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AbstractÐPruning algorithms compress deep neural networks
while incurring minimal degradation of accuracy. We propose
Stochastic Pruning: an algorithm in which dense solutions
are perturbed with Gaussian noise prior to pruning. We use
Stochastic Pruning to explore the basin of attraction around
one solution obtained with a single minimiser. Using ResNet18,
ResNet50, and VGG19 on CIFAR-10 and CIFAR-100, we show
that SP consistently improves one-shot accuracy after extreme
pruning and mitigates feature variance explosion. Our analysis
adds understanding by linking one-shot accuracy and local
gradients.We show that fine-tuned SP accuracy can outperform
deterministically pruned solutions in most cases. Finally, we
leverage multi-objective evolutionary optimisation to compare
single and two-objective results, e.g. optimised for both accuracy
and sparsity. The good performance of SP provides a promising
approach to extreme pruning, achieving viable high accuracy and
high efficiency neural networks in resource-constrained scenarios.

Index TermsÐneural network pruning, stochastic pruning,
sparse models, lottery ticket hypothesis.

I. INTRODUCTION

Neural networks have achieved transformational success

across domains [1], but their power is often achieved through

ever larger and more complex networks, requiring ever greater

computing power, memory resources, and training data, lim-

iting accessibility, and increasing associated carbon footprints

[2]. To address this, a variety of approaches have been

proposed for training sparse networks [3, 4, 5], or pruning

pretrained networks [6, 7, 8, 9].

Pruning methods aim to design a saliency score that enables

effective network pruning [10] based on various network

characteristics, such as connectivity [11, 12] and second-order

information [8, 13, 14]. The simplest pruning method applied

to pretrained networks is Global Magnitude Pruning (GMP)

[15], which ranks all the weights globally by magnitude |wi|,
retains the top (1 − γ) fraction of the weights, and sets the

remaining weights to zero. The pruning rate, γ, represents the

fraction of weights that are removed.

Pruned networks occupy the same basin of attraction as

the dense networks from which they originate [5] and exhibit

robustness to minor perturbations [16]. We propose that mul-

tiple subnetworks, obtained by pruning the same densely pre-

trained network, can serve as a tool for investigating the local

attractor. To this end, we introduce a new two-step pruning
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method called Stochastic Pruning (SP). First, we inject additive

Gaussian noise into a single dense network to perturb it.

Then, we apply pruning to the perturbed network. We refer

to the resulting pruned networks as stochastic models. Our

findings indicate that, across varying datasets and models,

the application of SP with high pruning rates yields superior

one-shot performance compared to deterministically pruned

networks (applied to the original, unperturbed network).

This is relevant since there is an increasing interest in using

deep learning in IoT devices, where fine-tuning/training is

costly or simply not possible [17]. Alternatively, one-shot

pruning may suffice in cases where it is competitive with

iterative pruning, e.g. as observed in some cases for CNNs

[16]. Finally, one-short pruning is useful as a first step before

fine tuning, since in our experiments, the advantage of stochas-

tic pruning is preserved after fine-tuning, albeit dependent

upon the pruning methodology. For more sophisticated pruning

methods, it is evident that the noise amplitude exhibits an

inverse relationship with the final fine-tuned performance,

as it affects the gradient flow, thus reducing the efficacy of

training [18].

Our procedure involves two adjustable parameters: the noise

amplitude σ and the pruning rate γ. To systematically search

for ‘good’ parameters, we used two approaches: an exhaustive

grid-search, quantifying one objective at a time, and multi-

objective evolutionary optimisation. Next, we identify a phe-

nomenon we call feature variance explosion, in which highly

(deterministically) pruned networks have a much greater vari-

ance in their feature maps compared to their dense counterpart.

The feature variance interferes with the inference process and

hence the accuracy. We find that SP alleviates this explosion,

explaining in part how stochastic pruning enhances one-shot

performance.

Our main contributions are:

• We show that stochastic pruning of pre-trained networks

(SP) outperforms deterministic GMP in one-shot settings,

with fine-tuned models often matching or exceeding

deterministic ones.

