
This is a repository copy of Online task-free continual learning via discrepancy 
mechanism.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227663/

Version: Accepted Version

Article:

Ye, Fei and Bors, Adrian Gheorghe orcid.org/0000-0001-7838-0021 (2025) Online task-
free continual learning via discrepancy mechanism. Knowledge Based Systems. 113688.

https://doi.org/10.1016/j.knosys.2025.113688

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.knosys.2025.113688
https://eprints.whiterose.ac.uk/id/eprint/227663/
https://eprints.whiterose.ac.uk/


Online Task-Free Continual Learning

via Discrepancy Mechanism

Fei Yea , and Adrian G. Borsb

aSchool of Information and Software Engineering, University of Electronic Science and Technology of

China, Chengdu, China,
bDerpartment of Computer Science, University of York, York YO10 5GH, York, UK,

Abstract

Task Free Continual Learning (TFCL) involves training a deep neural network in a

dynamic changing environment defined by unpredictable probabilistic data representa-

tion changes. Catastrophic forgetting, which occurs when the network’s weights are re-

placed following training, is the main factor of performance degeneration in the TFCL.

We develop a theoretical framework that accounts for the forgetting process in a contin-

ual learning model by deriving the generalization bounds when learning new data while

preserving the previously learnt data representations. The theoretical analysis indicates

that by dynamically creating new trainable submodels when new information becomes

available, can address the challenges of catastrophic forgetting. We then propose the

Online Discrepancy Distance Learning (ODDL) model, which expands model’s archi-

tecture by evaluating the difference between what was learned by the components of a

mixture model and a memory buffer storing the newly available data for training. We

then develop a sample selection approach based on a proposed discrepancy distance,

which stores only those samples deemed critical to the learning of the model, ensur-

ing the learning of diverse information. The proposed methodology outperforms other

static and dynamic expansion models in various TFCL applications.

Keywords: Lifelong Learning; Expanding Mixture Models; Task-Free Continual

Learning; Representation Learning.
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1. Introduction

An essential function in machine learning is represented by the ability to learn and

acquire knowledge from a changing environment without forgetting what was learnt

before. Many deep-learning models can achieve significant performance on individual

tasks but fail when learning a succession of different datasets. A challenge to such

systems is catastrophic forgetting [42], which is caused by the rewriting of the model’s

parameters when adapting to new tasks during learning. Continual Learning (CL), also

known as lifelong learning, emerged lately as a research direction addressing catas-

trophic forgetting [42].

Continual learning scenarios can be roughly divided into two branches : general CL

[62] and Task-Free Continual Learning (TFCL) [3]. The former assumption considers

that task information is accessible during both training and testing phases, while the

latter does not access any task information. Many studies have proposed several tech-

nologies to address network forgetting in continual learning, which can be roughly di-

vided into three branches : memory-replay-based methods that store some past data in a

memory buffer, in order to be used later for retraining the model [4, 12], regularization-

based methods that would introduce a penalty item in the primary objective function

in order to prevent changes in some important network parameters and the Dynamic

Expansion Models (DEMs) [53] that preserve the entire previously learnt knowledge

in the parameters of frozen modules or even entire networks, by progressively building

new sub-networks when learning new tasks. Among these approaches, memory-based

methods represent a simple but efficient approach to deal with network forgetting while

their primary challenge is represented by the fact that they are constrained by the avail-

able memory. Memory-based methods can also be empowered by regularization-based

strategies to further improve the model’s performance. In addition, compared to the

static network architecture, dynamic expansion mechanisms can ensure the best per-

formance for all tasks, theoretically demonstrated in [53], but at a cost of substantial

storage requirements due to the architecture expansion. Furthermore, the DEM expan-

sion mechanisms relies highly on the task information which is not available in the

TFCL scenario.
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Recently, certain studies have analyzed continual learning from different perspec-

tives, including from the point of view of NP-hard challenges [27], Teacher-Student

frameworks [32, 56], evaluation of risk bounds [52, 53] or from the game theory per-

spective [43]. However, all these studies rely on knowing the task information, thus

considering that task boundaries are available. However, such assumptions cannot be

considered in realistic learning scenarios, when data distributions continuously change

over time, as in considered in the TFCL scenario. Most CL methods can be considered

in the context of TFCL after dropping the task labels associated with the data. Memory-

driven CL approaches would store some data which are then used during the subsequent

training to address forgetting [16, 23]. However, such approaches have to design an ap-

propriate sample selection mechanism that selectively stores only those training sam-

ples deemed important, aiming to avoid memory overload [3]. Another challenge for

the memory-buffer based CL methods is represented by the negative backward transfer,

which leads to the model’s performance degeneration [12] due to the interference be-

tween the statistics of memorized samples with the model’s continuous updating when

learning from the incoming data samples [12]. Various DEM’s mixture expansion cri-

teria have been considered relying on either estimating the data density [33, 45] or

by controlling loss function changes [54]. However, such approaches do not provide

theoretical guarantees for their dynamic expansion mechanisms and cannot guarantee

optimal network architectures for TFCL problems.

This paper provides a new theoretical framework for TFCL, by extending the the-

oretical results from the domain adaptation theory [40] and deriving generalization

risk bounds for defining the dynamic forgetting process. The theoretical analysis

shows that a dynamic expansion model improves its performance over a static, clas-

sical model, while its network architecture is optimized by promoting the knowledge

diversity among its components during the model’s expansion process. Inspired by

this analysis we develop a new approach for TFCL, called Online Discrepancy Dis-

tance Learning (ODDL). ODDL evaluates the differences between the new informa-

tion stored in the memory buffer and that learnt previously by the model. This is then

considered as an expansion signal for a dynamic expansion model, aiming to ensure

a compact DEM architecture. Furthermore, the proposed dynamic expansion mech-
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anism encourages each component to capture different underlying data probabilistic

representations. We also propose the Online Discrepancy Distance Learning with sam-

ple selection (ODDL-S) model which selects new data for the memory buffer, ensuring

the data diversity in the memory buffer which is different from the already accumulated

knowledge. ODDL-S encourages the novelty of the knowledge acquired by the newly

trained DEM components.

This paper provides advancements in four different directions when compared to

[57] : (1) This paper introduces a novel expert initialization strategy that automati-

cally finds the appropriate expert, thus accelerating its training; (2) The theoretical

analysis framework from [57] does not describe the effects of the transfer learning for

TFCL, while this paper provides a new theoretical analysis for transfer learning, which

explains the benefits of choosing an appropriate expert; (3) It proposes a novel dis-

crepancy distance measure approach that enables detecting novel data representations

and provides appropriate expansion signals without any supervised signals, unlike [57]

which only considers supervised learning; (4) This paper adds many new experimental

results about the unsupervised learning setting, which demonstrates that the proposed

ODDL can achieve the best performance in both supervised and unsupervised learning.

The paper brings the following contributions :

• In the previous studies, the absence of a thorough theoretical analysis has left their

forgetting behaviour unexplored in the more challenging Task Free Continual Learn-

ing (TFCL) scenario. In this study, we address this gap by introducing an innovative

theoretical framework that conceptualizes memory and evolving data streams as the

source and target distributions, respectively, while deriving a lower bound to char-

acterize the dynamic shifts in model performance. The proposed framework offers

novel insights into the forgetting behaviour of continual learning models.

• In contrast to the majority continual learning techniques developed so far, that over-

look data distribution shifts in TFCL, we introduce an innovative method named the

Online Discrepancy Distance Learning (ODDL) which incorporates a novel discrepancy-

based expansion mechanism to identify data distribution shifts as an expansion signal

for the model, eventually resulting in an efficient network architecture.
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• Conventional sample selection techniques predominantly focus on retaining a di-

verse array of data samples across all encountered categories, which proves inade-

quate for our methodology. Consequently, we introduce an innovative sample se-

lection strategy that prioritizes the retention of only those samples deemed distinct

from previously acquired knowledge, thereby enhancing the diversity of knowledge

among the model’s components while improving its overall performance.

• The process of creating and training new experts with randomly initialized parame-

ters results in a slow acquisition of new knowledge. To mitigate this limitation, we

introduce an innovative expert initialization strategy. This mechanism evaluates the

relevance between the knowledge already learned by each expert and the character-

istics of incoming samples, utilizing the parameters of the most suitable expert to

initialize a new one withing the DEM. This facilitates the rapid assimilation of novel

information by means of the newly created expert.

• Experimental results show that ODDL provides better results than other baselines

under several TFCL benchmarks.

The remainder of the paper is structured as follows. The literature review is dis-

cussed in Section 2. The general theoretical framework is introduced in Section 3,

while this is expanded for formulating mixture systems for learning knowledge diver-

sity representations in Section 4. The proposed methodology is provided in Section 5

and the experimental results are presented in Section 6. Section 7 draws the conclu-

sions of this study.

2. Related Work

Despite achieving remarkable performances in individual tasks, most deep learning

models are not able to learn a successions of different tasks due to catastrophic forget-

ting, [13, 64]. Continual learning is a specific approach in machine learning which

aims at training a model to continually acquire and process knowledge from new tasks

without forgetting previously learnt information. One of the most popular approaches

for relieving forgetting is to introduce an extra regularization term into the main ob-

jective function, penalizing changes in certain parameters in order to preserve the most
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important information from past tasks [15, 55]. Memory systems, which store data

in order to be reused whenever necessary, have also been used as data representations

of the past learnt tasks, [4, 6]. The critical idea for the memory-based approaches is

to use a sample selection mechanism that selects appropriate training samples, char-

acteristic for each task [11, 38]. Memory-based approaches can be combined with

knowledge distillation [9, 10, 35] or regularization-based methods [19, 24, 47, 49] to

further improve their performance. Memory-based approaches perform well in con-

tinual learning, however, storing real samples could lead to data privacy and security

concerns [39].

