zhang et al. 2021; Zhao, Yang, and Wu 2021)
for the specific departure and arrival times, or time–space networks with binary decision
variables to the time–space routes of trains (Brännlund et al. 1998; Liao et al. 2021; Zhang
et al. 2022). Headway constraints between departure and arrival times of any two trains
(Tian and Niu 2020) and overtaking forbidding constraints between two neighbouring
stations (Caprara, Fischetti, and Toth 2002) are always included in the models to guar-
antee the timetable feasibility. These studies provide a classic framework for modelling
the train timetabling problem, including decision variables and critical constraints, upon
which our approach is built and customised. While previous literature has widely explored
periodic and non-periodic trains, our model incorporates both types along with a third
category – weekly trains, which operate only on selected days of the week. This feature
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introduces intentional variation between daily timetables, allowing better alignment with
weekly fluctuations in passenger demand,which constitutes a key distinction from classical
timetabling approaches.

Many studies have tailored their methods to address demand variations across differ-
ent origin-destination (OD) pairs or periods of the day. For instance, some studies intro-
duce direct service frequency constraints to guarantee service level for each OD (Yan and
Goverde 2019), robust constraints to address demand uncertainty (Cacchiani, Qi, and Yang
2020), and train capacity constraints according to demand fluctuation (Wang, Li, and Cao
2020). In terms of optimisation objectives, passenger travel indicators are often incorpo-
rated to enhance the alignment between train services and demand fluctuations, such as
minimising passenger travel time (Borndörfer, Hoppmann, and Karbstein 2016; Kaspi and
Raviv 2013), passengerwaiting time at stations (Niu and Zhou 2013), and intermediate train
dwelling time (Yue et al. 2016). Minimising the difference between obtained timetable and
an ideal timetable generated totally based on passenger preference (Cacchiani, Caprara,
and Toth 2010; Cacchiani, Galli, and Toth 2015) can also be regarded as objective. Build-
ing on research that estimates passenger travel choice behaviours (Fischer 2020; Wu et al.
2022), some studies form the integrated optimisationmodels to jointly schedule trains and
determine passenger travelling routes (Martin-Iradi and Ropke 2022; Schmidt and Schöbel
2014; Xu, Li, and Xu 2021) to improve the demand-matching level of obtained timetable.
Rolling stock schedules (Liu et al. 2024; Zhou et al. 2022; Yang et al. 2024) and stop plans
(Dong et al. 2020; Yao et al. 2023; Yuan et al. 2023) are also jointly optimised in some stud-
ies to further enhance passenger service. Additionally, othermeasures, such as flow control
(Hu, Li, and Ren 2025) and pricing and seat allocation (Yuan et al. 2025), have been consid-
ered in recent research to improve service efficiency and demand satisfaction. Building on
the various methods proposed to enhance service, this study integrates an estimation of
passenger behaviours before timetable generation, followed by an evaluation of the gen-
erated timetable based on detailed passenger preferences after timetable generation. This
estimation-generation-evaluation approach further improves the alignment between train
schedules and passenger preferences.

To solve the train timetabling models under larger-scale practical scenarios, if it is
constructed based on time–space networks, Lagrangian relaxation (earlier proposed in
Brännlund et al. 1998, and widely used by recent researches, e.g. Liao et al. 2021; Xu, Li,
and Xu 2021; Tian et al. 2024) or alternating direction method of multipliers (ADMM, Yao
et al. 2023; Zhang et al. 2022) is commonly applied to decompose it into submodels for
routing individual trains. Developing heuristic algorithms is also effective if customised
search rules are designed, such as inserting or deleting trains (Dong et al. 2020), adjust-
ing headway time intervals between adjacent trains (Yuan et al. 2022; Zhou et al. 2022),
and changing the running time of trains (Shi et al. 2023). These tailored solution strate-
gies significantly reduce the computational effort required to solve large-scale timetabling
problems. In this study,wedrawupon variousmethods from the existing literature andpro-
pose a customised heuristic strategy to generate train schedules following a hierarchical
approach, with its efficiency in solving theweekly train timetabling problemdemonstrated
through extensive case studies.

While previous studies have established classic methods for modelling and solving train
timetabling problems, the consideration of complex weekly demand fluctuations presents
the following challenges that limit the efficiency of these widely used approaches: First,
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the increased number of trains over seven days results in an extensive number of decision
variables and constraints, posing significant challenges to find solutions. Second, widely
applied demand modelling approaches struggle to manage the larger scale of passenger
data and themore complex fluctuation characteristics observed over aweek. Using a single
passenger demand indicator in the objective function inevitably introduces bias, while an
integrated optimisation of timetabling and passenger estimation results inmodels that are
too large to solve efficiently.

To address these challenges, we propose a customised Weekly Train Timetabling (WTT)
approach that targets weekly demand fluctuations. Our earlier research (Nie et al. 2022)
focused on the weekly line planning problem and proposed a genetic algorithm. Build-
ing on this, the current study introduces a WTT model using an Estimation-Generation-
Evaluation (EGE) method to determine the specific departure and arrival times for all trains
at all stations over a week. To enhance solution efficiency, a hierarchical train generation
strategy is incorporated into the EGE. The contributions of this research are summarised as
follows

• Proposing weekly train operational modes based on weekly passenger demand
fluctuations: Previous studies have typically focused on single periods or days, with
trains operating in either periodic or non-periodic modes. In this study, we introduce
weekly operational modes for trains: periodic trains that operate consistently across all
periods and days; daily trains that run once or several times each day; and weekly trains
that operate only on specific days of the week. Among these three operational modes,
periodic and daily trains ensure the timetable regularity, while weekly trains provide the
flexibility needed to accommodate fluctuations in weekly demand.

• Developing an EGEmethod for solving theWTT problem: The EGEmethod accounts
for refined passenger travel behaviours by estimating the passenger attraction for each
train before timetabling. Once the weekly timetable is determined, an evaluationmodel
assesses the solutionquality comprehensively.Numerical experimentsdemonstrate that
the resultingweekly timetable is superior to thosemanually generatedbyHSRoperators,
as evidenced by indicators such as passenger travel speed, the number of intermediate
stops, and passenger departure times.

• Incorporating a hierarchical train generation strategy in the EGE: The large num-
ber of trains in real-world scenarios poses significant challenges in generating a weekly
timetable. To address this, we introduce a customised hierarchical train generation
strategy, designed according to the weekly operational modes, and incorporate it into
the EGE framework. This strategy prioritises different train categories and follows a
three-stagemethod to generate the weekly timetable. Case studies verify that this strat-
egy significantly reduces computation time while maintaining stable solution quality
compared to the commercial solver CPLEX.

The remainder of this paper is organised as follows: Section 2 describes the WTT problem
and explains theweekly train operational modes in weekly timetables. Section 3 details the
mathematical models used in the EGE method to solve the WTT problem, while Section 4
discusses the hierarchical train generation strategy. Section 5 presents numerical experi-
ments based on a Chinese HSR case study, and Section 6 concludes the study and suggests
future research directions.
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2. Problem description

TheWeekly Train Timetabling (WTT) problem focus on theplanningperiodof awholeweek,
the continuous daily train operation time is divided into specific periods, such as 8:00 am
to 10:00 am and 10:00 am to 12:00 pm Train schedules within different days of the week
should vary to align with weekly passenger fluctuations, such as the weekly commuting
peaks at Friday, Saturday, and Sunday mentioned in Section 1. Additionally, timetables
across different periods of the day should reflect daily demand variations.

While scheduling trains for a week, a certain level of regularity must also be maintained.
To ensure the consistency of daily timetables, a proportion of trains within each period
should retain identical schedules to facilitate passenger convenience and regular trans-
fers. Furthermore, timetables between adjacent days should not vary significantly, enabling
passengers to easily recall train schedules.

To formulate this complex train scheduling problem, the trains in the weekly timetable
are classified into three operationalmodes based on the regularity of their schedules across
different periods and days:

• Periodic trains: These trains operate in every period eachday,with the interval between
their departure and arrival times at the same station equal to the length of the period.
For example, a periodic train might depart at 8:05 am, 9:05 am, 10:05 am, and so forth,
continuingat the same times throughout eachdayof theweek. Periodic trainshavebeen
the primary focus in recent studies on periodic timetabling.

• Daily trains: These trains operate every day but only during specific periods. For exam-
ple, a daily train might depart at 8:05 am each day of the week. These trains are
considered non-periodic in research related to periodic train timetabling.

• Weekly trains: These trains operate only on specific days, such as at 8:05 am fromMon-
day to Friday. Their schedules can be flexibly adjusted without any regular restrictions.

