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Weekly Train Timetabling Approach for High-speed Railway Lines 

Traditional train timetabling methods typically schedule trains for periods ranging 

from half an hour to a single day, often neglecting the fluctuations in passenger 

demand over an entire week. To overcome this limitation, this study proposes a 

weekly train timetabling (WTT) model that schedules trains for the entire week. 

To effectively implement the WTT model under practical high-speed railway 

(HSR) scenarios, an Estimate-Generation-Evaluate (EGE) solution process is 

introduced, incorporating a customised hierarchical train generation strategy. 

Testing the EGE process on Chinese HSR lines demonstrates its superior 

performance improvement over CPLEX. Compared to manually generated 

timetables, the weekly timetable produced by EGE enhances passenger travel 

speeds and better aligns train schedules with passenger demand patterns. Further 

comparisons between solutions for two typical HSR lines verify the universality 

and robustness of the proposed approach. 

Keywords: train timetabling; high-speed railway; weekly timetable; passenger 

demand 
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1. Introduction 

As a key mode of transportation in modern society, aligning High-Speed Railway (HSR) 

services with passenger demand fluctuations has long been a fundamental goal of HSR 

train scheduling and optimisation. The HSR train optimisation process is typically 

divided into sequential subproblems (Schöbel, 2017). At the strategic level, the line 

planning problem involves determining the origin and terminal stations, travel routes, 



operation frequencies, and train stops based on passenger demand. At the tactical level, 

the train timetabling problem specifies the departure and arrival times at each station the 

train passes or stops, as well as the specific departure times and travel durations for 

passengers. Finally, at the operational level, the vehicle and crew scheduling problem 

assigns vehicle units and crew to serve the passengers. Among these planning processes, 

the timetabling problem plays a critical role in providing customised services for 

passengers. 

Passenger demand fluctuations vary between different origin and destination (OD) 

pairs. On a macro scale, annual peaks in passenger volumes can typically be observed at 

the start and end of national holidays on most HSR lines. Although these significant peaks 

prompt railway companies to adjust timetables and add more trains, such occurrences are 

rare, typically happening only once a year. The more frequent and critical fluctuation, 

however, occurs across different days of the week and periods of the day. 

Within a single day, commuter travel between city centres and surrounding areas 

often creates distinct morning and evening peaks on short-distance HSR lines. Business 

travellers, on the other hand, typically depart later in the morning, creating smaller peaks 

during periods such as 8:00 a.m. to 10:00 a.m. on HSR lines connecting major 

metropolitan areas. These demand features are commonly considered while scheduling 

trains among a day (e.g. Şahin et al., 2020; Martin-Iradi & Ropke, 2022; Yao et al., 2023). 

Weekly demand fluctuations, which are often overlooked, also play a significant role on 

many HSR lines. Notable differences can be seen between weekday and weekend demand 

characteristics. On weekdays, particularly from Tuesday to Thursday, passenger demand 

is relatively stable due to regular work schedules. While on weekends, increased 

commuting demand, especially from individuals who live and work in different locations, 

can be observed resulting in peaks on Friday and Sunday afternoons, as well as Saturday 



mornings. Additionally, tourist cities may also experience a surge in demand during the 

weekend as tourists travel to these locations.  

Railway companies commonly adjust train frequencies and stops manually to 

align timetables with weekly demand fluctuations. For instance, on regional lines in 

European countries, weekday morning peak timetables often include more short-distance 

trains connecting smaller cities to major urban centres. In China, where passenger flow 

on HSR lines is often saturated, timetables are typically adjusted based on a saturated 

schedule designed for peak periods. However, OD pairs along an HSR line vary in 

distance and city attributes, leading to different proportions of commuter, tourist, and 

business travellers, each with distinct demand fluctuation patterns. As a result, simply 

increasing or decreasing the number of trains is not always sufficient to accommodate 

these varying demand patterns. Moreover, adjusting train stops could potentially disrupt 

the regularity of the timetable and diminish the service quality for other OD pairs.  

The limitations of manual adjustments urgently require weekly train timetabling 

methods, while previous train timetabling studies generally focus on periodic timetabling 

with fixed train cycles (Zhang & Nie, 2016; Yao et al., 2023), flexible train cycles (Yan 

& Rob, 2019), non-periodic timetabling (Cacchiani et al., 2010; Robenek et al., 2016), 

and combined periodic and non-periodic timetabling (Şahin et al., 2020) that consider 

intraday demand fluctuations. The typical timetabling models in these studies are based 

on integer decision variables (Zhang et al., 2021; Zhao et al. 2021; Yuan et al., 2023) for 

the specific departure and arrival times, or time-space networks with binary decision 

variables to the time-space routes of trains (Brännlund et al., 1998; Liao et al., 2021; 

Zhang et al., 2022). Headway constraints between departure and arrival times of any two 

trains (Tian & Niu, 2020) and overtaking forbidding constraints between two 

neighbouring stations (Caprara et al., 2002) are always included in the models to 



guarantee the timetable feasibility. These studies provide a classic framework for 

modelling the train timetabling problem, including decision variables and critical 

constraints, upon which our approach is built and customised. While previous literature 

has widely explored periodic and non-periodic trains, our model incorporates both types 

along with a third category—weekly trains, which operate only on selected days of the 

week. This feature introduces intentional variation between daily timetables, allowing 

better alignment with weekly fluctuations in passenger demand, which constitutes a key 

distinction from classical timetabling approaches.  

Many studies have tailored their methods to address demand variations across 

different origin-destination (OD) pairs or periods of the day. For instance, some studies 

introduce direct service frequency constraints to guarantee service level for each OD (Yan 

& Rob, 2019), robust constraints to address demand uncertainty (Cacchiani et al., 2020), 

and train capacity constraints according to demand fluctuation (Wang et al., 2020). In 

terms of optimisation objectives, passenger travel indicators are often incorporated to 

enhance the alignment between train services and demand fluctuations, such as 

minimising passenger travel time (Kaspi & Raviv, 2013; Borndörfer et al., 2016), 

passenger waiting time at stations (Niu & Zhou, 2013), and intermediate train dwelling 

time (Yue et al., 2016). Minimising the difference between obtained timetable and an 

ideal timetable generated totally based on passenger preference (Cacchiani et al., 2010; 

Cacchiani et al., 2015) can also be regarded as objective. Building on research that 

estimates passenger travel choice behaviours (Fischer, 2020; Wu et al, 2022), some 

studies form the integrated optimisation models to jointly schedule trains and determine 

passenger travelling routes (Schmidt & Schöbel, 2014; Xu et al., 2021; Martin-Iradi & 

Ropke, 2022) to improve the demand-matching level of obtained timetable. Rolling stock 

schedules (Zhou et al., 2022; Liu et al., 2024) and stop plans (Dong et al, 2020; Yuan et 



al., 2023; Yao et al., 2023) are also jointly optimised in some studies to further enhance 

passenger service. Additionally, other measures, such as flow control (Hu et al., 2025) 

and pricing and seat allocation (Yuan et al., 2025), have been considered in recent 

research to improve service efficiency and demand satisfaction. Building on the various 

methods proposed to enhance service, this study integrates an estimation of passenger 

behaviours before timetable generation, followed by an evaluation of the generated 

timetable based on detailed passenger preferences after timetable generation. This 

estimation-generation-evaluation approach further improves the alignment between train 

schedules and passenger preferences. 

To solve the train timetabling models under larger-scale practical scenarios, if it 

is constructed based on time-space networks, Lagrangian relaxation (earlier proposed in 

Brännlund et al., 1998, and widely used by recent researches, e.g., Yue et al., 2016; Xu 

et al., 2021; Liao et al., 2021) or alternating direction method of multipliers (ADMM, 

Zhang et al., 2022; Yao et al., 2023) is commonly applied to decompose it into submodels 

for routing individual trains. Developing heuristic algorithms is also effective if 

customised search rules are designed, such as inserting or deleting trains (Dong et al. 

2020), adjusting headway time intervals between adjacent trains (Zhou et al., 2022; Yuan 

et al., 2022), and changing the running time of trains (Shi et al., 2023). These tailored 

solution strategies significantly reduce the computational effort required to solve large-

scale timetabling problems. In this study, we draw upon various methods from the 

existing literature and propose a customized heuristic strategy to generate train schedules 

following a hierarchical approach, with its efficiency in solving the weekly train 

timetabling problem demonstrated through extensive case studies. 

While previous studies have established classic methods for modelling and 

solving train timetabling problems, the consideration of complex weekly demand 



fluctuations presents the following challenges that limit the efficiency of these widely 

used approaches: First, the increased number of trains over seven days results in an 

extensive number of decision variables and constraints, posing significant challenges to 

find solutions. Second, widely applied demand modelling approaches struggle to manage 

the larger scale of passenger data and the more complex fluctuation characteristics 

observed over a week. Using a single passenger demand indicator in the objective 

function inevitably introduces bias, while an integrated optimisation of timetabling and 

passenger estimation results in models that are too large to solve efficiently.  

To address these challenges, we propose a customised Weekly Train Timetabling 

(WTT) approach that targets weekly demand fluctuations. Our earlier research (Nie et al., 

2022) focused on the weekly line planning problem and proposed a genetic algorithm. 

Building on this, the current study introduces a WTT model using an Estimation-

Generation-Evaluation (EGE) method to determine the specific departure and arrival 

times for all trains at all stations over a week. To enhance solution efficiency, a 

hierarchical train generation strategy is incorporated into the EGE. The contributions of 

this research are summarised as follows 

• Proposing weekly train operational modes based on weekly passenger 

demand fluctuations: Previous studies have typically focused on single periods 

or days, with trains operating in either periodic or non-periodic modes. In this 

study, we introduce weekly operational modes for trains: periodic trains that 

operate consistently across all periods and days; daily trains that run once or 

several times each day; and weekly trains that operate only on specific days of the 

week. Among these three operational modes, periodic and daily trains ensure the 

timetable regularity, while weekly trains provide the flexibility needed to 

accommodate fluctuations in weekly demand. 



• Developing an EGE method for solving the WTT problem: The EGE method 

accounts for refined passenger travel behaviours by estimating the passenger 

attraction for each train before timetabling. Once the weekly timetable is 

determined, an evaluation model assesses the solution quality comprehensively. 

Numerical experiments demonstrate that the resulting weekly timetable is 

superior to those manually generated by HSR operators, as evidenced by 

indicators such as passenger travel speed, the number of intermediate stops, and 

passenger departure times. 

• Incorporating a hierarchical train generation strategy in the EGE: The large 

number of trains in real-world scenarios poses significant challenges in generating 

a weekly timetable. To address this, we introduce a customised hierarchical train 

generation strategy, designed according to the weekly operational modes, and 

incorporate it into the EGE framework. This strategy prioritises different train 

categories and follows a three-stage method to generate the weekly timetable. 

Case studies verify that this strategy significantly reduces computation time while 

maintaining stable solution quality compared to the commercial solver CPLEX. 

The remainder of this paper is organised as follows: Section 2 describes the WTT 

problem and explains the weekly train operational modes in weekly timetables. Section 

3 details the mathematical models used in the EGE method to solve the WTT problem, 

while Section 4 discusses the hierarchical train generation strategy. Section 5 presents 

numerical experiments based on a Chinese HSR case study, and Section 6 concludes the 

study and suggests future research directions. 



2. Problem description 

The Weekly Train Timetabling (WTT) problem focus on the planning period of a whole 

week, the continuous daily train operation time is divided into specific periods, such as 

8:00 a.m. to 10:00 a.m. and 10:00 a.m. to 12:00 p.m. Train schedules within different 

days of the week should vary to align with weekly passenger fluctuations, such as the 

weekly commuting peaks at Friday, Saturday, and Sunday mentioned in Section 1. 

Additionally, timetables across different periods of the day should reflect daily demand 

variations. 