A distinct approach consists of training a generative replay network (GRN), usually

considered as a Variational Autoencoder (VAE) [26], or a Generative Adversarial Net

(GAN) [20]. The GRN is used as a generator reproducing samples statistically con-

sistent to those learnt from past tasks, in order to relieve forgetting when learning new

tasks [5, 36, 45]. The pioneering work from [50] trains a GAN as a generative replay

network together with a classifier to be used for classification. A twin GAN network

framework was employed in [61], where the two networks learn alternatively from

each other in tandem together with assimilating new information. Meanwhile, GRNs

have been implemented into teacher-student frameworks in [44], where two VAEs are

considered as teacher and student, respectively. After each task switch, the teacher and

student would exchange their roles to enable knowledge accumulation during contin-

ual learning. However, this approach suffers from poor image-generation performance

because VAEs tend to generate rather blurred images failing to provide high-quality

knowledge transfer for training the student. This weakness was addressed by introduc-

ing a hybrid VAEGAN approach [52] or a GAN-based teacher module [56, 58], which

considers the high-quality generation ability of a GAN as a teacher. Nevertheless, all

these models are limited in the amount of tasks they can learn [53].

Recently, ensemble models [2, 18], or a dynamic expansion model [53], have been

considered for learning longer streams of different datasets. The former models assume

that the model knows the number of tasks and then associates sub-network components

for integrating the learning of new tasks [2, 18]. However, such fixed network archi-

tectures can not handle the learning of an increasing number of tasks. The latter model
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does not require knowing how many tasks are in advance, and can dynamically add

new modules to a mixture model when learning novel tasks within a continual learning

framework, [53].

Task-free continual learning (TFCL) represents a challenging and more realistic

learning scenario [65], where a model can not access the task information and does

not know task boundaries. The primary challenge for TFCL is that the model does

not know exactly when and how the underlying data distribution changes over time

and thus can not properly capture the data stream. The first work addressing catas-

trophic forgetting in TFCL was by Aljundi, Kelchtermans, and Tuytelaars [3]. This

method was then extended in the Maximal Interfered Retrieval (MIR) [1] for learning a

VAE model along with a classifier to provide generative replay samples. The Gradient

Sample Selection (GSS) [4] formulates the replay buffer generation as a constrained

optimization problem solved using quadratic programming. More recently, a learner-

evaluator framework, called the Continual Prototype Evolution (CoPE) [16], was pro-

posed to implement data selection in TFCL aiming at storing statistically balanced

samples from all data categories achieving very good performances on imbalanced

data streams. Modifying the memorized samples was investigated in the Gradient-

based Memory EDiting (GMED) [23], and was shown that it can further improve the

model’s performance in TFCL. However, these approaches cannot learn long or infinite

data streams.

More recent research studies have focused on the Dynamic Expansion Models

(DEMs) for addressing catastrophic forgetting in TFCL. Compared to the fixed model,

DEMs are scalable by adding new component modules for learning a dynamically

changing data stream and can achieve better generalization results. Training a DEM

under the TFCL paradigm was first investigated in the Continual Unsupervised Rep-

resentation Learning (CURL) [45]. During the training, CURL dynamically adds new

inference models to capture multiple underlying data distributions over time while gen-

erating past data samples to relieve forgetting. The main downside of CURL is that the

generator is always updated with incoming and generative replay samples and would

gradually forget previously learnt information over time. This issue was addressed in

[33] which introduces a new VAE-based expansion framework called the Continual
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Neural Dirichlet Process Mixture (CNDPM) that dynamically adds a new VAE com-

ponent through a Dirichlet process-based expansion mechanism. Specifically, CNDPM

updates a single expert and freezes all those previously trained in order to preserve past

information. The selection of data samples was also used for enabling the training of

dynamic expansion models with selected data, resulting in better results for TFCL [54].

However, these models result in non-optimal architectures because they do not ensure

the learning of a diverse knowledge representation information when expanding their

structures.

Discussion. In the TFCL learning scenario, memory-based and dynamic expansion

methodologies represent the main strategies to address the issue of catastrophic for-

getting in neural networks. The primary challenge associated with memory-based ap-

proaches lies in data privacy concerns and the degradation of model performance when

processing extended sequences of data streams. Conversely, dynamic expansion tech-

niques are hindered by the exponential increase in parameters, rendering them unsuit-

able for deployment on devices with limited resources, such as the Field-Programmable

Gate Array (FPGA) based devices. This paper focuses on dynamic expansion strate-

gies, proposing an innovative framework designed to enhance model efficacy while

preserving a streamlined network structure. Unlike existing dynamic expansion mod-

els, this study introduces a novel mechanism that detects data distribution shifts as

triggers for expansion, ensuring an optimal network configuration. Additionally, we

introduce a new theoretical framework to analyze continual learning models, which is

lacking in other continual learning studies. In addition, most existing dynamic expan-

sion models rely on random sampling for memory buffer management [45], while our

proposed method employs a novelty discrepancy-based measure to optimize the mem-

ory buffer, thereby facilitating the learning and assimilation of novel information by

each newly instantiated expert.

3. Theoretical framework for TFCL

It is well known that catastrophic forgetting significantly impacts the performance

of models in continual learning. However, lacking a theoretical analysis in contin-
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Table 1: The description of some important notations.

Notations Descriptions

T = {T1, · · · ,Tn} Tasks, where n is the number of training times/steps.

DS
t The training dataset.

DT
t The testing dataset.

PT,X

t,j
The distribution of the training dataset.

Mi The memory buffer updated at the i-th training time.

G = {G1, · · · ,Gc} The dynamic expansion model.

A The data stream.

Lclass(G j,Mi) The classification loss.

LVAE(G j,Mi) The VAE loss.

LD

(
PT,X

t, j
,PS ,X

t, j

)
The discrepancy distance.

{Xb
i
,Yb

i
} The i-th data batch.

ual learning limits our understanding of the forgetting behaviour exhibited by various

models. A robust theoretical framework for continual learning is essential to enable

researchers and readers to gain a deeper comprehension of the forgetting effects as-

sociated with different models. In order to address this, we propose an innovative

theoretical analysis framework for continual learning, which conceptualizes forgetting

as a specific domain adaptation challenge. Furthermore, we provide a theoretical ex-

amination of the proposed model expansion mechanism, which demonstrates that our

approach can achieve an optimal network architecture while ensuring superior general-

ization performance. Specifically, we adopt and expand the findings from [40] in order

to formulate a novel theoretical framework for TFCL. Through this framework we de-

fine network forgetting as a generalization error of the risk bounds. We provide a short

description of many important notations used in this paper in Table 1.

3.1. Preliminaries

Let us consider the input space as X, while the output space is Y, representing

class information. We consider the training dataset as DS
i
= {xS

j
, yS

j
}
NS

i

j=1
, while the

testing dataset is DT
i
= {xT

j
, yT

j
}
NT

i

j=1
, where the data is denoted as xT

j
∈ X and yT

j
∈ Y is

9



its corresponding label; NS
i

and NT
i

represent the number of samples forDS
i

andDT
i

.

Definition 1. (The Task-Freee Continual Learning (TFCL) setting). The most pop-

ular continual learning paradigm is the class-incremental setting, in which each new

task contains data samples from a certain set of data categories [3]. Under this set-

ting, a training dataset DS
t is divided into cS

t parts {DS
t,1
, · · · ,DS

t,cS
t

}, according to the

category information, where each part DS
t, j

contains samples from one or several suc-

cessive classes. The distributions for DT
t, j

and DS
t, j

, are denoted as PT
t,j

and PS
t,j

, re-

spectively. We consider PT,X

t,j
as the marginal j-th training distribution over X. In the

class-incremental setting, a data stream is formed byA =
⋃cS

t

j=1
DS

t, j
. We also consider

that learning A requires n training steps/times, T = {T1, · · · ,Tn}. At each training

time Ti, we use only a small set of samples {Xb
i
,Yb

i
} = {xS

j
, yS

j
}b

j=1
∈ A, where b is the

batch size, drawn from a specific set of data categories, for training, while all previous

training data sets {Xb
1
,Yb

1
, · · · ,Xb

i−1
,Yb

i−1
} are no longer available.

Unlike TFCL, task-aware continual learning assumes that the model can access

task information during both training and testing phases. We illustrate the differences

between TFCL and task-aware continual learning in Fig. 1. We can observe that the

model can access the task information and boundaries in the task-aware continual learn-

ing. In addition, the task information is also available during the inference phase under

the task-aware continual learning. In contrast, a model optimized under the task-free

continual learning does not have any task information, and this scenario presents a

significant learning challenge.

Definition 2. (Model and memory). Let h be a classifier implemented by either a deep

convolution or a fully connected network, while H = {h | h : X → Y} represents the

classifiers’ space. We also considerMi as a memory of maximum size |Mi|
Max, where

i denotes thatMi is updated at Ti. The probability distribution ofMi is PMi
.

3.2. Measuring Changes in Probabilistic Representations

A discrepancy distance can be used to evaluate distances between probabilistic rep-

resentations. Such probabilistic distances have been successfully used for deriving gen-

eralization bounds (GB) for domain adaptation [7, 14, 40], or for deriving GAN-based
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Task 1 Task 2 Task N

Data batch 1 Data batch 2 Data batch n

Time 1 Time 2 Time N

Task-aware continual learning

Task-free continual learning

Figure 1: The differences between task-aware and task-free continual learning, respectively.

objective functions to compare real and generated (fake) data distributions during train-

ing [17, 34, 37]. In our study, such discrepancy distances are used for analyzing the

forgetting behaviour. The key idea is to measure the difference between probabilistic

representation between the source dataset, consisting of all previously seen data sam-

ples (during the learning of different tasks), and the target dataset from the memory

buffer, and investigate how this measure affects the result when considering the target

dataset for training. We start by introducing the model risk.