At critical time slots – such as integral time points like 8:00 am and 9:00 am within each
period – faster trains with fewer stops, connecting two terminals of an HSR line, are sched-
uled to ensure regular direct services between distant major cities. These slots are referred
to as mandatory slots, and the trains operating at these slots are termed mandatory
trains.

Figure 1 illustrates a typicalweekly timetable,with trains labelled from l1 to l8. Trains l2, l4,
and l6 onbothdaysd1 andd2 constitute a set of periodic trains. Thedeparture or arrival time
difference between these trains in adjacent periods, such as l2 in period T1 and l4 in period
T2, is equal to the length of the period. Daily trains l1 and l2 run on both days d1 and d2,
during period T1 and T2, respectively. Weekly trains l3, l7, and l8 operate in different periods
and on different days.

Based on these concepts, the WTT problem takes as input a weekly line plan, devel-
oped in our earlier work (Nie et al. 2022). In that study, a customised genetic algorithmwas
applied to select trains from a candidate set, resulting in a weekly line plan that determines
the origin and terminal stations, intermediate stops, service frequencies, and operational
modes of all trains across each day and period. With these elements fixed, the WTT prob-
lem then focuses on determining the precise departure and arrival times of the trains at all
stations, thereby generating their specific time–space trajectories.
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Figure 1. The periodic trains, daily trains, and weekly trains in a weekly timetable.

To formulate the mathematical model and algorithm for WTT problem, the following
assumptions are presented. Assumptions 2.1–2.3, establishedbasedonpractical train oper-
ation rules, simplify the decisions regarding train travel speeds between adjacent stations
and train dwelling times at various stations. Assumptions 2.4 and 2.5 are derived from
passenger preference surveys.

Assumption 2.1: All the trains are of the same maximum speed, which depends on the
technical condition of the HSR line. Therefore, with determined train stops in input weekly
line plan, running times between any two adjacent stations are considered as fixed values.
This assumption simplifies the problem by eliminating the need to optimise running times
between stations.

Assumption 2.2: Stations along the HSR line are classified into different levels based on
the volume of trains originating, terminating, and stopping at the station, as well as the
passenger demand. The train dwelling time at these stations varies within specific upper
and lower bounds according to the station levels. At higher-level stations with sufficient
track resource, faster trains are allowed to overtake slower trains. This bounded dwelling
time reduces the solution space and helps to control the total number of trains stopping at
each station by limiting the maximum allowable dwelling time.

Assumption 2.3: The seating capacities of trains are fixed, and overloading is prohibited.
This assumption establishes a constraint linking passenger flowwith train schedules during
the optimisation process.
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Assumption 2.4: When the weekly timetable is established, passengers are assigned to
their most preferred trains. Indicators related to their travel routes are used to evaluate the
quality of the weekly timetable. Passenger preferences for train services are influenced by
factors such as departure times, intermediate dwelling times, and transfer time consump-
tion. Passengers are allowed to shift their departure to adjacent periods if no service is
available in their desired departure period but are not permitted to depart on different
days.

Assumption 2.5: Before solving the WTT problem, passengers are also assigned to train
lines based on the input weekly line plan. In this context, passenger-related factors for each
train in the line plan, such as the load factor, are used to represent the passenger attraction
of each train, serving as input for train scheduling. Since the specific departure and arrival
times of trains are not yet determined, passenger preferences are influenced by depar-
ture periods, intermediate stops, and the need for transfers. This passenger assignment
approach was also examined in our earlier work (Nie et al. 2022).

Assumption 2.6: Passengers travelling between a specific origin-destination pair (OD)
within the same period constitute a passenger group, and the preferences of passengers
in a same group are of the same. Assumptions 2.4–2.6 are designed to model passenger
behaviours.

Assumption 2.7: Periodic trains of the same set operate only once per period. If the fre-
quency of a periodic train is more than one in weekly line plan, multiple distinct periodic
train sets should be established.

Assumption 2.8: Trains in input weekly line plan may be cancelled or depart in adjacent
periods when their original departure periods become oversaturated, in this case a penalty
is incorporated into the objective value. Assumptions 2.7 and 2.8 are introduced to ensure
that train schedules adhere to their respective weekly operational modes.

Based on the description of the weekly timetable and the associated assumptions, the
Weekly Train Timetabling (WTT) problem is defined as follows: Given the conditions of the
HSR line – including the length of each period, the maximum speed of trains, the distance
between stations, the categorisation of stations, and the upper and lower bounds of dwell
times at various stations – alongside theweekly line plan, which specifies the origin and ter-
minal stations, routes and stops, weekly operational modes, operational periods and days,
and the operational frequencies of the trains, as well as the passenger demand data, the
objective is to generate a weekly timetable that schedules trains across all seven days of
the week and all periods within each day.

The generated weekly timetable must adhere to several constraints to ensure its feasi-
bility: The departure and arrival time constraints for periodic trains within the same set, the
consistency of schedules for daily trainswithin the same set, the safety headway constraints
between the departure and arrival times of any two trains, and the running and dwell time
constraints for each train.
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3. Mathematicalmodels for estimation-generation-evaluationmethod (EGE)

In the weekly timetable, the schedules for periodic or daily trains remain identical across
different days, allowing these trains to be consolidated into a single entitywith only one set
of decision variables for their departure and arrival times. In contrast, weekly trains, which
operate on specific days, are represented as distinct entities with separate sets of decision
variables for each day they operate. This consolidation effectively reduces theWeekly Train
Timetabling (WTT)problemtoaone-day timetablingproblem, albeitwith additional special
headway constraints that govern the relationships betweenperiodic trains, daily trains, and
weekly trains.

As depicted in Figure 2, headway constraints are essential between the schedules of
any two periodic or daily trains, as these trains operate every day, ensuring safe and effi-
cient spacing between trains on the same line. However, such headway constraints are
not necessary between the schedules of two weekly trains that operate on different days,
for instance, one operating on weekdays and the other on weekends. By simplifying the
WTT problem in this manner, it becomes more manageable while still accommodating the
necessary constraints and maintaining the integrity of the weekly schedule.

Based on the consolidated timetable, this section proposes three models to form the
Estimation-Generation-Evaluation (EGE) method for solving the WTT problem. The related
mathematical expressions are shown in Table 1.

• Estimation: The passenger estimationmodel uses weekly line plan as input and initially
assesses passenger travel behaviour based on the stops and periods of the trains before
theweekly timetable is determined. It outputs the estimated passenger attraction factor
for each train.

Figure 2. Special headway constraints in consolidated timetable.
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Table 1. Notations for mathematical models of the Estimation-Generation-Evaluation (EGE) method.

Notation Definition

S The set of stations s along the railway line.
L The set of all the trains l (or its corresponding train line in the weekly line plan).
W The set of passenger groupsw.Wsisj denotes the set of passenger groups between station si and sj .
T The set of time unites t of each day, typically in minutes.
Q The set of mandatory train operation slots q.
AL The set of trains operate in generated weekly timetable. Then (L − AL) denotes the set of

cancelled trains.
Sl The set of station that the train l passes through. Let Sl = {s0, s1, . . . , sk} denotes the sequence of

stations indexed in the order.
Tl The departure period of train l determined in weekly line plan.
ORl The feasible departure time of train l at its originating station, it includes period Tl and its adjacent

periods.
DRls The range of departure time of train l at station s.
ARls The range of arrival time of train l at station s.
WRls The range of dwelling time of train l at station s. If l not stop at s,WRls = {0}.
T0, T1, T2, . . . The sequence of different periods indexed in the order, e.g. 6:00–8:00, 8:00–10:00, . . .
Tw The original departure period for passenger groupw.
Lq The set of alternative mandatory trains that can operate at mandatory slot q.
LPsisi+1

, TLPsisi+1
The set of direct and transfer routes in passenger estimation model that pass the segment
between si and si+1.

LTsisi+1
, TLTsisi+1

The set of direct and transfer routes l in timetable evaluation model that pass the segment
between si and si+1.

τ T The length of each period.
τq The specific timestep of mandatory slot q.
DHs The safety headway for departure times between adjacent trains at station s.
AHs The safety headway for arrival times between adjacent trains at station s.
σl The original station of train l
ρl The terminal station of train l.
dl The number of days that train l operates. For example, it equals 7 if l is a periodic or daily train that

runs every day of the week.
τlss′ The travel time for train l between two adjacent stations s and s′ .
θll′ Whether the train l and l′ operate in the same day (θll′ = 1) or not (θll′ = 0).
VLw The volume of passenger groupw.
VLlsi si+1 The seating capacity of train l between station si and si+1.
uwη , uwl The matching utility of passenger groupw travel through transfer route η or direct route l.
TRw The range of rational transfer time for passenger group w.
DTi The i-th set of daily trains. DT denotes the set of all the daily trains.
PTi The i-th set of periodic trains. PT denotes the set of all the periodic trains
LFl The estimated passenger attraction factor of train l.
PAl The penalty for the cancellation of train l.
PDl The penalty per minute for dwelling time of train l.
PSl The penalty for train l switching to another period for departure.
M Amaximum value

• Generation: Theweekly timetablingmodel takes theweekly lineplan and the estimated
passenger attraction factors for each train as input to generate the weekly timetable
using the modelling approach of the consolidated timetable.

