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Executive Summary 

This project aimed to integrate urban digital twin technology with antenatal care programs 

to enhance maternal and neonatal health outcomes in South Africa, specifically focusing on 

the Gert Sibande District in Mpumalanga province. The study developed a predictive model 

for PM2.5 concentrations, using machine learning and geospatial data, and integrated these 

predictions into a digital twin framework for healthcare decision-making. 

The motivation for this work stems from the urgent need to mitigate the public health risks 

associated with air pollution, particularly PM2.5, which has been identified as a leading 

contributor to adverse health outcomes globally. In South Africa, where air pollution levels 

often exceed the World Health Organisation (WHO) guidelines, pregnant women face 

significant risks, including preterm birth and congenital anomalies such as orofacial cleft lip 

and palate [1]. Despite this, there has been limited integration of air quality data into 

healthcare frameworks [33] in low- and middle-income countries (LMICs). 

To address this challenge, this study used 2023 as the base year for training the predictive 

model due to computational requirements. The dataset included meteorological, chemical, 

and geospatial parameters, derived from ground-based air quality monitoring stations, 

satellite data, and demographic information. XGBoost, a robust machine learning algorithm, 

was applied with advanced hyperparameter optimisation techniques via Optuna to ensure 

high accuracy [33]. 

The final model achieved a cross-validation average root mean square error (RMSE) of 

5.8004 and an R² score of 0.9004, indicating strong predictive performance. Key 

hyperparameters included a maximum depth of 12, a learning rate of 0.10086, and 680 

estimators, among others. Feature importance analysis revealed that factors like boundary 
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layer height, wind patterns, and chemical pollutants such as NO₂ and SO₂ were critical in 

predicting PM2.5 levels. 

Interactive visualisations were implemented using Kepler.gl, showcasing pollution hotspots 

and temporal patterns. The WHO guidelines on PM2.5 were embedded into the digital twin 

framework to classify air quality into categories: green (safe), amber (moderate), and red 

(dangerous). The application provided real-time policy recommendations, such as advising 

pregnant women to stay indoors during high pollution events and wearing masks when 

outdoors. 

Future research included focusing on expanding the dataset beyond 2023 to improve 

temporal generalisability and predictive accuracy [20]. The integration of real-time air quality 

monitoring systems with healthcare alerts remains a key area for development, enabling 

dynamic, proactive interventions. Additional exploration of temporal forecasting models and 

pollutant interactions would further enhance the digital twin’s utility. 

Legal, social, and ethical considerations were addressed, including ensuring the use of 

anonymised and aggregated data to protect individual privacy. Ethical guidelines were 

followed to avoid misuse of personal health data, and all geospatial data complied with local 

regulations. 

This study demonstrated the feasibility and benefits of integrating digital twin technology 

with antenatal care programs to reduce air pollution exposure risks. The scalable framework 

developed here has the potential for adoption across LMICs, enabling targeted interventions 

to improve maternal and neonatal health outcomes. 
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1.  Introduction 

A digital twin (DT) is a dynamic, real-time virtual replica of a city that integrates data from 

multiple sources to simulate, analyse, and optimise urban systems [1]. Advancements in 

urban digital twins have facilitated enhanced solid waste management for connected cities 

and improved air quality management on university campuses [2, 3]. Additionally, Spain 

utilises urban digital twins to simulate floods under pre- and post-event conditions, aiding in 

predicting the hydraulic behaviour of channels during large floods [1], while in Barcelona, 

they are employed to determine optimal locations for climate shelters during extreme 

weather events [1]. In healthcare, although there have been significant advancements in DT 

in healthcare planning, and construction management [3, 4], other areas such as urban air 

quality management have remained siloed. Making it difficult for policy-makers to 

significantly improve health outcomes by using data. In healthcare, the World Health 

Organisation (WHO) has reported ambient and household air pollution as the leading cause 

of death, 6 million in 2022 [5, 6], with particulate matter below 2.5µm (PM2.5), as one of the 

core pollutants contributing to these statistics. Globally, 90% of the population is exposed 

to  unsafe PM2.5 levels, and 80% of whom live in low- and middle-income (LMIC) countries. 

Moreover, approximately 10% of the population has low income (£1.50 per day) and reside 

in areas with high air pollution, especially in Sub-Saharan Africa [7]. Air pollution levels are 

particularly high in LMICs, in industrial areas. Studies have shown that air quality significantly 

affects individuals with comorbidities such as the elderly, infants and pregnant women. For 

pregnant women in LMICs, ambient air pollutant exposure during the first trimester 

increased the risk of birth defects including congenital heart disease and cleft lip with or 

without cleft palate [8]. Previous studies have focused on studying the relationship between 

air quality and health outcomes with researchers emphasising the need to introduce 
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effective measures of air pollution control and prenatal care to minimise exposure to air 

pollution during pregnancy [6, 8].  

1.1. Research Aims 

This research aims to explore the integration of urban air quality management to existing  

antenatal care programmes in LMICs. This study will focus on South Africa (SA) within the 

broader context of LMICs. The study aims to use Geographic Information System (GIS) to 

recommend interventions for policy-makers in the healthcare space to model PM2.5 using 

urban digital twin technology. Urban Digital twins are increasingly adopted in the healthcare 

sector to monitor patient health and improve predictive analytics [9]. The study area is the 

eMbalenhle and Secunda neighbourhoods in Gert Sibande District in the Mpumalanga 

province of South Africa.  

1.2. Objectives 

This research introduces the first Digital Twin model for antenatal care management in low- 

and middle-income countries (LMICs), specifically integrating Landscan population 

estimates, ERA5 hourly climate reanalysis and PM2.5 readings from both satellite aerosol 

optical depth (AOD) and ground-based stations. The goal is to apply urban digital twin 

technology to antenatal care (ANC) programs in South Africa, with the aim of contextualising 

these programs to enhance pregnancy outcomes through the use of environmental and 

geospatial data [10]. The analysis focuses on women of reproductive age who have been 

pregnant and reside in communities within South Africa that are affected by poor air quality. 

This enables a detailed exploration of how environmental factors, such as air pollution, 

intersect with maternal health, providing valuable insights into the relationship between 

environmental conditions and health outcomes [3]. 
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1.3. Significance of the Research 

Infant mortality in SA remains a significant issue, with an average of 28 deaths per 1,000 live 

births [11], reflecting broader trends in LMICs. The WHO estimates that around 2.4 million 

perinatal deaths occur annually, largely in countries with limited access to healthcare 

services [7]. The effects of industrialisation and inadequate climate change policies have 

exacerbated environmental health risks in South Africa, where air pollution is a leading 

contributor to premature deaths globally [6]. 

1.4. Research Questions 

The research questions focus on assessing the impact of PM2.5 levels in Mpumalanga and 

evaluating mitigation strategies to improve maternal and neonatal health outcomes. These 

questions are crucial due to the widespread and severe impacts of air pollution on human 

health and the environment [2, 34]. Studies have established a clear link between long-term 

exposure to particulate matter and increased morbidity and mortality from cardiopulmonary 

diseases, asthma, and lung cancer, with children and pregnant women being particularly 

vulnerable [3, 35]. According to the WHO, PM2.5 is one of the most dangerous air pollutants, 

causing systemic health issues and reducing life expectancy. Additionally, air pollution 

threatens biodiversity, soil, groundwater, and air quality, exacerbating global challenges like 

climate change and species extinction. Investigating PM2.5’s effects in regions with high 

pollution levels, like Mpumalanga, is essential to understand its localised health and 

ecological impacts. This study draws on existing research to identify policy interventions, 

such as improved air quality monitoring and public health messaging, that can reduce these 

risks and inform future urban and healthcare planning. 
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1. How can policy-makers in the healthcare space integrate digital twin technology into 

antenatal care to improve maternal health management in South Africa? 