While scheduling trains for a week, a certain level of regularity must also be 

maintained. To ensure the consistency of daily timetables, a proportion of trains within 

each period should retain identical schedules to facilitate passenger convenience and 

regular transfers. Furthermore, timetables between adjacent days should not vary 

significantly, enabling passengers to easily recall train schedules. 

To formulate this complex train scheduling problem, the trains in the weekly 

timetable are classified into three operational modes based on the regularity of their 

schedules across different periods and days: 

• Periodic trains: These trains operate in every period each day, with the interval 

between their departure and arrival times at the same station equal to the length 

of the period. For example, a periodic train might depart at 8:05 a.m., 9:05 a.m., 

10:05 a.m., and so forth, continuing at the same times throughout each day of the 

week. Periodic trains have been the primary focus in recent studies on periodic 

timetabling. 

• Daily trains: These trains operate every day but only during specific periods. For 

example, a daily train might depart at 8:05 a.m. each day of the week. These trains 

are considered non-periodic in research related to periodic train timetabling. 



• Weekly trains: These trains operate only on specific days, such as at 8:05 a.m. 

from Monday to Friday. Their schedules can be flexibly adjusted without any 

regular restrictions. 

At critical time slots—such as integral time points like 8:00 a.m. and 9:00 a.m. 

within each period—faster trains with fewer stops, connecting two terminals of an HSR 

line, are scheduled to ensure regular direct services between distant major cities. These 

slots are referred to as mandatory slots, and the trains operating at these slots are 

termed mandatory trains. 

 

Figure 1. The periodic trains, daily trains, and weekly trains in a weekly timetable. 

Figure 1 illustrates a typical weekly timetable, with trains labelled from 𝑙1 to 𝑙8. 

Trains 𝑙2, 𝑙4, and 𝑙6 on both days 𝑑1 and 𝑑2 constitute a set of periodic trains. The 

departure or arrival time difference between these trains in adjacent periods, such as 𝑙2 

in period 𝑇1 and 𝑙4 in period 𝑇2, is equal to the length of the period. Daily trains 𝑙1 and 𝑙2 run on both days 𝑑1 and 𝑑2, during period 𝑇1 and 𝑇2, respectively. Weekly trains 𝑙3, 𝑙7, and 𝑙8 operate in different periods and on different days.  



Based on these concepts, the WTT problem takes as input a weekly line plan, 

developed in our earlier work (Nie et al., 2022). In that study, a customised genetic 

algorithm was applied to select trains from a candidate set, resulting in a weekly line 

plan that determines the origin and terminal stations, intermediate stops, service 

frequencies, and operational modes of all trains across each day and period. With these 

elements fixed, the WTT problem then focuses on determining the precise departure and 

arrival times of the trains at all stations, thereby generating their specific time–space 

trajectories.  

To formulate the mathematical model and algorithm for WTT problem, the 

following assumptions are presented. Assumptions 1, 2, and 3, established based on 

practical train operation rules, simplify the decisions regarding train travel speeds 

between adjacent stations and train dwelling times at various stations. Assumptions 4 

and 5 are derived from passenger preference surveys.  

Assumption 1. All the trains are of the same maximum speed, which depends 

on the technical condition of the HSR line. Therefore, with determined train stops in 

input weekly line plan, running times between any two adjacent stations are considered 

as fixed values. This assumption simplifies the problem by eliminating the need to 

optimise running times between stations.  

Assumption 2. Stations along the HSR line are classified into different levels 

based on the volume of trains originating, terminating, and stopping at the station, as 

well as the passenger demand. The train dwelling time at these stations varies within 

specific upper and lower bounds according to the station levels. At higher-level stations 

with sufficient track resource, faster trains are allowed to overtake slower trains. This 

bounded dwelling time reduces the solution space and helps to control the total number 

of trains stopping at each station by limiting the maximum allowable dwelling time. 



Assumption 3. The seating capacities of trains are fixed, and overloading is 

prohibited. This assumption establishes a constraint linking passenger flow with train 

schedules during the optimisation process. 

Assumption 4. When the weekly timetable is established, passengers are 

assigned to their most preferred trains. Indicators related to their travel routes are used 

to evaluate the quality of the weekly timetable. Passenger preferences for train services 

are influenced by factors such as departure times, intermediate dwelling times, and 

transfer time consumption. Passengers are allowed to shift their departure to adjacent 

periods if no service is available in their desired departure period but are not permitted 

to depart on different days. 

Assumption 5. Before solving the WTT problem, passengers are also assigned 

to train lines based on the input weekly line plan. In this context, passenger-related 

factors for each train in the line plan, such as the load factor, are used to represent the 

passenger attraction of each train, serving as input for train scheduling. Since the 

specific departure and arrival times of trains are not yet determined, passenger 

preferences are influenced by departure periods, intermediate stops, and the need for 

transfers. This passenger assignment approach was also examined in our earlier work 

(Nie et al., 2022). 

Assumption 6. Passengers travelling between a specific origin-destination pair 

(OD) within the same period constitute a passenger group, and the preferences of 

passengers in a same group are of the same. Assumptions 4, 5, and 6 are designed to 

model passenger behaviours. 

Assumption 7. Periodic trains of the same set operate only once per period. If 

the frequency of a periodic train is more than one in weekly line plan, multiple distinct 

periodic train sets should be established. 



Assumption 8. Trains in input weekly line plan may be cancelled or depart in 

adjacent periods when their original departure periods become oversaturated, in this 

case a penalty is incorporated into the objective value. Assumptions 7 and 8 are 

introduced to ensure that train schedules adhere to their respective weekly operational 

modes. 

Based on the description of the weekly timetable and the associated 

assumptions, the Weekly Train Timetabling (WTT) problem is defined as follows: 

Given the conditions of the HSR line—including the length of each period, the 

maximum speed of trains, the distance between stations, the categorisation of stations, 

and the upper and lower bounds of dwell times at various stations—alongside the 

weekly line plan, which specifies the origin and terminal stations, routes and stops, 

weekly operational modes, operational periods and days, and the operational 

frequencies of the trains, as well as the passenger demand data, the objective is to 

generate a weekly timetable that schedules trains across all seven days of the week and 

all periods within each day. 

The generated weekly timetable must adhere to several constraints to ensure its 

feasibility: The departure and arrival time constraints for periodic trains within the same 

set, the consistency of schedules for daily trains within the same set, the safety headway 

constraints between the departure and arrival times of any two trains, and the running 

and dwell time constraints for each train. 

 3. Mathematical models for Estimation-Generation-Evaluation method 

(EGE) 

In the weekly timetable, the schedules for periodic or daily trains remain identical 

across different days, allowing these trains to be consolidated into a single entity with 

only one set of decision variables for their departure and arrival times. In contrast, 

weekly trains, which operate on specific days, are represented as distinct entities with 



separate sets of decision variables for each day they operate. This consolidation 

effectively reduces the Weekly Train Timetabling (WTT) problem to a one-day 

timetabling problem, albeit with additional special headway constraints that govern the 

relationships between periodic trains, daily trains, and weekly trains.  

As depicted in Figure 2, headway constraints are essential between the schedules 

of any two periodic or daily trains, as these trains operate every day, ensuring safe and 

efficient spacing between trains on the same line. However, such headway constraints 

are not necessary between the schedules of two weekly trains that operate on different 

days, for instance, one operating on weekdays and the other on weekends. By 

simplifying the WTT problem in this manner, it becomes more manageable while still 

accommodating the necessary constraints and maintaining the integrity of the weekly 

schedule. 

 

Figure 2. Special headway constraints in consolidated timetable. 

Based on the consolidated timetable, this section proposes three models to form 

the Estimation-Generation-Evaluation (EGE) method for solving the WTT problem. 

The related mathematical expressions are shown in Table 1. 



• Estimation: The passenger estimation model uses weekly line plan as input and 

initially assesses passenger travel behaviour based on the stops and periods of 

the trains before the weekly timetable is determined. It outputs the estimated 

passenger attraction factor for each train. 

• Generation: The weekly timetabling model takes the weekly line plan and the 

estimated passenger attraction factors for each train as input to generate the 

weekly timetable using the modelling approach of the consolidated timetable.  

• Evaluation: The timetable evaluation model takes the weekly timetable as input 

and simulates passenger travel behaviour. Indicators such as passenger travel 

speeds are used to evaluate the service of weekly timetable. 

Table 1. Notations for mathematical models of the Estimation-Generation-Evaluation 

(EGE) method. 

Notation Definition 𝑆 The set of stations 𝑠 along the railway line. 𝐿 
The set of all the trains 𝑙 (or its corresponding train line in the weekly line 

plan). 

𝑊 
The set of passenger groups 𝑤. 𝑊𝑠𝑖𝑠𝑗 denotes the set of passenger groups 

between station 𝑠𝑖 and 𝑠𝑗. 𝑇 The set of time unites 𝑡 of each day, typically in minutes.  𝑄 The set of mandatory train operation slots 𝑞. 𝐴𝐿 
The set of trains operate in generated weekly timetable. Then (𝐿 − 𝐴𝐿) denotes 

the set of cancelled trains. 𝑆𝑙 The set of station that the train 𝑙 passes through. Let 𝑆𝑙 = {𝑠0, 𝑠1, … , 𝑠𝑘} denotes 

the sequence of stations indexed in the order. 𝑇𝑙 The departure period of train 𝑙 determined in weekly line plan. 𝑂𝑅𝑙 The feasible departure time of train 𝑙 at its originating station, it includes period 𝑇𝑙 and its adjacent periods. 𝐷𝑅𝑙𝑠 The range of departure time of train 𝑙 at station 𝑠. 𝐴𝑅𝑙𝑠 The range of arrival time of train 𝑙 at station 𝑠. 



𝑊𝑅𝑙𝑠 
The range of dwelling time of train 𝑙 at station 𝑠. If 𝑙 not stop at 𝑠，𝑊𝑅𝑙𝑠 ={0}. 𝑇0, 𝑇1, 𝑇2, … 
The sequence of different periods indexed in the order, e.g., 6:00-8:00, 8:00-

10:00, … 𝑇𝑤 The original departure period for passenger group 𝑤. 𝐿𝑞 The set of alternative mandatory trains that can operate at mandatory slot 𝑞. 𝐿𝑠𝑖𝑠𝑖+1𝑃 , 𝑇𝐿𝑠𝑖𝑠𝑖+1𝑃  
The set of direct and transfer routes in passenger estimation model that pass the 

segment between 𝑠𝑖 and 𝑠𝑖+1. 𝐿𝑠𝑖𝑠𝑖+1𝑇 , 𝑇𝐿𝑠𝑖𝑠𝑖+1𝑇  
The set of direct and transfer routes 𝑙 in timetable evaluation model that pass 

the segment between 𝑠𝑖 and 𝑠𝑖+1. 𝜏𝑇 The length of each period. 𝜏𝑞 The specific timestep of mandatory slot 𝑞. 𝐷𝐻𝑠 The safety headway for departure times between adjacent trains at station 𝑠. 𝐴𝐻𝑠 The safety headway for arrival times between adjacent trains at station 𝑠. 𝜎𝑙 The original station of train 𝑙 𝜌𝑙 The terminal station of train 𝑙. 𝑑𝑙 The number of days that train 𝑙 operates. For example, it equals 7 if 𝑙 is a 

periodic or daily train that runs every day of the week. 𝜏𝑙𝑠𝑠′ The travel time for train 𝑙 between two adjacent stations 𝑠 and 𝑠′. 𝜃𝑙𝑙′ Whether the train 𝑙 and 𝑙′ operate in the same day (𝜃𝑙𝑙′ = 1) or not (𝜃𝑙𝑙′ = 0). 𝑉𝐿𝑤 The volume of passenger group 𝑤. 𝑉𝐿𝑙𝑠𝑖𝑠𝑖+1 The seating capacity of train 𝑙 between station 𝑠𝑖 and 𝑠𝑖+1. 𝑢𝑤𝜂, 𝑢𝑤𝑙 The matching utility of passenger group 𝑤 travel through transfer route 𝜂 or 

direct route 𝑙. 𝑇𝑅𝑤 The range of rational transfer time for passenger group 𝑤. 𝐷𝑇𝑖 The 𝑖-th set of daily trains. 𝐷𝑇 denotes the set of all the daily trains. 𝑃𝑇𝑖 The 𝑖-th set of periodic trains. 𝑃𝑇 denotes the set of all the periodic trains 𝐿𝐹𝑙 The estimated passenger attraction factor of train 𝑙. 𝑃𝐴𝑙 The penalty for the cancellation of train 𝑙. 𝑃𝐷𝑙 The penalty per minute for dwelling time of train 𝑙. 𝑃𝑆𝑙 The penalty for train 𝑙 switching to another period for departure. 𝑀 A maximum value 

3.1 Passenger estimation model 

The passenger estimation model is constructed similarly to the passenger routing model 

in our previous research (Nie et al., 2022), which was originally designed to evaluate 



the quality of a weekly line plan. It estimates the passenger attraction of trains within 

the line plan based on their departure periods, stops, and compositions. Output 

indicators, such as the load factors of trains, serve as evaluations of the passenger 

attraction ability of the trains and are used as inputs when scheduling trains to reflect 

their importance in the weekly timetable.  