• We demonstrate that the improved performance of SP

solutions arises from the combination of (i) the pruning

mask and (ii) altered weights.

• We show that using SP with GMP one-shot SP generally

alleviates the feature variance explosion.



• We demonstrate a trade-off between one-shot accuracy

and trainability of SP solutions mediated by the noise

level σ

The remainder of this paper is organised as follows. After

introducing related work (Section II), the methodology of

Stochastic Pruning is described (Section III). We evaluated the

different contributing factors to the performance of stochastic

solutions (IV-A), and demonstrated the generalisation of our

results to different models and test data (IV-B). In IV-C,

we use multi-objective optimisation to extend our analysis.

Mechanistic insight in terms of feature variance explosion is

presented in IV-D. Finally, in IV-E, we show that stochastic

models provide good solutions after fine-tuning. The paper

ends with a brief conclusion (Section V).

II. RELATED WORK

Approaches to compressing neural networks vary, ranging

from designing efficient architectures from scratch [19] to

pruning-based methods. These include pruning at initialisation

[11, 12, 20] and dynamical sparse training, where the model’s

sparse connections evolve during training [3, 21]. Among these

techniques, pruning remains the most widely used due to its

simplicity and practicality. In general, pruning algorithms can

be classified into three categories: pre-training, training, and

post-training pruning.

Pre-Training Pruning: This family of algorithms prunes a

network on randomly initialised weights, i.e. before training.

Synaptic flow (SynFlow) [11] does not use any data for prun-

ing and yet is demonstrated to avoid layer collapse. Gradient

Signal Preservation (GraSP) [20] prune randomly initialised

networks while preserving the gradient flow signal throughout

the network. Yet a different approach, Single-Shot Network

Pruning Based on Connection Sensitivity [12] adds parameters

that represent connections (but not weights) between neurons

and uses the approximate gradient of the loss function with

respect to the new parameters as a salience score for pruning.

The Lottery Ticket Hypothesis (LTH) [16] states that there

exists a sparse subnetwork (winning ticket) within a dense

model that, when trained in isolation, can achieve comparable

or better performance than the original dense network. To

unveil a winning ticket it is necessary to sequentially perform

Global Magnitude Pruning (GMP) [15] on a trained network,

transfer the final mask on the initial weights, and train this

sparse model from scratch. These sparse models, obtained

through iterative version of GMP, where pruning is repeated

across multiple cycles to gradually reach the desired sparsity

[22], are robust to small perturbations that do not change this

basin [18]. For example, using only the weight sign preserves

LTH performance, while shuffling weights does not, with the

latter transporting solutions to a different basin [23].

Training: These algorithms prune connections during the

training process, some prune gradually until reaching the final

sparsity [16]. This approach, commonly known as Iterative

Magnitude Pruning (IMP), keeps the mask fixed after pruning.

In contrast to IMP, Dynamical Sparse Training (DST) methods

dynamically change the mask during training, starting with a

sparse model before training, then pruning and regrowing the

remaining connections based on different criteria. The authors

in [3] randomly prune a portion of the surviving connections

and then regrow them following an ErdÈos-RÂenyi distribution.

Sparse Networks from Scratch (SNFS) [4] regrows weights

based on the momentum of each weight, reallocating the

weights from the less efficient layers to more weight-efficient

layers. Authors in [21] prune a fraction of the surviving

weights randomly but regrow the weights based on the gradi-

ents of the zero connections, reactivating the connection that

would incur the maximum loss decrease.

Post-Training pruning: These techniques perform pruning

after the training phase and are typically accompanied by a

fine-tuning schedule. Each method has a different importance

score to detect unimportant weights. The simplest is the mag-

nitude of a weight [24] where the lowest-magnitude weights

are deemed unnecessary. However, this method can remove

weak but important weights. Some methods use first-order

Taylor expansion coefficients of the loss function (i.e. gra-

dient information) as an importance score for pruning [6, 7].

Hessian-based methods measure the importance of weights as

the effect they have in the second-order approximation of the

training loss function [8, 9]. Many of these methods require a

fine-tuning phase to mitigate the accuracy drop, especially for

high pruning rates.