• Evaluation: The timetable evaluation model takes the weekly timetable as input and
simulates passenger travel behaviour. Indicators such as passenger travel speeds are
used to evaluate the service of weekly timetable.

3.1. Passenger estimationmodel

The passenger estimation model is constructed similarly to the passenger routing model
in our previous research (Nie et al. 2022), which was originally designed to evaluate the
quality of a weekly line plan. It estimates the passenger attraction of trains within the line
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plan based on their departure periods, stops, and compositions. Output indicators, such as
the load factors of trains, serve as evaluations of the passenger attraction ability of the trains
and are used as inputs when scheduling trains to reflect their importance in the weekly
timetable.

According to Assumption 2.6, the set W includes all passenger groups across different
periods and days, covering all OD pairs. Each passenger group w consists of passengers
travelling between a specific pair of stations, departing during a specific period on a specific
day. To formulate the routes for different passenger groups, two types of decision variables
are involved:mP

wl are continuous variables representing thevolumesofpassengersof group
w travelling along direct path l ∈ LPw , and nPwη are continuous variables representing the
volumes of passengers of group w travelling along transfer path η ∈ TLPw . The direct and
transfer paths for passengers are determined based on the input weekly line plan. The set
LPw includes all trains that stop at both the origin and destination stations and operate on
the same day that passenger group w departs. The set TLPw includes all transfer routes. A
transfer route can be formed by two trains only if operate on the same day as groupw, and
the connection at the transfer station is sufficiently close in time, for example, within the
same period. This path formation process significantly reduces the number of alternative
paths, making the model more computationally efficient.

Theobjectiveof thepassenger estimationmodel is tomaximise the totalmatchingutility
of all passengers, as formulated in (p1). Constraint (p2) set the maximum volume of travel-
ling passengers, while constraint (p3) ensures that passenger volume does not exceed the
seating capacity of the train. A detailed discussion of this model can be found in Nie et al.
(2022).

Max : Z =
∑

w,l∈LPw
mP

wl · uPwl +
∑

w,η∈TLPw
nPwη · uPwη (p1)

∑

l∈LPw
mP

wl +
∑

η∈TLPw
nPwη ≤ VLw ∀w ∈ W (p2)

∑

w,l∈LPsisi+1∩LPw
mP

wl +
∑

w,η∈TLPsisi+1∩TLPw
nPwη ≤ VLlsisi+1 ∀l ∈ AL; si, si+1 ∈ Sl (p3)

mP
wl ∈ [0, pw] ∀w ∈ W ; l ∈ LPw (p4)

nPwη ∈ [0, pw] ∀w ∈ W ; η ∈ TLPw (p5)

3.2. Weekly timetablingmodel

The decision variables of weekly timetabling model are listed as follows:

• xls is an integer variable representing the arrival time of train l at station s.
• yls is an integer variable representing the departure time of train l at station s.
• zlq is a binary variable, equals 1 if train l is served as mandatory train at the mandatory

slot q.
• rl is a binary variable, equals 1 if train l is cancelled.
• pl is a binary variable, equals 1 if train l departs within its original departure period.
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Figure 3. Computing the ranges for train departure and arrival times.

The range of departure and arrival times of train l at each station is restricted by the feasi-
ble originating time rangeORl = DRlσl = [Min(Tl) − τT , Max(Tl) + τT ].With fixedupper and
lower dwelling times at intermediate stations, the upper and lower departure and arrival
times at stations can be determined as shown in Figure 3. Assume that train l originates at
the earliest time in ORl and dwells for the shortest time, the earliest departure and arrival
times canbe computed. Assume that train loriginates at the latest time inORl anddwells for
the longest time at each station s, the latest departure and arrival times can be computed.
This computation method is formulated as (g1) and (g2).

DRlsi =
⎡
⎣Min(ORl) +

i−1∑
j=0

τlsjsj+1 +
i∑

j=1

Min(WRlsj), Max(ORl) +
i−1∑
j=0

τlsjsj+1 +
i∑

j=1

Max(WRlsj)

⎤
⎦

i ∈ [1, k − 1] (g1)

ARlsi =
⎡
⎣Min(ORl) +

i−1∑
j=0

τlsjsj+1 +
i−1∑
j=1

Min(WRlsj), Max(ORl) +
i−1∑
j=0

τlsjsj+1 +
i−1∑
j=1

Max(WRlsj)

⎤
⎦

i ∈ [1, k] (g2)

The objective value of weekly timetablingmodel is formulated as (g3), which consists of
three penalty components: The penalty for intermediate dwelling times (PDl per minute);
the penalty for train cancellation (PAl per train); and the penalty for train departing at adja-
cent periods (PSl per train). The parameter dl represents the penalty weights assigned to
trains based on the number of days it operates during theweek. Constraints are formulated
as (g4) ∼ (g19). The restricted range of dwelling times and travelling times are formulated
as (g4) and (g5). The departure and arrival headway constraints are initially formulated as
(g6) and (g7) and are linearised as described in Appendix 1. Constraints (g8) and (g9) restrict
the departure and arrival times of periodic trains of the same periodic set. Constraint (g10)
ensure that only one train is selected for each mandatory slot, and constraints (g11) and
(g12) restrict the departure time of train l if it is selected as a mandatory train. The ratio-
nale of the M-method applied in (g6), (g7), (g11), and (g12) is discussed in Appendix 2.
Constraints (g13) and (g14) restrict the departure time of train l within Tl if its departure
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period is not changed (pl = 1). Constraint (g15) ensures that if one periodic train within a
set is cancelled, all trains in that set are also cancelled to maintain the periodicity of the
weekly timetable. Formulations (g16) through (g20) set the lower and upper bounds for
the decision variables.

Min : Z =
∑

l,s∈(Sl−σl−ρl)

dl(yls − xls) + PAl ·
∑
l

dl · rl + PSl ·
∑

l∈L−PT

dl(pl − 1) (g3)

yls − xls ∈ WRls ∀l, s ∈ (Sl − σl − ρl) (g4)

xlsi+1 − ylsi = τlsisi+1 ∀l; si, si+1 ∈ Sl (g5)

|yls − yl′s| + M(rl + rl′ + θll′) ≥ DHs (g6)

|xls − xl′s| + M(rl + rl′ + θll′) ≥ AHs (g7)

xlj+1s − xljs = τT ∀PTi; lj, lj+1 ∈ PTi (g8)

ylj+1s − yljs = τT ∀PTi; lj, lj+1 ∈ PTi (g9)
∑
l∈Lq

zlq = 1 ∀q ∈ Q (g10)

xlσl + M · (1 − zlq) ≥ τq ∀q ∈ Q, l ∈ LQ (g11)

xlσl − M · (1 − zlq) ≤ τq ∀q ∈ Q, l ∈ LQ (g12)

xlσl + M · pl ≥ Min(Tl) ∀l ∈ L − PT (g13)

xlσl − M · pl ≤ Max(Tl) ∀l ∈ L − PT (g14)

rlj = rlj+1 ∀PTi; lj, lj+1 ∈ PTi (g15)

xls ∈ DRls ∀l, s ∈ (Sl − ρl) (g16)

yls ∈ DRls ∀l, s ∈ (Sl − σl) (g17)

zlq ∈ {0, 1} ∀q ∈ Q, l ∈ LQ (g18)

rl ∈ {0, 1} ∀l (g19)

pl ∈ {0, 1} ∀l ∈ L − PT (g20)

3.3. Timetable evaluationmodel

The obtained weekly timetable forms direct routes LTw and transfer routes TLTw for each pas-
senger groupw in a similar way as LPw and TLPw in Section 3.1. Since the departure and arrival
times of trains are determined in weekly timetable, transfer routes are formed according to
the specific transfer times additionally. Routes with infeasible transfer times are rejected.

Method to compute the passenger travelling utilities uTwl and uTwη is described as fol-
lows: Set ûwl as the sumof all the intermediate dwelling times (inminute) of train l between
original and terminal stations, and ûwη as the sum of all the intermediate dwelling times
(in minute) of train l and l′ that form the transfer route η and include the transfer time
of η (in minute, with a larger weight due to the more inconvenience caused by trans-
ferring). Next, add a penalty to both ûwl and ûwη if the departure time of route is not
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within the original departure period of passenger group w. This penalty can either be uni-
form across all non-preferred periods or vary according to the deviation from the original
departure period. In this study,we apply a significant penalty regardless of theperioddiffer-
ence, as our objective is to ensure that all passengers depart within their original preferred
periods. Finally, uTwl ∈ DUw is determined as the normalised value of −ûwl for different l,
and uTwη ∈ TUw is determined as the normalised value of −ûwη for different η. Generally,
Min(DUw) ≥ Max(TUw).