According to Assumption 6, the set 𝑊 includes all passenger groups across 

different periods and days, covering all OD pairs. Each passenger group 𝑤 consists of 

passengers travelling between a specific pair of stations, departing during a specific 

period on a specific day. To formulate the routes for different passenger groups, two 

types of decision variables are involved: 𝑚𝑤𝑙𝑃  are continuous variables representing the 

volumes of passengers of group 𝑤 travelling along direct path 𝑙 ∈ 𝐿𝑤𝑃 , and 𝑛𝑤𝜂𝑃  are 

continuous variables representing the volumes of passengers of group 𝑤 travelling 

along transfer path 𝜂 ∈ 𝑇𝐿𝑤𝑃 . The direct and transfer paths for passengers are determined 

based on the input weekly line plan. The set 𝐿𝑤𝑃  includes all trains that stop at both the 

origin and destination stations and operate on the same day that passenger group 𝑤 

departs. The set 𝑇𝐿𝑤𝑃  includes all transfer routes. A transfer route can be formed by two 

trains only if operate on the same day as group 𝑤, and the connection at the transfer 

station is sufficiently close in time, for example, within the same period. This path 

formation process significantly reduces the number of alternative paths, making the 

model more computationally efficient. 

 The objective of the passenger estimation model is to maximise the total 

matching utility of all passengers, as formulated in (p1). Constraint (p2) set the 

maximum volume of travelling passengers, while constraint (p3) ensures that passenger 

volume does not exceed the seating capacity of the train. A detailed discussion of this 

model can be found in Nie et al. (2022). 



 Max: 𝑍 = ∑ 𝑚𝑤𝑙𝑃 ∙ 𝑢𝑤𝑙𝑃𝑤,𝑙∈𝐿𝑤𝑃 + ∑ 𝑛𝑤𝜂𝑃 ∙ 𝑢𝑤𝜂𝑃𝑤,𝜂∈𝑇𝐿𝑤𝑃  (p1) 

 ∑ 𝑚𝑤𝑙𝑃𝑙∈𝐿𝑤𝑃 + ∑ 𝑛𝑤𝜂𝑃𝜂∈𝑇𝐿𝑤𝑃 ≤ 𝑉𝐿𝑤        ∀𝑤 ∈ 𝑊 (p2) 

∑ 𝑚𝑤𝑙𝑃𝑤,𝑙∈𝐿𝑠𝑖𝑠𝑖+1𝑃 ∩𝐿𝑤𝑃 + ∑ 𝑛𝑤𝜂𝑃𝑤,𝜂∈𝑇𝐿𝑠𝑖𝑠𝑖+1𝑃 ∩𝑇𝐿𝑤𝑃 ≤ 𝑉𝐿𝑙𝑠𝑖𝑠𝑖+1      ∀𝑙 ∈ 𝐴𝐿; 𝑠𝑖, 𝑠𝑖+1 ∈ 𝑆𝑙 (p3) 

 𝑚𝑤𝑙𝑃 ∈ [0, 𝑝𝑤]       ∀𝑤 ∈ 𝑊;  𝑙 ∈ 𝐿𝑤𝑃  (p4) 

 𝑛𝑤𝜂𝑃 ∈ [0, 𝑝𝑤]       ∀𝑤 ∈ 𝑊;  𝜂 ∈ 𝑇𝐿𝑤𝑃  (p5) 

3.2 Weekly timetabling model 

The decision variables of weekly timetabling model are listed as follows: 

• 𝑥𝑙𝑠 is an integer variable representing the arrival time of train 𝑙  at station 𝑠. 

• 𝑦𝑙𝑠 is an integer variable representing the departure time of train 𝑙 at station 𝑠. 

• 𝑧𝑙𝑞 is a binary variable, equals 1 if train 𝑙  is served as mandatory train at the 

mandatory slot 𝑞. 

• 𝑟𝑙 is a binary variable, equals 1 if train 𝑙  is cancelled.  

• 𝑝𝑙 is a binary variable, equals 1 if train 𝑙 departs within its original departure 

period. 

The range of departure and arrival times of train 𝑙 at each station is restricted by 

the feasible originating time range 𝑂𝑅𝑙 = 𝐷𝑅𝑙𝜎𝑙 = [Min(𝑇𝑙) − 𝜏𝑇 , Max(𝑇𝑙) + 𝜏𝑇]. With 

fixed upper and lower dwelling times at intermediate stations, the upper and lower 

departure and arrival times at stations can be determined as shown in Figure 3. Assume 

that train 𝑙 originates at the earliest time in 𝑂𝑅𝑙 and dwells for the shortest time, the 

earliest departure and arrival times can be computed. Assume that train 𝑙 originates at 

the latest time in 𝑂𝑅𝑙 and dwells for the longest time at each station 𝑠, the latest 



departure and arrival times can be computed. This computation method is formulated as 

(g1) and (g2). 

𝐷𝑅𝑙𝑠𝑖 = [Min(𝑂𝑅𝑙) + ∑ 𝜏𝑙𝑠𝑗𝑠𝑗+1𝑖−1𝑗=0 + ∑ Min (𝑊𝑅𝑙𝑠𝑗)𝑖𝑗=1 , Max(𝑂𝑅𝑙) + ∑ 𝜏𝑙𝑠𝑗𝑠𝑗+1𝑖−1𝑗=0 +
∑ Max (𝑊𝑅𝑙𝑠𝑗)𝑖𝑗=1 ]   𝑖 ∈ [1, 𝑘 − 1] (g1) 

𝐴𝑅𝑙𝑠𝑖 = [Min(𝑂𝑅𝑙) + ∑ 𝜏𝑙𝑠𝑗𝑠𝑗+1𝑖−1𝑗=0 + ∑ Min (𝑊𝑅𝑙𝑠𝑗)𝑖−1𝑗=1 , Max(𝑂𝑅𝑙) +  ∑ 𝜏𝑙𝑠𝑗𝑠𝑗+1𝑖−1𝑗=0 +
∑ Max (𝑊𝑅𝑙𝑠𝑗)𝑖−1𝑗=1 ]   𝑖 ∈ [1, 𝑘] (g2) 

 

Figure 3. Computing the ranges for train departure and arrival times. 

The objective value of weekly timetabling model is formulated as (g3), which 

consists of three penalty components: The penalty for intermediate dwelling times (𝑃𝐷𝑙 
per minute); the penalty for train cancellation (𝑃𝐴𝑙 per train); and the penalty for train 

departing at adjacent periods (𝑃𝑆𝑙 per train). The parameter 𝑑𝑙 represents the penalty 

weights assigned to trains based on the number of days it operates during the week. 

Constraints are formulated as (g4) ~ (g19). The restricted range of dwelling times and 

travelling times are formulated as (g4) and (g5). The departure and arrival headway 

constraints are initially formulated as (g6) and (g7) and are linearised as described in 



Appendix 1. Constraints (g8) and (g9) restrict the departure and arrival times of 

periodic trains of the same periodic set. Constraint (g10) ensure that only one train is 

selected for each mandatory slot, and constraints (g11) and (g12) restrict the departure 

time of train 𝑙 if it is selected as a mandatory train. The rationale of the M-method 

applied in (g6), (g7), (g11), and (g12) is discussed in Appendix 2. Constraints (g13) 

and (g14) restrict the departure time of train 𝑙 within 𝑇𝑙 if its departure period is not 

changed (𝑝𝑙 = 1). Constraint (g15) ensures that if one periodic train within a set is 

cancelled, all trains in that set are also cancelled to maintain the periodicity of the 

weekly timetable. Formulations (g16) through (g20) set the lower and upper bounds for 

the decision variables. 

 Min: 𝑍 = ∑ 𝑑𝑙(𝑦𝑙𝑠 − 𝑥𝑙𝑠)𝑙,𝑠∈(𝑆𝑙−𝜎𝑙−𝜌𝑙) + 𝑃𝐴𝑙 ∙ ∑ 𝑑𝑙 ∙ 𝑟𝑙𝑙 + 𝑃𝑆𝑙 ∙ ∑ 𝑑𝑙(𝑝𝑙 − 1)𝑙∈𝐿−𝑃𝑇
 (g3) 

 𝑦𝑙𝑠 − 𝑥𝑙𝑠 ∈ 𝑊𝑅𝑙𝑠             ∀𝑙, 𝑠 ∈ (𝑆𝑙 − 𝜎𝑙 − 𝜌𝑙) (g4) 

 𝑥𝑙𝑠𝑖+1 − 𝑦𝑙𝑠𝑖 = 𝜏𝑙𝑠𝑖𝑠𝑖+1              ∀𝑙;  𝑠𝑖, 𝑠𝑖+1 ∈ 𝑆𝑙 (g5) 

 |𝑦𝑙𝑠 − 𝑦𝑙′𝑠| + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐷𝐻𝑠 (g6) 

 |𝑥𝑙𝑠 − 𝑥𝑙′𝑠| + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐴𝐻𝑠 (g7) 

 𝑥𝑙𝑗+1𝑠 − 𝑥𝑙𝑗𝑠 = 𝜏𝑇     ∀𝑃𝑇𝑖;  𝑙𝑗 , 𝑙𝑗+1 ∈ 𝑃𝑇𝑖 (g8) 

 𝑦𝑙𝑗+1𝑠 − 𝑦𝑙𝑗𝑠 = 𝜏𝑇     ∀𝑃𝑇𝑖;  𝑙𝑗, 𝑙𝑗+1 ∈ 𝑃𝑇𝑖 (g9) 

 ∑ 𝑧𝑙𝑞𝑙∈𝐿𝑞 = 1   ∀𝑞 ∈ 𝑄 (g10) 

 𝑥𝑙𝜎𝑙 + 𝑀 ∙ (1 − 𝑧𝑙𝑞) ≥ 𝜏𝑞     ∀𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿𝑄 (g11) 



 𝑥𝑙𝜎𝑙 − 𝑀 ∙ (1 − 𝑧𝑙𝑞) ≤ 𝜏𝑞      ∀𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿𝑄 (g12) 

 𝑥𝑙𝜎𝑙 + 𝑀 ∙ 𝑝𝑙 ≥ Min(𝑇𝑙)      ∀𝑙 ∈ 𝐿 − 𝑃𝑇 (g13) 

 𝑥𝑙𝜎𝑙 − 𝑀 ∙ 𝑝𝑙 ≤ Max(𝑇𝑙)     ∀𝑙 ∈ 𝐿 − 𝑃𝑇 (g14) 

 𝑟𝑙𝑗 = 𝑟𝑙𝑗+1      ∀𝑃𝑇𝑖;  𝑙𝑗 , 𝑙𝑗+1 ∈ 𝑃𝑇𝑖 (g15) 

 𝑥𝑙𝑠 ∈ 𝐷𝑅𝑙𝑠      ∀𝑙, 𝑠 ∈ (𝑆𝑙 − 𝜌𝑙) (g16) 

 𝑦𝑙𝑠 ∈ 𝐷𝑅𝑙𝑠      ∀𝑙, 𝑠 ∈ (𝑆𝑙 − 𝜎𝑙) (g17) 

 𝑧𝑙𝑞 ∈ {0,1}          ∀𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿𝑄 (g18) 

 𝑟𝑙 ∈ {0,1}            ∀𝑙 (g19) 

 𝑝𝑙 ∈ {0,1}            ∀𝑙 ∈ 𝐿 − 𝑃𝑇 (g20) 

3.3 Timetable evaluation model 

The obtained weekly timetable forms direct routes 𝐿𝑤𝑇  and transfer routes 𝑇𝐿𝑤𝑇   for each 

passenger group 𝑤 in a similar way as 𝐿𝑤𝑃  and 𝑇𝐿𝑤𝑃  in Section 3.1. Since the departure 

and arrival times of trains are determined in weekly timetable, transfer routes are 

formed according to the specific transfer times additionally. Routes with infeasible 

transfer times are rejected.  

