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A B S T R A C T

Ultrasonic backscatter has been used extensively across many applications to characterise suspended particles. It 
is of particular interest in nuclear decommissioning, as it allows online characterisation without the need to 
sample, or even contact the suspension in some cases. Industrial processes often utilise dynamic changes to 
suspended particle concentrations and particle size distributions (PSDs), and as such, characterisation of both 
simultaneously would be advantageous. At present, there is limited scope within existing analytical methods to 
achieve this, where the concentration or PSD of the target system must be known to calculate the other. Machine 
learning (ML) is a method that when trained on representative data, can use non-linear multi-variable mini-
misations to estimate both concentration and PSD simultaneously and, as such, this study aims to demonstrate 
that an artificial neural network (ANN) and convolutional neural network (CNN) can accomplish this. A training 
library of nine spherical glass bead suspension systems, comprising of variable median particle size and coeffi-
cient of variation, across six concentrations was compiled using a commercial backscatter instrument at 2 and 4 
MHz. The hyperparameters of an ANN and CNN were optimised on these acoustic profiles, before being used to 
predict median particle size, coefficient of variation, and concentration from acoustic profiles at 2 and 4 MHz of 
two “unknown” suspensions. While neither the ANN or CNN predictions proved to be successful for estimating 
the coefficient of variation, moderate agreement between predicted and true values were found for median 
particle size and concentration from the ANN, while the CNN achieved good agreement for median particle size 
and very good agreement when predicting particle concentration. Consequently, this study was able to suc-
cessfully determine that a CNN could simultaneously estimate a median particle size and concentration using 
ultrasonic backscatter data gathered on an “unknown” suspension.

1. Introduction

The difficulty to simultaneously characterise particle size and con-
centration in particle laden flows and processes in situ is prevalent across 
many industries [1–5]. Nuclear is one such industry, where many pro-
cesses involved in decommissioning and waste treatment necessitate the 
handling of complex and dangerous suspensions and slurries [6–8]. It is 
not easy or practical when handling radioactive material in high vol-
umes to sample, and consequently as part of ensuring safety and 
improving efficiency, a non-contacting characterisation technique is 

needed. Owing to the wide range of particle sizes and concentrations, 
and the dynamic changes these parameters undergo in different waste 
processing routes, a system which has the scope to operate effectively at 
both high and low concentrations of small and large particles is essential 
[9–11].

For appropriate technologies that may be operated remotely, laser- 
based particle characterisation systems and visual inspection methods 
are inappropriate, due to their inability to handle high solids loads and 
requirement for visual inspection ports. Alternatively, techniques such 
as electrical tomography systems may be used in concentrated systems 
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[12,13]. Nonetheless, while they are more widely applied in gas-liquid 
or liquid-liquid two phase systems [14], they can suffer from poor res-
olution with low concentrations of fine particles in solid-liquid systems. 
By contrast, acoustic backscatter systems (ABS) have already been 
demonstrated to characterise a wide variety of suspensions and slurries 
in situ with variable concentrations, for applications in engineering and 
environmental fields [15–21].

Acoustic backscatter operates at high frequency, in the megahertz 
range, where a transducer probe acts as both speaker and microphone, 
to produce an incident acoustic pulse and detect the scattering from 
features within the sample (in this case, particles within suspensions and 
slurries). The scattered signal is attenuated and dependent on particle 
concentration, particle size, temperature, and frequency used [22–24]. 
Variable concentration profiles, as well as particle sizes, in bulk samples 
have been identified previously, and concentration in pipe-flows has 
also been characterised, alongside flow regime identification and 
velocimetry, which provides an additional advantage over other tech-
niques [1]. To determine the concentration of an unknown suspended 
particle system a calibration of the same suspended particle is needed, 
which also means that knowledge of the particle size distribution (PSD) 
is essential. The same can be said if identification of particle size is the 
aim, where a calibration of the same type of particle is needed from 
known concentrations. Recently, Pang et al., [25] reported new data 
processing techniques and a PSD inversion algorithm, using acoustic 
data gathered in a large diameter flows, to determine PSD estimates up 
to a mean absolute percentage error (MAPE) of 3.87 %–7.16 %, for a 
particle size range of 280–880 μm.

To alleviate this limitation, the use of Machine Learning (ML) is 
proposed, since ML is ideally suited for multi-variable minimisations 
[26]. ML works by training a digital machine with data gathered from a 
similar system, or set of systems, that allow the machine to optimise 
itself and predict the desired parameters from a target system. ML can be 
categorised into three main types; supervised, semi-supervised, and 
unsupervised, where each type corresponds to the detail of the labels of 
the training data used to train the machine [26]. This study utilises 
supervised learning, specifically artificial neural networks (ANN), which 
are structured in a similar way to the neurons within a human brain. 
Here, input data is fed into the ANN and a series of neuron layers are 
linked together such that the output provides the desired parameters. A 
convolutional neural network (CNN) is also deployed, as these deep 
learning architectures are ideally suited to image and pattern recogni-
tion [27,28]. CNNs can be defined as data filters which adaptively and 
automatically learn spatial hierarchies of features at low and high levels 
and are analogous to colour filters for image inspection [29].

ML has been used with ultrasound before to identify various pro-
cesses and characterise fluid properties, such as whether a system is well 
mixed or not [30] and detection of fouling in flows [31]. A review by 
Bowler et al., [32] details numerous ways in which ultrasound and ML 
can be utilised together, focusing primarily on feature extraction, 
feature selection, algorithm choice, and hyperparameter selection, with 
suggestions on how to deploy both techniques. Dwinovantyo et al., [33] 
demonstrated that ANNs and acoustic Doppler current profile data can 
be used to classify zooplankton and suspended particles, with confidence 
values at r > 0.95 and offer predictions of zooplankton abundance and 
suspension concentration changes in dynamic environments with 
external physical variables. Gower et al., [34] investigated how both 
suspension concentration and particle size can be characterised from 
artificially generated backscatter data in the region close to the probe 
face, which although proving the applicability of ML and ABS for sus-
pension characterisation, leaves questions on using ML with real data 
where variables may not be ideal.