Decision variables mT
wl are continuous one representing the volumes of passengers of

groupw travelling along direct path l ∈ LTw , and nTwη are continuous variables representing
the volumes of passengers of groupw travelling along transfer path η ∈ TLTw . The objective,
and constraints of timetable evaluationmodel are formulated as (t1) ∼ (t5), which is similar
to the passenger estimation model in Section 3.1.

Max: Z =
∑

w,l∈LTw
mT

wl · uTwl +
∑

w,η∈TLTw
nTwη · uTwη (t1)

∑

l∈LTw
mT

wl +
∑

η∈TLTw
nTwη ≤ VLw ∀w ∈ W (t2)

∑

w,l∈LTsisi+1∩LTw
mT

wl +
∑

w,η∈TLTsisi+1∩TLTw
nTwη ≤ VLlsisi+1 ∀l ∈ AL; si, si+1 ∈ Sl (t3)

mT
wl ∈ [0, pw] ∀w ∈ W ; l ∈ LTw (t4)

nTwη ∈ [0, pw] ∀w ∈ W ; η ∈ TLTw (t5)

4. EGE incorporating hierarchical train generation strategy

In the Estimation-Generation-Evaluation (EGE) method, solving the weekly timetabling
model is most challenging due to the inclusion of integer decision variables, while in other
models all the decision variables are continuous. To address this challenge a hierarchi-
cal train generation strategy is incorporated into EGE. The outline of EGE is illustrated in
Figure 4.

First, the passenger estimation model route passengers based on the input weekly line
plan, the values of decision variables aredenoted as m̄P

wl and n̄
P
wη . Tomeasure thepassenger

attraction of each train line, the load factors are served as passenger attraction factor LFl .
The distance between station s1 and s2 is denoted as DISs1s2 , and the computation of LFl is
formulated as (e1).

LFl =
∑

si ,si+1∈Sl

DISsisi+1

DISσlρl · VLlsisi+1

·
⎛
⎜⎝

∑

w,l∈LPsisi+1∩LPw
mP

wl +
∑

w,η∈TLPsisi+1∩TLPw
nPwη

⎞
⎟⎠ (e1)

Thepassenger attraction factor LFl, computed in thepassenger estimationmodel, is then
used as critical input in theweekly timetablingmodel. The penalty values for different trains
l in the objective (g3) of weekly timetabling model are computed based on LFl , formulated
as PDl = FPD(LFl), PAl = FPA(LFl), and PSl = FPS(LFl). These penalties reflect the potential
risk of passenger service reduction associated with the train adjustments and cancellation.
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Figure 4. The procedure for Estimation-Generation-Evaluation (EGE)method incorporating hierarchical
train generation strategy.

Sections 4.1, 4.2, and 4.3 describe the hierarchical train generation process, which decom-
poses the original optimisation problem – considering all trains as input – into multiple
stages. In each stage, a smaller subset of trains is selected as input and scheduled using
commercial solvers to solve the optimisationmodel presented in Section 3.2, with different
parameters applied.
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Finally, through evaluating the output weekly timetable, demand-related indicators
are used to measure passenger service level. For example, the total matching utility,
which is the value of the objective function, indicating the extent to which passengers
can select the optimal travel paths. Other detailed indicators, such as passenger travel
speed, can also be implemented into discussion. An iterative method could be devel-
oped as follows, though it is not included in this study due to its current instability in
efficiency: The weekly timetable evaluation can also generate LFl values for scheduled
trains, which can then be used as inputs for the weekly timetabling model in the next
iteration.

4.1. Scheduling the critical trains

The first stage of hierarchical train generation is scheduling the critical trains in weekly
timetable, which containing three types of trains: all alternative mandatory trains for
each mandatory slot, all periodic trains, and daily or weekly trains with higher passenger
attractions. The steps of scheduling the critical train are given as follows.
Step 1 Let LStage−1 represent the set of critical trains that are scheduled in this Stage-1. And
select trains from L into LStage−1. Order the trains l ∈ L according to LFl , and for each l:

if l is the alternativemandatory train for amandatory slot q ∈ Q (l ∈ Lq), add l into LStage−1;
if l is a periodic train (l ∈ LP), add l into LStage−1;
if l is a daily train (l ∈ LD) or weekly train (l ∈ LW ), and the number of trains in LStage−1 is

less than a pre-given value (|LStage−1| < VTStage−1), add l into LStage−1.

Step2Compute the penalties PDl , PAl , and PSl of trains l ∈ LStage−1 with linear formulations
(e2), (e3), and (e4).

PDl = FPD(LFl) = aPDl · LFl + bPDl (e2)

PAl = FPA(LFl) = aPAl · LFl + bPAl (e3)

PSl = FPS(LFl) = aPSl · LFl + bPSl (e4)

Step 3 Regarding the trains l ∈ LStage−1 and their penalties PDl , PAl , and PSl as input, solve
the weekly timetabling model described in Section 3.2 with commercial solver. The values
ofdecisionvariables xlσl is recordedas x̄lσl , which is theexpecteddeparture values for critical
trains.

In this process, the set LStage−1 must include at least all periodic trains, while the max-
imum number of trains VTStage−1 in the critical set should not be excessively large. An
overly large critical train set may prevent the commercial solver from solving the weekly
timetabling problemwithin a reasonable time frame, resulting in suboptimal scheduling of
critical trains. This balance is crucial for maintaining computationally feasibility while effec-
tively covering essential and high-demand services in the timetable. Values of aPDl , aPAl , and
aPSl as well as bPDl , bPAl , and bPSl for different trains l and are set according to the distance
and the number of stations they pass and stop at to measure the potential impact of their
adjustments on passengers.
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4.2. Scheduling the trains following the period sequence

This stage schedule all the trains by solving local timetables for each period. This method
neglects the global information and leads to only local optimal solutions, which is themoti-
vation of scheduling critical trains firstly, with demand fluctuation across different periods
considered.

In this section, critical trains in LStage−1 are assumed to departure within a certain time
range according to their schedules determined in Section 1, or a new penalty PVl will be
added in the objective of the weekly timetabling model, which is formulated as (e5). New
type of decision variables el is incorporated for critical trains l ∈ LStage−1. When el equals
1, train l departs within a range of [x̄lσl − τD, x̄lσl + τD], where τD represents the flexibility
for adjusting the departure time of critical trains. Additional constraints (e6) and (e7) are
included in the weekly timetabling model to restrict the relationship between el and xlσl .
The rationale of the M-method is discussed in Appendix 2. These constraints ensure that
critical trains are positioned within time slots determined based on the global passenger
demand information, aiming to achieve a higher level of demand matching.

Min : Z = PDl ·
∑

l,s∈(Sl−σl−ρl)

dl(yls − xls) + PAl ·
∑
l

dlrl − PVl ·
∑

l∈LStage−1

dlel (e5)

xlσl − M · (1 − el) ≤ x̄lσl + τD∀l ∈ LStage−1 (e6)

xlσl + M · (1 − el) ≥ x̄lσl − τD∀l ∈ LStage−1 (e7)

The process for scheduling trains following the period sequence is given as follows.
Step 1. Compute the penalties PDl , PAl , and PSl of trains l ∈ L with (e2), (e3), and (e4),
respectively. Compute the penalties PVl for trains l ∈ LStage−1 with (e8).

PVl = FPV(LFl) = aPVl · LFl + bPVl (e8)

Step 2. Order the periods according to a certain rule (for example, from the latest to the
earliest within a day). Let LP(i) represents the set of trains operating in the period indexed
by i in this sequence. For example, LP(1) corresponds to the last period of the day.

Steps 3–7 describe the procedure to schedule all the trains in the period indexed by i:
Step 3. For each train l ∈ LP(i), if l is also included in LPTj . Add the trains l′ ∈ LPTj ∩ LP(i−1) and

l′ ∈ LPTj ∩ LP(i+1) to LP(i) if they have not been scheduled yet.
Step 4. Compute the departure and arrival time ranges DRls and ARls with (g1) and (g2).
If i ≥ 2, adjust the upper bounds of DRls and ARls are adjusted according to (e9) and (e10)
based on the schedules of trains in adjacent period indexed (i − 1).