In this study, we focus on post-training pruning. This

approach capitalises on the availability of pretrained models

for a multitude of tasks, while acknowledging that the network

size often poses a limitation for deployment in real-world

scenarios, e.g. off the network, in mobile phones, and on edge

devices. Our experimental analysis predominantly used Global

Magnitude Pruning (GMP); however, we also compared a

subset of our findings against the layer adaptive magnitude

pruning method (LAMP) [10]. In contrast to GMP, LAMP

computes importance scores for each weight within its respec-

tive layer. These scores quantify the relative significance of

each connection, ensuring that the smaller magnitude weights

within a layer are pruned first. The computed scores are

then aggregated and sorted globally across the entire network,

followed by global magnitude pruning. Consequently, weights

with identical magnitudes can receive different LAMP scores

based on their layer context and relative importance. This

approach enables magnitude pruning to achieve strong perfor-

mance without requiring manually defined layer-specific spar-

sity levels. Magnitude pruning can generally yield surprisingly

effective results when properly combined with layer-specific

pruning rates [21, 25].

III. STOCHASTIC PRUNING

Neural network pruning relies on the finding that networks

are often overparameterised, allowing for similar performance

with a smaller network [15]. Different pruning approaches aim

to find a sparse network that maintains the performance of

the original, or at least degrades gracefully. Following Lee et

al. [12] we formulate the problem as follows: Given a dataset

D = {(xi, yi)}
n
i=1 and a desired pruning rate γ (defined as
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Fig. 1: Unveiling good One-Shot sparse solutions: Using ResNet18 on CIFAR10/100 for: a) CIFAR10 test accuracy, comparing three
ResNet18 seeds with SP parameters σ = 0.005 and γ = {0.6, 0.9}. For each seed, one deterministic and a population of five stochastic
solutions were generated. b) and c) show test set accuracy as a function of γ and σ, exploring values around optimal parameters (see Table I).
The arrow indicates the pruning rate yielding the best difference between SP and Deterministic Pruning (DP). The star indicates the noise
level yielding the best performance.
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Fig. 2: Mask transfer ResNet18 on CIFAR10: SP one-shot perfor-
mance draws from both the mask and stochastic weights, showing:
SP (blue, left), MTS→D (orange, middle) and MTD→S (green, right).
σ = 0.005. purple line: deterministic pruning.
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Fig. 3: Mask transfer VGG19 on CIFAR10: SP one-shot per-
formance generalises to different models, showing: SP (blue, left),
MTS→D (orange, middle) and MTD→S (green, right). σ = 0.001.
purple line: deterministic pruning.

the fraction of total weights that are zero), the optimisation

problem for neural network pruning can be stated as follows:

min
w,m

1

n

n∑

i=1

ℓ(F (m⊙ w;xi), yi)

s.t. w ∈ R
d,

m ∈ {0, 1}d ∥m∥0 ≥ ⌊(1− γ) · d⌋,

(1)

where ℓ(·) is the loss function, ⊙ is the Hadamard product,

F (m⊙w;x) is the output of the neural network given the set of

weights w and masks m, d is the total number of parameters,

and ∥ · ∥0 is the ℓ0-norm. Most post-training pruning methods

reveal a static mask m and fine-tune the remaining weights

w̃ = m⊙w to minimise the accuracy drop. Stochastic pruning

is represented by the following equations:

wp = w
∗ +N (0, σ2

I) (2)

ŵ = m(wp)⊙wp, (3)

where w
∗ is a pre-trained set of weights, N (0, σ2

I) represents

Gaussian noise with standard deviation σ, and m(wp) is

the mask dependent on the perturbed weights wp via some

function f(·). For GMP, f(·) = | · |, and for LAMP, f(·)
corresponds to the LAMP score [10]. Equation (2) produces

an intermediate network, which we call ªDense Stochasticº.

Finally, we call the original pruned network with σ = 0,

ªdeterministicº.