2. How can continuous measurement and prediction of PM2.5 levels be used to enhance 

antenatal care programs? 

3. How does integrating environmental and demographic data through digital twin 

technology improve the personalisation of antenatal care in regions of South Africa 

affected by poor air quality? 

The integration of digital twin technology into antenatal care holds transformative potential 

for addressing maternal health challenges, particularly in SA, where health inequities and 

environmental factors significantly impact maternal and neonatal outcomes. According to 

Katsoulakis et al and Vallee [21, 36], digital twins have already shown promise in healthcare 

for simulating body systems such as lungs, body functions and the heart, and optimising 

health operations systems. Their application in antenatal care is timely given the growing 

evidence linking exposure to PM2.5 during pregnancy with adverse outcomes, including 

improper immune system, premature birth, and increased neonatal mortality [37]. By 

enabling continuous measurement and prediction of PM2.5 levels, digital twins could enhance 

antenatal care programs by offering actionable insights for policy-makers to mitigate 

exposure risks. Furthermore, integrating environmental and demographic data through 

digital twin models provides a novel pathway for personalising care based on localised air 

quality conditions and patient-specific health profiles, addressing the socioeconomic and 

environmental determinants of health [38]. These questions are thus worth investigating as 

they align with global health priorities and leverage innovative solutions to tackle persistent 

healthcare challenges. 

1.5. Hypotheses 
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1. H1: Integrating digital twin technology to predict PM2.5 levels, using satellite AOD, 

land stations, and demographic data, will significantly improve maternal and neonatal 

health outcomes in SA by offering real-time recommendations for antenatal care. 

Studies have shown that digital twins can enhance decision-making in healthcare [9] 

and improve public health interventions through real-time data analysis [4]. 

H0: Integrating digital twin technology for predicting PM2.5 levels will have no 

significant impact on maternal and neonatal health outcomes in SA. 

2. H2: The use of continuous PM2.5 monitoring and predictive modelling will enable 

personalised antenatal care, reducing the risk of adverse pregnancy outcomes in 

high-risk regions such as the Highveld. Research indicates that continuous air quality 

monitoring can be linked to improved maternal health outcomes, especially when 

applied through healthcare frameworks [24]. 

H0: The continuous measurement and prediction of PM2.5 will not improve the 

personalisation of antenatal care or reduce adverse pregnancy outcomes in South 

Africa. 

The subsequent sections build upon the introduction to provide a comprehensive analysis of 

the study. The Literature Review explores prior research on air pollution, focusing on PM2.5 

and its effects on health and the environment, while the Methodology details the data-

driven techniques, machine learning models, and evaluation metrics employed. The Results 

section highlights the performance of the optimised XGBoost model, key findings, and visual 

insights, followed by the Analysis and Discussion, which interprets these findings in the 

context of public health, especially maternal health in Mpumalanga. Lastly, the Legal, Social, 

Ethical, and Professional Considerations discuss broader implications, and the Conclusion 
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and Future Work summarises the study, acknowledges limitations, and outlines pathways 

for further research. 
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2. Literature Review 

2.1. Environmental Context: Air Quality in South Africa 

South Africa’s air quality issues are rooted in the nation’s dependency on coal and industrial 

activities, with the Mpumalanga province being one of the most polluted regions globally. 

The Highveld Priority Area (HPA) represents a critical case study for air pollution research 

due to its unique industrial concentration, including coal-fired power plants and the world's 

largest coal-to-liquid (CTL) refinery [12]  [15] [18]. 

Air pollution in the region poses significant public health challenges, as highlighted by 

Lavietes, who reported annual costs of £205.14 million due to heat waves exacerbating 

cardiovascular issues.. Studies by Millar et al. and Landrigan & Fuller have demonstrated 

direct correlations between PM2.5 exposure and respiratory ailments, cardiovascular 

diseases, and adverse pregnancy outcomes [15] [14]. For instance, pregnant women 

exposed to elevated PM2.5 levels in Mpumalanga are at increased risk of preterm births, low 

birth weights, and congenital anomalies such as cleft palate and congenital heart disease 

[16] [17]. 

Despite these findings, SA’s regulatory response has been inadequate. The country’s air 

quality management policies often lack stringent enforcement mechanisms, allowing 

pollutants to exceed WHO guidelines. In Mpumalanga, ambient PM2.5 levels are frequently 

recorded at five times the WHO-recommended threshold [6] [13]. This regulatory gap 

underscores the need for innovative solutions, such as integrating Geographic Information 
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System (GIS) mapping and digital twin technology, to address these challenges 

comprehensively [23] [24]. 

2.2. Air Quality Monitoring in LMICs 

Low- and middle-income countries like South Africa face unique challenges in monitoring 

and mitigating air pollution. Traditional air quality monitoring networks, such as Continuous 

Air Quality Monitoring Stations (CAAQMS), are sparse due to high installation and 

maintenance costs [20] [21]. As a result, LMICs rely heavily on complementary climate 

systems, such as AOD, to estimate PM2.5 levels. 

Recent advancements have demonstrated the potential of integrating satellite data with 

machine learning (ML) models. Katoch et al. achieved a cross-validation R2 of 0.92 for PM2.5 

predictions in India by combining AOD data with meteorological variables [32]. This method 

has proven to be a cost-effective solution for regions with limited ground-based 

observations. However, the reliance on satellite data introduces limitations, including lower 

temporal resolution and challenges in capturing localised pollution hotspots [14] [22]. 

In addition, community-based monitoring initiatives, using low-cost sensors, have begun to 

fill gaps in traditional monitoring networks. These sensors, when combined with geospatial 

data, provide granular insights into air pollution’s spatial distribution, making them 

invaluable for public health interventions [24] [25]. Despite their promise, challenges such 

as data accuracy, calibration, and integration with existing systems remain significant 

barriers [19] [22]. 

2.3. Machine Learning (ML) Approaches for Predicting PM2.5 
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The rise of machine learning in environmental modelling has provided transformative tools 

for predicting PM2.5 levels, particularly in regions with sparse monitoring infrastructure. By 

leveraging satellite data, meteorological variables, and population density data, ML 

approaches can model the complex interactions that influence air quality, offering a cost-

effective alternative to traditional methods [20] [31]. 

Random Forest (RF) and Gradient Boosting algorithms have emerged as prominent methods 

for air quality prediction. Zhang et al. demonstrated the effectiveness of RF models in South 

Africa’s Highveld region, achieving robust predictions of daily PM2.5 concentrations with a 

cross-validation R2
 of 0.80 [20]. These models excel in handling non-linear relationships and 

variable interactions, outperforming linear regression methods that struggle to capture the 

dynamic nature of pollution patterns [14] [20]. For example, studies have shown that 

incorporating predictors such as AOD, temperature, humidity, and land-use data significantly 

enhances the predictive accuracy of RF models [31]. 

However, the reliance on data-intensive ML models presents challenges in LMICs. Missing 

data due to sensor malfunctions or power outages is a common issue that undermines the 

reliability of ML predictions [22] [23]. Abutalip et al. highlighted the importance of 

developing preprocessing techniques to handle incomplete datasets and ensure data 

consistency [22]. Furthermore, the computational demands of advanced ML algorithms can 

limit their application in resource-constrained settings [19]. 

To address these challenges, hybrid models that integrate statistical and machine learning 

methods have gained attention. For instance, a two-stage ensemble model combining 

Generalised Additive Models (GAM) for temporal trend removal with RF for residual 

predictions demonstrated superior performance in PM2.5 estimation [31]. This approach 
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leverages the strengths of statistical models in capturing long-term trends while allowing ML 

algorithms to focus on residual variability, improving overall accuracy [20]. 