Max(ARls) = Minl∈LP(i−1) (x̄ls) − AHs ∀l, s ∈ (Sl − ρl) (e9)

Max(DRls) = Minl∈LP(i−1) (ȳls) − DHs ∀l, s ∈ (Sl − σl) (e10)

Step 5. If a mandatory slot q falls within the time range of this period (τq ∈ TP(i)), add the
trains l ∈ Lq to LP(i)and include decision variables zlq along with constraints (g11) and (g12)
for slot q.
Step 6. With the trains l ∈ LP(i) and their penalties PDl , PAl , PSl , and PVl (only for l ∈
LStage−1 ∩ LP(i)) as input, a commercial solver is applied to solve the weekly timetabling
model with formulation (e5) as the objective and include additional constraints (e6) and
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Figure 5. Potential conflicts between two periods while solving local timetables.

(e7). In this step, all trains within the selected period are scheduled in the output solution.
The resulting values of the decision variables for train l at station s are denoted as x̄ls and
ȳls. These values remain fixed and will not be adjusted when scheduling trains in subse-
quent periods. If the timetable capacity within the period is insufficient to accommodate
all planned trains, a subset of trains in this period will be cancelled. The set of cancelled
trains is denoted as LCP(i).
Step 7. For each train l ∈ LP(i) − LCP(i), if l is also included in LPTj . Determine the schedules

for other trains l′ ∈ LPTj ∩ LP(k) with (e11) and (e12)

x̄l′s = x̄ls − (k − i) · τ T∀l ∈ LPTj ∩ LP(i); l′ ∈ LPTj ∩ LP(k) (e11)

ȳl′s = ȳls − (k − i) · τ T∀l ∈ LPTj ∩ LP(i); l′ ∈ LPTj ∩ LP(k) (e12)

Potential conflicts while scheduling trains following period sequence is described as
follows. Correspondingmethods for addressing themduring theprocedure is also outlined.

First, given that some trainsmay extend into adjacent periods, schedulingperiodic trains
at the earliest times of a periodmay violate the safety headway intervals between the latest
departing trains of the current period and the earliest departing trains of the next period.
For instance, in Figure 5, where trains l1 and l2 are scheduled to depart early in the current
solving period and next period, respectively. Train l3, however, departs late in the current
solving period and extends to the next period. In this case, safety headway should be sat-
isfied between trains l2 and l3. To handle this potential conflict, in Step 3 when solving
a period concluding periodic trains, other periodic trains departing in adjacent periods
should also be scheduled simultaneously, with their safety headway constraints considered
in weekly timetabling model.

Second, model may fail to schedule mandatory trains due to the other trains scheduled
close to themandatory slot. For example, in Figure 6, if train l1 is scheduled too close to the
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Figure 6. Potential conflicts of mandatory slots while solving local timetables.

mandatory slot q, it may violate the headway constraints between any potentialmandatory
trains l2 and l3 at this slot. Therefore, in Step 5 if a single mandatory slot may span two
adjacent periods, its mandatory train should be determined in the prioritised period in the
sequence.

Third, if trains in adjacent periods are both scheduled, the range for departure and arrival
times at some stations may be reduced or even eliminated. For example, in Figure 7 the
latest train l3 in period 1 significantly intrudes into the departure time range of period 2.
However, trains in period 2 cannot extend into period 3 to achieve a larger operating time
range due to the scheduled mandatory train l3, leading to a significant compression of
the departure and arrival time range of period 2 trains. Therefore, in Step 2 if there are
fewer trains in later time periods, the period sequence should be constructed from the ear-
liest to the latest one of a day. Conversely, if there are fewer trains in earlier periods, or if
trains departing in the latest periods are prone to intruding into subsequent maintenance
windows, the sequence could be constructed from the latest to the earliest one.

4.3. Rescheduling the cancelled trains

This stageaims to reschedule trains that are cancelled inprevious stagedescribed in Section
4.2. By expanding the range of decision variables for departure and arrival times, feasible
routes may be found in adjacent periods. The original periods and its adjacent periods of
train l is added into ORl , then DRls and ARls can be computed by (g1) and (g2). The process
for rescheduling the trains cancelled in previous stage is given as follows.
Step1. Select the period indexedby i if its scheduled trains number less than a certain value
(|LP(i)| − |LCP(i)| ≤ NL).



TRANSPORTMETRICA A: TRANSPORT SCIENCE 19

Figure 7. The train operation time range of a period may be limited by scheduled trains in adjacent
periods.

Following steps 2–4 reschedule cancelled trains departing at the adjacent periods
indexed by (i − 1) and (i + 1).
Step 2. Let the set LS3P(i) = LP(i) − LCP(i) + LCP(i−1) + LCP(i+1), in which (LCP(i−1) + LCP(i+1))

represents the cancelled trains in adjacent periods that are ready to be scheduled in period
i in stage 3, and (LP(i) − LCP(i)) represents the already scheduled trains.
Step 3. Reset the departure and arrival time ranges DRls and ARls for trains l ∈ LS3P(i):

If l ∈ LP(i) − LCP(i), DRls = x̄ls and ARls = ȳls. The scheduled trains won’t change its depar-
ture and arrival times.
If l ∈ LCP(i−1), use (g1) and (g2) to compute DRls and ARls, in which ORl = [Min(TP(i)),

Max(TP(i−1))]. TP(i) represents the range of timesteps for period indexed by i in the period
sequence.
If l ∈ LCP(i+1), use (g1) and (g2) to compute DRls and ARls, in which ORl = [Min(TP(i+1)),

Max(TP(i))].

Step 4. With the trains l ∈ LS3P(i) and adjusted DRls and ARls as input, solve the weekly
timetabling model. The values of decision variables are denoted as x̄ls, ȳls, and r̄l . If r̄l > 0,
this operated train is moved out of LCP(i).
Step 5. After all the periods in the sequence are computed, all scheduled trains are output
as the weekly timetable.

5. Numerical experiment

Based on the typical Shanghai-Nanjing high-speed railway (HSR) line, we first con-
struct smaller-scale scenarios to compare the solution quality between the Estimation-
Generation-Evaluation (EGE)method and the commercial solver CPLEX, demonstrating the
solution efficiency of EGE. Subsequently, practical passenger demand data and the weekly
line plan from Nie et al. (2022) are used as inputs for a large-scale practical scenario. This
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Figure 8. Condition of Nanjing-Shanghai high-speed railway line.

allows us to compare the EGE-generated weekly timetable with a manually generated
timetable and assess EGE’s performance. Finally, the EGE is applied to the Beijing-Shanghai
HSR line, which represents a typical long-distance route distinct from the Shanghai-Nanjing
line. By comparing the solutions for these two HSR lines, we demonstrate the universality
of the EGE method.

The railway condition of Shanghai-NanjingHSR is illustrated in Figure 8. Stations are clas-
sified into three levels: major stations of level 1, larger intermediate stations of level 2, and
smaller intermediate stations of level 3. The test computer runs on Windows 11 operating
system, with an CPU of AMD R9 7490H, a main frequency of 4.00 GHz, 8 cores, 16 threads,
and 16GB of memory.

5.1. Solution analysis based on small-scale scenarios

Five smaller-scale scenarios containing from 50 to 100 trains are constructed The input
weekly line plans for these scenarios are derived by removing a portion of trains from the
original plan developed in Nie et al. (2022). Efforts were made to maintain similar propor-
tions of periodic, daily, and weekly trains across the scenarios; however, these manually
generated line plans do not match passenger demand as effectively as the original. The
primary objective of comparing these scenarios is to evaluate the performance of the ‘Gen-
eration’ stage of the EGE method, which employs a hierarchical train generation strategy.
The commercial solver CPLEX is used as benchmark, with amaximum solution time to 7200
s. The objectives and solution gaps for the hierarchical strategy and CPLEX are documented
in Table 2.

While solving the smallest scenario (scenario 1), CPLEX can obtain the optimal solution
with negligible time consumption. However, as the number of trains increase, the solution
performance of CPLEX decreases significantly. In scenario 3 and 4, CPLEX fails to find solu-
tion with a small gap within 7200-s limit. And in scenario 5, CPLEX cannot find any feasible
solution within 7200 s and only a lower bound value can be estimated.
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Table 2. Solution comparison between hierarchical strategy and CPLEX.