This study aims to expand on this previous work, by using acoustic 
data gathered directly from well mixed suspensions rather than data 
generated artificially, allowing direct comparison to studies using the 
same suspended material and existing ultrasonic analytical techniques 
[15,35,36]. A custom-made calibration tank was used to achieve 

well-mixed suspensions with varied average particle size, distributions, 
and concentration, which were measured with a commercial instrument. 
The Thorne model [23] with the G-function method [37] was used to 
partially process the raw acoustic backscatter data before it was 
pre-processed and fed into machines for learning. Hyperparameter op-
timisations are presented as loss and mean-square-error (MSE) plots for 
the activation function of the ANN, as well as learning rate, filter number 
and filter width optimisations for the CNN. Acoustic scattering data was 
gathered on two further suspension systems, and predictions from each 
ANN and CNN model are reported relative to the true values. Although 
driven by the challenges of the nuclear sector, this work is applicable to 
any industry where simultaneous determination of concentration and 
size of particles in solid-liquid suspensions would be advantageous. 
Examples include dredging [38], slurry bubble column reactors for 
chemical and biochemical production [39], and mineral separation and 
classification, such as reflux classifiers [40].

2. Acoustic theory

2.1. Thorne model

The fundamental acoustic model, Eq. (1), as detailed by Thorne and 
Hanes [23], relates backscattered voltage, V, to distance from the 
transducer face, r, for a known mass concentration of suspended parti-
cles, M, with the assumption of single particle scattering, i.e. the acoustic 
signal reflected from one particle is not affected by its neighbouring 
particles. The pre-exponential expression describes the fraction of the 
wave that is reflected back at 180◦ to the transducer, with the transducer 
constant kt, detailing the inbuilt gain of the system and probe charac-
teristics. The particle backscatter constant, ks, details the backscatter 
strength of the suspended particles. The nearfield correction factor, ψ, 
which tends to unity at the transition to the far-field can be taken as 
unity for all, given that only data in the far-field is analysed in this study. 

VRMS =
ktks

ψr
M0.5e− 2r(αw+αs) (1) 

The limit of the near field is given as rn, Eq. (2), where at is the active 
radius of the transducer and λ is the acoustic signal wavelength. A pre- 
factor of π is used here to allow results comparisons to Tonge et al., [35], 
and Downing et al., [41], although there is some dispute as to which 
pre-factor accurately describes the shape and limit of the near-field. The 
pre-factor chosen has been shown to produce results with errors close to 
zero at z = 1 [35]. 

rn =
πa2

t
λ

(2) 

The exponential expression in Eq. (1) describes the fraction of the 
wave that is attenuated by the fluid and suspended particles, with the 
constant for attenuation due to water at zero salinity, αw (m− 1), from 
Ainslie and McColm [42], given as Eq. (3), which depends on the 
acoustic frequency, f (MHz), and temperature, T (oC). 

αw =0.05641f2e
−

(
T
27

)

(3) 

The constant for attenuation due to suspended particles, αs (m− 1), 
from Thorne and Hanes [23], is given as Eq. (4), and can be defined as 
the product of the mass concentration of suspended particles and the 
concentration-independent sediment attenuation coefficient (SAC), ξ, 
with respect to distance from the transducer face. When concentration is 
constant with respect to distance from the transducer face, Eq. (4) can be 
simplified to Eq. (5). The SAC can be defined by Eq. (6), where (χss+χsv) 
is the dimensionless total normalised scattering cross section, ρ is the 
suspended particle density and as is the mean suspended particle radius. 
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αs =

(
1
r

)∫ r

o
ξ(r)M(r)dr (4) 

αs =Mξ (5) 

ξ=
3(χss + χsv)

4ρ〈as〉
(6) 

The two terms within the total normalised scattering cross section 
describe the mechanisms of attenuation, in terms of the mean particle 
radius and acoustic wavenumber product, x, given by Eq. (7). Here, Eq. 
(8) and Eq. (9) also detail the heuristic expressions previously estab-
lished by Betteridge, Thorne and Cooke [22] that describe attenuation 
due to scattering, χss, for spherical glass beads, where single scattering is 
assumed. 

x= kas =
2π
λ

as (7) 

χss =
0.24φx4

0.7 + 0.3x + 2.1x2 − 0.7x3 + 0.3x4 (8) 

φ=1 − 0.4e
−

(
x− 5.5

2.5

)2

(9) 

When x ≪ 1, the second mechanism, attenuation due to viscous 
losses, χsv, becomes most prominent and can be described by the model 
from Urick [24], detailed by Eq. (10) to Eq. (14). Here, ρ0 is the density 
of the fluid surrounding the suspended particles, β describes the inverse 
of the viscous boundary layer thickness, where ω is the acoustic angular 
frequency, and νo is the kinematic viscosity of water. 

χsv =
2
3

x(g − 1)2
[ s
s2 + (s + δ)2

]
(10) 

g=
ρs

ρ0
(11) 

s=
9

4βas

(

1+
1

βas

)

(12) 

δ=
1
2

(

1+
9

2βas

)

(13) 

β=
̅̅̅̅̅̅̅
ω

2v0

√

(14) 

To illustrate how each mechanism affects the SAC as a function of 
particle radius, the SAC from each of the scattering and viscous models, 
as well as their totals, for 2 and 4 MHz are presented in Fig. 1. Attenu-
ation is clearly much greater for 4 MHz compared to 2 MHz for both 
attenuating mechanisms, with the viscous mechanism more dominant at 
smaller particle radii, while the scattering mechanism is more dominant 
at larger particle radii. Given that particle sizes within sludges and 
slurries in the nuclear industry can vary from microns to hundreds of 
microns [6,43], it is important that both mechanisms are considered.