IV. EXPERIMENTS

We evaluated our Stochastic Pruning approach using three

models ± ResNet18, ResNet50, and VGG19 ± and two

datasets, CIFAR-10 and CIFAR-100. All models were adapted

for the CIFAR datasets*. The pretrained models were trained

for 200 epochs using Stochastic Gradient Descent (SGD) with

an initial learning rate of 0.1, a cosine annealing schedule

(Tmax = 200), and a batch size of 128.

For post-pruning fine-tuning experiments, we used SGD

with 100 epochs, an initial learning rate of 0.0001, a cosine

annealing schedule (Tmax = 100), a weight decay of 5× 10−5

and a gradient clipping of 0.1.

In Section IV-A, we analyse the one-shot performance

of stochastic pruning compared to their deterministic coun-

terparts for various γ values. To clarify the sources of its

superior performance, we examine the effect of σ and γ on

stochastic pruning (SP), conducting a mask transfer analy-

sis. In Section IV-B, we perform a grid search over SP’s

hyperparameters, σ and γ, which illustrates that stochastic

pruning consistently outperforms deterministic pruning when

optimal hyperparameter values are used. In Section IV-C, we

use a multi-objective evolutionary optimisation framework to

explore the trade-offs between stochastic performance and γ,

*Models adapted from https://github.com/kuangliu/pytorch-cifar

https://github.com/kuangliu/pytorch-cifar
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TABLE I: Optimal parameters for one-shot SP for Grid and MOO
search, all SP measures are the median of 5 models

Dataset Model
Grid Search MOO Search - F2

γ σ SP DP ∆ γ σ SP DP ∆

CIFAR10

ResNet18 0.9 0.005 80.9 29.0 51.9 0.87 0.0038 88.4 39.7 48.6

ResNet50 0.95 0.003 29.3 13.2 13.1 0.94 0.0028 33.9 16.3 17.6

VGG19 0.95 0.003 19.3 12.7 6.6 0.91 0.0013 54.6 40.8 13.7

CIFAR100

ResNet18 0.9 0.003 26.3 19.7 6.5 0.92 0.0036 13.9 5.18 8.7

ResNet50 0.85 0.001 30.5 24.9 5.6 0.76 0.0012 63.2 59.9 3.3

VGG19 0.8 0.001 53.7 45.3 8.4 0.83 0.0025 28.4 16.5 11.9

on the one hand, and between performance and performance

gain (over deterministic models) on the other.

A. Good One-Shot Sparse Solutions

There is both theoretical [26] and empirical [27] evidence

highlight the vital role of noise during the training of neural

networks. Furthermore, it is known that LTH solutions are

recoverable when training has become stable to SGD noise

[22]. Hence, we can explore the local basin of a pretrained

network by injecting Gaussian noise, with the knowledge that

this does not affect the probability of finding a good sparse

solution (LTH) as by the late epochs of training, the network

has already become stable to SGD noise. Nonetheless, one

would naively expect that randomly injecting noise to a highly

trained network should not provide a performance advan-

tage. Surprisingly, we found that for high pruning rates and

appropriately chosen noise levels, SP generates much better

solutions than their deterministically pruned counterparts.

In Figure 1a different ResNet18 seeds were trained in

CIFAR10 for different pruning rates. All stochastic dense

networks maintain similar performance to the original dense

network.

For an intermediate pruning rate (γ = 0.6), individual

stochastic models can sometimes achieve higher accuracy, but

on average, SP performance is slightly worse than determinis-

tic pruning, although, the accuracy drop is similar (≈ 1%) for

both stochastic and deterministically pruned models. As accu-

racy drops with higher pruning rates, SP begins to outperform

deterministic models. At γ = 0.9, SP is by far superior to

deterministic pruning (with rare exceptions, not shown). This

advantage is only unveiled when pruning is performed, since

dense stochastic networks (coloured squares) perform similarly

to the dense original (unperturbed pretrained) models. The

consistency of the results and in particular the crossover of

SP performance around the transition to high pruning rates

(and degraded accuracy) appears to indicate a general principle

underpinning the success of SP. As the robustness of our

experiments demonstrates that SP is not confined to one seed,

seed 1 was used for the results in the remainder of the paper.