Deep learning approaches, while less frequently applied in LMICs, offer additional potential. 

Studies have shown that Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks can capture spatial and temporal dependencies in air quality data, 

providing high-resolution predictions [14] [22]. However, these models require extensive 

training datasets and computational resources, making them less accessible to LMICs. 

The integration of ML models with Geographic Information System (GIS) tools further 

enhances their applicability. By mapping PM2.5 exposure and identifying pollution hotspots, 

GIS-enabled ML models can provide actionable insights for policymakers [25] [26]. For 

example, in South Africa, combining RF predictions with GIS mapping has enabled the 

identification of high-risk areas in the Highveld region, facilitating targeted interventions 

[20]. 

Despite these advancements, more research is needed to adapt ML techniques to the unique 

challenges of LMICs. The development of cost-effective, scalable models that account for 

local data constraints remains a critical area for future work. Collaborative efforts involving 

local researchers, policymakers, and international stakeholders are essential to maximise the 

potential of ML in improving air quality monitoring and public health outcomes. 

2.4. Using Digital Twin to Model PM2.5 Levels 

Digital Twin technology has emerged as a transformative tool for environmental monitoring, 

offering dynamic, real-time virtual representations of physical systems [23] [24]. By 
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integrating data from diverse sources, including low-cost sensors, satellite imagery, and ML 

models, DTs enable the simulation, analysis, and optimisation of environmental conditions 

such as air quality. This capability is particularly valuable in LMICs, where traditional air 

quality monitoring networks are sparse. 

DTs have been applied across various sectors, from urban planning to healthcare, 

demonstrating their versatility in addressing complex, data-driven challenges [9] [22]. For 

example, Abutalip et al. developed a DT framework for high-resolution PM2.5 estimation by 

fusing sensory data with AOD-derived satellite imagery [22]. The model not only provided 

accurate air quality predictions but also delivered actionable policy recommendations, 

underscoring the potential of DTs to bridge the gap between data collection and decision-

making. 

In regions such as the HPA, where PM2.5 pollution regularly exceeds national and WHO 

standards, DTs can play a critical role. By integrating real-time data from satellite systems 

like MODIS with geospatial information, DTs can model air quality dynamics and predict 

pollution trends [20] [23]. Studies by Wu et al. have highlighted the scalability of DTs, 

emphasising their capacity to simulate multiple environmental scenarios and evaluate the 

potential impacts of interventions [23]. 

One of the key strengths of DTs lies in their ability to provide continuous, real-time insights, 

enabling proactive responses to pollution events. In LMICs, this real-time functionality is 

particularly crucial given the absence of comprehensive ground-based monitoring systems 

[21] [23]. However, the successful implementation of DTs requires addressing several 



18 

challenges. Data availability and quality remain significant barriers, as incomplete or 

inaccurate datasets can undermine the reliability of the digital twin model [22] [24]. 

Ethical considerations are also central to DT deployment, especially in contexts involving 

sensitive health and demographic data. Wu et al. noted that trustworthiness, privacy, and 

security are critical for ensuring that DTs adhere to ethical standards while delivering 

accurate and actionable insights [23]. For LMICs, where data governance frameworks may 

be underdeveloped, these concerns are particularly pertinent. 

DTs have shown particular promise in enhancing air quality monitoring by integrating various 

data streams into a unified framework. For instance, Abutalip et al. demonstrated how DTs 

could merge satellite AOD data with low-cost sensor measurements to create a high-

resolution map of PM2.5 concentrations [22]. This approach not only improved spatial 

coverage but also allowed for real-time updates, making it an invaluable tool for policy 

planning and public health interventions. 

In South Africa’s Highveld region, where coal mining and petrochemical industries dominate, 

the application of DTs could revolutionise air quality management. By linking PM2.5 

predictions with Geographic Information System (GIS) tools, DTs can identify pollution 

hotspots and simulate the effects of proposed mitigation measures, such as stricter 

emissions controls or urban green infrastructure development [20] [23]. 

Despite their potential, the application of DTs in LMICs is still in its infancy, with limited 

studies exploring their integration into public health frameworks. Research by Weil et al. 

emphasised the need for more interdisciplinary approaches that combine environmental 

modelling with healthcare interventions [9]. For example, in antenatal care programs, DTs 
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could provide real-time alerts to pregnant women in high-pollution areas, helping mitigate 

the adverse effects of PM2.5 exposure on maternal and neonatal health [13] [16]. 

To maximise their impact, DT implementations in LMICs must prioritise scalability, cost-

effectiveness, and local capacity-building. Collaborative efforts involving governments, 

academic institutions, and private sector stakeholders can drive the adoption of DTs, 

ensuring that they address the unique challenges of resource-constrained environments [22] 

[23]. 

2.5. Antenatal Care Program and Recommendations 

The integration of vent hoods and indoor air purifiers [24] into antenatal care programs is 

increasingly recognised as a critical intervention to mitigate the health risks posed by 

environmental pollution. Zhu et al., provided evidence that PM2.5 exposure during pregnancy 

is associated with low birth weight, preterm birth, and increased rates of infant mortality. In 

South Africa, where the population is exposed to annual average PM2.5 concentrations five 

times higher than WHO guidelines [5, 13], the need for air quality interventions in antenatal 

care is urgent . 

Research has demonstrated the feasibility of using open-source geospatial data to map air 

pollution and its health impacts at the community level. For example, Sacks et al., conducted 

a study using EPA’s BenMAP-CE software to quantify the effects of PM2.5 pollution on low 

birth weight [25] while United Nation (UN) Environment [26] linked it to huge  child 

Intelligent Quotient (IQ) loss, underscoring the disproportionate health burden borne by low-

income communities. By incorporating air quality data into antenatal care, healthcare 
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providers can issue timely recommendations, such as advising pregnant women to reduce 

outdoor exposure during peak pollution hours or to use air purifiers in their homes [22]. 

2.6. Research Gap 

While significant progress has been made in air quality monitoring and its integration into 

antenatal care, several research gaps remain. First, most studies focus on high-income 

countries with robust air quality monitoring infrastructure. In LMICs like South Africa, the 

reliance on satellite data and machine learning models necessitates further research to 

improve the accuracy and resolution of these models. Additionally, while digital twin 

technology holds promise for improving air quality management, there is limited research 

on its application in antenatal care programs, particularly in LMICs. Second, more research 

is needed to establish the causal relationship between PM2.5 exposure and specific health 

outcomes, such as congenital anomalies and neonatal health. Finally, there is a need for 

more policy-oriented research that evaluates the effectiveness of integrating air quality 

monitoring with antenatal care in reducing maternal and neonatal mortality. The literature 

highlights the critical role of air quality management in improving maternal and neonatal 

health outcomes. In highly polluted regions such as Secunda and eMbalenhle, integrating 

urban digital twin technology and geospatial mapping into antenatal care programs can help 

policymakers make data-driven decisions. This study will provide insights into how 

environmental data can be used to enhance antenatal care, ultimately reducing the burden 

of pollution-related health risks in South Africa. 
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3. Research Methodology 

3.1. Philosophical Approach 

In the context of this research, the chosen philosophical approach is rooted in positivism 

[27], aligning with the deductive research methodology [28]. Positivism is a widely 

recognised philosophy in scientific research that emphasises empirical evidence, objectivity, 

and the use of measurable phenomena to test hypotheses [27]. It is well-suited for studies 

that involve quantitative data, such as air quality readings, and seek to uncover objective 

truths through observation and experimentation. 