2.2. G-function

Rice et al., [37] devised a method that linearised Eq. (1) with respect 
to distance, by taking the natural logarithm of the product of the 
backscatter voltage, nearfield correction factor and distance. Labelled 
the G-function and shown in Eq. (15), this method has been utilised to 
quantify backscattering and attenuating properties of arbitrary suspen-
sions [15,44]. 

G= ln(ψrV)= ln(ktks)+
1
2

lnM − 2r(αw +αs) (15) 

The partial derivative of the G-function can be taken, with respect to 

distance, to yield Eq. (16). If Eq. (5) remains true and is substituted for 
αs, the partial derivative, with respect to concentration, of Eq. (16) can 
be taken yielding Eq. (17). This allows the SAC to be measured from 
taking the gradient of G plotted against distance over a range of well 
mixed homogeneous concentrations, ξm. 

∂
∂r

[ ln(ψrV)] = − 2r(αw +αs) (16) 

ξm = −
1
2

∂
∂M

[
∂
∂r

[ ln(ψrV)]
]

= −
1
2

∂2G
∂M∂r

(17) 

This method requires knowledge of the system and the suspended 
particles to be characterised, such that a calibration using this method 
can be performed, therefore enabling unknown concentrations of the 
same particles to be determined.

3. Materials and methods

3.1. Materials

Three sizes of spherical silica glass beads; small (Honite 22), medium 
(Honite 16), and large (Honite 12), procured from Guyson International 
Ltd, UK were used as suspended particles. As ideal scatterers, heuristic 
expressions [22] and experimental methods [15,37] are well docu-
mented to determine their acoustic properties. Mixtures at 25:75, 50:50, 
and 75:25 wt%, of the small-to-medium, and medium-to-large sized 
glasses were made up to produce a total of nine systems with varying 
PSDs, that were used to train and test the ML codes. Two other systems at 
33:67 wt% of small-to-medium and 67:33 wt% of medium-to-large sized 
glasses were also tested to provide data on “unknown” systems that the 
ML could make predictions from, such that comparisons between pre-
dictions and true values could be made. The high sphericity and 
morphology of the Honite material has been well documented by pre-
vious authors [15,35,45] and has shown only small shape deviation and 
surface defects. PSDs of all systems were verified using a Malvern 
Mastersizer 3000 (Malvern Instruments, UK). Here, log-normal distri-
butions were fitted to the data to calculate the mean size and the coef-
ficient of variation (CV), being the quotient of standard deviation and 
mean, and were used as labels for each system when training the 
machines.

Fig. 1. Concentration independent sediment attenuation coefficient (SAC) 
against suspended particle radius calculated for 2 and 4 MHz from the scat-
tering model [22], denoted by subscript s, and viscous [24] model, denoted by 
subscript v. Total SAC (sum) denoted by subscript t (superscript “c” in the 
legend denotes plots are calculated from the model and differentiates them 
from values measured from backscattered data).
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For further work to test the limits of the CNN outside of the range of 
the training data, fine calcium carbonate ‘Sturcal L’ (Specialty Minerals 
Inc.) was used. Mastersizer measured particle size distribution and 
average sizes are reported within the Electronic Supplementary Mate-
rials (ESM), Fig. S1 and Table S1.

3.2. Experimental setup

A commercial ultrasonic velocity profiler (UVP), the UVP-DUO (Met- 
flow SA, Switzerland), was used for acoustic characterisation on all 
suspension systems. The UVP-DUO acts as both an ultrasonic acoustic 
backscatter system and an ultrasonic velocity profiler. The instrument 
consists of a central processing box and proprietary transducer probes 
connected via fixed cables. It allows for connections of up to four 
transducer probes at each frequency: 0.5, 1, 2, 4, and 5 MHz. Three 2 
MHz probes and two 4 MHz probes, all with active radii of 5 mm, were 
used throughout this study to produce sufficient data for the machine 
learning. Fig. 2 presents a schematic detailing how UVP probes were 
mounted in mixed suspension off centre, using in a 0.8 m tall, 0.3 m 
diameter baffled cylindrical calibration tank. To ensure each suspension 
was well mixed and homogeneous, an over-head impeller mixer was 
mounted off centre, to minimise interference from reflections in the 
acoustic profiles. Additionally, a pipe loop with a Watson-Marlow 520s 
peristaltic pump was used to recirculate any settled material from the 
bottom of the conical bottomed tank, into the top portion of the sus-
pension. Thus, a turbulent well mixed suspension is produced, where the 
recirculation flow was set only to mitigate any particle sedimentation 
segregation. Consequently, to minimise any acoustic interference from 
gas entrainment from the recirculation loop, the probes were mounted 
halfway down the depth of the tank. An image of the calibration tank 
during data collection is also shown within the ESM (Fig. S2).

Three sampling tubes were connected down the side of the tank, one 
at the depth of the probe faces, one at 100 mm below the probes and one 
at another 100 mm below that, to coincide with the main measurement 
region of the probes. Samples were taken simultaneously with a multi- 
headed pump and were dried in an oven to calculate concentration 
values for the six bulk concentrations of each individual glass size tested: 
2.4, 14.1, 28.2, 42.4, 56.5 and 70.6 g/L. The bulk concentrations tested 
were achieved by top loading each glass by hand into 42.5 L of water in 
the tank at approximately 20 ◦C. After each addition of glass, several 
minutes were allowed for the suspension to homogenise before con-
certation samples were taken.