Method to compute the passenger travelling utilities 𝑢𝑤𝑙𝑇  and 𝑢𝑤𝜂𝑇  is described as 

follows: Set 𝑢̂𝑤𝑙 as the sum of all the intermediate dwelling times (in minute) of train 𝑙 
between original and terminal stations, and 𝑢̂𝑤𝜂 as the sum of all the intermediate 

dwelling times (in minute) of train 𝑙 and 𝑙′ that form the transfer route 𝜂 and include the 

transfer time of 𝜂 (in minute, with a larger weight due to the more inconvenience caused 



by transferring). Next, add a penalty to both 𝑢̂𝑤𝑙 and 𝑢̂𝑤𝜂 if the departure time of route 

is not within the original departure period of passenger group 𝑤. This penalty can either 

be uniform across all non-preferred periods or vary according to the deviation from the 

original departure period. In this study, we apply a significant penalty regardless of the 

period difference, as our objective is to ensure that all passengers depart within their 

original preferred periods. Finally, 𝑢𝑤𝑙𝑇 ∈ 𝐷𝑈𝑤 is determined as the normalised value of −𝑢̂𝑤𝑙 for different 𝑙, and 𝑢𝑤𝜂𝑇 ∈ 𝑇𝑈𝑤 is determined as the normalised value of −𝑢̂𝑤𝜂 for 

different 𝜂. Generally, Min(𝐷𝑈𝑤) ≥ Max(𝑇𝑈𝑤). 

Decision variables 𝑚𝑤𝑙𝑇  are continuous one representing the volumes of 

passengers of group 𝑤 travelling along direct path 𝑙 ∈ 𝐿𝑤𝑇 , and 𝑛𝑤𝜂𝑇  are continuous 

variables representing the volumes of passengers of group 𝑤 travelling along transfer 

path 𝜂 ∈ 𝑇𝐿𝑤𝑇 . The objective, and constraints of timetable evaluation model are 

formulated as (t1) ~ (t5), which is similar to the passenger estimation model in Section 

3.1. 

 Max: 𝑍 = ∑ 𝑚𝑤𝑙𝑇 ∙ 𝑢𝑤𝑙𝑇𝑤,𝑙∈𝐿𝑤𝑇 + ∑ 𝑛𝑤𝜂𝑇 ∙ 𝑢𝑤𝜂𝑇𝑤,𝜂∈𝑇𝐿𝑤𝑇  (t1) 

 ∑ 𝑚𝑤𝑙𝑇𝑙∈𝐿𝑤𝑇 + ∑ 𝑛𝑤𝜂𝑇𝜂∈𝑇𝐿𝑤𝑇 ≤ 𝑉𝐿𝑤        ∀𝑤 ∈ 𝑊 (t2) 

∑ 𝑚𝑤𝑙𝑇𝑤,𝑙∈𝐿𝑠𝑖𝑠𝑖+1𝑇 ∩𝐿𝑤𝑇 + ∑ 𝑛𝑤𝜂𝑇𝑤,𝜂∈𝑇𝐿𝑠𝑖𝑠𝑖+1𝑇 ∩𝑇𝐿𝑤𝑇 ≤ 𝑉𝐿𝑙𝑠𝑖𝑠𝑖+1        ∀𝑙 ∈ 𝐴𝐿; 𝑠𝑖, 𝑠𝑖+1 ∈ 𝑆𝑙 (t3) 

 𝑚𝑤𝑙𝑇 ∈ [0, 𝑝𝑤]       ∀𝑤 ∈ 𝑊;  𝑙 ∈ 𝐿𝑤𝑇  (t4) 

 𝑛𝑤𝜂𝑇 ∈ [0, 𝑝𝑤]       ∀𝑤 ∈ 𝑊;  𝜂 ∈ 𝑇𝐿𝑤𝑇  (t5) 

4. EGE incorporating hierarchical train generation strategy 

In the Estimation-Generation-Evaluation (EGE) method, solving the weekly timetabling 

model is most challenging due to the inclusion of integer decision variables, while in 



other models all the decision variables are continuous. To address this challenge a 

hierarchical train generation strategy is incorporated into EGE. The outline of EGE is 

illustrated in Figure 4.  

First, the passenger estimation model route passengers based on the input 

weekly line plan, the values of decision variables are denoted as 𝑚̅𝑤𝑙𝑃  and 𝑛̅𝑤𝜂𝑃 . To 

measure the passenger attraction of each train line, the load factors are served as 

passenger attraction factor 𝐿𝐹𝑙. The distance between station 𝑠1 and 𝑠2 is denoted as 𝐷𝐼𝑆𝑠1𝑠2, and the computation of 𝐿𝐹𝑙 is formulated as (e1). 

 𝐿𝐹𝑙 = ∑ 𝐷𝐼𝑆𝑠𝑖𝑠𝑖+1𝐷𝐼𝑆𝜎𝑙𝜌𝑙 ∙𝑉𝐿𝑙𝑠𝑖𝑠𝑖+1 ∙ (∑ 𝑚𝑤𝑙𝑃̅̅ ̅̅ ̅𝑤,𝑙∈𝐿𝑠𝑖𝑠𝑖+1𝑃 ∩𝐿𝑤𝑃 + ∑ 𝑛𝑤𝜂𝑃̅̅ ̅̅ ̅𝑤,𝜂∈𝑇𝐿𝑠𝑖𝑠𝑖+1𝑃 ∩𝑇𝐿𝑤𝑃 )𝑠𝑖,𝑠𝑖+1∈𝑆𝑙 (e1) 

The passenger attraction factor 𝐿𝐹𝑙, computed in the passenger estimation 

model, is then used as critical input in the weekly timetabling model. The penalty values 

for different trains 𝑙 in the objective (g3) of weekly timetabling model are computed 

based on 𝐿𝐹𝑙, formulated as 𝑃𝐷𝑙 = F𝑃𝐷(𝐿𝐹𝑙), 𝑃𝐴𝑙 = F𝑃𝐴(𝐿𝐹𝑙), and 𝑃𝑆𝑙 = F𝑃𝑆(𝐿𝐹𝑙). 

These penalties reflect the potential risk of passenger service reduction associated with 

the train adjustments and cancellation. Sections 4.1, 4.2, and 4.3 describe the 

hierarchical train generation process, which decomposes the original optimisation 

problem—considering all trains as input—into multiple stages. In each stage, a smaller 

subset of trains is selected as input and scheduled using commercial solvers to solve the 

optimisation model presented in Section 3.2, with different parameters applied. 

Finally, through evaluating the output weekly timetable, demand-related 

indicators are used to measure passenger service level. For example, the total matching 

utility, which is the value of the objective function, indicating the extent to which 

passengers can select the optimal travel paths. Other detailed indicators, such as 

passenger travel speed, can also be implemented into discussion. An iterative method 



could be developed as follows, though it is not included in this study due to its current 

instability in efficiency: The weekly timetable evaluation can also generate 𝐿𝐹𝑙 values 

for scheduled trains, which can then be used as inputs for the weekly timetabling model 

in the next iteration. 

 

Figure 4. The procedure for Estimation-Generation-Evaluation (EGE) method 

incorporating hierarchical train generation strategy. 

4.1 Scheduling the critical trains 

The first stage of hierarchical train generation is scheduling the critical trains in weekly 

timetable, which containing three types of trains: all alternative mandatory trains for 



each mandatory slot, all periodic trains, and daily or weekly trains with higher 

passenger attractions. The steps of scheduling the critical train are given as follows. 

Step 1 Let 𝐿𝑆𝑡𝑎𝑔𝑒−1 represent the set of critical trains that are scheduled in this 

Stage-1. And select trains from 𝐿 into 𝐿𝑆𝑡𝑎𝑔𝑒−1. Order the trains 𝑙 ∈ 𝐿 according to 𝐿𝐹𝑙, 
and for each 𝑙: 

if 𝑙 is the alternative mandatory train for a mandatory slot 𝑞 ∈ 𝑄 (𝑙 ∈ 𝐿𝑞), add 𝑙 
into 𝐿𝑆𝑡𝑎𝑔𝑒−1; 

if 𝑙 is a periodic train (𝑙 ∈ 𝐿𝑃), add 𝑙 into 𝐿𝑆𝑡𝑎𝑔𝑒−1; 

if 𝑙 is a daily train (𝑙 ∈ 𝐿𝐷) or weekly train (𝑙 ∈ 𝐿𝑊), and the number of trains in 𝐿𝑆𝑡𝑎𝑔𝑒−1 is less than a pre-given value (|𝐿𝑆𝑡𝑎𝑔𝑒−1| < 𝑉𝑇𝑆𝑡𝑎𝑔𝑒−1), add 𝑙 into 𝐿𝑆𝑡𝑎𝑔𝑒−1. 

Step 2 Compute the penalties 𝑃𝐷𝑙, 𝑃𝐴𝑙, and 𝑃𝑆𝑙 of trains 𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 with 

linear formulations (e2), (e3), and (e4). 

 𝑃𝐷𝑙 = F𝑃𝐷(𝐿𝐹𝑙) = 𝑎𝑙𝑃𝐷 ∙ 𝐿𝐹𝑙 + 𝑏𝑙𝑃𝐷 (e2) 

 𝑃𝐴𝑙 = F𝑃𝐴(𝐿𝐹𝑙) = 𝑎𝑙𝑃𝐴 ∙ 𝐿𝐹𝑙 + 𝑏𝑙𝑃𝐴 (e3) 

 𝑃𝑆𝑙 = F𝑃𝑆(𝐿𝐹𝑙) = 𝑎𝑙𝑃𝑆 ∙ 𝐿𝐹𝑙 + 𝑏𝑙𝑃𝑆 (e4) 

Step 3 Regarding the trains 𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 and their penalties 𝑃𝐷𝑙, 𝑃𝐴𝑙, and 𝑃𝑆𝑙 
as input, solve the weekly timetabling model described in Section 3.2 with commercial 

solver. The values of decision variables 𝑥𝑙𝜎𝑙  is recorded as 𝑥̅𝑙𝜎𝑙 , which is the expected 

departure values for critical trains. 

In this process, the set 𝐿𝑆𝑡𝑎𝑔𝑒−1 must include at least all periodic trains, while 

the maximum number of trains 𝑉𝑇𝑆𝑡𝑎𝑔𝑒−1 in the critical set should not be excessively 

large. An overly large critical train set may prevent the commercial solver from solving 

the weekly timetabling problem within a reasonable time frame, resulting in suboptimal 



scheduling of critical trains. This balance is crucial for maintaining computationally 

feasibility while effectively covering essential and high-demand services in the 

timetable. Values of 𝑎𝑙𝑃𝐷, 𝑎𝑙𝑃𝐴, and 𝑎𝑙𝑃𝑆as well as 𝑏𝑙𝑃𝐷, 𝑏𝑙𝑃𝐴, and 𝑏𝑙𝑃𝑆 for different trains 𝑙 
and are set according to the distance and the number of stations they pass and stop at to 

measure the potential impact of their adjustments on passengers. 