Definition 3. (The model risk [40]) in the machine learning field evaluates the errors

made by the model for the given data samples and represents an assessment measure of

the model’s performance. A high risk indicates that the model suffers from significant

performance loss. In contrast, a low risk indicates that the model has a good general-

ization performance on the data samples. For a given distribution PS
t, j

, the model h risk

is defined as :

LPS
t, j

(
h, fPS

t, j

)
:= E{x}∼PS

t, j

[
L
(
fPS

t, j
(x), h(x)

)]
, (1)

where L : Y × Y → [0, 1] is the loss function, and fPS
t, j

(·) returns the true class label

for a data sample drawn from PS
t, j

. E denotes the statistical expectation.

Definition 4. (Discrepancy distance [40].) The discrepancy distance LD is defined on

two marginals, corresponding to two probability densities PT,X
t, j

and PS ,X
t, j

, as :

LD

(
PT,X

t, j
,PS ,X

t, j

)
:= max

(h,h′)∈H2

∣∣∣∣Ex∼P
T,X
t, j

[
L
(
h(x), h′(x)

)]
− Ex∼P

S ,X
t, j

[
L
(
h(x), h′(x)

)]∣∣∣∣ , (2)
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where {h, h′} ∈ H are evaluated for specific data samples, in order to estimate a sta-

tistical distance measure. Specifically, we search for h and h′ that can maximize the

distance measure defined in Eq. (2). In practice, the discrepancy distance LD(·, ·) is

evaluated as the upper bound by employing the Rademacher complexity, used in the

domain adaptation theory as a measure of the hypothesis space richness [41, 63].

Corollary 1. For two given domains PT,X
t, j

and PS ,X
t, j

, let UP and UP represent sample

sets of sizes mP and mP, drawn independently from PT,X
t, j

and PS ,X
t, j

. Let as consider P̂T,X
t, j

and P̂S ,X
t, j

as the empirical distributions for UP and UP, respectively. Let L(x′, x) =

|x′ − x|q be a loss function where q = 1, defined as the L1-Norm, satisfying ∀(x, x′) ∈

X,L(x, x′) > M, where M > 0. Then, with the probability of 1 − δ, where δ is a small

quantity, we have [40] :

LD(PT,X
t, j
,PS ,X

t, j
) ≤ LD (̂PT,X

t, j
, P̂S ,X

t, j
) + B⋆ + 3M



√
log

(
4
δ

)

2mP

+

√
log

(
4
δ

)

2mP

 ,
(3)

where B⋆ = 4q
(
ReUP (H) + ReUP

(H)
)

and ReUP (H) is the Rademacher complex-

ity [40]. We denote the expression from the Right-Hand Side (RHS) of Eq. (3) by

L̂(PT,X
t, j
,PS ,X

t, j
). We consider L : Y ×Y → [0, 1] as a bounded and symmetric loss func-

tion ∀(y, y′) ∈ Y2,L(y, y′) ≤ U′, U′ > 0, where L(·, ·) obeys the triangle inequality.

3.3. Forgetting Analysis for A Fixed Model

In the following we derive the generalization bound for the forgetting analysis of a

fixed model by using the definitions from the previous section.

Theorem 1. Let Pi be the distribution of all previously seen data samples drawn from

the data streamA atTi. Let hMi
= arg minh∈H LPMi

(h, fPMi
) and hPi

= arg minh∈H LPi
(h, fPi

)

be the optimal classifiers for PMi
and Pi, respectively. The Generalized Bound (GB)

between Pi and PMi
is derived as :

LPi

(
h, fPi

)
≤ LPMi

(
h, hMi

)
+ L̂

(
PXi ,P

X
Mi

)
+ η

(
Pi,PMi

)
, (4)

with η
(
Pi,PMi

)
defined as :

η
(
Pi,PMi

)
= LPi

(hPi
, hMi

) +LPi
(hPi
, fPi

) , (5)
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where fPi
is the target function forPi, which returns the true class label for each sample

drawn from Pi.

Proof. Firstly, we assume that the classifier h ∈ H is fixed and L(·, ·) has the triangle

inequality property according to Definition 4. we have:

LPi
(h, fPi

) ≤ LPi
(h, hMi

) +LPi
(hPi
, hMi

) +LPi
(hPi
, fMi

)

≤ LMi
(h, hMi

) +Ld(Pi,P
X
Mi

) +LPi
(hPi
, hMi

) +LPi
(hPi
, fPi

) .

(6)

According to the results from Corollary 1, we have :

L(PXi ,P
X
Mi

) ≤ L(P̂Xi , P̂
X
Mi

) + 4q

(
ReU

PX
i

(H) + ReU
PX
Mi

(H)

)

+ 3M



√√√
log

(
4
δ

)

2mPX
i

+

√√√√
log

(
4
δ

)

2mPX
Mi

 ,
(7)

where UPX
i

and UPX
Mi

represent samples of sizes mPX
i

and mPX
Mi

, drawn independently

from PX
i

and PX
Mi

. P̂X
i

and P̂X
Mi

represent the empirical distributions of UPX
i

and UPX
Mi

.

We consider L
d̂

(
PX

i
,PX
Mi

)
to represent the right hand side of Eq. (7). Then we rewrite

Eq. (6) as :

LPi
(h, fPi

) ≤ LMi
(h, hMi

) + L̂(Pi,P
X
Mi

) +LPi
(hPi
, hMi

) +LPi
(hPi
, fPi

) . (8)

Theorem 1 explicitly measures the gap between the predictions of the model h at

each taskTi and the corresponding labels of the data. The memory bufferMi is initially

able to store all previously seen data samples and thus the model can achieve a small

target risk onPi. While the model learns additional data batches over time (i increases),

the discrepancy distance term L̂
(
PX

i
,PX
Mi

)
in Eq. (4) gradually increases leading to a

larger target risk onPi. This is caused by the memory buffer that ignores some past data

samples due to its limited memory capacity. Such performance degeneration eventually

leads to the model’s forgetting. Next we assess the forgetting of a model on the testing

dataset:

Theorem 2. Let PT
t, j

be a target domain, we can introduce a GB for analyzing the

forgetting process of a static model at each training time Ti :

LPT
t, j

(
h, fPT

t, j

)
≤ LPMi

(
h, hMi

)
+ L̂

(
PT,X

t, j
,PX
Mi

)
+ η

(
PT

t, j,PMi

)
. (9)
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Theorem 2’s proof is similar to that for Theorem 1. The results from Eq. (9) show

that the model’s performance on the target distribution PT
t,j

relies mainly on the discrep-

ancy distance between the memory distribution PMi
and the target distribution PT,X

t, j
.

Next, we derive a new GB for evaluating multiple target distributions based on the

results from Theorem 2.

Lemma 1. Let A =
⋃cS

t

j=1
DS

t, j
be a data stream constructed by collecting samples

from the training dataset DS
t . For a given corresponding testing set DT

t , let us define

the testing data distribution for the j-th class as PT
t,j

. Then we have the following GB

for multiple target domains :

∑cT
t

j=1

{
LPT

t, j

(
h, fPT

t, j

)}
≤

∑cT
t

j=1

{
LPMi

(
h, hMi

)
+ L̂

(
PT,X

t, j
,PX
Mi

)
+ η

(
PT

t, j,PMi

)}
, (10)

where cT
t is the number of underlying data distributions corresponding to the testing

dataset.

Remarks. Lemma 1 has the following observations :

• For achieving the best results on the testing dataset, one should minimize the dis-

crepancy distance between each PT,X
t, j

, representing the target distribution, and the

memory distribution PMi
for each Ti.

• Having an optimal memory buffer is essential for combating catastrophic forgetting

in continual learning, as shown in [27]. However, that theoretical study can only be

used in continual learning assuming that the task information is provided. Mean-

while, Eq. (10) is used to evaluate the memory quality in a more realistic learning

scenario, such as the Task Free Continual Learning (TFCL). The connection be-

tween the memory buffer and catastrophic forgetting in various approaches includ-

ing [12, 16], without knowing task boundaries or labels, can be explained through

Eq. (10).

3.4. Forgetting Analysis for the Dynamic Expansion Model

According to Theorem 1, a memory-based learning system suffers from decreasing

performance when learning successive data streams, characterized by multiple different
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underlying data distributions. Another issue is the negative backward transfer [38],

where the model’s performance gradually decreases due to the training on samples

drawn from entirely different underlying distributions [25]. A Dynamic Expansion

Model (DEM) is not affected by such limitations and can address the learning of infinite

data streams by adding new components for representing new underlying data sets over

time. A DEM has the following advantages over a fixed model : 1) It relieves the

negative transfer by acquiring previously learnt information in the components, added

to its network structure, which is progressively frozen after training; 2) It can achieve

better generalization performance while learning a long-term data stream under TFCL.

Definition 5. (Dynamic expansion mechanism (DEM).) Let us consider a DEM asG =

{G1, · · · ,Gc}, where G j is the j-th component, in the mixture/ensemble model G, which

is implemented by a classifier. Initially, the mixture model G trains its first component

G1, and during the following learning stages, G adds new components while freezing

those components that have been previously trained, to avoid forgetting.

Theorem 3. Let A = {Xb
1
, · · · ,Xb

n} be a data stream in which the data samples are

obtained from the m-th training dataset and P(m, j) be the probability density function

of the j-th training data batch Xb
j
∈ A, visited at the j-th training time (T j). At T j we

consider that we have already trained c components for the DEM, G = {G1, · · · ,Gc}.