Scenarios 1 2 3 4 5

Num. of trains in the consolidated timetable 51 86 103 124 150
Num. of periodic trains in the consolidated timetable 6 18 18 24 30
Num. of daily trains in the consolidated timetable 21 23 28 29 43
Num. of trains in original weekly line plan 244 394 457 538 700
CPLEX Computation time for the first

solution with gap less than 5%
117s 2159s > 7200s > 7200s > 7200s

Total computation time 356s 7200s 7200s 7200s –
Obj. value of the best solution 4000 6455 23,297 72,178 –
Gap of the best solution 0.00% 1.04% 67.57% 88.19% –
Estimated lower bound value 4000 6388 7555 8587 12,343

Hierarchical train
generation strategy

Computation time 2s 29s 158s 612s 3525s
Obj. value 4261 75,67 9063 10,532 17,236
Gap 6.12% 15.58% 16.63% 18.47% 28.39%

For the hierarchical train generation strategy in the EGE, the computation times for all
the scenarios are shorter than that of CPLEX. However, the hierarchical strategy divides the
original model into multiple stages, leading to only local optimal solutions instead of the
global ones. Therefore, while solving smaller scenarios 1 and 2, the solution gaps times
of hierarchical strategy are larger than those of CPLEX. As the number of trains increases,
the solution gaps become much smaller compared to those obtained by CPLEX, demon-
strating a significant efficiency improvement while solving larger-scale weekly timetabling
models.

Since the hierarchical strategy cannot directly estimate the lower bound of the solution,
gaps in Table 2 are computed based on the lower bounds estimated by CPLEX. Therefore, in
scenario 5when CPLEX fails to find good solutions, this estimation of lower boundmay also
be biased. Figure 9 illustrates the comparison between the train number and the changes
in the objective values obtained by the hierarchical strategy across the five scenarios. The
objective of the weekly timetablingmodel is strongly correlated with the number of trains.
Hence, in scenarios 1–4, the trends of the two lines in Figure 9 are similar, indicating con-
sistent solution quality. Due to an additional penalty value of totally 8 trains rescheduled to
adjacent periods in scenario 5, a significant increase in the objective value can be observed
between scenarios 4 and 5.

Combining the trends observed in the curves depicted in Figure 9 with the gaps for the
solutions in Table 2, it becomes evident that the hierarchical strategy consistently outper-
forms CPLEX when solving weekly timetabling model in the process of EGE method under
larger-scale scenarios. Moreover, the solution quality of the hierarchical strategy remains
consistent across different scales of cases.

5.2. Solution analysis based on large-scale piratical scenarios

With the practical passenger demand data and weekly line plan of the Nanjing-Shanghai
HSR line as inputs, the implementation details of the hierarchical train generation strategy
are discussed in sections 5.2.1 and 5.2.2. In section 5.2.3, the EGE-obtainedweekly timetable
is compared to themanually generated timetable,which is currently applied in this practical
scenario.
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Figure 9. The changing trend of objective values of HTG strategy across different scenarios.

5.2.1. Implementation details related to stage 1 in the hierarchical strategy
With the implementation of stage 1 in hierarchical strategy, two parameters playing critical
roles are analysed in detail:

(1) The schedule adjustment duration τD for critical trains in stage 2.
(2) The penalty value PVl , whichwill be added into objective if the critical trains l depar-

ture not in the given time range. The value of PVl can be set as a certain proportion
of the penalty PAl .

In Table 3, a timetable generated without involving stage 1 is recorded as ID 1. The other
solutions are generated with the values of PVl/PAl set as 0.7, 0.5, 0.3, 0.1, and 0.05; and with
the values of τD set as 0, 10, 20, 40, and 80. Solutions with demand matching utilities sig-
nificantly higher than that of ID 1 are highlighted in bold. Generally, involving stage 1 leads
an increase in computation time. However, if appropriate values are set for PVl and τD, the
passenger matching utility of solution with stage 1 incorporated can be 17.23% (the data
of ID 20) higher than the solution without stage 1. This increase can be attributed to the
following aspects.

(1) Increase in thenumberof trainsandseatkilometres. This trend is particularly evi-
dent in IDs 15 and 20 in Table 3. Without stage 1, periodic trains will be scheduled
at suboptimal times in stage 2, making it difficult to insert enough number of trains
in the subsequent periods. While by introducing the stage 1 and setting appropri-
ate values for PVl and τD, both the number of trains and the total seat kilometres
increase. This offers passengers more diverse travel options and greater transport
capacity thus increase the total passenger matching utility.
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Table 3. Solution indicators with different values of PVl and τD.

ID
Whether stage
1 is included PVl/PAl τD

Computation
time (min)

Total train
penalty (×104)

Total demand
matching

utility (×106)
Total number

of trains

Total seat
kilometres
(×108)

Number of
passengers
departing at
original period

1 not included – – 86 2.04 2.62 759 1.71 64.3%
2 included 0.7 0 105 4.11 2.30 728 1.64 64.1%
3 10 107 4.68 2.50 734 1.66 67.6%
4 20 101 5.32 2.69 762 1.72 65.4%
5 40 101 2.81 2.62 754 1.71 66.3%
6 80 102 2.15 2.65 770 1.75 63.8%
7 0.5 0 110 3.52 2.44 735 1.67 64.1%
8 10 104 5.37 2.54 750 1.69 66.7%
9 20 103 3.11 2.67 758 1.72 69.9%
10 40 111 2.44 2.83 795 1.80 67.0%
11 80 112 2.08 2.60 758 1.71 64.3%
12 0.3 0 102 4.06 2.38 737 1.66 64.5%
13 10 102 2.61 2.53 763 1.72 66.0%
14 20 114 2.92 2.32 713 1.63 64.0%
15 40 110 2.36 3.01 803 1.82 66.9%
16 80 106 3.45 2.18 711 1.61 58.8%
17 0.1 0 102 3.38 2.59 753 1.69 66.1%
18 10 103 4.69 2.41 749 1.69 66.9%
19 20 102 4.93 2.56 733 1.71 68.7%
20 40 110 2.26 3.08 804 1.83 69.3%
21 80 105 2.03 2.89 784 1.78 68.0%
22 0.05 0 102 3.62 2.50 738 1.68 65.0%
23 10 111 4.49 2.51 750 1.71 68.8%
24 20 102 2.28 2.48 730 1.64 67.6%
25 40 105 7.00 2.04 687 1.58 63.3%
26 80 106 2.42 2.79 788 1.78 68.5%
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Figure 10. Train penalties and demand matching utilities of solutions with different values of PVl and
τD.

(2) Increase in passengers travelling within their original departure periods. This
trend is particularly evident in IDs 9, 20, 21, and 26 in Table 3. Althoughmaintaining
passengers’ original departure periods is not explicitly defined as an objective in
theweekly timetablingmodel, it is achieved by prioritising critical trains with higher
passenger demand in the hierarchical strategy.When critical trains are scheduled to
operate within their original periods, a higher proportion of passengers are accom-
modated within their preferred departure times, leading to a higher passenger
matching utility.

(3) Slight increase in penalties for the solutions. This trend is particularly evident in
IDs 4 and 9 in Table 3. Since the train penalties is the objective of weekly timetabling
model, a large proportion of solutions with highermatching utilities typically reflect
lower train penalties. However, in Figure 10 which prints the solutions generated
with various PVl and τD (the one generated without the stage 1 is marked in red
as a benchmark), solutions can both achieve high values of demand matching util-
ity when the penalties for the solutions are lower (below 2.5×104) or higher (above
5.0×104). Most solutions with higher matching utilities (above 2.8×106) fall within
the penalty values of 2.0×104 to 3.0×104, as indicated by the red dashed circles.
This suggests a certain degree of bias between the specific passenger service level
and theobjective of themodel. Therefore, thedirectly obtainedoptimal solutionnot
necessary being the solution with best passenger matching utility. While the hier-
archical strategy proposed in this study can further enhance the demandmatching
utility when appropriate PVl and τD values are applied, with the cost of a slightly
increased in the objective value.

The records in Table 3 reveal the crucial influence of PVl and τD on the optimisation effort
of the hierarchical strategy. In practical scenarios, PVl/PAl is typically less than 1, and τD

should be less than the length of each period. According to Table 3, solutions generally
exhibit higher quality when PVl/PAl is between 0.1 and 0.5. Therefore, the values of 0.1, 0.3,
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Figure 11. Passenger demand matching utilities changing trends with different values of PVl and τD.

and 0.5 for PVl/PAl is tested, and the values of τD is set between 0 and 90, the changing
trends of passenger demand matching utilities are illustrated in Figure 11.

When τD is less than 30, the demand matching utilities of the three series are gener-
ally low and exhibit an upward trend. When τD =40 or 50, all three series achieve good
solutions. As τD increases further, the demand matching utilities for PVl/PAl =0.3 and 0.5
series tend to decrease overall, while the PVl/PAl = 0.1 series further achieved the highest
demandmatching utility at τD = 70. Referring to the overall trend changes in other series,
PVl/PAl = 0.1 and τD = 40 are set as considered reasonable values and will be utilised in
subsequent experiments.

5.2.2. Optimisation effort related to stage 3 in the hierarchical strategy
To reveal the optimisation effort of stage 3, two alternative strategies are compared. The
first is the ‘2-stage strategy’, in which stage 3 is omitted and trains cancelled in stage 2 are
not reconsidered. The second, called the ‘Improved 2-stage strategy’, also omits stage 3 but
take into account cancelled trains in adjacent periods if these periods have already been
solved.