4.2 Scheduling the trains following the period sequence 

This stage schedule all the trains by solving local timetables for each period. This 

method neglects the global information and leads to only local optimal solutions, which 

is the motivation of scheduling critical trains firstly, with demand fluctuation across 

different periods considered.  

In this section, critical trains in 𝐿𝑆𝑡𝑎𝑔𝑒−1 are assumed to departure within a 

certain time range according to their schedules determined in Section 1, or a new 

penalty 𝑃𝑉𝑙 will be added in the objective of the weekly timetabling model, which is 

formulated as (e5). New type of decision variables 𝑒𝑙 is incorporated for critical trains 𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1. When 𝑒𝑙 equals 1, train 𝑙 departs within a range of [𝑥̅𝑙𝜎𝑙 − 𝜏𝐷 , 𝑥̅𝑙𝜎𝑙 + 𝜏𝐷], 
where 𝜏𝐷 represents the flexibility for adjusting the departure time of critical trains. 

Additional constraints (e6) and (e7) are included in the weekly timetabling model to 

restrict the relationship between 𝑒𝑙 and 𝑥𝑙𝜎𝑙 . The rationale of the M-method is discussed 

in Appendix 2. These constraints ensure that critical trains are positioned within time 

slots determined based on the global passenger demand information, aiming to achieve 

a higher level of demand matching. 

Min: 𝑍 = 𝑃𝐷𝑙 ∙ ∑ 𝑑𝑙(𝑦𝑙𝑠 − 𝑥𝑙𝑠)𝑙,𝑠∈(𝑆𝑙−𝜎𝑙−𝜌𝑙) + 𝑃𝐴𝑙 ∙ ∑ 𝑑𝑙𝑟𝑙𝑙 − 𝑃𝑉𝑙 ∙ ∑ 𝑑𝑙𝑒𝑙𝑙∈𝐿𝑆𝑡𝑎𝑔𝑒−1 (e5) 

 𝑥𝑙𝜎𝑙 − 𝑀 ∙ (1 − 𝑒𝑙) ≤ 𝑥̅𝑙𝜎𝑙 + 𝜏𝐷      ∀𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 (e6) 



 𝑥𝑙𝜎𝑙 + 𝑀 ∙ (1 − 𝑒𝑙) ≥ 𝑥̅𝑙𝜎𝑙 − 𝜏𝐷      ∀𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 (e7) 

The process for scheduling trains following the period sequence is given as 

follows. 

Step 1. Compute the penalties 𝑃𝐷𝑙, 𝑃𝐴𝑙, and 𝑃𝑆𝑙 of trains 𝑙 ∈ 𝐿 with (e2), (e3), 

and (e4), respectively. Compute the penalties 𝑃𝑉𝑙 for trains 𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 with (e8). 

 𝑃𝑉𝑙 = F𝑃𝑉(𝐿𝐹𝑙) = 𝑎𝑙𝑃𝑉 ∙ 𝐿𝐹𝑙 + 𝑏𝑙𝑃𝑉 (e8) 

Step 2. Order the periods according to a certain rule (for example, from the 

latest to the earliest within a day). Let 𝐿𝑃(𝑖) represents the set of trains operating in the 

period indexed by 𝑖 in this sequence. For example, 𝐿𝑃(1) corresponds to the last period 

of the day.  

Steps 3 to 7 describe the procedure to schedule all the trains in the period 

indexed by 𝑖: 
Step 3. For each train 𝑙 ∈ 𝐿𝑃(𝑖), if 𝑙 is also included in 𝐿𝑗𝑃𝑇. Add the trains 𝑙′ ∈𝐿𝑗𝑃𝑇 ∩ 𝐿𝑃(𝑖−1) and 𝑙′ ∈ 𝐿𝑗𝑃𝑇 ∩ 𝐿𝑃(𝑖+1) to 𝐿𝑃(𝑖) if they have not been scheduled yet.  

Step 4. Compute the departure and arrival time ranges 𝐷𝑅𝑙𝑠 and 𝐴𝑅𝑙𝑠 with (g1) 

and (g2). If 𝑖 ≥ 2, adjust the upper bounds of 𝐷𝑅𝑙𝑠 and 𝐴𝑅𝑙𝑠 are adjusted according to 

(e9) and (e10) based on the schedules of trains in adjacent period indexed (𝑖 − 1). 

 Max(𝐴𝑅𝑙𝑠) = Min𝑙∈𝐿𝑃(𝑖−1)(𝑥̅𝑙𝑠) − 𝐴𝐻𝑠        ∀𝑙, 𝑠 ∈ (𝑆𝑙 − 𝜌𝑙) (e9) 

 Max(𝐷𝑅𝑙𝑠) = Min𝑙∈𝐿𝑃(𝑖−1)(𝑦̅𝑙𝑠) − 𝐷𝐻𝑠        ∀𝑙, 𝑠 ∈ (𝑆𝑙 − 𝜎𝑙) (e10) 

Step 5. If a mandatory slot 𝑞 falls within the time range of this period (𝜏𝑞 ∈𝑇𝑃(𝑖)), add the trains 𝑙 ∈ 𝐿𝑞 to 𝐿𝑃(𝑖)and include decision variables 𝑧𝑙𝑞 along with 

constraints (g11) and (g12) for slot 𝑞. 



Step 6. With the trains 𝑙 ∈ 𝐿𝑃(𝑖) and their penalties 𝑃𝐷𝑙, 𝑃𝐴𝑙, 𝑃𝑆𝑙, and 𝑃𝑉𝑙 (only 

for 𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 ∩ 𝐿𝑃(𝑖)) as input, a commercial solver is applied to solve the weekly 

timetabling model with formulation (e5) as the objective and include additional 

constraints (e6) and (e7). In this step, all trains within the selected period are scheduled 

in the output solution. The resulting values of the decision variables for train 𝑙 at station 𝑠 are denoted as 𝑥̅𝑙𝑠 and 𝑦̅𝑙𝑠. These values remain fixed and will not be adjusted when 

scheduling trains in subsequent periods. If the timetable capacity within the period is 

insufficient to accommodate all planned trains, a subset of trains in this period will be 

cancelled. The set of cancelled trains is denoted as 𝐿𝐶𝑃(𝑖). 
Step 7. For each train 𝑙 ∈ 𝐿𝑃(𝑖) − 𝐿𝐶𝑃(𝑖), if 𝑙 is also included in 𝐿𝑗𝑃𝑇. Determine 

the schedules for other trains 𝑙′ ∈ 𝐿𝑗𝑃𝑇 ∩ 𝐿𝑃(𝑘) with (e11) and (e12) 

 𝑥̅𝑙′𝑠 = 𝑥̅𝑙𝑠 − (𝑘 − 𝑖) ∙ 𝜏𝑇          ∀𝑙 ∈ 𝐿𝑗𝑃𝑇 ∩ 𝐿𝑃(𝑖);  𝑙′ ∈ 𝐿𝑗𝑃𝑇 ∩ 𝐿𝑃(𝑘) (e11) 

 𝑦̅𝑙′𝑠 = 𝑦̅𝑙𝑠 − (𝑘 − 𝑖) ∙ 𝜏𝑇          ∀𝑙 ∈ 𝐿𝑗𝑃𝑇 ∩ 𝐿𝑃(𝑖);  𝑙′ ∈ 𝐿𝑗𝑃𝑇 ∩ 𝐿𝑃(𝑘) (e12) 

Potential conflicts while scheduling trains following period sequence is 

described as follows. Corresponding methods for addressing them during the procedure 

is also outlined.  

First, given that some trains may extend into adjacent periods, scheduling 

periodic trains at the earliest times of a period may violate the safety headway intervals 

between the latest departing trains of the current period and the earliest departing trains 

of the next period. For instance, in Figure 5, where trains 𝑙1 and 𝑙2 are scheduled to 

depart early in the current solving period and next period, respectively. Train 𝑙3, 

however, departs late in the current solving period and extends to the next period. In this 

case, safety headway should be satisfied between trains 𝑙2 and 𝑙3. To handle this 



potential conflict, in Step 3 when solving a period concluding periodic trains, other 

periodic trains departing in adjacent periods should also be scheduled simultaneously, 

with their safety headway constraints considered in weekly timetabling model. 

Second, model may fail to schedule mandatory trains due to the other trains 

scheduled close to the mandatory slot. For example, in Figure 6, if train 𝑙1 is scheduled 

too close to the mandatory slot 𝑞, it may violate the headway constraints between any 

potential mandatory trains 𝑙2 and 𝑙3 at this slot. Therefore, in Step 5 if a single 

mandatory slot may span two adjacent periods, its mandatory train should be 

determined in the prioritised period in the sequence. 

 

Figure 5. Potential conflicts between two periods while solving local timetables. 

 



Figure 6. Potential conflicts of mandatory slots while solving local timetables. 

 

Figure 7. The train operation time range of a period may be limited by scheduled trains 

in adjacent periods. 

Third, if trains in adjacent periods are both scheduled, the range for departure 

and arrival times at some stations may be reduced or even eliminated. For example, in 

Figure 7 the latest train 𝑙3 in period 1 significantly intrudes into the departure time range 

of period 2. However, trains in period 2 cannot extend into period 3 to achieve a larger 

operating time range due to the scheduled mandatory train 𝑙3, leading to a significant 

compression of the departure and arrival time range of period 2 trains. Therefore, in 

Step 2 if there are fewer trains in later time periods, the period sequence should be 

constructed from the earliest to the latest one of a day. Conversely, if there are fewer 

trains in earlier periods, or if trains departing in the latest periods are prone to intruding 

into subsequent maintenance windows, the sequence could be constructed from the 

latest to the earliest one. 

4.3 Rescheduling the cancelled trains 

This stage aims to reschedule trains that are cancelled in previous stage described in 

Section 4.2. By expanding the range of decision variables for departure and arrival 

times, feasible routes may be found in adjacent periods. The original periods and its 



adjacent periods of train 𝑙 is added into 𝑂𝑅𝑙, then 𝐷𝑅𝑙𝑠 and 𝐴𝑅𝑙𝑠 can be computed by 

(g1) and (g2). The process for rescheduling the trains cancelled in previous stage is 

given as follows. 

Step 1. Select the period indexed by 𝑖 if its scheduled trains number less than a 

certain value (|𝐿𝑃(𝑖)| − |𝐿𝐶𝑃(𝑖)| ≤ 𝑁𝐿).  

Following steps 2 to 4 reschedule cancelled trains departing at the adjacent 

periods indexed by (𝑖 − 1) and (𝑖 + 1). 

Step 2. Let the set 𝐿𝑆3𝑃(𝑖) = 𝐿𝑃(𝑖) − 𝐿𝐶𝑃(𝑖) + 𝐿𝐶𝑃(𝑖−1) + 𝐿𝐶𝑃(𝑖+1), in which (𝐿𝐶𝑃(𝑖−1) + 𝐿𝐶𝑃(𝑖+1)) represents the cancelled trains in adjacent periods that are ready to 

be scheduled in period 𝑖 in stage 3, and (𝐿𝑃(𝑖) − 𝐿𝐶𝑃(𝑖)) represents the already scheduled 

trains. 

Step 3. Reset the departure and arrival time ranges 𝐷𝑅𝑙𝑠 and 𝐴𝑅𝑙𝑠 for trains 𝑙 ∈𝐿𝑆3𝑃(𝑖): 
If 𝑙 ∈ 𝐿𝑃(𝑖) − 𝐿𝐶𝑃(𝑖), 𝐷𝑅𝑙𝑠 = 𝑥̅𝑙𝑠 and  𝐴𝑅𝑙𝑠 = 𝑦̅𝑙𝑠. The scheduled trains won’t 

change its departure and arrival times. 