Acoustic data were then collected with the UVP, using the settings 
detailed within the ESM (Table S2). Consequently, between the nine 
glass particle systems, six concentrations and five acoustic probes, a 
total dataset of 270 averaged acoustic profiles were available for the ML 
code to learn from. Table 1 provides a breakdown of what each profile 
refers to.

3.3. Acoustic data processing

The backscatter data from the UVP for each profile outputs as a 
matrix of backscatter amplitudes, A, Eq. (18), in the shape n x 1024, 
where n is the number of channels and 1024 is the number of profiles, 
such that the outputs were 550 x 1024 and 1090 x 1024 sized arrays for 
2 MHz and 4 MHz probes, respectively. All profiles for each channel 
were averaged by using the root-mean-square (RMS) to produce a single 
averaged backscatter amplitude profile, E(r), Eq. (19). 

A=

⎡

⎣
1, 1 ⋯ n,1

⋮ ⋱ ⋮
1,1024 ⋯ n,1024

⎤

⎦ (18) 

E(r) = [ 1, RMS1 … n, RMSn ] (19) 

Eq. (20) was then used to convert the averaged raw amplitude 
backscatter data to backscatter voltage, V(r), for analysis with the G- 
function method, using manufacturer supplied gain settings (Table 2). 
Due to the Doppler velocity (frequency shift measurement used by the 
UVP for velocity profiling) and the amplitude data being quantised into 
14-bit data, each value could take one of 214 values, Nd, thus this coef-
ficient is included in the conversion, together with the gain function, g 
(r), Eq. (21). 

V(r) =
5E(r)
Ndg(r)

=

(
3.052 × 10− 4

)
E(r)

g(r)
(20) 

g(r) = g1 exp
[

ln
(

g2

g1

)

⋅
(r − r1)

(r2 − r1)

]

(21) 

The gain, g, varies exponentially between the minimum and 
maximum measurement distances, r1 and r2 respectively, from the gain 
start to gain end values, g1 and g2, respectively. The associated absolute 
gain values to gain settings are detailed in Table 2 and were provided by 
Met-flow.

Fig. 2. Schematic of the recirculating calibration tank experimental setup with 
ultrasonic probe position (not to scale).

Table 1 
Details of the 270 acoustic profiles used for the train-test dataset.

Particle ratio (wt. 
fraction)

Concentrations measured 
(g/L)

Probes used 
(MHz)

Total 
profiles

Small (100) 2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Small:Medium 
(75:25)

2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Small:Medium 
(50:50)

2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Small:Medium 
(25:75)

2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Medium (100) 2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Medium:Large 
(75:25)

2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Medium:Large 
(50:50)

2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Medium:Large 
(25:75)

2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Large (100) 2.4, 14.1, 28.2, 42.4, 56.5, 
70.6

2, 2, 2, 4, 4 30

Cumulative Total 270
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4. Machine learning methods

The key variables of any ML structure can be defined as; loss func-
tion, number of layers, number of neurons per layer, activation function, 
optimisation function, learning rate, and in the case of CNNs, filter di-
mensions and filter number. The loss function can be defined as the 
difference between the output value and the true value and in this study 
is taken using the mean squared error function [26]. The number of 
layers, number of neurons in each layer, and activation function were 
determined in this study through consideration of existing ML archi-
tectures for common applications and iteratively improved [26,32]. The 
activation function can be defined as a mathematical function that cal-
culates the output of a neuron from its inputs and weights, for all layers 
in both the ANN and CNN. In this study, the ReLU (Rectified Linear Unit) 
function was used and is expressed as the non-negative part of its 
argument [46].

The hyperparameters are variables that are actively varied and 
optimised to tailor the neural networks to find the best solutions. The 
optimisation function can be defined as the mathematical operation to 
determine what change in the weights between neurons should be made 
to reduce the loss function. A number of different optimisers were tri-
alled in this study, and for more detail on the expanding range of opti-
misers available, please see the review by Nwankpa [47]. The learning 
rate can be defined as how small or large the changes to these weights 
are; too high a learning rate and the loss function will tend to diverge 
while too low and the training will be too computational expensive and 
may only find a local minima rather than the system minima in the loss 
function [48]. A range of fixed learning rates were tested in this study, 
while there are multiple approaches to determining the ideal learning 
rate with literature still uncertain as to which is best, as are detailed in 
Montavon et al., [49] and Nwankpa [47].

The filter dimensions can be defined as the proportion of the training 
data that is fed into the filter kernel in the CNN with each pass. In this 
study, the training data only has one dimension so it can be described 
with a single number, filter width. Filter number can be defined as how 
many filter kernels are used on the filter dimensions. In this study, 
several variations were tested, corresponding to computer bit formatting 
numbers. All pre-processing, ML architecture, testing, training, and 
prediction operations were conducted using the Python programming 
language in VS Code. The Tensorflow keras library was utilised for the 
construction of both the ANN and CNN machines with Scikit learn used 
for the test-train-run operations and measurement of effectiveness of the 
predictions by the r-squared function, which is common practice for ML 
applications [49].

4.1. Pre-processing

The raw G-function data were initially loaded and transformed by 
isolating the most important segments of the data, omitting a small 
section very close to the probe face, where the acoustic wave is in the 
nearfield, and a section at the end of each profile that corresponds to 
where the return signal is below the noise floor of the instrument. These 
segments of the G-function were extracted based on predetermined 
frequency-dependent start and end points, before being uniformly 
resampled to a fixed length of 999 data points through linear interpo-
lation. The original probe frequency value, which was appended to each 
interpolated signal, was subsequently normalised into a binary indicator 
such that a frequency of 4.0 MHz was represented as 1.0 and a frequency 
of 2.0 MHz was converted to 0.0. These fully pre-processed data were 

then exported. Subsequently, the training data were loaded into the ML 
training algorithm, with the first three columns designated as predicted 
variables and the remaining columns as input features. The input and 
prediction data were then normalised using a min-max scaling 
approach, ensuring that each variable was scaled consistently, also as 
common practice in ML techniques [49].