With more trains included in Stage 2, the computation time for the Improved 2-stage
strategy increasesby approximately 16–23min compared to the2-stage strategy.However,
when Stage 3 is introduced, the computation time of Stage 2 is reduced, resulting in a slight
overall decrease in total computation time – approximately 5–7min less than the Improved
2-stage strategy.

While the Improved2-stage strategydemonstrates a 9.7%higher demandmatchingutil-
ity compared to the 2-stage strategy, the 3-stage hierarchical strategy further improves
demand matching utility by 18.9% over the Improved 2-stage strategy. This clearly high-
lights the optimisation benefits of incorporating stage 3.

To further demonstrate the differences among these strategies, Figure 12 shows the
number of trains cancelled in each period. The hierarchical strategy results in significantly
fewer cancellations than the other two strategies. Notably, the 2-stage and Improved 2-
stage strategies both cancel 91 trains between 16:00 and 18:00, while the peak cancellation
for the hierarchical strategy is only 54 trains, indicating a better balance of service.
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Figure 12. The cancellation distribution across periods in the three methods regarding stage 3 differ-
ently.

5.2.3. Solution comparison: weekly timetable andmanually generated timetable
The optimisation of the proposed weekly timetabling approach is demonstrated by com-
paring it with the manually generated timetable, as indicated by the metrics recorded in
Table 4. The passenger matching utility of the manually generated timetable is higher, as
the trains generally operate at slower speeds. This allows passengers to more easily select
routes that approximate the optimal ones, thereby yielding highermatching utilities. How-
ever, a closer examination of the detailed indicators reveals several advantages associated
with the weekly timetable.

(1) The increase in train travel speed is both significant and hierarchically dis-
tributed. As illustrated in Figure 13, the peak distribution of train travel speeds differs
markedly between the manual and weekly timetables. Trains in the weekly timetable pre-
dominantly operate at speeds exceeding 200 km/h, whereas those in themanual timetable
are primarily within the 120–160 km/h range. This significant improvement in speed
enhances the service level for passengers, particularly at major stations.

Furthermore, the weekly timetable exhibits a hierarchical distribution of travel speeds.
A secondary peak is observed in the 140–160 km/h range, and it includes a greater number
of trains operating below 100 km/h compared to the manual timetable. This hierarchical
structure categorises trains into ‘last direct trains’, ‘common trains’, and ‘slower all-stopping
trains’, thereby accommodating the diverse travel needs of passengers across various ODs.

(2) Passenger attraction for both fast trains and mandatory trains is significantly
greater. The average load factors of trains across various speed ranges are depicted in
Figure 14. In the weekly timetable, trains operating at speeds exceeding 260 km/h exhibit
the highest load factors, indicating the strongest passenger attraction. With the introduc-
tion of differentiated pricing strategies, these high-speed trains could be designated as
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Table 4. Indicator comparison between weekly timetable and manually generated timetable.

Manually generated timetable Weekly timetable

Passenger demand matching utility (×106) 3.42 3.08
Average travel speed of trains (km/h) 142.17 210.71
Average number of intermediate stops of passengers 1.97 0.89
Average travel speed of passengers (km/h) 158.41 211.03
Average train load factor 68.23% 71.10%
Number of mandatory trains per day 10 15
Average load factor of mandatory trains 95.08% 97.13%
Proportion of passengers travelling in their original
departure periods

70.14% 69.26%

Proportion of passengers travelling in their original
departure periods and adjacent periods

84.42% 93.13%

Total number of trains 882 804

Figure 13. The travel speed distribution of trains in manual and weekly timetables.

Figure 14. The average load factors of trains with different speed in themanual andweekly timetables.

premium services, allowing for higher ticket prices to enhance the profitability of railway
companies while offering additional services to passengers. Trains operating at speeds of
160–200 km/h in the manual timetable also show elevated load factors, although their
speeds are considerably lower.
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Figure 15. The changes in the ratio of total passenger kilometres to total seat kilometres across
periods.

The weekly timetable includes a greater number of mandatory trains, most of which
achieve a 100% load factor, surpassing those in themanual timetable. These essential trains
in the weekly timetable could also be marketed as premium services in mandatory slots,
facilitating higher ticket prices and enhanced passenger offerings.

(3) Enhanced alignment between passenger kilometres and seat kilometres. The
frequency of train operations more accurately reflects passenger demand due to the
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optimisation of train stops in theweekly line plan. Figure 15 illustrates the ratio of total pas-
senger kilometres to total seat kilometres – referred to as the ‘overall load factor’ – for each
period and day, highlighting the alignment between passenger demand and train capacity
in both the weekly and manually generated timetables.

The weekly timetable exhibits smaller fluctuations in the overall load factor, indicating
a closer alignment between seat kilometres and passenger kilometres. For example, in the
manual timetable, 120 trains operate between 6:00 am and 8:00 am, resulting in signifi-
cantly lower overall load factors compared to the 78 trains operating in the same period in
the weekly timetable. A similar pattern is observed between 4:00 pm and 6:00 pm, where
the manual timetable runs 136 trains compared to 110 trains in the weekly timetable.

Although the overall load factor in theweekly timetable increases during peak periods, it
remains lower than that in themanual timetable, demonstrating its capacity to provide suf-
ficient services during high-demand periods. During low-demand periods, the overall load
factor in the weekly timetable decreases but often surpasses that of the manual timetable,
underscoring its effectiveness in reducing resource wastage.

Additionally, as the demand input in this study is derived from corrections and predic-
tions based on actual demand, the overall load factor in certain periods may approach
or exceed 1. In such instances, excess passengers are likely to be transferred to adjacent
periods.

(4) Trains exhibit a hierarchical and more regular departure sequence. The hierar-
chical travel speeds of trains generally result in wider time intervals between departures,
particularly between fast trains with few stops and slower trains with multiple stops. These
intervals create triangular blank areas at the end of each period between the slower trains
departing late in the current period and the faster trains departing early in the next period,
as illustrated in Figure 16, which depicts the weekly timetable for the Nanjing-Shanghai
HSR.

To mitigate imbalances in train services at stations within these blank triangular areas,
the weekly timetable schedules trains with similar stop patterns to depart consecutively.
For instance, as shown in Table 5, several fast trains depart consecutively between 8:00 am
and 8:24 am, forming a ‘faster train group’ in the weekly timetable. The last two fast trains
in this period depart at 9:42 am and 9:44 am, creating another fast train group with those
departing at thebeginningof thenext period. In contrast, this phenomenon is not observed
in the manual timetable due to the smaller differences in train speeds (with the exception
of two mandatory trains). The regular and balanced departure sequence of trains in the
weekly timetable enhances the efficiency and predictability of train services.

5.3. Solution comparison: Nanjing-Shanghai and Beijing-Shanghai HSR lines

The Nanjing-Shanghai HSR, analysed in Sections 5.1 and 5.2, represents a typical shorter-
distance commuter line between metropolitan areas. The weekly timetable for this HSR
line is depicted in Figure 16. In contrast, the Beijing-Shanghai HSR, spanning 1318 km and
exemplifying a typical long-distance line connecting multiple metropolitan areas, is exam-
ined as another case study in this section. Due to the larger number of periodic trains on the
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Figure 16. Weekly timetable for Nanjing-Shanghai high-speed railway line.

Beijing-Shanghai HSR, a greater number of trains are included in stage 1 of the hierarchi-
cal strategy. Additionally, given the longer distance, more trains depart in earlier periods,
leading to local timetables being solved from the earliest to the latest period in stage 2. The
resulting weekly timetable is shown in Figures 17 and 18. The key differences between the
Nanjing-Shanghai and Beijing-Shanghai HSR lines are as follows.
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Table 5. Long-distance train departure sequence between 8:00 am and 10:00 am inmanual andweekly
timetables.

Manually generated timetable Weekly timetable

Departure time Travel speed (km/h) Departure time Travel speed (km/h) Operating day

8:00 182 (Mandatory train) 8:00 267 (Mandatory train)
9:09 110 8:08 230
8:10 146 8:18 196
8:40 136 8:21 274
8:47 143 8:24 274
9:00 182 (Mandatory train) 8:33 158
9:01 140 8:35 162
9:10 131 8:40 205
9:17 123 8:46 155 Fri.
9:28 142 8:48 133 Mon. to Thu.
9:42 126 8:53 171
9:55 135 9:00 230 (Mandatory train)
9:56 130 9:03 160 Sat.

9:03 166 Mon. to Thu.
9:04 163 Sun.
9:06 157 Fri.
9:08 180 Sat.
9:10 146 Fri.
9:14 225 Mon. to Thu.
9:17 157
9:42 239 Sat.
9:44 230 Mon. to Thu.