If 𝑙 ∈ 𝐿𝐶𝑃(𝑖−1), use (g1) and (g2) to compute 𝐷𝑅𝑙𝑠 and 𝐴𝑅𝑙𝑠, in which 𝑂𝑅𝑙 =[Min(𝑇𝑃(𝑖)), Max(𝑇𝑃(𝑖−1))]. 𝑇𝑃(𝑖) represents the range of timesteps for period indexed 

by 𝑖 in the period sequence. 

If 𝑙 ∈ 𝐿𝐶𝑃(𝑖+1), use (g1) and (g2) to compute 𝐷𝑅𝑙𝑠 and 𝐴𝑅𝑙𝑠, in which 𝑂𝑅𝑙 =[Min(𝑇𝑃(𝑖+1)), Max(𝑇𝑃(𝑖))]. 
Step 4. With the trains 𝑙 ∈ 𝐿𝑆3𝑃(𝑖) and adjusted 𝐷𝑅𝑙𝑠 and 𝐴𝑅𝑙𝑠 as input, solve the 

weekly timetabling model. The values of decision variables are denoted as 𝑥̅𝑙𝑠, 𝑦̅𝑙𝑠, and 𝑟̅𝑙. If 𝑟̅𝑙 > 0, this operated train is moved out of 𝐿𝐶𝑃(𝑖).  



Step 5. After all the periods in the sequence are computed, all scheduled trains 

are output as the weekly timetable. 

5. Numerical experiment 

Based on the typical Shanghai-Nanjing high-speed railway (HSR) line, we first 

construct smaller-scale scenarios to compare the solution quality between the 

Estimation-Generation-Evaluation (EGE) method and the commercial solver CPLEX, 

demonstrating the solution efficiency of EGE. Subsequently, practical passenger 

demand data and the weekly line plan from Nie et al. (2022) are used as inputs for a 

large-scale practical scenario. This allows us to compare the EGE-generated weekly 

timetable with a manually generated timetable and assess EGE's performance. Finally, 

the EGE is applied to the Beijing-Shanghai HSR line, which represents a typical long-

distance route distinct from the Shanghai-Nanjing line. By comparing the solutions for 

these two HSR lines, we demonstrate the universality of the EGE method. 

The railway condition of Shanghai-Nanjing HSR is illustrated in Figure 8. 

Stations are classified into three levels: major stations of level 1, larger intermediate 

stations of level 2, and smaller intermediate stations of level 3. The test computer runs 

on Windows 11 operating system, with an CPU of AMD R9 7490H, a main frequency 

of 4.00GHz, 8 cores, 16 threads, and 16GB of memory. 

 



Figure 8. Condition of Nanjing-Shanghai high-speed railway line. 

5.1 Solution analysis based on small-scale scenarios 

Five smaller-scale scenarios containing from 50 to 100 trains are constructed The input 

weekly line plans for these scenarios are derived by removing a portion of trains from 

the original plan developed in Nie et al. (2022). Efforts were made to maintain similar 

proportions of periodic, daily, and weekly trains across the scenarios; however, these 

manually generated line plans do not match passenger demand as effectively as the 

original. The primary objective of comparing these scenarios is to evaluate the 

performance of the “Generation” stage of the EGE method, which employs a 

hierarchical train generation strategy. The commercial solver CPLEX is used as 

benchmark, with a maximum solution time to 7,200 seconds. The objectives and 

solution gaps for the hierarchical strategy and CPLEX are documented in Table 2. 

While solving the smallest scenario (scenario 1), CPLEX can obtain the optimal 

solution with negligible time consumption. However, as the number of trains increase, 

the solution performance of CPLEX decreases significantly. In scenario 3 and 4, 

CPLEX fails to find solution with a small gap within 7,200-second limit. And in 

scenario 5, CPLEX cannot find any feasible solution within 7,200 seconds and only a 

lower bound value can be estimated. 

For the hierarchical train generation strategy in the EGE, the computation times 

for all the scenarios are shorter than that of CPLEX. However, the hierarchical strategy 

divides the original model into multiple stages, leading to only local optimal solutions 

instead of the global ones. Therefore, while solving smaller scenarios 1 and 2, the 

solution gaps times of hierarchical strategy are larger than those of CPLEX. As the 

number of trains increases, the solution gaps become much smaller compared to those 



obtained by CPLEX, demonstrating a significant efficiency improvement while solving 

larger-scale weekly timetabling models. 

Table 2. Solution comparison between hierarchical strategy and CPLEX  

Scenarios 1 2 3 4 5 

Num. of trains in the consolidated 

timetable 
51 86 103 124 150 

Num. of periodic trains in the 

consolidated timetable  
6 18 18 24 30 

Num. of daily trains in the 

consolidated timetable 
21 23 28 29 43 

Num. of trains in original weekly line 

plan 
244 394 457 538 700 

CPLEX 

Computation time for 

the first solution with 

gap less than 5% 

117s 2,159s >7,200s >7,200s >7,200s 

Total computation 

time 
356s 7,200s 7,200s 7,200s -- 

Obj. value of the best 

solution 
4,000 6,455 23,297 72,178 -- 

Gap of the best 

solution 
0.00% 1.04% 67.57% 88.19% -- 

Estimated lower 

bound value 
4,000 6,388 7,555 8,587 12,343 

Hierarchical 

train 

generation 

strategy 

Computation time 2s 29s 158s 612s 3,525s 

Obj. value 4,261 75,67 9,063 10,532 17,236 

Gap 
6.12% 15.58% 16.63% 18.47% 28.39% 

 



Figure 9. The changing trend of objective values of HTG strategy across different 

scenarios. 

Since the hierarchical strategy cannot directly estimate the lower bound of the 

solution, gaps in Table 2 are computed based on the lower bounds estimated by 

CPLEX. Therefore, in scenario 5 when CPLEX fails to find good solutions, this 

estimation of lower bound may also be biased. Figure 9 illustrates the comparison 

between the train number and the changes in the objective values obtained by the 

hierarchical strategy across the five scenarios. The objective of the weekly timetabling 

model is strongly correlated with the number of trains. Hence, in scenarios 1 to 4, the 

trends of the two lines in Figure 9 are similar, indicating consistent solution quality. 

Due to an additional penalty value of totally 8 trains rescheduled to adjacent periods in 

scenario 5, a significant increase in the objective value can be observed between 

scenarios 4 and 5. 

Combining the trends observed in the curves depicted in Figure 9 with the gaps 

for the solutions in Table 2, it becomes evident that the hierarchical strategy 

consistently outperforms CPLEX when solving weekly timetabling model in the process 

of EGE method under larger-scale scenarios. Moreover, the solution quality of the 

hierarchical strategy remains consistent across different scales of cases. 

5.2 Solution analysis based on large-scale piratical scenarios 

With the practical passenger demand data and weekly line plan of the Nanjing-Shanghai 

HSR line as inputs, the implementation details of the hierarchical train generation 

strategy are discussed in Section 5.2.1 and 5.2.2. In section 5.2.3, the EGE-obtained 

weekly timetable is compared to the manually generated timetable, which is currently 

applied in this practical scenario. 



5.2.1 Implementation details related to stage 1 in the hierarchical strategy 

With the implementation of stage 1 in hierarchical strategy, two parameters playing 

critical roles are analysed in detail: 

(1) The schedule adjustment duration 𝜏𝐷 for critical trains in stage 2. 

(2) The penalty value 𝑃𝑉𝑙, which will be added into objective if the critical trains 𝑙 
departure not in the given time range. The value of 𝑃𝑉𝑙 can be set as a certain 

proportion of the penalty 𝑃𝐴𝑙. 
In Table 3, a timetable generated without involving stage 1 is recorded as ID 1. 

The other solutions are generated with the values of 𝑃𝑉𝑙/𝑃𝐴𝑙 set as 0.7, 0.5, 0.3, 0.1, 

and 0.05; and with the values of 𝜏𝐷 set as 0, 10, 20, 40, and 80. Generally, involving 

stage 1 leads an increase in computation time. However, if appropriate values are set for 𝑃𝑉𝑙 and 𝜏𝐷, the passenger matching utility of solution with stage 1 incorporated can be 

17.23% (the data of ID 20) higher than the solution without stage 1. This increase can 

be attributed to the following aspects. 

(1)  Increase in the number of trains and seat kilometres. This trend is 

particularly evident in IDs 15 and 20 in Table 3. Without stage 1, periodic trains 

will be scheduled at suboptimal times in stage 2, making it difficult to insert 

enough number of trains in the subsequent periods. While by introducing the 

stage 1 and setting appropriate values for  𝑃𝑉𝑙 and 𝜏𝐷, both the number of trains 

and the total seat kilometres increase. This offers passengers more diverse travel 

options and greater transport capacity thus increase the total passenger matching 

utility.  

(2) Increase in passengers travelling within their original departure periods. 

This trend is particularly evident in IDs 9, 20, 21, and 26 in Table 3. Although 



maintaining passengers’ original departure periods is not explicitly defined as an 

objective in the weekly timetabling model, it is achieved by prioritizing critical 

trains with higher passenger demand in the hierarchical strategy. When critical 

trains are scheduled to operate within their original periods, a higher proportion 

of passengers are accommodated within their preferred departure times, leading 

to a higher passenger matching utility.  

(3) Slight increase in penalties for the solutions. This trend is particularly evident 

in IDs 4 and 9 in Table 3. Since the train penalties is the objective of weekly 

timetabling model, a large proportion of solutions with higher matching utilities 

typically reflect lower train penalties. However, in figure 10 which prints the 

solutions generated with various 𝑃𝑉𝑙 and 𝜏𝐷 (the one generated without the stage 

1 is marked in red as a benchmark), solutions can both achieve high values of 

demand matching utility when the penalties for the solutions are lower (below 

2.5× 104) or higher (above 5.0× 104). Most solutions with higher matching 

utilities (above 2.8× 106) fall within the penalty values of 2.0× 104 to 

3.0× 104, as indicated by the red dashed circles. This suggests a certain degree 

of bias between the specific passenger service level and the objective of the 

model. Therefore, the directly obtained optimal solution not necessary being the 

solution with best passenger matching utility. While the hierarchical strategy 

proposed in this study can further enhance the demand matching utility when 

appropriate 𝑃𝑉𝑙 and 𝜏𝐷 values are applied, with the cost of a slightly increased 

in the objective value. 

Table 3. Solution indicators with different values of 𝑃𝑉𝑙 and 𝜏𝐷. 

ID 

Whether 
stage 1 

is 
included 

𝑃𝑉𝑙/𝑃𝐴𝑙 𝜏𝐷 
Computation 

time (min) 

Total train 

penalty (×104) 

Total demand 

matching 

utility (×106) 

Total 

number 

of 

trains 

Total seat 

kilometres 

(× 108) 

Number of 

passengers 

departing at 

original period 



1 
not 

included 
-- -- 86 2.04 2.62 759 1.71 64.3% 

2 

included 

0.7 

0 105 4.11 2.30 728 1.64 64.1% 

3 10 107 4.68 2.50 734 1.66 67.6% 

4 20 101 5.32 2.69 762 1.72 65.4% 

5 40 101 2.81 2.62 754 1.71 66.3% 

6 80 102 2.15 2.65 770 1.75 63.8% 

7 

0.5 

0 110 3.52 2.44 735 1.67 64.1% 

8 10 104 5.37 2.54 750 1.69 66.7% 

9 20 103 3.11 2.67 758 1.72 69.9% 

10 40 111 2.44 2.83 795 1.80 67.0% 

11 80 112 2.08 2.60 758 1.71 64.3% 

12 

0.3 

0 102 4.06 2.38 737 1.66 64.5% 

13 10 102 2.61 2.53 763 1.72 66.0% 

14 20 114 2.92 2.32 713 1.63 64.0% 

15 40 110 2.36 3.01 803 1.82 66.9% 

16 80 106 3.45 2.18 711 1.61 58.8% 

17 

0.1 

0 102 3.38 2.59 753 1.69 66.1% 

18 10 103 4.69 2.41 749 1.69 66.9% 

19 20 102 4.93 2.56 733 1.71 68.7% 

20 40 110 2.26 3.08 804 1.83 69.3% 

21 80 105 2.03 2.89 784 1.78 68.0% 

22 

0.05 

0 102 3.62 2.50 738 1.68 65.0% 

23 10 111 4.49 2.51 750 1.71 68.8% 

24 20 102 2.28 2.48 730 1.64 67.6% 

25 40 105 7.00 2.04 687 1.58 63.3% 

26  80 106 2.42 2.79 788 1.78 68.5% 

 

Figure 10. Train penalties and demand matching utilities of solutions with different 

values of 𝑃𝑉𝑙 and 𝜏𝐷. 