4.2. ANN and CNN architecture

Two neural network architectures were iteratively designed and 
optimised to predict the PSD, as well as the concentration simulta-
neously for each pre-processed G-function. A detailed layer-wise over-
view is provided in Table 3, and as diagrams in the ESM (Fig. S3), which 
indicates the parameters that were varied to optimise the performance 
of the technique. In both cases, all layers are fully connected.

The ANN comprises of five hidden layers in all cases, with the 
number of neurons progressively decreasing in deeper layers. Each 
neuron employs the ReLU activation function, while the output layer 
consists of three neurons corresponding to the normalised median par-
ticle diameter, CV, and concentration. In contrast, the CNN includes an 
additional one-dimensional convolution layer, which applies a variable 
number of filters of a specific width to the input data for feature 
extraction. This layer processes the normalised G-function signal by 
iteratively sliding each filter along the input array, performing element- 
wise multiplications with overlapping values, and summing the results 
to produce an output. This operation is repeated across the entire signal, 
generating feature maps that are propagated through subsequent layers. 
The flattened layer then reshapes the convolution layer’s output into a 
one-dimensional tensor, which is processed similarly to the ANN’s 
structure. Both networks were trained for 500 epochs using various 
optimisers to minimise the root-mean-square error as the loss function. 
Training was conducted with a batch size of 32 and a train-test split of 
70:30 for validation purposes.

4.3. Hyperparameter optimisation

Hyperparameter optimisation was performed to enhance the pre-
dictive accuracy and generalisation capability of both the ANN and CNN 
models used in this study. The key hyperparameters considered were the 
optimisation function, as well as the learning rate, filter number and 
filter width for the CNN.

In particular, the optimiser plays a crucial role in updating network 
weights and controlling the rate of convergence (as well as the final 
accuracy) during training. Several optimisers were evaluated, including 
Stochastic Gradient Descent (SGD), Adam, Nadam and RMSprop. SGD is 
an optimisation algorithm which updates weights by computing the 
gradient of the loss function. While simple and computationally effi-
cient, it often converges slowly and is sensitive to learning rate selection. 
Adam is a more adaptive learning rate optimiser which combines mo-
mentum in convergence and scaling of gradients using both first and 

Table 2 
UVP-DUO gain settings.

Setting 3 4 5 6 7 8 9

Absolute 0.91 1.76 3.41 6.67 15.00 25.00 60.00
Log. (dB) − 0.8 4.9 10.7 16.5 23.5 28.0 35.6

Table 3 
ANN and CNN architecture, where parameters indicated in bold were found to 
be optimal based on the listed variations and used in the final ML model.

ANN CNN

Layer Hyperparameters Layer Hyperparameters

Input N = 1000 Input N = 1000
Flatten – Conv1D FN = 32,64,128 

FW = 5,10,20
Dense N = 1024 Flatten –
Dense N = 512 Dense N = 1024
Dense N = 256 Dense N = 512
Dense N = 128 Dense N = 256
Dense N = 32 Dense N = 128
Output N = 3 Dense N = 32
  Output N = 3

J.J. Hartley et al.                                                                                                                                                                                                                               Flow Measurement and Instrumentation 105 (2025) 102926 

5 



second moment estimates. It is well-suited for deeper networks and 
generally provides faster convergence than SGD. RMSprop is similar to 
Adam but lacks the momentum component. It is more effective for non- 
stationary objectives and stabilising learning in deep networks. Finally, 
Nadam is a variation of Adam which incorporates Nesterov momentum. 
This metric anticipates the future direction of the gradient and results in 
faster convergence and reduced loss oscillations.

5. Results and discussion

5.1. Materials

The log-normal volume size distributions of all nine training systems 
are presented in Fig. 3, with median, mean, and standard deviation (St. 
Dev.) values calculated from the log-normal fit, along with CVs for all 
nine systems which are reported in Table 4.

The three monodisperse systems display the tightest distributions, as 
is reinforced by the corresponding CV values. The 25:75 wt% mixes have 
wider distributions relative to their monodisperse glasses, where each 
system’s median is shifted to the dominant monodisperse glass within 
each and, as such, the distributions are broadened, and their corre-
sponding CV values are larger. The 50:50 wt% mixes show an even 
greater spread in distribution, again with broadened plots with the 

largest CV values reported. While the median of the small:medium 
50:50 wt% distribution is almost equidistant between the two mono-
disperse glasses, the median of the medium:large 50:50 wt% system is 
closer to the medium sized glass. This is likely due to the fines playing a 
more significant role at these larger particle sizes, such that the sample 
tested contained a slightly elevated proportion of the medium sized glass 
relative to the large sized glass. However, given the median still sits 
between the two 25:75 wt% mixes of that system, it still serves the 
purpose of providing a training system with particle characteristics be-
tween the others. These systems provided a range of median particle 
sizes and CVs such that the acoustic profiles gathered on them would 
provide adequate training data for the machines.