Let us define T = {Tk1
, · · · ,Tkc

} as the times of training for DEM, with the component

Gv finishing its training and afterwards being frozen at Tkv
. The GB for assessing the

changes in G at Ti is given by :

1

n

∑n

j=1

{
LP(m, j)

(
h, fP(m, j)

)}
≤

1

n

∑n

j=1

{
FS

(
P(m, j),G

)}
, (11)

where FS (·, ·) is the selection function that returns the estimated risk of the selected

component :

FS

(
P(m, j),G

) ∆
= min

v=1,··· ,c

{
LPMkv

(
h, hMkv

)
+ L̂

(
PX(m, j),P

X
Mkv

)
+ η

(
P(m, j),PMkv

)}
, (12)

where PMkv
represents the memory distribution at Tkv

. PX
(m, j)

and PX
Mkv

denote the

marginal distribution of P(m, j) and PMkv
, respectively. FS (·, ·) represents an ideal model

selection for the minimal risk component. The dynamic expansion model achieves a

15



lower upper bound for the risk, given by the Left Hand Side (LHS) of Eq. (11), than the

fixed model, defined by Theorem 1, resulting in better generalization performance.

Proof. We consider Pi to be a mixture distribution :

p(1:m)(x) =
1

m

∑m

j=1
p j(x), (13)

where each p j(x) represents the density function for a batch of samples :

LP j

(
h, fPi

)
=

∫
p j(x)L(h, fP j

) dx, (14)

and when we replace this into Eq. (13), we have :

p(1:m)(x) =
1

m

∑m

j=1

∫
p j(x)L(h, fPm

) dx . (15)

Let us define P( j,m) as the distribution of p j(x). Since fPm
is the true labeling function

for Pm, we decompose fPm
into j components { fP(m,1)

, · · · , fP(m, j)
}, where each fP(m, j)

is

the true labeling function for P(m, j), then we can rewrite Eq. (15) as :

1

m

∑m

j=1

∫
p j(x)L(h, fP(m, j)

) dx . (16)

Then we rewrite Eq. (16) as the expectation form 1
m

∑m
j=1LP(i, j)

(h, fP(i, j)
). Then we

derive GB for this expectation from as :

1

m

∑m

j=1
LP(m, j)

(h, fP(m, j)
) ≤

1

m

∑m

j=1
FS

(
P(m, j),G

)
. (17)

In the following section we link the dynamic expansion of the proposed model to

the efficiency of its knowledge diversity representation.

4. Theoretical analysis of the knowledge diversity representation

A mixture system is expected to contain components representing diverse knowl-

edge. This requirement together with defining its complexity (model size and number

of parameters) plays a critical role in the model’s performance and its overall efficiency

for the TFCL. By ensuring the learning of diverse information by each component

leads to a well-defined network architecture which is compact. Maintaining an opti-

mal model size together with capturing well the representations of all past learnt data

should go hand-in-hand, as given by the following lemma:
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Lemma 2. LetA =
⋃cS

t

j
DS

t, j
be a data stream consisting of samples from the training

datasetDS
t . We also have a set of testing datasets {DT

t,1
, · · · ,DT

t,CT
t

} which are used for

the evaluation, with each DT
t, j

containing cb
t, j

data batches. Let PT
t, j

(k) be the probabil-

ity density of the k-th data batch in DT
t, j

. We consider that we have already learnt c

components for G at Ti. Then the GB for multiple target domains is derived as :

cT
t∑

j=1

{ cb
t, j∑

k=1

LPT
t, j

(k)

(
h, fPT

t, j
(k)

)}
≤

cT
t∑

j=1

{ cb
t, j∑

k=1

FS

(
PT

t, j(k),G
)}
, (18)

Remark. We have the following observations from Lemma 2 :

• The mixture model G generalization evaluated on the target distributions relies on

the discrepancy distance between the memory distribution PMki
of the selected com-

ponent and each target distribution PT
t, j

.

• If the mixture model G adds more components, then it can learn more information

about each target’s probabilistic representation while also improving its generaliza-

tion. Conversely, by training very few components in the mixture model G may not

allow for capturing the entire underlying data distribution.

• A similar theoretical framework for analysing forgetting in continual learning, but

which requires accessing the task boundaries, was provided in [56]. However, this

theoretical framework provides a more realistic GB evaluation for the forgetting

process of a dynamic continual learning model.

At the testing stage, we employ the following criterion F̂(·, ·) for comparing the

sample log-likelihoods of two distributions, in order to enable model selection without

requiring the task information :

F̂
(
PT

t, j(k),G
) ∆
= arg max

v=1,··· ,c

{
Ex∼PT

t, j
(k)[ f̂ (x,Gkv

)]
}
, (19)

where f̂ (·, ·) is the log-likelihood data function. Then Eq. (19) is used for model selec-

tion :

F̂S

(
PT

t, j(k),G
)
= LPMs

(
h, hMs

)
+ L̂

(
PT,X

t, j
(k),PX

Ms

)
+ η

(
PT

t, j(k),PMs

)
(20)

By considering Eq. (18) under real circumstances, we have :

∑cT
t

j=1

{∑cb
t, j

k=1
LPT

t, j
(k)

(
h, fPT

t, j
(k)

)}
≤

∑cT
t

j=1

{∑cb
t, j

k=1

{̂
FS

(
PT

t, j(k),G
)}}
. (21)
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When comparing Eq. (21) to the ideal solution from Eq. (18) we observe that the ad-

ditional error terms are due to the model selection process, defined by Eq. (20). These

error terms are given by :

∑CT
t

j=1

{∑cb
t, j

k=1

{̂
FS

(
PT

t, j(k),G
)
− FS

(
PT

t, j(k),G
)}}
. (22)

In the following we investigate the trade-off between the model’s performance and

its complexity. According to the results from Lemma 2, the GB for a dynamic expan-

sion model G is defined by Eq. (18), where we assume that we have already learnt c

components for the mixture model G = {G1, · · · ,Gc} at Ti. An optimal mixture model

ensures that each component represents a probabilistic representation corresponding to

a specific target data category according to Eq. (18), ensuring an appropriate balance

between the model’s complexity, given by the number of components and its general-

ization performance. While the mixture model G adds and learns additional distinct

components it accumulates more knowledge about each target set, improving its per-

formance. However, if some of these components share similar information with each

other, then G is not learning as efficiently as expected, resulting in degenerated per-

formance. Learning an optimal mixture model can be achieved in two ways : (1) One

can measure the data distribution shift to guide the model expansion; (2) Maintaining

the discrepancy distance between different components leads to better modeling of the

knowledge diversity while resulting in a compact mixture model.

In the following, we analyse how encouraging the diversity of the trained mixture

components leads to better performance.

Assumption 1. Let G = {G1, · · · ,Gc} be a mixture model that has already learnt

c components at the i-th training time (Ti). Let us define a training timed set K =

{Tk1
, · · · ,Tkc

}, where each Tk j
represents the time when G j was trained. After consid-

ering that Eq. (12) implements the ideal selection process, we observe that the mix-

ture system G, considered as a single model h, has learnt the information from the

current memoryMi and all prior memory buffers, formed during the continual learn-

ing {Mk1
, · · · ,Mkc−1

}, where Mkc
≡ Mi. This assumption is reasonable, given that

Eq. (12) always selects the best component characterized by a minimal risk. Let us

define P⋃kc−1
t=k1
{Mt}⊗Mi

as the probabilistic representation of all learnt memory buffers
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{Mk1
, · · · ,Mkc−1

} andMi, at Ti.

Theorem 4. LetA be a data stream and G = {h1, · · · , hc} be a mixture model that has

learnt c components at the step Ti. Let us define Pi as the distribution of all previously

seen samples at Ti. After considering Assumption 1 we have a GB as :

LPi

(
h, fPi

)
≤ LP⋃kc−1

t=k1
{Mt }⊗Mi

(
h, h⋃kc−1

t=k1
{Mt}⊗Mi

)

+ L̂
(
PXi ,P

X⋃kc−1
t=k1
{Mt}⊗Mi

)
+ η

(
Pi,P⋃kc−1

t=k1
{Mt}⊗Mi

)
. (23)

Remark. We have several observations from Theorem 4 :

• The performance of the proposed mixture model on Pi is based on the discrep-

ancy distance between P⋃kc−1
t=k1
{Mt}⊗Mi

and Pi. The diversity of information from

P⋃kc−1
t=k1
{Mt}⊗Mi

, representing the entire information from all learnt data memory buffers

including the current one, defines the efficient training of the model. We would have

significant redundancy, if all memory buffers would capture similar information. On

the other hand, when the memory buffers correspond to non-overlapping underly-

ing probability density functions, leads to capturing diverse modes of the overall

underlying information representation Pi with a minimal number of c components.

• Theorem 4 demonstrates that the probabilistic diversity among the learnt compo-

nents is crucial for relieving forgetting in the mixture model.

The next theorem shows that by ensuring the probabilistic diversity of G’s compo-

nents leads to a tighter generalization bound.

Theorem 5. Let us consider A =
⋃ j

CS
t

DS
t, j

, a data stream consisting of samples from

DS
t . We also have the target sets {DT

t,1
, · · · ,DT

t,CT
t

}, of probabilistic representation PT
t .

According to Assumption 1 we have a GB as :

LPT
t

(
h, fPT

t

)
≤ LP⋃kc−1

t=k1
{Mt }⊗Mi

(
h, h⋃kc−1

t=k1
{Mt}⊗Mi

)

+ L̂
(
PT,X

t ,P
X⋃kc−1

t=k1
{Mt}⊗Mi

)
+ η

(
PT

t ,P⋃kc−1
t=k1
{Mt}⊗Mi

)
. (24)

From Eq. (24), we deduce that while more data becomes available when increasing

Ti, the mixture model G gradually gains more knowledge improving its generalization
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performance. By training an optimally diverse number of components in G, for the

continual representation of P⋃kc−1
t=k1
{Mt}⊗Mi

we capture a diversity of information.