The positivist philosophy supports the idea that reality is observable and can be studied 

independently of the researcher’s biases or interpretations [29]. In this study, the impact of 

PM2.5 on maternal health outcomes is an objective phenomenon that can be quantified using 

air quality data and health statistics. The use of digital twin technology to model and predict 

these outcomes further strengthens the reliance on data-driven, empirical approaches. In 

this sense, positivism allows the researcher to focus on quantifiable relationships between 

air pollution and health outcomes, making it possible to apply scientific methods to test the 

hypothesis [30]. 

The deductive approach fits within this positivist framework. Deductive reasoning begins 

with established theories about the negative effects of air pollution on health, specifically 

the correlation between PM2.5 exposure and adverse outcomes like preterm birth and low 

birth weight. These theories guide the formulation of hypotheses that will be tested against 

real-world data collected from the Secunda and eMbalenhle regions. By doing so, the study 

seeks to either confirm or refute the hypothesis that integrating digital twin technology into 
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antenatal care can improve maternal and neonatal health outcomes by predicting and 

mitigating the effects of poor air quality. 

Alternative philosophical approaches, such as interpretivism or pragmatism, were 

considered but deemed less suitable for this study. Interpretivism focuses on understanding 

subjective experiences and social contexts, often through qualitative methods like interviews 

or case studies [29, 30]. While valuable in other types of research, interpretivism would not 

adequately address the objective nature of this study, which relies on measurable 

environmental data and health outcomes. The goal here is to obtain generalisable findings 

that can inform policy, rather than exploring individual perceptions or experiences. 

Pragmatism, while flexible and outcome-oriented, often combines both quantitative and 

qualitative methods [29]. It seeks to address practical problems using the most effective 

tools available. While pragmatism could have been employed if the study included 

qualitative interviews with healthcare professionals or patients, the research focuses 

exclusively on quantitative data to test specific hypotheses about air pollution and antenatal 

health. Thus, positivism provides a more suitable philosophical foundation, as it focuses on 

objectivity and the ability to generate generalisable results that can contribute to broader 

public health interventions. 

In summary, the positivist philosophy aligns with the deductive methodology employed in 

this study, focusing on the objective measurement of air pollution’s impact on maternal 

health. By using quantitative data and rigorous hypothesis testing, this research aims to 

provide scientific evidence that can inform policy-making and enhance antenatal care 

programs in South Africa and other LMICs facing similar challenges. This philosophy supports 

the study’s goal of contributing to data-driven decision-making in public health, providing 
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clear and actionable insights into the relationship between environmental health risks and 

maternal health outcomes. 

3.2. Study Area 

The study area for this research focuses on Secunda and eMbalenhle in the Gert Sibande 

District of Mpumalanga [15], South Africa. A map view of the study area is pictured in Fig. 1 

below.  

 
Fig 1: Secunda, Gert Sibande District, Mpumalanga- a region with significant public health concerns due to elevated PM2.5 

levels. 

Spanning 9.45 km², these industrial towns are part of the HPA, a region severely impacted 

by air pollution due to the presence of one of the largest CTL plants in the world. This plant 

significantly contributes to PM2.5 levels, affecting public health, particularly pregnant women 

and children [18]. 

The research integrates GIS mapping with real-time PM2.5 estimates to identify pollution 

hotspots, offering a comprehensive view of how industrial emissions affect maternal health. 
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This approach is crucial for informing antenatal care interventions and improving public 

health outcomes in the region. 

3.3. Computational Approach 

The approach integrates data pre-processing, harmonisation, and feature engineering to 

build predictive models using XGBoost [20, 40]. Hyperparameter optimisation ensures model 

performance, leading to deployment via tools like Streamlit and Kepler.gl for real-time 

visualisation and policy recommendations [22]. The digital twin system incorporates key 

performance indicators to enable actionable insights for air quality management [2]. 

Iterative refinement ensures scalability and accuracy in addressing environmental health 

challenges. 

 

Fig 2: Digital twin model- design process flow 

3.3.1. Data Integration and Preprocessing 

The integration of satellite data, ground station observations, and climate datasets 

represents a comprehensive approach to PM2.5 prediction. Satellite-derived Aerosol Optical 

Depth (AOD) data provides broad spatial coverage, making it invaluable in regions like the 

Highveld Priority Area where ground monitoring networks are sparse [20] [21]. However, 

satellite data alone is subject to limitations such as reduced accuracy under cloudy conditions 
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or over heterogeneous terrains [22]. By incorporating ground-based observations, the 

proposed method enhances reliability through direct pollutant measurements [23]. Climate 

data, including variables like temperature and wind speed, further enriches the model by 

accounting for meteorological factors influencing pollutant dispersion [24]. 

In contrast, approaches that rely solely on ground stations or satellite data often struggle 

with incomplete spatial or temporal coverage. For instance, regression models using only 

ground station data fail to account for regional variations, limiting their generalisability [25]. 

Similarly, satellite-only approaches, while cost-effective, face challenges in capturing fine-

scale pollutant dynamics. The multi-source integration in this study mitigates these issues, 

delivering a more robust dataset for model training and prediction. 

3.3.2. Feature Engineering 

Feature engineering is pivotal in machine learning models, as it transforms raw data into 

actionable insights. This study introduces temporal features (e.g., seasonal variability), land-

use characteristics, and meteorological parameters to capture the complex interplay of 

factors affecting PM2.5 levels. Research by Zhang et al. highlighted the importance of such 

multi-faceted features in improving predictive accuracy, particularly in heterogeneous 

environments like South Africa’s Highveld region [26]. The inclusion of these features 

contrasts with simpler approaches that often overlook temporal or spatial variability, 

resulting in reduced model performance [27, 41]. By including these features, Zhang’s study 

successfully captured the temporal trends observed in ground measurements and accurately 

identified central and northern regions as having the highest annual PM2.5 concentrations 

3.3.3. Machine Learning and Model Selection 
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Gradient Boosting, implemented using XGBoost, was selected for its ability to handle non-

linear relationships, interactions between features, and missing data [28]. This algorithm has 

consistently outperformed traditional regression models in air quality studies, offering 

superior accuracy and resilience to overfitting [29]. For instance, a study in urban China 

demonstrated that Gradient Boosting reduced prediction errors by 15% compared to 

multiple linear regression models [30]. Furthermore, the use of hyperparameter 

optimisation via Optuna allows for the fine-tuning of model parameters, enhancing 

predictive power [31]. 

Alternative models, such as neural networks, while theoretically more powerful, require 

significantly larger datasets and computational resources. Deep learning approaches like 

Convolutional Neural Networks (CNNs) have been employed in air quality modelling but 

often suffer from overfitting when applied to sparse datasets common in LMICs [32]. Given 

the resource constraints and data sparsity in this study’s context, XGBoost provides an 

optimal balance between complexity and interpretability. 

3.3.4. Validation and Visualisation 

Cross-validation ensures model robustness by evaluating performance on multiple data 

splits, reducing the risk of overfitting. Validation metrics such as Root Mean Squared Error 

(RMSE) and R² offer clear, interpretable measures of model accuracy [33]. These methods 

are standard in air quality modelling and provide transparency in assessing model 

performance. 

The leveraging of KeplerGL’s interactive capabilities enhances the study’s utility for 

policymakers. By presenting data in an accessible format, these tools enable informed 
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decision-making. In contrast, studies that rely solely on numerical results often fail to bridge 

the gap between scientific findings and practical implementation [34]. 