In Figures 1b and 1c, SP performance is presented as a

function of σ and γ for the CIFAR10 and CIFAR100 test

sets, respectively. For the CIFAR10 dataset, a discernible

optimal noise level emerges around σ = 0.005. Above the

crossover point (γ ≈ 0.8), SP significantly outperforms the

deterministic approach. This phenomenon is also observed

with the CIFAR100 dataset, although the peak performance for

σ and the disparity between SP and deterministic performance

(DP) are diminished, presumably because this disparity occurs

for pruning rates with a considerably degraded performance,

relative to the dense network. This can be attributed to

CIFAR100 being a more difficult task.

As SP is a two-step algorithm, the source of the improved

one-shot accuracy is ambiguous. Each of the steps suggests

a possible factor: the perturbation of the weights themselves,

and the stochastically generated mask. We consider these in

turn, asking whether stochastic weights wp, stochastic mask

m(wp), or a combination of both ŵ = m(wp) ⊙ wp are

responsible for enhanced performance. To this end, we define

two operations:

• MTS→D : Apply the pruning mask from stochastic models

to the original deterministic weights, i.e. w∗ ⊙m(wp).
• MTD→S : Apply the pruning mask from the deterministic

model to the dense stochastic model, i.e. m(w∗)⊙wp.

If operation MTS→D results in superior models relative to

deterministic pruning, it would indicate that stochastic pruning

has the potential to uncover effective masks. In contrast, if

operation MTD→S results in models superior to determinis-

tic pruning, it indicates that the weights identified through

stochastic pruning are superior to the deterministic weights

in the pruned networks.

For this experiment, we obtained 80 stochastically pruned

models for ResNet18 on CIFAR10 (σ = 0.005, Figure 2). To

test whether the architecture changes the results of stochastic

pruning, or the contribution of the mask and weights, we ob-

tained 80 SP solutions using VGG19, also tested on CIFAR10

(σ = 0.001, Figure 3). The pruning rates for VGG19 were

selected such that both models have a similar number of non-

zero weights.

Our results demonstrate that the high accuracy achieved

by SP generalises across architectures, but that the relative

contributions of the two operations varies. For ResNet18,

stochastic weights and the stochastic masks (blue box plot)

are both required to explain SP’s accuracy. Neither operation

alone outperforms deterministic pruning, but their combination

yields the best accuracy (outperforming deterministic pruning

for sufficiently high pruning rates). This phenomenon is partic-

ularly strong for extreme pruning rates (γ = 0.9). For VGG19,

transferring the stochastic mask to the original unperturbed

weights yields similar performance to deterministic pruning



TABLE II: Accuracy and GF for one shot and fine-tuned: Parameters as Table I

LAMP GMP GRASP

Dataset Model

One-Shot Fine-Tuned One-Shot Fine-Tuned One-Shot Fine-Tuned

SP DP
∆ SP DP ∆

SP DP
∆ SP DP ∆

SP DP
∆ SP DP ∆

GF Acc GF Acc GF Acc GF Acc GF Acc GF Acc

CIFAR10

ResNet18 9.9 84.1 18.9 77.8 6.3 91.9 92.8 -0.9 8.0 80.9 11.5 29.0 51.8 91.8 89.6 2.2 4.6·103 10.0 11.9 10.0 0.0 43.9 47.0 -3.1

ResNets50 35.9 28.4 89.6 22.4 6.0 88.8 91.2 -2.4 16.0 29.3 19.1 13.2 16.1 90.6 90.6 0.0 12.0 10.0 37.9 10.0 0.0 24.8 25.5 -0.7

VGG19 62.9 20.4 8.7 88.8 -68.4 91.1 92.6 -1.5 46.0 19.3 46.2 12.7 6.6 92.7 92.3 0.4 5.8 10.0 3.9 10.0 0.0 10.1 10.0 0.1

CIFAR100

ResNet18 54.4 26.1 100.1 18.3 7.8 66.8 67.6 -0.8 18.4 26.3 27.0 19.7 6.6 67.6 66.9 0.7 2.1·104 1.0 1.3·105 1.0 0.0 10.3 10.0 0.3