The records in Table 3 reveal the crucial influence of 𝑃𝑉𝑙 and 𝜏𝐷 on the 

optimisation effort of the hierarchical strategy. In practical scenarios, 𝑃𝑉𝑙/𝑃𝐴𝑙 is 

typically less than 1, and 𝜏𝐷 should be less than the length of each period. According to 

Table 3, solutions generally exhibit higher quality when 𝑃𝑉𝑙/𝑃𝐴𝑙 is between 0.1 and 



0.5. Therefore, the values of 0.1, 0.3, and 0.5 for 𝑃𝑉𝑙/𝑃𝐴𝑙 is tested, and the values of 𝜏𝐷 

is set between 0 and 90, the changing trends of passenger demand matching utilities are 

illustrated in Figure 11.  

 

Figure 11. Passenger demand matching utilities changing trends with different values of 𝑃𝑉𝑙 and 𝜏𝐷. 

When 𝜏𝐷 is less than 30, the demand matching utilities of the three series are 

generally low and exhibit an upward trend. When 𝜏𝐷 =40 or 50, all three series achieve 

good solutions. As 𝜏𝐷 increases further, the demand matching utilities for 𝑃𝑉𝑙/𝑃𝐴𝑙 =0.3 and 0.5 series tend to decrease overall, while the 𝑃𝑉𝑙/𝑃𝐴𝑙 = 0.1 series 

further achieved the highest demand matching utility at 𝜏𝐷 = 70. Referring to the 

overall trend changes in other series, 𝑃𝑉𝑙/𝑃𝐴𝑙 = 0.1 and 𝜏𝐷 = 40 are set as considered 

reasonable values and will be utilised in subsequent experiments. 

5.2.2 Optimisation effort related to stage 3 in the hierarchical strategy 

To reveal the optimization effort of stage 3, two alternative strategies are compared. The 

first is the “2-stage strategy”, in which stage 3 is omitted and trains cancelled in stage 2 

are not reconsidered. The second, called the “Improved 2-stage strategy”, also omits 

stage 3 but take into account cancelled trains in adjacent periods if these periods have 

already been solved.  



With more trains included in Stage 2, the computation time for the Improved 2-

stage strategy increases by approximately 16–23 minutes compared to the 2-stage 

strategy. However, when Stage 3 is introduced, the computation time of Stage 2 is 

reduced, resulting in a slight overall decrease in total computation time—approximately 

5–7 minutes less than the Improved 2-stage strategy.  

While the Improved 2-stage strategy demonstrates a 9.7% higher demand 

matching utility compared to the 2-stage strategy, the 3-stage hierarchical strategy 

further improves demand matching utility by 18.9% over the Improved 2-stage strategy. 

This clearly highlights the optimisation benefits of incorporating stage 3. 

To further demonstrate the differences among these strategies, Figure 12 shows 

the number of trains cancelled in each period. The hierarchical strategy results in 

significantly fewer cancellations than the other two strategies. Notably, the 2-stage and 

Improved 2-stage strategies both cancel 91 trains between 16:00 and 18:00, while the 

peak cancellation for the hierarchical strategy is only 54 trains, indicating a better 

balance of service. 

 

Figure 12. The cancellation distribution across periods in the three methods regarding 

stage 3 differently. 



5.2.3 Solution comparison: weekly timetable and manually generated timetable 

The optimisation of the proposed weekly timetabling approach is demonstrated by 

comparing it with the manually generated timetable, as indicated by the metrics 

recorded in Table 4. The passenger matching utility of the manually generated timetable 

is higher, as the trains generally operate at slower speeds. This allows passengers to 

more easily select routes that approximate the optimal ones, thereby yielding higher 

matching utilities. However, a closer examination of the detailed indicators reveals 

several advantages associated with the weekly timetable. 

(1) The increase in train travel speed is both significant and hierarchically 

distributed. As illustrated in Figure 13, the peak distribution of train travel 

speeds differs markedly between the manual and weekly timetables. Trains in 

the weekly timetable predominantly operate at speeds exceeding 200 km/h, 

whereas those in the manual timetable are primarily within the 120-160 km/h 

range. This significant improvement in speed enhances the service level for 

passengers, particularly at major stations.  

Furthermore, the weekly timetable exhibits a hierarchical distribution of 

travel speeds. A secondary peak is observed in the 140-160 km/h range, and it 

includes a greater number of trains operating below 100 km/h compared to the 

manual timetable. This hierarchical structure categorises trains into “last direct 

trains”, “common trains”, and “slower all-stopping trains”, thereby 

accommodating the diverse travel needs of passengers across various ODs. 

Table 4. Indicator comparison between weekly timetable and manually generated 

timetable. 

 Manually generated timetable Weekly timetable 

Passenger demand matching utility (× 106) 3.42 3.08 



Average travel speed of trains (km/h) 142.17 210.71 

Average number of intermediate stops of passengers 1.97 0.89 

Average travel speed of passengers (km/h) 158.41 211.03 

Average train load factor 68.23% 71.10% 

Number of mandatory trains per day 10 15 

Average load factor of mandatory trains 95.08% 97.13% 

Proportion of passengers travelling in their original 

departure periods 

70.14% 69.26% 

Proportion of passengers travelling in their original 

departure periods and adjacent periods 

84.42% 93.13% 

Total number of trains 882 804 

 

Figure 13. The travel speed distribution of trains in manual and weekly timetables. 

(2) Passenger attraction for both fast trains and mandatory trains is 

significantly greater. The average load factors of trains across various speed 

ranges are depicted in Figure 14. In the weekly timetable, trains operating at 

speeds exceeding 260 km/h exhibit the highest load factors, indicating the 

strongest passenger attraction. With the introduction of differentiated pricing 

strategies, these high-speed trains could be designated as premium services, 

allowing for higher ticket prices to enhance the profitability of railway 

companies while offering additional services to passengers. Trains operating at 



speeds of 160-200 km/h in the manual timetable also show elevated load factors, 

although their speeds are considerably lower.  

The weekly timetable includes a greater number of mandatory trains, 

most of which achieve a 100% load factor, surpassing those in the manual 

timetable. These essential trains in the weekly timetable could also be marketed 

as premium services in mandatory slots, facilitating higher ticket prices and 

enhanced passenger offerings. 

 

Figure 14. The average load factors of trains with different speed in the manual and 

weekly timetables. 

(3) Enhanced alignment between passenger kilometres and seat kilometres. The 

frequency of train operations more accurately reflects passenger demand due to 

the optimisation of train stops in the weekly line plan. Figure 15 illustrates the 

ratio of total passenger kilometres to total seat kilometres—referred to as the 

“overall load factor”—for each period and day, highlighting the alignment 

between passenger demand and train capacity in both the weekly and manually 

generated timetables.  

The weekly timetable exhibits smaller fluctuations in the overall load 

factor, indicating a closer alignment between seat kilometres and passenger 



kilometres. For example, in the manual timetable, 120 trains operate between 

6:00 a.m. and 8:00 a.m., resulting in significantly lower overall load factors 

compared to the 78 trains operating in the same period in the weekly timetable. 

A similar pattern is observed between 4:00 p.m. and 6:00 p.m., where the 

manual timetable runs 136 trains compared to 110 trains in the weekly timetable.  

Although the overall load factor in the weekly timetable increases during 

peak periods, it remains lower than that in the manual timetable, demonstrating 

its capacity to provide sufficient services during high-demand periods. During 

low-demand periods, the overall load factor in the weekly timetable decreases 

but often surpasses that of the manual timetable, underscoring its effectiveness 

in reducing resource wastage. 

Additionally, as the demand input in this study is derived from 

corrections and predictions based on actual demand, the overall load factor in 

certain periods may approach or exceed 1. In such instances, excess passengers 

are likely to be transferred to adjacent periods. 



 

Figure 15. The changes in the ratio of total passenger kilometres to total seat kilometres 

across periods. 

(4) Trains exhibit a hierarchical and more regular departure sequence. The 

hierarchical travel speeds of trains generally result in wider time intervals 

between departures, particularly between fast trains with few stops and slower 

trains with multiple stops. These intervals create triangular blank areas at the end 

of each period between the slower trains departing late in the current period and 

the faster trains departing early in the next period, as illustrated in Figure 16, 

which depicts the weekly timetable for the Nanjing-Shanghai HSR.  



To mitigate imbalances in train services at stations within these blank 

triangular areas, the weekly timetable schedules trains with similar stop patterns 

to depart consecutively. For instance, as shown in Table 5, several fast trains 

depart consecutively between 8:00 a.m. and 8:24 a.m., forming a “faster train 

group” in the weekly timetable. The last two fast trains in this period depart at 

9:42 a.m. and 9:44 a.m., creating another fast train group with those departing at 

the beginning of the next period. In contrast, this phenomenon is not observed in 

the manual timetable due to the smaller differences in train speeds (with the 

exception of two mandatory trains). The regular and balanced departure 

sequence of trains in the weekly timetable enhances the efficiency and 

predictability of train services. 

Table 5. Long-distance train departure sequence between 8:00 a.m. and 10:00 a.m. in 

manual and weekly timetables. 

Manually generated timetable Weekly timetable 

Departure time Travel speed (km/h) Departure time Travel speed (km/h) 
Operating 

day 

8:00 182 (Mandatory train) 8:00 267 (Mandatory train)  

9:09 110 8:08 230  

8:10 146 8:18 196  

8:40 136 8:21 274  

8:47 143 8:24 274  

9:00 182 (Mandatory train) 8:33 158  

9:01 140 8:35 162  

9:10 131 8:40 205  

9:17 123 8:46 155 Fri. 

9:28 142 8:48 133 Mon. to Thu. 

9:42 126 8:53 171  

9:55 135 9:00 230 (Mandatory train)  

9:56 130 9:03 160 Sat. 

  9:03 166 Mon. to Thu. 

  9:04 163 Sun. 

  9:06 157 Fri. 

  9:08 180 Sat. 

  9:10 146 Fri. 

  9:14 225 Mon. to Thu. 

  9:17 157  

  9:42 239 Sat. 

  9:44 230 Mon. to Thu. 



5.3 Solution comparison: Nanjing-Shanghai and Beijing-Shanghai HSR lines 

The Nanjing-Shanghai HSR, analysed in Sections 5.1 and 5.2, represents a typical 

shorter-distance commuter line between metropolitan areas. The weekly timetable for 

this HSR line is depicted in Figure 16. In contrast, the Beijing-Shanghai HSR, spanning 

1,318 km and exemplifying a typical long-distance line connecting multiple 

metropolitan areas, is examined as another case study in this section. Due to the larger 

number of periodic trains on the Beijing-Shanghai HSR, a greater number of trains are 

included in stage 1 of the hierarchical strategy. Additionally, given the longer distance, 

more trains depart in earlier periods, leading to local timetables being solved from the 

earliest to the latest period in stage 2. The resulting weekly timetable is shown in 

Figures 17 and 18. The key differences between the Nanjing-Shanghai and Beijing-

Shanghai HSR lines are as follows. 

(1) Alternating operation of trains with different speeds and stops. Unlike the 

hierarchical departure sequence on the Nanjing-Shanghai HSR, the Beijing-

Shanghai HSR passes through a greater number of major stations. As a result, 

even the fast trains have varying stopping patterns, making it impractical to 

reduce time intervals between schedules solely by having fast trains depart 

consecutively. Instead, on the Beijing-Shanghai HSR, trains with different 

speeds and stops operate alternately. To maintain travel speeds, more frequent 

overtakes occur between adjacent trains with differing stop patterns. 