3.3.5. Superiority of the Approach 

This computational framework excels by addressing the key limitations of alternative 

approaches. By integrating diverse data sources, it overcomes spatial and temporal gaps 

inherent in satellite-only or ground-based methods. The use of Gradient Boosting ensures 

model robustness [28], while interactive visualisations enhance the accessibility and impact 

of the findings [34]. These attributes make the approach particularly suited to the Highveld 

Priority Area, a region characterised by complex pollution dynamics and limited monitoring 

infrastructure. Ultimately, this methodology not only advances scientific understanding but 

also supports actionable interventions to mitigate air pollution. 
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4. Methods 

4.1. Data Collection Methods 

The data collection process involved integrating multiple datasets to train an XGBoost model 

which Pan concluded that it outperforms multiple linear regression and random forest [42] 

for estimating PM2.5 concentrations. Table 1 below breaks down how datasets were sourced 

from ground-based measurements, climate reanalysis data, satellite imagery, administrative 

boundaries, and population density information. 

 

Table 1:  PM2.5 estimator datasets used to train the XGBoost model 

Model Dataset Specifications File Format Period 

Coordinate 

System Source 

Land Station Air 

Quality 

Ground-based 

air quality 

monitoring 

stations 

providing hourly 

PM2.5 

concentrations. .xlsx 
2023 

EPSG:4326 
SAAQIS 

ERA5 Hourly Climate 

Hourly reanalysis 

data including 

temperature, 

humidity, wind 

speed, and 

pressure to 

model pollutant 

dispersion. .grib 
2023 

EPSG:4326 
Copernicus 
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South African 

Municipality 

Administration 

Boundary 

Polygon 

shapefile 

delineating 

administrative 

regions for 

correlating air 

quality with local 

governance and 

policies. .shp 
2023 

EPSG:4326 

Humanitaria

n Data 

Exchange 

MODIS/Terra+Aqua 

MAIAC Land Aerosol 

Optical Depth Daily 

L2G (MCD19A2) 

Daily aerosol 

optical depth 

(AOD) data at 1 

km resolution to 

estimate surface 

PM2.5 

concentrations. .hdf 
2023 

EPSG:4326 
NASA 

Gert Sibande District 

population density 

Spatial, high-

resolution 

approach to 

disaggregate 

census counts 

for the study 

area. .tiff 
2023 

 
Landscan 

 

4.1.1. Air Quality Data 

Hourly SO2, NOx, PM2.5, CO were collected from ground-based air quality monitoring stations 

[43], ensuring accurate representation of real-time pollution levels. This dataset, provided 

by the South African Air Quality Information System (SAAQIS), was stored in .xlsx format for 

the year 2023 using the EPSG:4326 coordinate system. 
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4.1.2. ERA5 Hourly Climate Data 

Climate variables such as temperature, humidity, wind speed, and pressure were extracted 

from Copernicus ERA5 hourly reanalysis data. This information, stored in .grib format, 

facilitated modelling pollutant dispersion patterns across the study area which was 

consistent with Wang et al’s conclusions that the reanalysis data performs well in developing 

communities such as SA [44]. 

4.1.3. Population Density Data 

High-resolution population density estimates for Gert Sibande District were derived from 

LandScan. This data, in .tiff format, enabled the disaggregation of census counts to refine 

spatial resolution for the study and was reported by Huang et al as a key for estimating 

PM2.5. 

4.1.4. MODIS/Terra+Aqua MAIAC AOD Data 

Daily aerosol optical depth (AOD) data at 1km resolution were obtained from NASA’s 
MODIS/Terra+Aqua MAIAC dataset (MCD19A2) in .hdf format. AOD data was included as a 

crucial predictor to estimate surface-level PM2.5 concentrations. 

4.1.5. Ward Administration Boundaries 

Polygon shapefiles delineating administrative boundaries were sourced from the 

Humanitarian Data Exchange. These files, in .shp format with the EPSG:4326 coordinate 

system, provided spatial correlation between air quality and local governance structures. 

4.2. Data Analysis Methods 

The data analysis method employed a structured approach to estimate PM2.5 concentrations 

using a machine learning-based predictive model. The XGBoost algorithm, known for its 

efficiency and accuracy in handling large, heterogeneous datasets, was used for this purpose. 
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The analysis integrated diverse spatial and temporal data sources to enhance model 

precision. 

4.2.1. Data Preprocessing 

Raw datasets, including PM2.5 measurements, climate reanalysis data, aerosol optical depth 

(AOD), administrative boundaries, and population density, were harmonised to a common 

spatial resolution (EPSG:4326) and temporal format. The ground station air quality data 

provided baseline hourly PM2.5 concentrations. Missing values and anomalies in the 

datasets were addressed using interpolation and data imputation techniques. For spatial 

data, geospatial operations ensured proper alignment of layers [31]. 

4.2.2. Feature Engineering 

Key features were engineered to enhance the model’s predictive performance. Aerosol 

Optical Depth (AOD), derived from satellite imagery, was included as it is strongly correlated 

with surface-level PM2.5 concentrations. Meteorological variables, including temperature, 

wind speed, humidity, and atmospheric pressure, were integrated to account for 

atmospheric dispersion of pollutants. Population density data provided a proxy for 

anthropogenic emissions, while temporal features such as seasonal indicators captured 

variations in air quality over time. These features were selected based on their theoretical 

and empirical relevance to PM2.5 levels. 

4.2.3. Model Training and Evaluation 

The XGBoost algorithm was employed due to its scalability, handling of missing data, and 

ability to capture complex feature interactions. The model was trained using the 
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preprocessed datasets, with PM2.5 concentrations as the dependent variable. A supervised 

learning framework was utilised, splitting the data into training and testing subsets to 

evaluate generalisability. The model was assessed using cross-validation to mitigate 

overfitting, with RMSE illustrated in [48, eq.(1)] and R2 as seen in [48, eq.(2)] to quantify 

predictive accuracy and model performance [48]. 

𝑅𝑀𝑆𝐸 =  √∑𝑛𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2                                   (1) 

𝑅2  = 1 −  (∑𝑛𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2 / ∑𝑛𝑖=1 (𝑦𝑖 − 𝑦𝑖)2)     (2) 

4.2.4. Spatial and Temporal Modelling 

Predicted PM2.5 concentrations were visualised using geospatial tools, such as Kepler.gl, to 

identify spatial and temporal patterns. Spatial analysis highlighted hotspots of elevated 

PM2.5 levels, providing insights into pollution distribution across administrative boundaries. 

Temporal modelling captured seasonal and diurnal trends, enabling the evaluation of 

pollution dynamics over time [2, 10]. These analyses supported targeted interventions by 

identifying regions and periods of concern. 

4.2.5. Variance Analysis and Policy Recommendations 

The model results were subjected to variance analysis to compute percentage deviations 

between observed and predicted PM2.5 levels. This analysis was crucial for identifying 

discrepancies and validating model reliability. High-risk municipalities where predicted 

PM2.5 exceeded World Health Organisation (WHO) thresholds were flagged for policy 

recommendations [22]. Recommendations included limiting outdoor exposure as noted by 

Ha et al. [24], and improving air quality monitoring infrastructure in these regions [25]. 
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4.3. Integration and Application 

The digital twin model illustrated in Fig 3. integrates data from multiple disparate sources 

and offers real-time predictions of PM2.5 concentrations. A policy recommendation model is 

created which policy-makers can incorporate into antenatal care program in the Highveld 

region, allowing healthcare professionals to provide timely recommendations to pregnant 

women, and allow for the visualisation of the impact of changes before implementation 

which El-Agamy et al. highlighted is one of the fundamental applications of digital twins in 

smart cities  [49]. 
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Fig 3:  Digital Twin Model design with integrated data sources. The digital twin model integrates PM2.5 measurements, 

climate data, population density, and satellite AOD data to predict air quality. Insights from the model are fed into a 

recommender system. 