ResNets50 23.4 38.7 29.5 30.0 8.7 72.4 72.1 0.3 26.6 30.5 27.1 24.9 5.6 74.1 73.9 0.2 1.8·104 1.0 7.4·104 1.0 0.0 1.1 1.6 -0.5

VGG19 6.6 69.3 7.3 68.8 0.5 71.9 72.0 -0.1 18.4 53.7 23.3 45.3 8.4 72.4 72.2 0.2 307.0 1.0 766.7 1.0 0.0 6.0 3.2 2.9

TABLE III: Feature Variance explosion: Parameters as in Table I.

Model

One-Shot Fine-tuned

CIFAR10 CIFAR100 CIFAR10 CIFAR100

DP SP DP SP DP SP DP SP

ResNet18 0.759 0.698 0.720 0.675 0.999 1.003 1.000 1.001

ResNet50 0.423 0.401 0.479 0.477 1.000 0.972 1.000 0.999

VGG19 0.467 0.470 0.739 0.736 1.000 0.990 0.999 1.000

for all three pruning rates tested, but the combined SP out-

performs deterministic pruning only for extreme pruning rates

(γ = 0.94), where the stochastic weights play a key role. It is

important to note that the optimal noise levels (necessary to

achieve good performance) differ across experiments, depend-

ing on both the model and the dataset.

In summary, SP reveals effective sparse models that surpass

deterministic pruning. We found examples in which this per-

formance arises from the combination of stochastic weights

and the stochastically derived mask (ResNet18), or where the

mask itself is sufficient to produce the upgraded performance

(VGG19). Further experiments would be needed to explore the

mechanistic reasons underpinning these differences.

B. Generalisability of Stochastic Pruning

We have already seen that SP provides promising solu-

tions in the extreme pruning rate regime, for both ResNet18

and VGG19. Here, we ask whether and to what extent

does SP performance surpass deterministic pruning across

3 models (adding ResNet50) and the two datasets (CI-

FAR10, CIFAR100). A restricted grid search for the pruning

rate was conducted with γ = {0.8, 0.9, 0.95} and σ =
{0.001, 0.003, 0.005} for each model-dataset combination (the

best parameters are in Table I ). To this end, we used the

median one-shot performance of ten SP models, and found

that for all models and datasets and across the three (extreme)

pruning rates tested, SP models are statistically superior to

deterministic ones (all with p-values< 0.05).

To ensure that this result applies robustly, we consider in-

dividual solutions (20 stochastically pruned models per model

and dataset pair). We find that, with only rare exceptions,

SP solutions consistently demonstrate superior performance

relative to deterministic pruning (Figure 4).
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Fig. 5: Feature Variance Across σ and γ: ResNet18 on CI-
FAR10/100.
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Fig. 6: Weight’s CDF for ResNet18 trained on CIFAR10/100.

C. Exploration of hyperparameter space with multi-objective

evolutionary optimisation

To more thoroughly explore the hyperparameter space, to

more efficiently search for optimal hyperparameters, and to

expand our search to additional objectives, we used a Multi-

objective Evolutionary algorithm, namely, NSGA-II [28].

NSGA-II is a genetic algorithm for multi-objective op-

timisation that maintains a population of solutions, using

non-dominated sorting and crowding distance to select high-

performing, diverse individuals. After a set number of gener-

ations, it outputs the non-dominated solutions (Pareto front)

found in the final population. We used two sets of functions

consisting of two fitness functions (F1 = {f11, f12}, F2 =
{f21, f22}). In the initial search (using F1), we sought solu-

tions that maximise performance and pruning rates, setting our

objective function at F1 = {f11, f12} = {Accvalidation(ŵ), γ},

where Accvalidation(ŵ) denotes the median performance of 10

stochastic models in the validation set. Here, γ serves both as

a decision variable and as an objective. This approach seeks to
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Fig. 7: Pareto Front F1: Median SP performance (n = 10) versus γ in the validation set for F1. ∆ is calculated on the test set. Every
combination has a pruning rate region in which SP surpasses deterministic pruning, especially in the transition region (to high pruning rates).
Bright colours indicate the greatest improvement. Empty circles indicate solutions with better DP solutions.