(2) Less pronounced triangle blank areas between adjacent periods. As 

analysed in Section 5.2.3, the hierarchical departure sequence on the Nanjing-

Shanghai HSR typically creates triangular blank areas between two adjacent 

periods. Additionally, short-distance trains are operated only between 

intermediate stations and Shanghai Hongqiao (SHHQ) or Shanghai (SH), 



leaving the triangular areas near Nanjing (NJ) and Nanjing South (NJN) 

unfilled. In contrast, the alternating operation of trains on the Beijing-Shanghai 

HSR results in smaller triangular blank areas. Short-distance trains operate along 

all segments of the route, with trains terminating and originating at various 

major stations along the HSR line. These short-distance trains fill the triangular 

blank areas, ensuring more balanced and consistent service across the entire 

route. 

These differences underscore the necessity for distinct scheduling strategies 

tailored to the specific characteristics of each HSR line, demonstrating the flexibility 

and adaptability of our weekly timetabling approach in accommodating diverse 

operational scenarios.  



 

Figure 16. Weekly timetable for Nanjing-Shanghai high-speed railway line. 
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Figure 17. Weekly timetable for Beijing-Shanghai high-speed railway line (Friday and 

Sunday). 
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Figure 18. The weekly timetable for Beijing-Shanghai high-speed railway line (Monday 

to Thursday, and Saturday). 

 

 

6. Conclusion 

This study addresses the weekly train timetabling (WTT) problem for high-speed 

railways (HSR), aiming to determine train schedules for all seven days of the week 

while accommodating fluctuations in passenger demand across different periods of the 

day and varying days of the week. The study utilises detailed passenger demand data 

over a week and the weekly line plan obtained in previous research (Nie et al., 2022) as 
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inputs. To effectively solve the WTT problem under practical real-world scenarios, an 

Estimation-Generation-Evaluation (EGE) method is proposed, incorporating three 

mathematical models.  

To enhance the efficiency of the EGE method, a three-stage customised 

hierarchical train generation strategy is introduced during the “Generation” step. In 

stage 1, critical trains with higher passenger attraction are scheduled first. In stage 2, 

local timetables for each period are determined sequentially, while efforts are made to 

preserve the departure times of critical trains established in stage 1. In stage 3, trains 

cancelled in stage 2 are rescheduled in adjacent periods near their original departure 

times.  

To evaluate the performance of the EGE method, the Nanjing-Shanghai HSR is 

selected as the primary case in the numerical experiments. First, the solution quality of 

the hierarchical strategy is compared against CPLEX in a series of small-scale 

scenarios. The results confirm the stability and efficiency of the proposed hierarchical 

strategy. Subsequently, using the entire weekly line plan as input, solutions derived 

from different implementations of stages 1 and 3 are compared to demonstrate the 

improvement in solution quality due to the hierarchical strategy. By comparing the 

EGE-generated weekly timetable with a manually generated timetable across various 

indicators, the optimisation effectiveness of the EGE method is verified. Finally, a case 

study of the Beijing-Shanghai HSR is conducted to demonstrate the flexibility and 

universality of the weekly train timetabling approach. 

The potential advancements of this research can be explored from two 

perspectives. First, the weekly timetabling process could be enhanced by integrating 

vehicle scheduling, as varying timetables may result in more empty train movements to 

depots between days. Second, the staged solution approach inherent in the hierarchical 



strategy tends to produce locally optimal solutions rather than globally optimal ones. 

Therefore, further research is warranted to explore train stop adjustments or timetable 

modifications based on a comprehensive timetable evaluation. Additionally, an effective 

iterative methodology could be developed, incorporating an adjustment mechanism 

guided by the evaluation of the weekly timetable. 
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Appendix 1. The linearisation of safety headway constraints in Section 3.2 

The original formulation (g6) and (g7) are as follows 

 |𝑦𝑙𝑠 − 𝑦𝑙′𝑠| + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐷𝐻𝑠 (g6) 

 |𝑥𝑙𝑠 − 𝑥𝑙′𝑠| + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐴𝐻𝑠 (g7) 

Introduce two auxiliary binary variables 𝜉𝑙𝑙′𝑠 and 𝜁𝑙𝑙′𝑠. 𝜉𝑙𝑙′𝑠 equals 1 if 𝑦𝑙𝑠 −𝑦𝑙′𝑠 > 0 and equals 0 if 𝑦𝑙𝑠 − 𝑦𝑙′𝑠 < 0. 𝜁𝑙𝑙′𝑠 equals 1 if 𝑥𝑙𝑠 − 𝑥𝑙′𝑠 > 0, equals 0 if 𝑥𝑙𝑠 −𝑥𝑙′𝑠 < 0. In this case (g6) is linearised into (a1) and (a2); and (g7) is linearised into (a3) 

and (a4). 



 𝑦𝑙𝑠 − 𝑦𝑙′𝑠 − 𝑀 ∙ 𝜉𝑙𝑙′𝑠 − 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≤ −𝐷𝐻𝑠        ∀𝑙, 𝑙′;  𝑠 ∈ (𝑆𝑙 − 𝜌𝑙) ∩ (𝑆𝑙′ −𝜌𝑙′) (a1) 

 𝑦𝑙𝑠 − 𝑦𝑙′𝑠 − 𝑀 ∙ 𝜉𝑙𝑙′𝑠 + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐷𝐻𝑠 − 𝑀         ∀𝑙, 𝑙′;  𝑠 ∈ (𝑆𝑙 − 𝜌𝑙) ∩(𝑆𝑙′ − 𝜌𝑙′) (a2) 

 𝑥𝑙𝑠 − 𝑥𝑙′𝑠 − 𝑀 ∙ 𝜁𝑙𝑙′𝑠 − 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≤ −𝐴𝐻𝑠           ∀𝑙, 𝑙′;  𝑠 ∈ (𝑆𝑙 − 𝜎𝑙) ∩ (𝑆𝑙′ −𝜎𝑙′) (a3) 

 𝑥𝑙𝑠 − 𝑥𝑙′𝑠 − 𝑀 ∙ 𝜁𝑙𝑙′𝑠 + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐴𝐻𝑠 − 𝑀       ∀𝑙, 𝑙′;  𝑠 ∈ (𝑆𝑙 − 𝜎𝑙) ∩ (𝑆𝑙′ −𝜎𝑙′) (a4) 

The relationship between 𝜉𝑙𝑙′𝑠 and 𝜁𝑙𝑙′𝑠 and 𝑥𝑙𝑠 and 𝑦𝑙𝑠 is formulated as (a5) and 

(a6). 

 𝑦𝑙𝑠 − 𝑦𝑙′𝑠 − 𝑀 ∙ 𝜉𝑙𝑙′𝑠 ∈ (−𝑀, 0)            ∀𝑙, 𝑙′;  𝑠 ∈ (𝑆𝑙 − 𝜌𝑙) ∩ (𝑆𝑙′ − 𝜌𝑙′) (a5) 

 𝑥𝑙𝑠 − 𝑥𝑙′𝑠 − 𝑀 ∙ 𝜁𝑙𝑙′𝑠 ∈ (−𝑀, 0)            ∀𝑙, 𝑙′;  𝑠 ∈ (𝑆𝑙 − 𝜎𝑙) ∩ (𝑆𝑙′ − 𝜎𝑙′) (a6) 

Appendix 2. Discussing the rationale of M-method in equations (g6), (g7), 

(g11), (g12), (e6) and (e7). 

The original formulation (g6) and (g7) are as follows. 

 |𝑦𝑙𝑠 − 𝑦𝑙′𝑠| + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐷𝐻𝑠 (g6) 

 |𝑥𝑙𝑠 − 𝑥𝑙′𝑠| + 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) ≥ 𝐴𝐻𝑠 (g7) 

These constraints ensure that if trains 𝑙 and 𝑙′ depart on the same day (𝑟𝑙 = 0, 𝑟𝑙′ = 0, and 𝜃𝑙𝑙′ = 0), the term 𝑀(𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′) equals 0. In this case (g6) and (g7) 

are classical formulations to ensure the departure and arrival times of the two trains, 𝑥𝑙𝑠, 𝑥𝑙′𝑠, 𝑦𝑙𝑠 and 𝑦𝑙′𝑠, maintain the required safety headways. However, if one of the trains is 



cancelled (𝑟𝑙 = 1 or 𝑟𝑙′ = 1) or if both are weekly trains departing on different days 

(𝜃𝑙𝑙′ = 1), the sum 𝑟𝑙 + 𝑟𝑙′ + 𝜃𝑙𝑙′ will exceed 0, as all three variables are binary. In such 

cases, these constraints will no longer apply, ensuring that the left-hand sides of 

inequalities (g6) and (g7) are always greater than their right-hand sides. Consequently, 

the decision variables 𝑥𝑙𝑠, 𝑥𝑙′𝑠, 𝑦𝑙𝑠 and 𝑦𝑙′𝑠 are no longer restricted. 

The formulation (g11) and (g12) are as follows. 

 𝑥𝑙𝜎𝑙 + 𝑀 ∙ (1 − 𝑧𝑙𝑞) ≥ 𝜏𝑞     ∀𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿𝑄 (g11) 

 𝑥𝑙𝜎𝑙 − 𝑀 ∙ (1 − 𝑧𝑙𝑞) ≤ 𝜏𝑞      ∀𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿𝑄 (g12) 

These constraints ensure that if train 𝑙 is selected as a mandatory train and 

departs in slot 𝑞 (𝑧𝑙𝑞 = 1), the term 𝑀 ∙ (1 − 𝑧𝑙𝑞) equals 0. In this case its departure 

time at the first station, 𝑥𝑙𝜎𝑙 , is restricted to 𝜏𝑞, the designated time for slot 𝑞. However, 

if train 𝑙 is not selected (𝑧𝑙𝑞 = 0), then 1 − 𝑧𝑙𝑞 = 1. In this case the left-hand side of 

constraint (g11) will always exceed the right-hand side, and the left-hand side of 

constraint (g12) will always be less than the right-hand side. Consequently, the decision 

variable 𝑥𝑙𝜎𝑙  is no longer restricted.  

The formulation (e6) and (e7) are as follows. 

 𝑥𝑙𝜎𝑙 − 𝑀 ∙ (1 − 𝑒𝑙) ≤ 𝑥̅𝑙𝜎𝑙 + 𝜏𝐷      ∀𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 (e6) 

 𝑥𝑙𝜎𝑙 + 𝑀 ∙ (1 − 𝑒𝑙) ≥ 𝑥̅𝑙𝜎𝑙 − 𝜏𝐷      ∀𝑙 ∈ 𝐿𝑆𝑡𝑎𝑔𝑒−1 (e7) 

These constraints are formulated in almost the same manner as (g11) and (g12). 

They use the variable 𝑒𝑙 to measure whether 𝑥𝑙𝜎𝑙  lies within the range [𝑥̅𝑙𝜎𝑙 − 𝜏𝐷 , 𝑥̅𝑙𝜎𝑙 +𝜏𝐷]. When 𝑥𝑙𝜎𝑙  exceeds 𝑥̅𝑙𝜎𝑙 + 𝜏𝐷, equation (e6) requires 𝑒𝑙 = 0 to ensure that the term 𝑀 ∙ (1 − 𝑒𝑙) is positive. Conversely, when 𝑥𝑙𝜎𝑙  is smaller than 𝑥̅𝑙𝜎𝑙 − 𝜏𝐷, equation (e7) 



also sets 𝑒𝑙 = 0. When 𝑥𝑙𝜎𝑙  lies in the range [𝑥̅𝑙𝜎𝑙 − 𝜏𝐷 , 𝑥̅𝑙𝜎𝑙 + 𝜏𝐷], the term 𝑀 ∙(1 − 𝑒𝑙) equals 0, implying that 𝑒𝑙 = 1.  