Fig. 4 shows the log-normal volume size distributions of the “un-
known” systems used to test the machines after training was complete. 
These mixes were chosen as they offered variation in median size and CV 
either side of the median, of the medium size monodisperse glass system. 
Thus, the ML was used to interpolate within the parameter space, rather 
than extrapolate beyond for all three of the parameters when making 
predictions on “unknown” data. Table 5 details median, mean, and 
standard deviation (SD) values calculated from the log-normal fit, along 
with CVs for both “unknown” systems. Here, the small:medium 33:67 wt 
% median and CV values are between the medium 100 wt% and the 
small:medium 25:75 wt% values, and the medium:large 67:33 wt% 
median and CV values are between the medium 100 wt% and the me-
dium:large 75:25 wt%. As such, they provide two systems that offer 
different values the machines need to predict other than those they were 
trained on. When considering the median values with reference to the 
acoustic analytical models presented in Fig. 1, these glass systems are all 

Fig. 3. Particle size distributions of (a) small:medium, and (b) medium:large, 
spherical silica glass bead systems from a log-normal fit of data gathered with a 
Malvern Mastersizer 3000.

Table 4 
Median, mean, SD, and CV values for all nine training systems. Underlined 
values indicate the labels used, in conjunction with the concentrations, for the 
training of the ANN and CNN machines.

Particle ratio (wt. fraction) Median (μm) Mean (μm) St. Dev. (μm) CV

Small (100) 35.7 37.1 10.4 0.281
Small:Medium (75:25) 42.0 45.6 19.3 0.424
Small:Medium (50:50) 69.8 82.7 52.6 0.636
Small:Medium (25:75) 80.3 88.6 41.4 0.467
Medium (100) 81.6 83.0 15.6 0.187
Medium:Large (75:25) 105 114 50.2 0.439
Medium:Large (50:50) 134 155 90.3 0.584
Medium:Large (25:75) 205 226 103 0.456
Large (100) 203 206 39.8 0.193

Fig. 4. Particle size distributions of “unknown” spherical silica glass bead 
systems from a log-normal fit of data gathered with a Malvern Master-
sizer 3000.
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expected to be dominated by the scattering attenuation mechanism and 
directly proportional to particle size [35].

Concentration verification of the monodisperse glass systems in the 
calibration tank is presented in Fig. 5 as box plots, where each box shows 
the interquartile range (IQR) of the three measurements taken (top, 
middle and bottom), and the line in the middle of each box shows the 
median and the vertical bars denote x1.5 the IQR from the respective 
quartile marker. The IQR of all three systems increases as concentration 
increases, because the mixing energy needed to maintain a homoge-
neous suspension is not being fully met as more particles are added. This 
issue is most obvious in the large glass system, due to the larger mass of 
the glass beads and their increased tendency to settle, which results in 
some concentration variation. Yet, due to the large number of ultrasonic 
profiles averaged (1024), the small range in measured concentration is 
not thought to have caused significant issues, especially given that 
previous authors have found good agreement between measured and 
modelled values when using similar materials and experimental set-ups 
for acoustic calibration [15,35,44].

5.2. Optimiser and ANN/CNN comparison

Fig. 6 demonstrates the respective reduction in loss and MSE for the 
ANN while varying the optimiser and comparing the training and testing 
accuracy. In both cases, the plots indicate that Nadam consistently 
outperformed the other optimisers in terms of convergence speed and 
accuracy, reducing oscillations and improving generalisation, and with 
deviation indicative of overfitting taking place beyond around 100 
epochs. Nadam was also found to be the most effective for the CNN, as 
demonstrated in Fig. 7, as it provided the lowest loss and mean square 
error across both models, ensuring faster convergence and improved 
generalisation. That said, overfitting was exhibited earlier at around 80 
epochs.

Analysing both Figs. 6 and 7 illustrates the performance comparison between ANN and CNN models across different optimisers. It is 
demonstrated that the CNN consistently outperformed the ANN, in 
terms of lower loss values and MSE across most optimiser configura-
tions. This is likely because the convolutional layer in a CNN enables 
more efficient feature extraction and pattern detection from the acoustic 
data, allowing for improved generalisation to “unknown” data. More-
over, the CNN demonstrated superior stability during training, as 
observed in the smoother convergence trends in Fig. 7. This difference 
indicates that the CNN was less prone to overfitting and handled vari-
ations in data more effectively. The ability of the CNN to learn patterns 
in the feature data makes it a more suitable model for predicting particle 
size distribution and concentration from ultrasonic backscatter data, and 
hence was chosen for the remaining optimisations.

5.3. Learning rate, filter number and filter width with the CNN

Learning rate is also an important hyperparameter that controls the 
step size of weight updates during the training algorithm. Fig. 8 presents 
the performance of CNN models trained with different learning rates, 
where 0.0001, 0.001, and 0.01 were tested. A learning rate of 0.001 
provided the best trade-off between stability and convergence speed. 
The lower learning rate led to slower convergence, while higher learning 
rates resulted in more erratic updates, characterised by the irregular 
spikes in accuracy in the loss and MSE plots, and failed to achieve an 
optimal loss reduction when compared to the others. The selected 

Table 5 
Median, mean, standard deviation (St. Dev.), and coefficient of variation (CV) 
values for “unknown” spherical silica glass bead systems.

Particle ratio (wt. fraction) Median (μm) Mean (μm) St. Dev. (μm) CV

Small:Medium (33:67) 81.1 91.2 46.7 0.512
Medium:Large (67:33) 95.3 101 37.8 0.371

Fig. 5. Concentration verification, where boxes show the respective inter-
quartile range of the three measurements taken for each glass at each con-
centration, the middle line in each box denotes the median and vertical bars 
denote x1.5 the interquartile range from the respective quartile marker. Dashed 
lines show labelled concentration relative to the y axis.

Fig. 6. (a) Loss and (b) MSE curves from comparison of optimiser for ANN.
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learning rate of 0.001 ensured smooth and efficient training, minimising 
the risk of overfitting while achieving a lower MSE.