verify whether there exists a range of pruning rates that allows

SP to outperform DP without directly optimising for it. In the

second search, we use the set of fitness functions defined by

F2 = {f21, f22} = {Acc(ŵ), (Acc(ŵ)− Acc(w)) · γ}, where

the two objectives are to maximise the median performance

of SP and to maximise the disparity between stochastic and

deterministic pruning (Acc(w)). We multiply the difference

by the pruning rate to encourage solutions that demonstrate

a pronounced difference between stochastic and deterministic

pruning at elevated pruning rates.

Accuracies at search time were calculated using 5000 train-

ing images in all cases. The search space for both functions

sets is σ ∈ (0.0001, 0.01) and γ ∈ (0.01, 0.99). We sam-

pled 150 individuals in the hyperparameter space for both

functions sets and we obtained the Pareto Front form them.

The combination ResNet18-CIFAR10 produces the highest

improvement over DP in the test set, while all others have

modest improvements, with maximum improvements between

0.4% and 5% (Figure 7). We note the S-shaped Pareto fronts.

These are to be expected, since large pruning rates invariably

worsen one-shot performance. A more intriguing aspect of

these figures is that the most substantial improvement over

deterministic pruning in the test set is observed at high

or extreme γ, between 85-94% for CIFAR10 and 75-95%

for CIFAR100. While we found a wide range of pruning

rates in which stochastic pruning can outperform deterministic

pruning, this range is mostly confined to the pruning rates

where performance starts to rapidly deteriorate, but does not

render the network useless yet.

In Table I are the results for the parameters that are present

in the Pareto front for F2 and maximise f22. Values are

calculated over the test set. In particular, SP outperforms

deterministic pruning in the high γ and low σ regimes,

indicating that NSGA-II effectively identify hyperparameters

where SP excels.

D. Feature Variance Explosion

Why does a simple procedure, such as introducing noise

followed by pruning, substantially improve one-shot perfor-

mance? Introducing noise to the weights increases the variance

of the weight distribution, as Var(w+ e) = Var(w)+Var(e)
due to e being independent of w, resulting in a bimodal

distribution with more extreme weights after pruning. This

distribution potentially enhances model accuracy by struc-

turing pruned filters more effectively. This, we hypothesise,

mitigates the feature variance explosion, characterised by

uneven scaling of feature maps throughout the network.

First, we measure the variance of each neuron across a batch

of training data. Then, we sum all the neurons variances across

the layer. Finally, if we let this sum of the j th layer be denoted

ϕj for pruned models (either stochastic or deterministic) and

Φj for dense models, we return the ratio vj =
φj

Φj
for each

layer and we calculate the model’s feature variance as follows:

V =
1

N L

N∑

i

L∑

j

vj(xi), (4)

where N is the number of batches and L is the number of

layers in the network. In the case of stochastic models, we

calculated ϕj(xi) for five different stochastic models, then

averaged these results to obtain a single ϕ̄j . We divided this

average by the variance of the dense stochastic model, Φj , for

a particular layer. We found that for most combinations, the

stochastically pruned model has a lower value of V (see Ta-

ble III), suggesting that alleviating feature variance explosion

is a putative mechanism for enhancing one-shot performance

in SP. When we fine-tune these models, we see nearly identical

values of V across the board, which is expected since the

internal dynamics of the pruned network resemble those of

a trained network. In addition, in Figure 5, we can see that

SP mainly alleviates the feature variance explosion for high

pruning rates (≥ 0.8), that is, a regime in which the extreme
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sparsity of the network due to pruning results in a performance

degradation. In this regime, the surviving weights matter more,

and the effect of injecting noise (to weights and/or to the

mask) is expected to be highly deleterious. Indeed, in fig.

6 the Cumulative Density Function (CDF) shows that for a

σ = 0.005 more than half of the network’s weights are smaller

than the noise amplitude, suggesting that a substantial portion

of the model is overshadowed by the noise. It is therefore no

surprise that a large pruning rate is required to see an effect

on feature variance.