5. Methodology

This section describes the proposed methodology. We firstly introduce the training

of the proposed Online Discrepancy Distance Learning (ODDL) model in Section 5.1.

Then, we present the discrepancy-based mixture expansion model in Section 5.2. A

more efficient expansion strategy is presented in Section 5.3. In Section 5.4 we provide

an approach for selecting data for ensuring that a diverse information is stored in the

memory buffer. In Section 5.5 we outline the underlying algorithm.

5.1. The ODDL’s Training

We consider that each component G j ∈ G in the proposed mixture model ODDL

has associated a classifier h j, implemented by a network fς j
(x) parameterized by ς j as

well as a VAE for model selection. When the j-th component is trained onMi at Ti,

we define two loss functions for training the classifier h and VAE as :

Lclass(G j,Mi) :=
1

|Mi|

∑|Mi |

t=1

{
Lce

(
h j(xt), yt

)}
, (25)

LVAE(G j,Mi) := − Eqω j
(z | x)

[
log pθ j

(x | z)
]
+ DKL

[
qω j

(z | x) || p(z)
]
, (26)

where {xt, yt} are paired data and its class label from the memory buffer M j, while

|Mi| is the memory buffer size at Ti. LVAE(·, ·) is the VAE loss [26], and Lce(·) is the

cross-entropy loss, defined as :

Lce(y, ŷ) := −
∑K

i=1
yi log ŷi , (27)

where yi is the i-th entry and K is the dimension of y. ŷ is the classification probability

vector provided by the classifier. We implement the encoding distribution pθ j
(x | z)

and the decoding one qω j
(z | x) using the neural networks encω j

and decθ j
, of pa-

rameters ω j and θ j, respectively. The latent variable z = µ + σ ⊙ τ is drawn from

qω j
(z | x) = N(µ,σI) using the reparameterization trick to enable end-to-end training

[26], where τ ∼ N(0, I) and where ⊙ represents the dot product. µ and σ are the
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Figure 2: The process of the proposed dynamic model expansion procedure. For a new given data batch, we

employ each expert to generate past examples. The evaluator is used to estimate the discrepancy distance

between the generated images and real samples, which is used as the expansion signal. If the expansion

criterion defined in Eq. (30) is satisfied, then we dynamically create a new expert.

mean and variance hyperparameters of the Gaussian distribution, given by the encoder

encω j
. A component is selected at the testing phase using Eq. (19), where f̂ (·, ·) is

implemented by −LVAE(·, ·).

5.2. Mixture Model Expansion by means of the discrepancy distance

From Lemma 2, we find that encouraging data representation diversity in the com-

ponents’ representation abilities can lead to a good generalization performance while

ensuring a compact architecture. The dynamic expansion mechanism adds new com-

ponents to G during the training, by evaluating the following criterion :

min
t=1,··· ,c

L̂
(
PX
Mkt
,PX
Mi

)
≥ λ , (28)

where λ is a mixture expansion threshold. If the distribution of the current memory

buffer PMi
is sufficiently different from the memory distribution modeled by each other

component, satisfying Eq. (28), then G is augmented with a new component for learn-

ing the information associated with the current memory Mi. This expansion mecha-

nism, illustrated in Fig. 2, encourages the learning diversity among the mixture model

components.

Training the proposed ODDL involves three stages. In the beginning we build

the first component h1 in the mixture model G, consisting of a VAE model V1 and a

classifier h1. We then train G1 on the memory buffer whenM j becomes full at the j-th

training time (T j). Afterwards, the first component is frozen to preserve the previous

knowledge and we employ a second component G2 which is used for learning from
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the data samples from Mi during the subsequent training steps. We also consider a

component as an evaluator, Ge = {he, ve}, initially considering Ge ≡ G2, for evaluating

the incoming data. The model expansion is decided using Eq. (28) at the i-th training

time (Ti).

However, data corresponding to PX
Mk1

cannot be accessed because the content of

the memory bufferMi was changed. We then form PX
Mk1

by employing the auxiliary

distributions PX
v

k1= j

1

consisting of samples drawn from G
j

1
, using its VAE V

j

1
, where the

subscript j = k1 indicates the component ending its training at T j. Consequently, we

estimate the discrepancy distance L⋆(·, ·), between the current evaluator hi
e and the

classifier of the first component h
j

1
:

L⋆
(
PX

v
j

1

,PMi

)
:=

∣∣∣∣Ex∼PX
v

j
1

[
L
(
h

j

1
(x), hi

e(x)
)]
− Ex∼PMi

[
L
(
h

j

1
(x), hi

e(x)
)]∣∣∣∣, (29)

where hi
e(·) is a classifier applied on the memory buffer at i-th training time.

When the condition from Eq. (28) is fulfilled, we freeze Gi
e and use it for expanding

G, while considering a new evaluator at Ti+1; otherwise, we continually learn Gi
e →

Gi+1
e on the memory bufferMi+1 during next training step, Ti+1. In addition, after using

the memory buffer Mi for training the new component, we replace its content with

new data. This encourages the newly added component to learn novel information,

ensuring the learning of diverse information by the model. Furthermore, when the

model G = {G1, · · · ,Gc−1} has already frozen more than one component, we extend

the criterion from Eq. (28) to use the discrepancy distance from Eq. (29), at Ti, as :

min
t=1,··· ,c−1

L⋆
(
PX

v
kt
t

,PX
Mi

)
≥ λ , (30)

where PX
v

kt
t

is the distribution of the generated samples by all existing components, G
kt

t .

Unlike Eq. (28) which considers only one component, Eq. (30) enables the knowledge

evaluation from all previously learnt components, leading to better expansion signals

for the mixture model G.

5.3. Model expansion by initializing the evaluator with an existing component

The negative backward transfer means that the model suffers from performance

degeneration in previous data when learning new data samples. Such a negative ef-

fect happens when the new data samples share significantly different information with
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Figure 3: The process of the proposed expert initialization mechanism. The samples drawn from the prior

distribution are used as the inputs of the decoder of each expert, which can then generate images. We choose

the best expert Gs⋆ using Eq. (32) and employ the parameters of Gs⋆ to create a new expert.

respect to previous data samples. The positive knowledge transfer indicates that learn-

ing new data samples can improve the model’s performance on previous data. Such a

positive knowledge transfer occurs when the new data samples share similar semantic

information with respect to previously learnt data.

In Section 5.2, we have introduced a novel dynamic expansion model to avoid the

negative backward transfer. In this section, we aim to improve the positive backward

transfer of the proposed framework, which can promote new task learning. Creating a

new evaluator with randomly initialized parameters would slow the convergence during

training. In the following we introduce a new expansion approach by initializing a new

evaluator using the parameters from an existing component. The criterion for choosing

an appropriate component consists of assessing the similarity between the information

contained in the new data batch and that learnt by existing components. Then, the

new evaluator initialized by the selected component’s parameters undergoes a positive

knowledge transfer when learning novel data. We define the knowledge transfer by

means of the following Lemma.

Lemma 3. Let P̂i+1 be the distribution of a new data batch {Xb
i+1
,Yb

i+1
} drawn fromA

at Ti+1. Let h
P̂i+1
= arg minh∈H LP̂i+1

(h, f
P̂i+1

) and hMi
= arg minh∈H LPMi

(h, fPMi
) be

the optimal classifiers for P̂i and PMi
, respectively. We derive the GB between P̂i+1 and

PMi
, according to Theorem 1, as :

L
P̂i+1

(
h, f
P̂i+1

)
≤ LPMi

(
h, hMi

)
+ L̂

(
P̂Xi+1,P

X
Mi

)
+ η

(
P̂i+1,PMi

)
. (31)

However, different from Theorem 1, which mainly provides the forgetting analysis,
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Eq. (31) is used to evaluate the knowledge transferability on a new data batch, achieved

by a model trained at a previous training time (Ti). We observe that a small discrepancy

distance component from the RHS of Eq. (31) can improve the knowledge transferabil-

ity of the model. Inspired by this analysis, we propose a new expansion strategy that

chooses an appropriate component to initialize the evaluator according to the following

criterion at a new training step (Ti+1) :

s⋆ = arg min
t=1,··· ,c

{
L⋆

(
PX

v
kt
t

, P̂Xi+1

)}
, (32)

where c represents the number of components fromG and s⋆ is the index of the selected

component used to initialize a new evaluator when the model G checks whether to

expand its architecture. We also provide the detailed process of the proposed expert

initialization mechanism in Fig. 3. Eq. (32) enables a newly created evaluator to reuse

existing knowledge, aiming to accelerate future learning and this approach is called

ODDL-S2.

5.4. Ensuring sample diversity in the memory bufferMi

According to the results from Theorem 4, the probabilistic diversity of the knowl-

edge learnt by the model plays an important role in its performance. Thus we propose

a criterion for selecting data for the memory bufferMi, further ensuring the learning

of diverse information. We consider the following discrepancy distance for selecting

data for the memory bufferMi, such that it is different from the data currently known

to the model’s components :

L(x,G) :=
1

c − 1

∑c−1

t=1

∣∣∣L(h
kt

t (x), hi
e(x)) − L(h

kt

t (x
kt

t ), hi
e(x

kt

t ))
∣∣∣ , (33)

where x is a sample obtained from Mi, hi
e(·) is a classifier, while x

kt

t is a generated

sample drawn from G
kt

t , using its VAE Vkt
, c represents the number of components for

G. h
kt

t (·) is the classifier associated to the component G
kt

t fromG. Eq. (33) calculates the

average discrepancy distance between each memorized sample and the data generated

by each trained component, which is used to guide the sample selection at the time

(Ti) based on its novelty to the model. Specifically, we employ Eq. (33) to estimate the

selection score for each memory buffer, resulting in :

{
s1, s2, · · · , s|Mi |

}
= Fsort

({
L(Mi[1],G),L(Mi[2],G), · · · ,L(Mi[|Mi|],G)

})
, (34)
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Figure 4: The learning process of the proposed Online Discrepancy Distance Learning with sample selection

(ODDL-S), consisting of three phases. In the first learning stage, we update the components G1 and Ge to

learn initial knowledge. Then we only consider updating the current component Ge if the memory is full.