The CNN architecture included a convolutional layer responsible for 
feature extraction from the G-function training data. The number of 
filters directly affects the network’s capacity to capture meaningful 
patterns within the data, which was shown to be important due to the 
improvements in accuracy when switching from the ANN to the CNN. A 
higher number of filters allows the network to detect more complex 
features but increases computational cost and increases the risk of 
overfitting. Conversely, too few filters may lead to insufficient feature 
extraction, reducing predictive accuracy. Fig. 9 presents the results of 
optimisation tests for the CNN conducted with 32, 64, and 128 filters 
and the evaluations were again based on loss values and MSE trends.

The comparisons indicated that 64 filters provided the best balance 
between performance and computational efficiency, however, the re-
sults further indicated that 128 filters provided marginally improved 
MSE and better accuracy, ensuring the most effective feature extraction. 
In contrast, the 32 and 64 filters resulted in comparatively higher RMS, 
suggesting inadequate feature representation. Based on the above, 128 
filters were selected as the optimal configuration, allowing the CNN to 
achieve maximum accuracy.

The filter width determines the receptive field of the convolution 
operation, defining how much of the input data each filter considers at a 
time. A larger filter width allows the network to capture broader spatial 
patterns, while a smaller filter width focuses on finer details. Achieving a 

balance between the two is essential to ensure the CNN captures the 
most relevant patterns without losing important resolution detail. 
Fig. 10 illustrates the performance of CNN models trained with filter 
widths of 5, 10, and 20. The optimal filter width was determined to be 5, 
as it provided the best trade-off between feature generalisation and 
resolution, resulting in the lowest MSE and best predictive performance.

5.4. Predictions for “unknown” suspension systems

In the previous sections, we demonstrated that the ML technique 
offered strong predictive capabilities when trained on well- 
characterised suspension systems. In this section, the trained models 
are evaluated on “unknown” suspension systems, distinct from those 
used during training, to determine their ability to infer PSD and con-
centration without prior exposure to the specific compositions. This test 
serves to further validate the robustness and adaptability of the ML 
approach for real-world applications, where suspensions may exhibit 
significant variability in their physical properties.

Fig. 11 presents the predicted median particle sizes for the “un-
known” suspension systems using both the ANN and CNN models, 
compared to the true values obtained through experimental validation. 
While the ANN demonstrates reasonable predictive capability, its esti-
mations exhibit noticeable deviations from the true values, particularly 
for systems with larger particles. In contrast, the CNN significantly im-
proves predictive accuracy, with median values closely aligned with the 

Fig. 7. (a) Loss and (b) MSE curves from comparison of optimiser for CNN. Fig. 8. (a) Loss and (b) MSE curves from learning rate optimisation for CNN.
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actual particle sizes across all tested systems. This enhancement can be 
attributed to the CNN’s ability to extract and learn spatial features from 
the ultrasonic backscatter data more effectively, allowing for better 
generalisation beyond the training dataset [50]. The reduced inter-
quartile ranges in CNN predictions also highlight its superior capability 
in capturing complex patterns in acoustic data, reinforcing its suitability 
for robust and reliable median particle diameter characterisation in 
“unknown” systems. In this case, the interquartile range is lower for the 
larger particles, though the full range is higher. This difference indicates 
that the CNN more often predicts diameters close to the true value for 
larger particles. However, some outliers may be present, likely depen-
dent upon the current state of mixing within the system, and the high 
attenuation of larger particles that may dominate the acoustic response 
results in increased variability in some instances.

Fig. 12 illustrates the predicted CV for the “unknown” suspension 
systems using both the ANN and CNN models, compared to the true 
values. Unlike the improvements seen in median particle size pre-
dictions, the CV predictions remain relatively poorer for both models, 
with slight improvements in estimations when the CNN is used. Never-
theless, the CNN does not show the same level of refinement here as it 
does for median particle size, indicating that the network struggles to 
capture the full complexity of PSD variability from the acoustic data. 
This difference suggests that the current feature extraction process may 
not adequately represent the spread of particle sizes, or that additional 

training data covering a broader range of distributions may be required. 
Further refinement of the model architecture, or the inclusion of addi-
tional statistical features in training, may be necessary to improve pre-
dictive accuracy for this parameter.

Finally, Fig. 13 compares the predicted suspension concentrations 
from the ANN and CNN models against the true values. While the ANN 
exhibits considerable error and variability in its predictions, particularly 
for the highest concentrations, the CNN demonstrates a very strong 
improvement, producing estimates that closely align with the experi-
mentally measured concentrations across all tested systems. This sig-
nificant enhancement clearly demonstrates the CNN’s superior ability to 
discern meaningful patterns in the acoustic data, effectively dis-
tinguishing concentration-dependent variations. It is likely that the 
convolutional layer allows the model to identify patterns from the 
acoustic signals, leading to more reliable and generalisable predictions. 
Fig. 13 also demonstrates an improvement on the established analytical 
method using the G-function approach, which has previously struggled 
to deal with high attenuating systems at high concentrations [35]. The 
CNN’s success in both the median particle diameter and suspension 
concentration estimations highlights its potential for real-world appli-
cations, such as in nuclear decommissioning, where accurate, 
non-contact measurement of suspension properties is essential [6].

To test the limits of the ML model’s predictive capabilities, the fine 
calcium carbonate particles (d50 ~15 μm) were also used as an “un-
known” suspension, outside of the particle size range. This material also 

Fig. 9. (a) Loss and (b) MSE curves from filter number optimisation for CNN.

Fig. 10. (a) Loss and (b) MSE curves from filter width optimisation for CNN.
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has significantly different morphology and density to the glass, and as 
these variables also affect the acoustic backscatter response, prediction 
of desired suspension parameters proved a challenge to the ML models. 
A box plot of the concentration predictions against true values, with an 
inset table detailing the median, upper- and lower-interquartile range 
for median particle size and CV for the calcium carbonate suspension are 
provided within the ESM (Fig. S4).