The digital twin will also simulate different pollution scenarios, enabling policymakers to 

evaluate the effectiveness of air quality regulations and propose new interventions. 

By combining machine learning, GIS, and real-time data in a digital twin framework, this 

study aims to develop a comprehensive tool for air quality management and antenatal care 

in South Africa. The model’s predictions will be tested against real-world health outcomes to 

ensure accuracy and reliability. 
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4.4. Ethical Considerations 

In this study, high ethical standards were maintained to ensure the responsible use of data 

while safeguarding privacy and confidentiality. The research focuses exclusively on 

population-level data related to women of reproductive age within the study area. 

Importantly, the study avoids any use of sensitive personal health information by relying 

solely on aggregated and anonymised datasets, which ensures that individual identities 

remain untraceable. According to international research protocols, such as the General Data 

Protection Regulation (GDPR) and guidelines from the WHO, anonymisation of data mitigates 

the risks of violating participant privacy while enabling scientifically meaningful insights [50], 

[51]. 

The digital twin model, which is central to this research, does not incorporate personal 

identifiers or individual-level health records. Instead, the model integrates non-sensitive and 

publicly available datasets from trusted sources, such as Landscan (for population density 

data) and SAAQIS (for air quality measurements). These geospatial and environmental 

datasets facilitate the analysis of PM2.5 exposure and its relationship to antenatal outcomes 

without compromising privacy. As highlighted by Abutalip et al. [22], the ethical use of 

aggregated data is crucial for maintaining public trust, particularly in digital twin technologies 

where environmental and demographic data intersect with health outcomes. 

To address potential data biases, such as inconsistencies in air quality measurements or 

missing population statistics, a cross-validation approach was employed. Data from multiple 

sources, including AOD, ground-based monitoring stations, and geospatial population 

datasets, were compared and validated to minimise inaccuracies. This approach aligns with 
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ethical data handling principles outlined by OECD guidelines for research transparency and 

reproducibility [52]. By mitigating gaps and ensuring data robustness, the study enhances 

the reliability of its findings while adhering to ethical research standards. 

In compliance with institutional and national ethical frameworks, a self-assessment form was 

completed, and confirmation was sought from the relevant authorities to ensure the ethical 

use of population density and environmental data. This step further verifies that the study 

adheres to established ethical protocols and meets the necessary standards for research 

involving population-level data, even in the absence of personal health information. As 

digital twin models continue to evolve, addressing such ethical considerations ensures they 

are developed in ways that balance scientific innovation with privacy protection, as 

emphasised by Rogers et al. [53]. 

By prioritising data anonymity, using public and aggregated datasets, and validating data 

accuracy, this study upholds ethical standards in research. The careful handling of geospatial 

and environmental data ensures that findings contribute meaningfully to antenatal health 

modelling while maintaining public trust and privacy. 
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5. Results and Discussions 

5.1. Results 

The XGBoost model, trained on 34,738 observations integrating satellite data, ground-based 

stations, and climate data, achieved robust predictive performance. The scatter plot (Fig. 4) 

illustrates the predictive performance of the optimised XGBoost model. A strong alignment 

between predicted and actual PM2.5 values can be observed, particularly for lower and mid-

range concentrations. The red dashed line (y=x) serves as the ideal reference, and the 

majority of data points cluster closely around this line, indicating a high degree of model 

accuracy. 

However, slight deviations at higher PM2.5 concentrations (above 150 µg/m³) suggest that 

the model slightly underestimates extreme pollution levels. This is a known limitation in 

machine learning models when handling outliers or regions with limited data points in 

extreme ranges [30]. Despite this, the model demonstrates robust performance overall, 

achieving a Root Mean Square Error (RMSE) of 5.8004 and an R2 score of 90.04%, as 

previously discussed. Compared to studies by Zhang et al. [20] and  Huang et al. [46], where 

random forest models were applied to estimate PM2.5 levels in the South African Highveld 

and North China, this study highlights both methodological advancements and specific 

strengths in addressing spatial variability in regions with limited monitoring infrastructure. 

The observed scatter highlights the ability of the model to generalise well across the dataset, 

capturing key patterns while minimising errors. Future enhancements, such as fine-tuning 

for extreme values or incorporating additional features like NO₂ and emission inventories, 

could further improve predictions in high-pollution scenarios [28] [31]. 
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Fig 4: Density Plot of Predicted vs Actual PM2.5 Concentrations. The chart visualises the relationship between actual and 

predicted PM2.5 values using a density-based 2D histogram. The colour gradient represents the density of overlapping points 

The RMSE underscores the model’s precision, reflecting the average deviation of predictions 

from observed values, while the R2 value highlights its reliability. Zhang et al., focusing on 

Gauteng Province, achieved an R² of 0.80 and RMSE of 9.40 µg/m³, using key predictors like 

satellite AOD, precipitation, and population density. While effective for spatial estimates, 

their model showed moderate accuracy. 
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Huang et al. reconstructed historical PM2.5 concentrations in North China Plain, achieving a 

cross-validation R² of 0.88 and an RMSE of 15.06 µg/m³, with temporal validation down to 

monthly scales. Although their imputation of AOD improved robustness over extended 

periods, the current study’s focus on short-term spatial variability and the inclusion of wind 

patterns, boundary layer height, and chemical pollutants enabled greater precision. 

Despite superior accuracy, this study, like Zhang et al. and Huang et al., showed 

underestimation of extreme PM2.5 values due to data sparsity. Addressing this limitation 

through temporal generalisation, imputation methods, and additional features like land-use 

and emission inventories could enhance future performance. This study advances prior work 

by providing an actionable framework with high spatial accuracy, supporting real-time 

healthcare interventions. 

5.2. Feature Importance 

The feature importance analysis highlights the top contributors to the PM2.5 prediction 

model, ranked based on their F-score, which represents their relative contribution to the 

XGBoost model’s performance. The top 15 features are ranked in Table 2 below. 

 

Table 2: Top 15 Features Ranked by F-Score in the PM2.5 Prediction Model. The table lists the most influential features in 

the XGBoost model, ranked by their importance scores (F-Score) 

Rank Feature F-Score 

1 v10 (Wind V-Direction) 15793 

2 u10 (Wind U-Direction) 14995 

3 blh (Boundary Layer Height) 14067 
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4 tco3 (Total Column Ozone) 13927 

5 SO2 (Sulphur Dioxide) 13314 

6 O3 (Ground-Level Ozone) 13363 

7 t2m (Temperature at 2m) 13130 

8 H2S (Hydrogen Sulfide) 12249 

9 NO2 (Nitrogen Dioxide) 10863 

10 NOX (Nitrogen Oxides) 10362 

11 hour_month_interaction 8880 

12 hour_day_interaction 8036 

13 hour 6553 

14 day_month_interaction 5757 

15 month 3238 

 

The feature importance chart highlights the key variables used in predicting PM2.5 

concentrations, ranked by their contribution to the XGBoost model: 

1. Wind V-Direction (v10) and U-Direction (u10): Wind patterns play a dominant role 

in pollutant transport and dispersion. Both horizontal (u10) and vertical (v10) wind 

components emerged as the most important features, consistent with prior studies 

on atmospheric dynamics [27, 29]. Wind speeds influence how pollutants like PM2.5 

accumulate or disperse across regions, particularly in industrial zones such as the 

Highveld Priority Area. 
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2. Boundary Layer Height (BLH): BLH, with an F-score of 14,067.0, significantly 

influences vertical mixing and dispersion of air pollutants. Shallow boundary layers 

restrict pollutant dispersion, causing PM2.5 concentrations to rise, particularly during 

calm atmospheric conditions [30]. 