(1) Alternating operation of trainswith different speeds and stops.Unlike the hier-
archical departure sequence on the Nanjing-Shanghai HSR, the Beijing-Shanghai
HSR passes through a greater number of major stations. As a result, even the fast
trains have varying stopping patterns, making it impractical to reduce time inter-
vals between schedules solely by having fast trains depart consecutively. Instead,
on the Beijing-Shanghai HSR, trains with different speeds and stops operate alter-
nately. Tomaintain travel speeds, more frequent overtakes occur between adjacent
trains with differing stop patterns.

(2) Less pronounced triangle blank areas between adjacent periods. As analysed
in Section 5.2.3, the hierarchical departure sequence on the Nanjing-Shanghai HSR
typically creates triangular blank areas between two adjacent periods. Additionally,
short-distance trains are operated only between intermediate stations and Shang-
hai Hongqiao (SHHQ) or Shanghai (SH), leaving the triangular areas near Nanjing
(NJ) andNanjing South (NJN) unfilled. In contrast, the alternating operation of trains
on the Beijing-Shanghai HSR results in smaller triangular blank areas. Short-distance
trains operate along all segments of the route, with trains terminating and originat-
ing at various major stations along the HSR line. These short-distance trains fill the
triangular blank areas, ensuring more balanced and consistent service across the
entire route.

These differences underscore the necessity for distinct scheduling strategies tai-
lored to the specific characteristics of each HSR line, demonstrating the flexibility and
adaptability of our weekly timetabling approach in accommodating diverse operational
scenarios.
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Figure 17. Weekly timetable for Beijing-Shanghai high-speed railway line (Friday and Sunday).

6. Conclusion

This study addresses the weekly train timetabling (WTT) problem for high-speed railways
(HSR), aiming to determine train schedules for all seven days of the week while accommo-
dating fluctuations in passenger demand across different periods of the day and varying
days of the week. The study utilises detailed passenger demand data over a week and the
weekly line plan obtained in previous research (Nie et al. 2022) as inputs. To effectively
solve the WTT problem under practical real-world scenarios, an Estimation-Generation-
Evaluation (EGE) method is proposed, incorporating three mathematical models.

To enhance the efficiency of the EGEmethod, a three-stage customised hierarchical train
generation strategy is introduced during the ‘Generation’ step. In stage 1, critical trainswith
higher passenger attraction are scheduled first. In stage 2, local timetables for each period
are determined sequentially, while efforts aremade to preserve the departure times of crit-
ical trains established in stage 1. In stage 3, trains cancelled in stage 2 are rescheduled in
adjacent periods near their original departure times.

To evaluate the performance of the EGE method, the Nanjing-Shanghai HSR is selected
as the primary case in the numerical experiments. First, the solution quality of the hierar-
chical strategy is compared against CPLEX in a series of small-scale scenarios. The results
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Figure 18. The weekly timetable for Beijing-Shanghai high-speed railway line (Monday to Thursday,
and Saturday).

confirm the stability and efficiency of the proposed hierarchical strategy. Subsequently,
using the entire weekly line plan as input, solutions derived from different implemen-
tations of stages 1 and 3 are compared to demonstrate the improvement in solution
quality due to the hierarchical strategy. By comparing the EGE-generatedweekly timetable
with a manually generated timetable across various indicators, the optimisation effective-
ness of the EGE method is verified. Finally, a case study of the Beijing-Shanghai HSR is
conducted to demonstrate the flexibility and universality of the weekly train timetabling
approach.

The potential advancements of this research can be explored from two perspectives.
First, theweekly timetabling process could be enhanced by integrating vehicle scheduling,
as varying timetables may result in more empty train movements to depots between days.
Second, the staged solutionapproach inherent in thehierarchical strategy tends toproduce
locally optimal solutions rather than globally optimal ones. Therefore, further research is
warranted to explore train stop adjustments or timetable modifications based on a com-
prehensive timetable evaluation. Additionally, an effective iterative methodology could
be developed, incorporating an adjustment mechanism guided by the evaluation of the
weekly timetable.
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Appendices

Appendix 1. The linearisation of safety headway constraints in section 3.2

The original formulation (g6) and (g7) are as follows

|yls − yl′s| + M(rl + rl′ + θll′) ≥ DHs (g6)

|xls − xl′s| + M(rl + rl′ + θll′) ≥ AHs (g7)

Introduce two auxiliary binary variables ξll′s and ζll′s. ξll′s equals 1 if yls − yl′s > 0 and equals 0 if
yls − yl′s < 0. ζll′s equals 1 if xls − xl′s > 0, equals 0 if xls − xl′s < 0. In this case (g6) is linearised into
(a1) and (a2); and (g7) is linearised into (a3) and (a4).

yls − yl′s − M · ξll′s − M(rl + rl′ + θll′) ≤ −DHs ∀l, l′; s ∈ (Sl − ρl) ∩ (Sl′ − ρl′) (a1)

yls − yl′s − M · ξll′s + M(rl + rl′ + θll′) ≥ DHs − M ∀l, l′; s ∈ (Sl − ρl) ∩ (Sl′ − ρl′) (a2)

xls − xl′s − M · ζll′s − M(rl + rl′ + θll′) ≤ −AHs ∀l, l′; s ∈ (Sl − σl) ∩ (Sl′ − σl′) (a3)

xls − xl′s − M · ζll′s + M(rl + rl′ + θll′) ≥ AHs − M ∀l, l′; s ∈ (Sl − σl) ∩ (Sl′ − σl′) (a4)

The relationship between ξll′s and ζll′s and xls and yls is formulated as (a5) and (a6).

yls − yl′s − M · ξll′s ∈ (−M, 0) ∀l, l′; s ∈ (Sl − ρl) ∩ (Sl′ − ρl′) (a5)

xls − xl′s − M · ζll′s ∈ (−M, 0) ∀l, l′; s ∈ (Sl − σl) ∩ (Sl′ − σl′) (a6)
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Appendix 2. Discussing the rationale of M-method in equations (g6), (g7),
(g11), (g12), (e6) and (e7).

The original formulation (g6) and (g7) are as follows.

|yls − yl′s| + M(rl + rl′ + θll′) ≥ DHs (g6)

|xls − xl′s| + M(rl + rl′ + θll′) ≥ AHs (g7)

These constraints ensure that if trains l and l′ depart on the same day (rl = 0, rl′ = 0, and θll′ = 0),
the term M(rl + rl′ + θll′) equals 0. In this case (g6) and (g7) are classical formulations to ensure the
departure andarrival timesof the two trains, xls, xl′s, yls and yl′s,maintain the required safetyheadways.
However, if one of the trains is cancelled (rl = 1 or rl′ = 1) or if both are weekly trains departing on
different days (θll′ = 1), the sum rl + rl′ + θll′ will exceed 0, as all three variables are binary. In such
cases, these constraints will no longer apply, ensuring that the left-hand sides of inequalities (g6) and
(g7) are always greater than their right-hand sides. Consequently, the decision variables xls, xl′s, yls
and yl′s are no longer restricted.

The formulation (g11) and (g12) are as follows.

xlσl + M · (1 − zlq) ≥ τq ∀q ∈ Q, l ∈ LQ (g11)

xlσl − M · (1 − zlq) ≤ τq ∀q ∈ Q, l ∈ LQ (g12)

These constraints ensure that if train l is selectedas amandatory train anddeparts in slotq (zlq = 1),
the termM · (1 − zlq) equals 0. In this case its departure time at the first station, xlσl , is restricted to τq,
the designated time for slot q. However, if train l is not selected (zlq = 0), then 1 − zlq = 1. In this case
the left-hand side of constraint (g11) will always exceed the right-hand side, and the left-hand side of
constraint (g12) will always be less than the right-hand side. Consequently, the decision variable xlσl
is no longer restricted.

The formulation (e6) and (e7) are as follows.

xlσl − M · (1 − el) ≤ x̄lσl + τD ∀l ∈ LStage−1 (e6)

xlσl + M · (1 − el) ≥ x̄lσl − τD ∀l ∈ LStage−1 (e7)

These constraints are formulated in almost the samemanner as (g11) and (g12). They use the vari-
able el tomeasure whether xlσl lies within the range [x̄lσl − τD, x̄lσl + τD]. When xlσl exceeds x̄lσl + τD,
equation (e6) requires el = 0 to ensure that the term M · (1 − el) is positive. Conversely, when xlσl is
smaller than x̄lσl − τD, equation (e7) also sets el = 0. When xlσl lies in the range [x̄lσl − τD, x̄lσl + τD],
the termM · (1 − el) equals 0, implying that el = 1.
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