Particle size predictions were significantly overestimated. It is 
assumed this largely stems from the fact that the ML model had been 
trained on suspensions where the scattering attenuation mechanism is 
dominant, hence, higher attenuation correlates to larger particles, as can 
be seen in Fig. 1. However, for the calcium carbonate system, the true 
particle size is lower, and within the region where viscous attenuation 
mechanism also becomes important where total attenuation increases as 
particle size decreases. For smaller micron sized particles, the 
complexity of competing viscous and scattering attenuation demon-
strates a limitation of the ML model more generally. If relationships 
between variables that the ML model has not been trained on, it strug-
gles to predict them from “unknown” data sets. Nevertheless, concen-
tration predictions (Fig. S4) were reasonable for the lowest 
concentrations tested, but over predicted at moderate to high particle 

levels. It is thought that this result may be from the difficulty resolving 
weak signals where high interparticle scattering is present, which also 
increases overall attenuation. It is noted that in previous work with 
flocculated calcium carbonate, Tong et al., [51] showed similar over 
predictions when using analytical attenuation coefficient ratios. In that 
case, predicted concentrations trended towards infinity at high particle 
levels. Here, the ML model provides a much more stable estimate, but 
more research is required into how increasing the range of the training 
data into the viscous dominated regime may further improve the accu-
racy of size and concentration predictions.

6. Conclusions

The present work aimed to demonstrate the application of ANNs and 
CNNs to characterise particle suspensions using pre-processed ultrasonic 
backscatter data. A range of well-mixed silica glass bead suspensions 
with varying particle sizes, distributions, and concentrations were used 
to generate training and validation datasets. The data were pre- 
processed and analysed using ML models, and optimisation of a range 
of hyperparameters was conducted to improve predictive accuracy. The 
key findings indicate that CNNs outperform ANNs in predicting median 
particle size and concentration from ultrasonic backscatter data. CNNs 
were shown to have effectively learned spatial patterns within the data, 

Fig. 11. Box plot predictions of average particle size made by the (a) ANN and 
(b) CNN from ultrasonic backscatter data, and true values for each “unknown” 
system. Boxes show the respective interquartile range of the 18 measurements 
(six concentrations from three 2 MHz probes and two 4 MHz probes) taken for 
each glass system, the middle line in each box denotes the median and vertical 
bars denote x1.5 the interquartile range from the respective quartile marker.

Fig. 12. Box plot predictions for coefficient of variation of the PSDs made by 
the (a) ANN and (b) CNN from ultrasonic backscatter data, and true values for 
each “unknown” system. Boxes show the respective interquartile range of the 
18 measurements (six concentrations from three 2 MHz probes and two 4 MHz 
probes) taken for each glass system, the middle line in each box denotes the 
median and vertical bars denote x1.5 the interquartile range from the respective 
quartile marker.
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leading to more accurate estimations, particularly for lower particle 
concentrations and particle sizes. Throughout, the CNN models 
demonstrated superior generalisation capabilities, also achieving closer 
alignment with true values in “unknown” particle systems. In contrast, 
ANNs exhibited higher error rates and inconsistencies, particularly at 
larger particle sizes and higher concentrations. Despite these advance-
ments, the models were less effective at predicting the CV of the PSDs. 
This limitation suggests that additional feature extraction techniques or 
expanded training datasets incorporating a wider range of PSDs may be 
necessary to improve the predictive accuracy. Future work should 
explore alternative ML architectures, hybrid models, additional input 
features or larger training datasets to enhance prediction reliability 
across all suspension parameters.

A major novelty of this study is the ability to predict both particle 
size and concentration simultaneously using a single ML model. This has 
never, to the authors’ knowledge, been achieved before with ultrasonic 
backscatter data, as previous studies have typically focused on either 
particle size or concentration independently, with one used to obtain the 
other. From the presented results, the signal data generated from the 
acoustic technique encodes information surrounding both parameters, 
which implies that there is some further theoretical way to obtain both 

sets of information simultaneously. Judging by the improvements 
offered by the CNN technique, patterns within the signal play a more 
important role in the concentration calculation, which exhibited sig-
nificant improvements. The accuracy of the technique is shown here to 
generalise well to “unseen” data within the parameter ranges trained 
upon initially. Further exploration into generalisation of the technique 
outside of the parameter ranges (at a different particle size and density) 
indicated poorer agreement. Here, it is thought that competing viscous 
attenation is a further complication that requires additional training 
data. Nevertheless, the integration of both parameters within a single 
predictive framework represents a significant advancement, offering a 
more comprehensive characterisation method that enhances the accu-
racy and efficiency of suspension analysis across multiple industrial 
sectors. The impact and usefulness of this work is significant for both 
generic industrial and nuclear decommissioning applications which 
require non-invasive, real-time suspension characterisation. In in-
dustries such as chemical processing, pharmaceuticals, and mining, ac-
curate in situ measurement of particle size and concentration is crucial 
for process optimisation and quality control. In the nuclear industry, 
where handling and sampling of radioactive suspensions pose significant 
challenges, the use of ML-enhanced acoustic techniques offers a safer 
and more efficient alternative to conventional characterisation methods. 
By reducing reliance on manual sampling and offline analysis, this 
approach can improve operational efficiency and safety in nuclear waste 
management, decommissioning, and slurry monitoring applications. 
Overall, this study demonstrates the potential of ML techniques in 
advancing acoustic backscatter characterisation methods and sets the 
foundation for further research into refining predictive models for 
broader industrial and scientific applications.
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