3. Total Column Ozone (TCO3) and Ground-Level Ozone (O3): Ozone, both in the upper 

atmosphere (tco3) and near the surface (O3), interacts with PM2.5 as a secondary 

pollutant, influencing its formation and chemical transformation [28]. These findings 

align with chemical transport models, which highlight ozone’s role in particulate 

matter formation. 

4. Sulphur Dioxide (SO₂) and Hydrogen Sulfide (H₂S): These industrial emissions are key 

precursors to secondary aerosol formation, particularly in coal-dominated regions 

like Mpumalanga [31]. The significant importance of SO₂ and H₂S underscores the 

role of industrial activity in driving PM2.5 levels. 

5. Temperature at 2 Meters (T2M): Temperature influences atmospheric mixing and 

the chemical processes that govern particulate matter formation. Elevated 

temperatures often accelerate secondary pollutant formation, consistent with 

climate-sensitive air quality studies [32]. 

6. Nitrogen Oxides (NO₂ and NOX): NO₂ and NOX are critical pollutants emitted from 

vehicles and industrial processes. These gases contribute to the formation of 

secondary PM2.5 through photochemical reactions [28]. 

7. Interaction Features (hour_month, hour_day): Interaction terms such as hour-

month and hour-day reflect temporal variability in PM2.5 concentrations. This aligns 
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with studies showing that PM2.5 levels fluctuate with daily traffic patterns, industrial 

emissions, and meteorological changes [26]. 

8. Hour and Month: Temporal variables like hour and month capture diurnal and 

seasonal variations in PM2.5. These variations are influenced by factors such as 

heating systems in winter, atmospheric stability, and seasonal wind patterns. 

These results align with the research hypothesis that integrating meteorological [20], 

chemical [20, 47], and geospatial data improves the accuracy of PM2.5 predictions [22]. The 

importance of wind parameters (u10 and v10) underscores the dynamic nature of air 

pollution [46, 47], while the inclusion of both ground-level and satellite-derived variables 

ensures a holistic modeling approach. For future work, the integration of additional 

pollutants, such as NO₂, and enhancing temporal forecasting capabilities could further 

improve the model’s performance.  

5.3. Model Optimisation 

The optimisation process revealed that the best-performing parameters included a 

maximum depth of 10, a learning rate of 0.7074, 540 estimators, and colsample_bytree and 

subsample values of 0.98656 and 0.73614, respectively. These parameters underscore the 

importance of controlling overfitting through moderate depth and leveraging substantial 

subsampling for robust generalisation. The improved RMSE of 5.8001 represents a significant 

enhancement from the initial evaluation metrics, showcasing the efficacy of Bayesian 

optimisation via Optuna [54].  
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5.4. Comparative Analysis 

The performance of the XGBoost model aligns with findings from similar studies. Zhang et 

al. [20] demonstrated that gradient boosting methods achieve comparable RMSE values 

(0.10–0.12) when predicting PM2.5 concentrations in regions with diverse environmental 

conditions. The model’s high R² score also mirrors results in high-resolution geospatial 

studies where machine learning effectively captures the spatial and temporal variability of 

air pollution [20, 47]. Unlike traditional linear regression approaches, which often 

underperform with non-linear data, XGBoost capitalises on interactions between variables, 

thereby aligning with the complex nature of PM2.5 dispersion patterns [46]. 

 

5.5. Challenges with Dataset 

Despite the model’s success, significant challenges were encountered during data 

preparation and training. The dataset contained inconsistencies between satellite AOD 

readings and ground-level measurements, requiring extensive cleaning and interpolation. 

Similar issues were flagged by Wang et al. [2], who noted that large environmental datasets 

are often noisy due to measurement discrepancies and missing data. Handling these 

limitations required rigorous pre-processing, including feature engineering to account for 

meteorological variability. 

The computational demands of optimising hyperparameters for large datasets were also 

noteworthy. Bayesian methods, while efficient, required significant computational resources 

to evaluate hundreds of parameter combinations. This highlights the trade-off between 

achieving optimal performance and computational feasibility in resource-limited contexts. 
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5.6. Response to Hypothesis 

The Healthcare Air Quality Digital Twin, developed as part of this study, integrates PM2.5 

predictions with real-time spatial visualisation and health policy recommendations. The tool 

in Fig. 5 below supports the study’s hypothesis that leveraging air quality data through digital 

twin technology can enhance maternal health interventions, particularly in regions with high 

pollution levels. 

 
Fig 5: : PM2.5 Spatial Distribution Visualisation using the Streamlit Application Model. The map highlights PM2.5 

concentration polygons for Msukaligwa Local Municipality, classified into five ranges (6.49–113.29 µg/m³). 

The digital twin provides a dynamic spatial representation of PM2.5 levels across monitored 

regions, focusing on Govan Mbeki Local Municipality and surrounding areas (Figure 8). The 

gauge chart highlights an average PM2.5 concentration of 23.9 µg/m³, which significantly 

exceeds the 15 µg/m³ threshold recommended by the World Health Organisation (WHO) for 

long-term exposure [1]. 
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5.7. Policy Recommendations 

Based on the findings, several policy interventions are recommended: 

1. Stricter Air Quality Monitoring and Enforcement: South Africa’s industrial hubs, such 

as Mpumalanga, should adopt stricter emission control policies. Continuous air 

quality monitoring, supported by machine learning models, can guide regulatory 

actions in real-time [12]. 

2. Integration of Environmental Data in Healthcare: Antenatal care programs should 

incorporate PM2.5 exposure data into patient risk assessments. This aligns with 

recommendations by Bjornsson et al. [38], who emphasised the importance of 

personalised healthcare through data triangulation. 

3. Investment in Digital Twin Infrastructure: Governments and healthcare systems 

should invest in digital twin platforms for real-time air quality monitoring. Abutalip 

et al. and Zaballos et al.[22, 4] argue that such systems are cost-effective, scalable, 

and critical for data-driven decision-making in resource-constrained settings. 

4. Public Awareness Campaigns: Community education on the health risks of air 

pollution during pregnancy can empower individuals to adopt protective measures, 

such as avoiding outdoor exposure during peak pollution hours which aligns with the 

WHO strategies on advocacy and outreach[24]. 

5.8. Limitations 

While the study successfully demonstrates the utility of a digital twin for PM2.5 prediction 

and maternal health interventions, several limitations must be acknowledged. 
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The reliance on PM2.5 as the sole pollutant metric restricts the comprehensiveness of the 

model. Although PM2.5 is widely regarded as a key determinant of air quality and adverse 

health outcomes, other pollutants, such as sulphur dioxide (SO₂), nitrogen dioxide (NO₂), 

and volatile organic compounds (VOCs), also play significant roles in health risks [55]. For 

instance, Wu et al. demonstrated that NO₂ and SO₂ are critical contributors to respiratory 

illnesses and congenital anomalies when combined with PM2.5 exposure [23] while Lai et al 

[59]. emphasised the importance of VOCs in determining air quality. The exclusion of these 

pollutants may lead to an underestimation of the cumulative effects of air pollution, 

particularly in industrial regions like Mpumalanga. 

The geographic focus on Mpumalanga introduces limitations in the generalisability of the 

findings. Mpumalanga, as an industrial hub, is characterised by unique pollution patterns 

dominated by coal mining and petrochemical industries. This specificity may reduce the 

model’s applicability to other geographic regions with differing pollution sources and 

environmental conditions, such as urban centres dominated by vehicular emissions or rural 

areas reliant on biomass burning. Validation across diverse geographic and socioeconomic 

contexts is necessary to ensure robustness and scalability [46, 47]. 