The proposed expansion criterion is performed to check the model expansion using Eq. (28). If the criterion

is met, we add a new component to the mixture system and clear up the current memory buffer, otherwise,

we select data samples for the memory buffer using Eq. (33).

where Mi[ j] denotes the j-th sample from Mi and Fsort is a function that sorts in-

coming samples by the selection score, based on the consistency of the new sample

with the existing knowledge learnt by the j-th component, from the most to the least

knowledgeable component module of the sample, and returns the sample index of the

sorted samples. s1, s2, · · · , s|Mi | denotes a set of indexes of all sorted samples By using

Eq. (34), we update the memory bufferMi by :

Mi =

{
Mi[s1], · · · ,Mi[sMmax ]

}
, (35)

whereMmax denotes the maximum number of samples for the memory buffer. We call

this approach as ODDL with sample selection (ODDL-S).

5.5. Algorithm Implementation

The implementation for OODL is provided in Algorithm 1 and the learning process

is presented in Fig. 4. This consists of three stages at each training time Ti :

• (Initial training). At the start of the training, we build two components {G1,G2}, with

one of them used as the evaluator Ge = G2. We train G1 on the memory buffer using

Eq. (25) and Eq. (26). When the memory bufferM j size becomes equal to |M|max,

we freeze G1 to preserve the previously learnt knowledge and consider another iden-

tical component G2 ≡ G1. The dynamic expansion mechanism is performed during

subsequent learning according to Eq. (28), which requires the knowledge from at

least an existing frozen component.
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Algorithm 1: The supervised learning of ODDL-S

1: Input: The data streamA, total number of tasks n, number of components k;

2: for i < n do

3: At task Ti, get the data batch {Xb
i
,Yb

i
} fromA ;

4: Initial training stage;

5: if (k == 2) then

6: if (|Mi | <M
Max) then

7: Update the parameters of the classifiers of G1 and G2 onMi using Eq. (25) ;

8: Update the parameters of the VAEs of G1 and G2 onMi using Eq. (26);

9: end if

10: else

11: Evaluator training stage;

12: if (|Mi | <M
Max) then

13: Update the parameters of the classifier of Ge onMi using Eq. (25);

14: Update the parameters of the VAE of Ge onMi using Eq. (26);

15: else

16: Estimate the discrepancy distance using Eq. (29));

17: if mint=1,··· ,c−1

{
L⋆

(
PX

v
kt
t

,PX
Mi

)}
≥ λ then

18: Add the component G = Ge ∪ G ;

19: Build a new component Ge = Gk+1;

20: Update the number of components k = k + 1 ;

21: else

22: Sample selection stage;

23:
{
s1, s2, · · · , s|Mi |

}
= Fsort

({
L(Mi[1],G),L(Mi[2],G), · · · ,L(Mi[|Mi |],G)

})
;

24: Mi =

{
Mi[s1], · · · ,Mi[sMmax ]

}
;

25: end if

26: end if

27: end if

28: end for

• (Evaluator training). At a certain training time Ti+1, we use Eq. (25) and Eq. (26) for

training the Evaluator Ge on the memory buffer. If this is full |Mi+1| ≥ |M|
max, then

we assess the need for expansion through Eq. (30), by evaluating the discrepancy

distance using Eq. (29). If model expansion is indicated then we freeze Ge and

add it to G while building a new evaluator Ge, initialized according to Eq. (32),

while clearing up the memory Mi+1 to avoid learning similar information during

subsequent training; otherwise, the selection of new samples is undertaken.

• (Sample selection). We assess the discrepancy distance between the data generated

by the VAEs of previously learnt components and the memorized samples from the
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memory buffer M j using Eq. (33). Sample selection is then undertaken for Mi+1.

The algorithm then proceeds with the second stage, Evaluator training, from above.

5.6. Extending ODDL to the Unsupervised Learning

In this section, we extend the proposed ODDL to unsupervised learning by in-

troducing a novel dynamic expansion mechanism, which employs the VAE model to

estimate the discrepancy, expressed as :

L⋆U
(
PX

v
kt
t

,PX
Mi

)
:=

∣∣∣∣Ex∼PX
v

j
1

[
LR

(̂
xt, x̂e)

)]
− Ex∼PX

Mi

[
LR

(̂
xt, x̂e

)]∣∣∣∣, (36)

where x̂t and x̂e denote the image reconstruction of x given by the VAE of the t-th

component and by that of the evaluator, respectively. Unlike Eq. (29), which requires

to train a classifier for each component, Eq. (36) can estimate the discrepancy distance

using the VAE component and thus can be used for unsupervised learning. Based on

the discrepancy distance, defined in Eq. (36), we introduce a new unsupervised model

expansion criterion as :

min
t=1,··· ,c−1

{
L⋆U

(
PX

v
kt
t

,PX
Mi

)}
≥ λU , (37)

where λU is an expansion threshold controlling the unsupervised model expansion pro-

cess. We call this unsupervised learning model variant as ODDL unsupervised (ODDL-

U).

Unlike in the supervised learning, we design each component of the proposed

ODDL-U framework adapted for the unsupervised learning using the Variational Au-

toencoder (VAE). Each component G j has an inference model qω j
(z | x) as well as a

decoder pθ j
(x | z), where ω j and θ j denote the corresponding parameter sets. If G j is

the current component, we only update the parameters of G j on the memory buffer

using Eq. (26). We provide the pseudocode of the unsupervised learning algorithm of

the proposed ODDL-U framework in Algorithm 2, which consists of two steps at each

training time :

• (Initial training). At the initial stage of the training process, we build two compo-

nents {G1,G2} and take one of them as the evaluator Ge = G2. We update G1 on
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Algorithm 2: The unsupervised learning of ODDL-U

1: Input: The data streamA, The total number of iterations n, The number of components k;

2: for i < n do

3: {Xb
i
} Get the data batch from A ;

4: Initial training stage;

5: if (k == 2) then

6: if (|Mi | <M
Max) then

7: Update the parameters of the VAEs of G1 and G2 onMi using Eq. (26);

8: end if

9: else

10: Evaluator training stage;

11: if (|Mi | <M
Max) then

12: Update the parameters of the VAE of Ge onMi using Eq. (26);

13: else

14: Estimate the discrepancy distance using Eq. (36));

15: if mint=1,··· ,c−1

{
L⋆

(
PX

v
kt
t

,PX
Mi

)}
≥ λ then

16: Add the component G = Ge ∪ G ;

17: Build a new component Ge = Gk+1;

18: Update the number of components k = k + 1 ;

19: end if

20: end if

21: end if

22: end for

the memory buffer using Eq. (25) and Eq. (26). When the memory buffer is full

|M j| = |M|
max, we freeze G1 to preserve the previously learnt knowledge and con-

tinually update another component G2 in the subsequent learning. The dynamic

expansion mechanism in the unsupervised learning is performed by using the expan-

sion criterion from Eq. (37), which requires the knowledge from at least an existing

frozen component.

• (Evaluator training). At a certain training/learning time Ti+1, we employ Eq. (26)

for updating the Evaluator on the memory buffer. If the memory buffer is full

|Mi+1| = |M|
max, then we assess the need for expansion through Eq. (37), by evaluat-

ing the discrepancy distance using Eq. (36). If model expansion is indicated then we

freeze Ge and add it to G while building a new evaluator Ge, initialized according to

Eq. (32), while clearing up the memoryMi+1 to avoid learning similar information

during subsequent training; otherwise, the selection of new samples is undertaken.
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6. Experiments

After introducing the experimental setting, we provide the results when applying

the proposed model in various Task Free Continual Learning (TFCL) applications. Re-

sults analyzing the forgetting process of the model are assessed and discussed.

6.1. Experimental Setting

Datasets. We consider adapting the standard TFCL benchmark from [16], which em-

ploys several datasets for evaluating the model’s performance, including Split CI-

FAR100 [28], Split MNIST [31, 54] and Split CIFAR10 [28, 54]. For Split MNIST, we

divide 60k training data samples into 5 parts based on the category information [16].

We do similar splits for CIFAR10 and CIFAR100, with the resulting datasets named

Split CIFAR10 and Split CIFAR100, respectively. Split CIFAR10 and Split CIFAR100

contain 5 and 20 subsets, respectively.

Hyperparameters and GPU configuration. The Adam algorithm is used for all models

where we consider the learning rate of 0.0001. We use a GeForce GTX 1080 for the

experiments while the operating system is Ubuntu 18.04.5.

The network architecture. According to the experiment setting from [16], we use ResNet-

18 [22] as the backbone of the classifier for Split CIFAR100 and Split CIFAR10. For

the Split MNIST, we consider an MLP network with two hidden layers of 400 units

[16], which is used as the backbone of the classifier. For Split CIFAR100, Split MNIST

and Split CIFAR10, the maximum memory buffer size |M|max is set as 5000, 2000 and

1000, respectively. When the model is updated at each training session, we can only

access a small data batch (b = 10 data samples). We empirically search λ ∈ [0.1, 4.0].

The final λ values for Split CIFAR100, Split CIFAR10 and Split MNIST are of 3.0,

0.45 and 0.2, respectively.