E. Fine-Tuning Stochastic Solutions

So far, we have explored the one-shot regime of stochasti-

cally pruned models. In this section, we explore the robustness

of fine-tuned solutions to stochastic pruning. To this end,

we analyse the behaviour of stochastic GMP and a closely

related but more subtle pruning method, LAMP [10]. LAMP

is selected for comparison because of its status as a more

sophisticated pruning method that nevertheless employs the

weight magnitude to compute the saliency score, thereby

maintaining computational efficiency. Our analysis focusses on

the trade-offs between trainability and performance (Table II

and Fig. 8), using gradient flow (GF) ± a critical metric of

trainability for sparse models [18], often used as a proxy of

their trainability. We find that fine-tuned SP does not perform

well with LAMP.

Why does SP with LAMP not perform as well after fine-

tuning? One possibility is that the bar is too high to cross,

namely, because DP for LAMP achieves remarkably high

performance compared to DP with GMP, leaving little room

for improvement. The high bar, combined with the relatively

poor one-shot performance, is therefore insufficient to outper-

form DP. We also note that fine-tuned SP with GMP tends

to perform better than fine-tuned SP models with LAMP for

larger models (Table II). Once again, we attribute this to a

combination of one-shot performance and the effect of fine

tuning.

For GMP, a one-shot boost in performance can help the

stochastic model outperform the deterministic model despite

presenting a smaller GF (ResNet18-CIFAR10 in Figure 8). In

contrast, for LAMP (with σ = 0.005), the initial increase in

accuracy is insufficient for fine-tuned models to outperform

the deterministic model.

In general, Figure 8 reveals a similar inverse relationship

for both LAMP and GMP: One-shot models with higher one-

shot accuracies tend to have lower GF, suppressing trainability

during fine-tuning, and hence losing their advantage over DP,

and even risking lower performance. The high level of noise

in these models (σ = 0.005) is therefore detrimental to finding

competitive fine-tuned solutions. However, models generated

with more modest noise levels (σ = 0.001) maintain their

advantage and can even outperform DP models after fine-

tuning.

One question that arises from these observations is whether,

given a set level of accuracy, maximising gradient flow is

always beneficial. To test this hypothesis, we used GraSP [20],

which explicitly preserves gradient flow during pruning. Using

GraSP, the GFs obtained are orders of magnitude larger, up

to O(104) (Figure 8 and Table II). Not only do such high

GF fail to enhance trainability, but in fact, they suppress it.

In our results, optimising GF is only fruitful for GF< 10. We

note that as GraSP was designed to operate at initialisation

(before training), its unbounded maximisation of GF improves

trainability in random networks, but not in pre-trained ones.

V. CONCLUSION AND DISCUSSION

We introduced stochastic pruning, both as a tool to explore

basins of attraction and as a pruning algorithm that is cost-

effective and simple to implement which is ideal for resource

constrained environments. We found that SP improves over

deterministic pruning by enabling exploration within the basin

of attraction. Given that surviving weights are robust to small

perturbations [18], SP effectively causes weight juxtaposition

near the pruning threshold, leading to a reconfiguration of

the remaining network. Furthermore, since solutions tend to

converge to the periphery of local optima rather than their

exact centres [29], these perturbations can further facilitate

beneficial shifts in the sparse subnetwork. The perturbation-

induced adjustments in SP can therefore enhance performance,

akin to the second-order corrections in Optimal Brain Surgeon

[14], suggesting that stochasticity may provide a more efficient

mechanism for discovering better sparse subnetworks.

Our analysis shed light on the tradeoffs of different pruning

rates, noise levels and pruning algorithms, in the one-shot and

fine-tuning settings. We found that feature variance explo-

sion is a concern for post-training pruning. Previously, [30]



demonstrated that adjusting the running statistics of the batch

normalisation layer using a small subset of data significantly

improves one-shot performance, which is strongly correlated

with final fine-tuning accuracies. Combined with our results,

this suggests a fundamental importance for understanding

feature variance and rein it in during pruning.
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