The absence of temporal forecasting capabilities in the current model constrains its ability 

to enable proactive healthcare planning. Predictive models that forecast PM2.5 levels over 

short- and long-term periods are critical for issuing timely interventions, such as alerting 

vulnerable populations to stay indoors during peak pollution hours. Hao et al. highlighted 

the importance of temporal forecasts in enabling adaptive healthcare strategies, particularly 

for pregnant women and children [17]. The current static approach limits the digital twin's 

ability to anticipate pollution trends and inform decision-making ahead of time. 
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The study faced computational constraints during data preprocessing and model training. 

Processing large, multi-source datasets (e.g., satellite AOD, ground-based measurements, 

and meteorological features) required significant computational resources, particularly for 

coordinate transformation, spatial joins, and null imputation steps. These intensive 

preprocessing requirements limited the ability to train the model on the full dataset, 

necessitating the use of a smaller subset of 34,738 observations for optimisation. While the 

final model demonstrated strong performance, training on larger datasets could potentially 

improve accuracy and generalisability by capturing more complex relationships and edge 

cases [20]. 
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6. Conclusions 

This research demonstrates the potential of integrating machine learning and digital twin 

technology to address urban air quality management challenges, particularly in antenatal 

care programs. The high accuracy of the XGBoost model (RMSE = 5.8004, R2=90.04) in 

predicting PM2.5 concentrations validates the hypothesis and underscores the feasibility of 

incorporating environmental data into healthcare decision-making frameworks. By 

addressing spatial and temporal variability, the findings offer actionable insights for 

healthcare providers and policymakers in LMICs, aligning with previous research on digital 

twins for environmental health monitoring [22, 23]. 

The study identified critical features such as wind parameters, boundary layer height, and 

chemical pollutants, consistent with prior findings on air quality modelling [20]. The 

interactive digital twin model visualised pollution hotspots, enabling real-time 

recommendations to mitigate exposure risks. However, limitations such as the reliance on 

PM2.5 as the sole pollutant, the absence of temporal forecasting, and geographic constraints 

highlight areas for future research, including IoT-enabled monitoring and validation across 

diverse contexts [17]. 

By integrating real-time data with predictive analytics, this research supports the use of 

digital twins to improve maternal health outcomes and informs policy interventions for 

mitigating air pollution impacts in LMICs. 

6.1. Future Research 

The study demonstrates a robust digital twin framework for monitoring PM2.5 levels and 

informing maternal healthcare interventions; several avenues for future research and 
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development remain. Addressing these areas will significantly improve the 

comprehensiveness, scalability, and predictive utility of the model. 

The current model provides a static representation of PM2.5 levels, limiting its ability to 

enable proactive healthcare interventions. Future research should focus on integrating 

temporal forecasting techniques to predict pollution levels over short- and long-term 

periods. Methods such as recurrent neural networks (RNNs) and Long Short-Term Memory 

(LSTM) networks have shown promise in capturing temporal dependencies in air quality data 

[57]. Predictive capabilities would allow policymakers and healthcare providers to issue early 

warnings and mitigate exposure risks for vulnerable populations, such as pregnant women, 

during periods of peak pollution. 

The geographic focus on Mpumalanga limits the generalisability of the current findings to 

regions with differing pollution sources, climate conditions, and socioeconomic factors. 

Future work should validate the model across diverse settings, including urban areas 

dominated by vehicular emissions, rural Areas reliant on biomass burning, and industrial 

regions with varying pollutant compositions. 

Studies such as Abutalip et al. [22] and Zhang et al.[20] highlight the importance of validating 

air quality models in multiple geographic and socioeconomic contexts to ensure robustness 

and scalability. Such validation will also provide insights into regional differences in pollution 

dynamics and their health impacts. 

The inclusion of IoT-enabled real-time sensors can enhance the accuracy, responsiveness, 

and granularity of the digital twin platform. Low-cost IoT devices deployed in targeted 

locations can provide continuous, real-time measurements of PM2.5 and other pollutants, 

addressing gaps in spatial and temporal coverage. Research by Cárdenas-León et al.  and Li 
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et al. [2, 54] has shown that combining IoT data streams with machine learning models 

significantly improves real-time air quality predictions. By integrating IoT devices, the digital 

twin can adapt dynamically to real-world conditions, increasing its utility for decision-making 

and public health interventions. 

Future work should improve the usability and accessibility of the digital twin by developing 

notification systems for vulnerable populations (e.g., pregnant women) via SMS or mobile 

applications during high pollution events, and integration of additional maternal and 

neonatal health indicators, enabling a more holistic risk assessment. 

Such enhancements will ensure the digital twin’s outputs are actionable, user-friendly, and 

accessible to both policymakers and non-technical stakeholders, particularly in low- and 

middle-income countries (LMICs). 
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8. Appendices 

1. Artefacts 

 

  

Table 1: Data Sources 

Model Dataset Specifications 

Fields 

Extracted 

File 

Format Period 

Coordinate 

System Source (Link) 

Land Station Air 

Quality 

Ground-based 

air quality 

monitoring 

stations 

providing 

hourly PM2.5 

concentrations. 

Station name, 

PM2.5, SO₂, 
NO₂, NO, Nox, 
H2S 

Timestamp .xlsx 2023 EPSG:4326 https://www.saaqis.org.za/  

Codebase 

- Python code of model (XGBoost, digital twin integration, streamlit application) 

- Readme file 

- Comments for key functions 

Datasets 

- Zipped file of raw Landscan, SAAQIS, NASA, Copernicus, AOD (share the pre-processed version 

Project Planning gantt chart 

Streamlit app deployment Loom demo 

Ethics Approval 

- Self-assessment form 

- Email responses from data stewards 

Policy Recommendation  

https://www.saaqis.org.za/
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ERA5 Hourly 

Climate 

Hourly 

reanalysis data 

including 

temperature, 

humidity, wind 

speed, and 

pressure to 

model 

pollutant 

dispersion. 

Temperature, 

Wind Speed 

(U, V), 

Boundary 

Layer Height, 

Precipitation .grib 2023 EPSG:4326 

https://cds.climate.copernicus.eu/dat

levels?tab=download  

South African 

Municipality 

Administration 

Boundary 

Polygon 

shapefile 

delineating 

administrative 

regions for 

correlating air 

quality with 

local 

governance 

and policies. 

Municipality 

Name, 

Administrative 

Boundaries 

geometry, 

longitude, 

latitude .shp 2023 EPSG:4326 https://data.humdata.org/dataset/co

MODIS/Terra+Aqua 

MAIAC Land 

Aerosol Optical 

Depth Daily L2G 

(MCD19A2) 

Daily aerosol 

optical depth 

(AOD) data at 1 

km resolution 

to estimate 

surface PM2.5 

concentrations. 

AOD, Latitude, 

Longitude .hdf 2023 EPSG:4326 

https://ladsweb.modaps.eosdis.nasa.

-61  

Gert Sibande 

District Population 

Density 

Spatial, high-

resolution 

approach to 

disaggregate 

census counts 

for the study 

area. 

Population 

Count, 

Population 

Density, 

Coordinates .tiff 2023 EPSG:4326 https://landscan.ornl.gov/  

 

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download
https://data.humdata.org/dataset/cod-ab-zaf/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/MCD19A2--61
https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/MCD19A2--61
https://landscan.ornl.gov/
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Fig 1: Extract Optical Depth 055 and coordinates for AOD measurements 

 

 

Fig 2: 2M Temperature data (in K) for a single coordinates pair (longitude and latitude) 
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Fig 3: Big Data Processing with Spark 

 

 

Fig 4: Study Area population density 
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Fig 5: Actual vs Predicted PM2.5 values for wards within 50km radius from Bosjesspruit 

Land Station 

 

 

Fig 6: Actual vs Predicted PM2.5 values for eMbalenhle Land Station 