Performance criterion. We adopt the average classification accuracy, calculated on the

testing dataset, as the performance criterion, which has also been widely used in other

TFCL benchmarks, [3]. Specifically, let {T1, · · · ,Tn} denote a series of n tasks. When

the model finishes learning all tasks, it can then be evaluated on all testing datasets
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Table 2: Classification accuracy of various continual learning models, when considering the average for five

independent runs.

Methods Split MNIST Split CIFAR10 Split CIFAR100

GEM* [38] 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48

iCARL* [46] 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04

MIR* [1] 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57

reservoir* [51] 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79

CoPE-CE* [16] 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52

GSS* [4] 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94

CoPE* [16] 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69

ER + GMED†[23] 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60

ERa + GMED†[23] 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50

CURL* [45] 92.59 ± 0.66 - -

Dynamic-OCM [54] 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

CNDPM* [33] 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12

ODDL-S2 96.15 ± 0.06 53.68 ± 0.13 29.62 ± 0.64

ODDL-S 95.75 ± 0.05 52.69 ± 0.11 27.21 ± 0.87

ODDL 94.85 ± 0.02 51.48 ± 0.12 26.20 ± 0.72

{DT
1
, · · · ,DT

n } while the average accuracy is calculated by :

a =
1

n

n∑

i=1

1

|DT
i
|

|DT
i
|∑

j=1

Facc(y′i, j, yi, j) , (38)

where |DT
i
| denotes the total number of data samples for DT

i
. y′

i, j
and yi, j denote the

j-th class label from DT
i

and the prediction on the data sample xi, j. Facc(·, ·) denotes a

function that returns 1 if y′
i, j
= yi, j, otherwise, returns 0.

6.2. Results on the TFCL Benchmark

In this section, we perform several TFCL experiments to evaluate the performance

of the proposed Online Discrepancy Distance Learning with sample selection (ODDL-

S). The results for Split MNIST, Split CIFAR10 and Split CIFAR100 are provided in

Table 2, where * and † denote the results cited from [16] and [23], respectively. We

compare the proposed ODDL-S with several baselines, including: finetune that directly

trains a classifier on the data stream, GSS [4], Dynamic-OCM [54], MIR [1], Gradi-

ent Episodic Memory (GEM) [38], Incremental Classifier and Representation Learning
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Table 3: Average classification accuracy, calculated for twenty runs, on testing samples from Split MIma-

geNet and Permuted MNIST.

Methods Split MImageNet Permuted MNIST

MIR [1] 25.21 ± 2.2 79.13 ± 0.7

MIR+GMED [23] 26.50 ± 1.3 79.25 ± 0.8

ER + GMED [23] 27.27 ± 1.8 78.86 ± 0.7

CNDPM [33] 27.12 ±1.5 80.68 ± 0.7

ERa [48] 25.92 ± 1.2 78.11 ± 0.7

ODDL 27.45 ± 0.9 82.33 ± 0.6

ODDL-S 28.68 ± 1.5 83.56 ± 0.5

ODDL-S2 30.03 ± 1.4 85.26 ± 0.5

(iCARL) [46], Reservoir [51], CURL [45], CNDPM [33], CoPE [16], ER + GMED and

ERa + GMED [23] where ER is the Experience Replay [48] and ERa is ER with data

augmentation. The final mixture model size created by ODDL-S (and ODDL) for Split

MNIST, Split CIFAR10 and Split CIFAR100 consists of 7, 9, 7, components, respec-

tively. From the results of Table 2, we can observe that the proposed ODDL-S achieves

the best results when compared to all other models. In addition, we also train ODDL

considering Eq. (32) for the model expansion, which creates a new component using

the parameters from a selected existing component, and we call this model as ODDL-

S2. The results from Table 2 indicate that by using existing parameters to initialize a

new component can further improve the performance of the proposed methodology.

In the following, we investigate the effectiveness of the proposed ODDL-S on the

large-scale dataset MINI-ImageNet [30], and Permuted MNIST [21]. We divide MINI-

ImageNet into 20 separate parts, where each part contains samples from five classes [1],

forming Split MImageNet. Permuted MNIST consists of 10 parts, with each consisting

of images resulting from applying random permutations in the pixels of all images

from the database [21]. We adopt the setting from [1] to train the model, where the

maximum memory size is 10, 000, while ResNet-18 [22] is used as the classifier. The

hyperparameter from Eq. (30), controlling the model expansion, is set as λ = 1.2 for

Split MINI-ImageNet and λ = 1.5 for Permuted MNIST. The classification results

for Split MINI-ImageNet and Permuted MNIST are provided in Table 3, where we

compare the proposed ODDL-S with several state-of-the-art methods, where the results
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Table 4: Classification accuracy, representing the average results for five independent runs, when considering

data contamination, by mixing data from different classes.

Methods Split MNIST Split CIFAR10 Split MImageNet

ER [48] 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3

Vanilla 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6

MIR+GMED [23] 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7

MIR [23] 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5

ER + GMED [23] 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6

ODDL 94.25 ± 0.9 50.07 ± 1.2 27.98 ± 1.3

ODDL-S 95.55 ± 1.2 52.27 ± 2.5 29.76 ± 1.6

of the other baselines are taken from [23]. From these results, ODDL-S2 outperforms

the other baselines when learning these complex datasets.

6.3. Robustness to task data contamination

We evaluate the robustness of the proposed approach when considering data con-

tamination as in [33]. Fuzzy task boundaries are created through data contamination

by exchanging a certain number of samples between two tasks. These samples become

outliers in the given data representations. Under this setting, data samples from the

next task are introduced and mixed with samples from the current task after learning

half of the current task’s data, [33]. Specifically, for Split MNIST, the first task has

examples from classes ’0’, ’1’, ’2’, ’3’ where the number of samples for the classes

’0’ and ’1’ is of 5000 while the number of examples for the classes ’2’ and ’3’ are of

2500 for each. The second task has examples from the classes ’2’, ’3’, ’4’, ’5’ in which

the number of examples for each category is 2500. The third and fourth tasks use the

same sample split procedure and the last task has only samples from the classes ’8’

and ’9’. For Split MImageNet and Split CIFAR10 in the fuzzy task boundary setting,

we employ the same split procedure. We report the results of various models under

these training circumstances in Table 4. These results demonstrate that the proposed

ODDL-S outperforms the other baselines by a large margin on fuzzy task boundaries,

showing its robustness to data contamination and outliers.
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Table 5: The log-likelihood estimation results, evaluated on the testing data by using the Importance

Weighted Variational Autoencoder (IWVAE) [8] bound considering 1000 importance samples. The results

for other methods are taken from [59] and N represents the number of components for each dynamic ex-

pansion model. ‘Memory’ denotes the number of memorized samples when the training is finished, while

‘NLog’ is the negative sample log-likelihood.

Split MNIST Split Fashion Split MNIST-Fashion Cross-domain

Methods NLog ↑ Memory N NLog ↑ Memory N NLog ↑ Memory N NLog ↑ Memory N

VAE-ELBO-MIR [1] -143.27 3.0K 1 -274.72 3.0K 1 -238.68 3.0K 1 -237.93 3.0K 1

VAE-reservoir [54] -144.17 3.0K 1 -276.60 3.0K 1 -240.02 3.0K 1 -239.42 3.0K 1

LIMix [53] -146.23 2.0K 30 -262.52 2.0K 30 -238.63 2.0K 30 -226.63 2.0K 30

VAE-ELBO-Random -150.79 3.0K 1 -280.54 3.0K 1 -247.46 3.0K 1 -239.71 3.0K 1

VAE-ELBO-OCM [54] -132.07 1.6K 1 -250.74 1.6K 1 -215.62 2.0K 1 -201.31 2.0K 1

VAE-IWVAE50-OCM [54] -127.11 1.6K 1 -247.90 1.6K 1 -224.34 2.0K 1 -204.35 2.0K 1

CNDPM [33] -120.71 2.0K 30 -257.56 2.0K 30 -236.79 2.0K 30 -218.15 2.0K 30

Dynamic-ELBO-OCM [54] -115.89 1.6K 5 -237.69 1.8K 10 -187.49 1.9K 10 -177.29 2.0K 11

OAES-ELBO [59] -103.93 1.5K 5 -231.10 1.5K 10 -171.62 1.9K 8 -165.29 2.0K 11

ODDL -102.16 1.5K 5 -229.42 1.5K 10 -170.13 1.9K 8 -164.26 2.0K 11

6.4. Unsupervised Learning

In this section, we evaluate the performance of various models considering the den-

sity estimation evaluation, as it was used in the lifelong generative modeling [60]. We

train different models on various datasets, including Split MNIST, Split Fashion, Split

MNIST-Fashion and Cross-domain, where Split MNIST-Fashion consists of data sam-

ples from Split MNIST and Split Fashion, while Cross-domain includes data samples

from MNIST, Fashion and Omniglot [29]. The results for the unsupervised learning

are evaluated on the testing data by considering the log-likelihood, evaluated using the

Importance Weighted Autoencoder (IWELBO) [8], which provides a better estimation

than the original VAE model for density estimation. The density estimation results

for various models are reported in Table 5, where the VAE-reservoir is a baseline that

is adopted in [54] and trains a VAE model using the reservoir sampling [51]. Sin-

gle models such as VAE-reservoir and VAE-ELBO-MIR usually achieve small sample

log-likelihood results when compared with the dynamic expansion models. The rea-

son for these results is that a single model is unable to capture all categories due its

memory restriction. In contrast, the dynamic expansion models can freeze the network
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Figure 5: Classification performance (bottom bar-plots) when varying the threshold λ in Eq, (30) on the Split

MNIST dataset for adding new components to the mixture, which are indicated in top plots under TFCL.

parameters to preserve previously learned information while dynamically creating new

experts to learn the new information, thus being able to capture more categories. By

using the IWELBO objective function, the model can further improve its performance

on unsupervised learning, demonstrated by the results of VAE-IWVAE50-OCM in

Table 5. Furthermore, the proposed approach achieves the best performance on all

datasets while requiring equal or fewer parameters and memorized samples than other

baselines.

6.5. Ablation Study

In the following we perform ablation studies to investigate the selection of the pa-

rameters and the importance of each module in the proposed method.

The effect of changing the threshold λ in Eq. (30). The proposed dynamic model ex-

pansion mechanism employs an expansion threshold to regulate the model expansion

process. Given an appropriate expansion threshold, our dynamic expansion framework

adds new experts when the incoming samples contain sufficient novel information with

respect to the entire previously learned knowledge.

We investigate the proposed mixture expansion approach when varying λ, and the

results on the Split MNIST dataset are reported in Figures 5-a and 5-b for ODDL

and ODDL-S, respectively. A small threshold λ leads to creating more components

in ODDL or ODDL-S, while also slightly improving the performance. In contrast,

a large λ discourages the expansion in the number of mixture components, leading
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Figure 6: The performance of various models on various continual learning tassk when changing the memory

size, which are indicated on the x axes.

to a more compact architecture. We observe that ODDL has for λ = 0.8 only three

components, but suffers enormous degenerated performance, while ODDL-S, which

uses a sample selection mechanism from the memory buffer Mi does not lose that

much performance. We empirically search λ ∈ [0.1, 4.0], and select λ as 0.2, 0.45 and

3.0 for the continual learning using ODDL-S of Split MNIST, Split CIFAR10 and Split

CIFAR100, respectively.

The effect of the memory size |Mi|. We investigate the performance change of various

models when varying the memory size. We consider the number of samples as 100,

200 and 500 inMi, for Split MNIST and Split CIFAR10, and the results are presented

in Fig. 6-a and Fig. 6-b. We also consider memory sizes of 2000, 5000, and 10000

samples for Split CIFAR100, and of 5000, 10000, and 20000 samples for Split MINI-

ImageNet. We report the results in Fig. 6-c and Fig. 6-d. The proposed ODDL achieves
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Table 6: Classification accuracy when considering the sample selection for the memory bufferMi (ODDL-

S), as in Eq. (32) compared to not considering it (ODDL), or considering a random sample selection (ODDL-

Random). The average results for five different runs are provided.

Methods Split MNIST Split CIFAR10 Split CIFAR100

ODDL-Random 95.12 ± 0.13 51.68 ± 0.18 20.23 ± 0.65

ODDL-S 95.75 ± 0.05 52.69 ± 0.11 27.21 ± 0.87

ODDL 94.85 ± 0.02 51.48 ± 0.12 26.20 ± 0.72

(a) Split MNIST. (b) Split CIFAR10.

Figure 7: Detecting data distribution shifts, according to Eq. (30), when deciding whether to increase the

number of components in ODDL-S.

the best results in each case and its performance improves when increasing the mem-

ory capacity |Mi|. We also observe that even when the memory buffer is smaller, the

proposed ODDL still outperforms other baselines by a significant margin.

The effect of the sample selection for the memory bufferMi. The results from Tables 2,

3, and 4 show the advantage of using the selection mechanism for the memory buffer

Mi in ODDL-S when compared to not using sample selection, as in ODDL. In addi-

tion, we also observe that the sample selection preserves the performance even when

considering a tiny memory buffer, according to the results from Fig. 5-b. In Table 6, we

compare the results on Split MNIST, Split CIFAR10 and Split CIFAR100 for ODDL-S

with ODDL and with ODDL-Random, where a random selection of samples is consid-

ered forMi. These results show that the proposed sample selection used in ODDL-S,

described in Section 5.4, outperforms ODDL-Random.

Detecting the statistical shift in data. We study the dynamic expansion process of the
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Table 7: The training time (minutes) for ODDL-S and CNDPM.

Methods Split MNIST Split CIFAR10 Split CIFAR100

ODDL-S 1.2 22.2 33.68

CNDPM 0.9 18.6 30.23

proposed ODDL-S by employing the discrepancy-based criterion from Eq. (30). At

each training time, we record the number of data distributions (tasks) and the number

of components used in the ODDL-S. We plot the number of components and tasks at

each training step in Fig. 7-a, for the proposed ODDL-S on Split MNIST and in Fig. 7-b

for Split CIFAR10, where ‘Task’ represents the number of given tasks, while the model

can not access the task identification information during the training. We observe that

the proposed discrepancy-based expansion criterion can accurately detect the data dis-

tribution shifts, enabling the proposed ODDL-S to expand the network architecture

appropriately. Such an expansion mechanism ensures adding an optimal number of

components without sacrificing performance, as discussed in Lemma 1.

Evaluation of the discrepancy distance. We train the proposed ODDL-S under Split

MNIST and Split CIFAR10, where we estimate L(x,G) for all samples x ∼ Mi us-

ing Eq. (33). We plot the results in Fig 8-a and Fig 8-b, for Split-MNIST and Split

CIFAR10, respectively. These plots show that the minimal discrepancy distance is sta-

ble at certain training times and then suddenly becomes large, indicating the moment

when the incoming samples originate from a different underlying data distribution.

Such samples are novel for the probabilistic representation of the model G at that in-

stance of the continual training process. When also considering the results from Fig. 7,

the proposed evaluation of the discrepancy distance has been shown to be an effective

approach in detecting data distribution shifts when continuously learning data streams

by the proposed ODDL-S model.

The computational cost. When the memory buffer is not full, the computational costs of

ODDL consist only from the training of the current expert because we do not perform

the sample selection and dynamic expansion evaluation. In contrast, when the memory

buffer is full, the sample selection and dynamic expansion evaluation are performed in

each training step, leading to additional computational costs. In addition, increasing the
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(a) Split MNIST. (b) Split CIFAR10.

Figure 8: The estimation of the minimal discrepancy distance, using Eq. (33), for checking incoming data’s

novelty.

number of components in the ODDL increases only slightly the computational costs of

the sample selection and dynamic expansion evaluation. Therefore, when adding more

components over time, the model would only slightly increase its computational costs.

However, we can accelerate the proposed sample selection and dynamic expansion

evaluation by recording the discrepancy score for the memorized samples and only

calculate the discrepancy score once for each incoming sample.

In addition, all methods employ an identical count of training iterations in the ex-

periments. Specifically, for memory-centric strategies such as GEM, iCARL, reservoir,

GSS, ER + GMED, and ERa + GMED, the computational complexity of training iter-

ations is expressed as O(nMmax), whereMmax represents the peak memory capacity

and n signifies the maximum number of training iterations. In the context of the pro-

posed framework and various dynamic expansion models, including CURL, Dynamic-

OCM, and CNDPM, the upper bound of training iteration complexity aligns with other

methods. Nevertheless, as numerous dynamic expansion techniques clear the memory

buffer when dynamically building a new expert, the actual maximum training iteration

complexity is smaller than O(nMmax).

We report the training times for ODDL-S and CNDPM in Table 7. These results

show that the proposed ODDL-S only requires slightly more computations when com-

pared with CNDPM.
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7. Conclusions

This research study provides a new theoretical framework for analysing forgetting

behaviour in continual learning. In this framework we formulate the forgetting process

as a measure of the generalization error, identified during the continual learning. We ex-

tend the findings from the domain adaptation theory to develop generalization bounds

which describe the performance loss in the Task-Free Continual Learning (TFCL). The

forgetting behaviour of a fixed and a dynamic expansion model is assessed at each

training step. We theoretically demonstrate that the dynamic expansion model can

achieve better performance than the static model when appropriately expanding its net-

work architecture. Based on this analysis we propose the Online Discrepancy Distance

Learning (ODDL) model, which uses a memory buffer for continually storing incom-

ing data samples. ODDL estimates the discrepancy distance between the distribution

of the samples temporarily stored in a memory buffer and the knowledge accumulated

by each component from the mixture model. This discrepancy measure is then used as

an expansion signal for deciding when ODDL is expanded with new components. In a

further extension, we propose using a sample selection for the data from the memory

buffer, ensuring that it stores a diversity of data samples during the continual learn-

ing, resulting in the ODDL with sample selection (ODDL-S) model, which further

promotes the knowledge diversity among the components. The proposed models are

shown to provide better results than others on several dataset configurations during

TFCL experiments.

One limitation for this work is that if the components of the model are not properly

decoupled, their learnt knowledge may interfere with each other, leading to a negative

information transfer. However, the proposed dynamic model expansion mechanism,

described in Section 5.2, learns diverse components if given an appropriate expan-

sion threshold λ. Specifically, the proposed approach compares the discrepancy among

components during the model expansion process, which ensures the learning of com-

ponents representing complementary information to each other. The discrepancy mea-

sure from Eq. (30) and the expansion threshold λ ensures this. The only issue with this

approach is that if the continual learning model is always presented with novel infor-
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mation, it keeps creating new components which requires increasing resources. This

may not be practical in some learning systems.

Some components may have learnt similar information and in this case we would

aim to reduce the redundancy in the knowledge learnt by different components. This

situation can be addressed by employing a component discarding mechanism, which

removes the knowledge overlapping components. Specifically, we would first evaluate

the knowledge distance between pairs of components. Then we would find a pair of

components that have the smallest knowledge distance measure, indicating a strong

similarity in their information representation. Then, we remove one of the components

from the selected pair and consequently reduce the model size, while preserving the

total information learnt by the multi-component model. Future research will also fo-

cus on extending the proposed methodology to the unsupervised generation task under

TFCL when class information is missing.
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