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 A B S T R A C T

The Multinomial Logit (MNL) model is widely used in route choice modelling due to its 
simple closed-form choice probability function. However, MNL assumes that the error terms 
are independently and identically distributed with infinite support. As a result, it imposes 
homoscedasticity, meaning that long and short trips share the same error variance, disregards 
correlations between overlapping routes, and assigns non-zero choice probabilities to all 
available routes, regardless of their cost. This paper addresses these limitations by developing 
a closed-form route choice model. We introduce the Bounded q-Product Logit (BqPL) model, 
which incorporates heteroscedastic error terms with bounded support. The parameter 𝑞 controls 
the rate at which error term variance increases with trip cost, and routes that violate cost 
bounds receive zero choice probabilities, implicitly defining the route choice set. Furthermore, 
we extend the BqPL model to account for correlations between overlapping routes by integrating 
path size correction terms within the choice probability function, resulting in the Bounded 
Path Size q-Product Logit (BPSqPL) model. We illustrate the properties of the BPSqPL model 
on small-scale networks, contrasting it with a range of existing choice models into which it 
can collapse. We then present a method to estimate the model parameters and standard errors, 
using bootstrapping. Finally, we estimate the model using a large-scale bicycle route choice 
case study, comparing its goodness-of-fit, interpretability, and forecasting ability with relevant 
collapsing models. We also test the impact of the choice set size on the estimated parameters. 
The results underscore the importance of addressing the three key limitations of the MNL model 
and demonstrate the effectiveness of the BPSqPL model in doing so.

. Introduction

The Multinomial Logit (MNL) is a Random Utility Model (RUM) (McFadden, 1974) which is widely used in route choice 
pplications due to its simple closed-form choice probability function that is quick and easy to compute and estimate. MNL makes, 
owever, several questionable assumptions of the random error terms, leading to some behavioural limitations:

• Homoscedasticity of the error terms: MNL assumes that the error terms for all routes of all OD movements are identically 
distributed with the same variance, i.e. the error terms are homoscedastic. However, as Bhat (1995) argues, the amount and 
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variability of unobserved characteristics of routes is likely to differ from one route to another, both of routes within a choice 
set and between choice sets (Munizaga et al., 2000). Longer routes, for instance, are likely to have greater variability in their 
unobserved characteristics than shorter routes, meaning there should be greater variance in their error terms.

• Independence of the error terms: MNL assumes that the error terms for all routes are independently distributed. Error terms are 
likely to be correlated, however, as routes tend to be highly overlapping, sharing links and their unobserved characteristics 
with many other routes (Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999). It is thus unrealistic to assume that there is no 
covariance between the error terms, as there is likely to be a correlation between the unobserved attributes of routes.

• Non-bounded support of the error terms: The MNL model assumes that error terms have infinite support, meaning that, 
theoretically, every possible alternative, no matter how improbable, has a non-zero probability of being chosen. This 
assumption is often unrealistic, especially in practical scenarios like route choice, where travellers typically avoid highly 
circuitous or inefficient routes. Real-life networks contain many such routes that are rarely, if ever, considered (Bovy, 2009; 
Duncan et al., 2022). Consequently, the MNL struggles to account for the natural process of choice set formation, where only 
a subset of alternatives is genuinely considered by decision-makers.

Numerous route choice modelling approaches have been developed to address each of these limitations.

• Accounting for heteroscedasticity: Bhat (1995) developed a heteroscedastic logit model where the error term for each route has a 
different scale. However, the model is not closed-form and is computationally expensive to compute in real-life networks. Other 
models building on Mixed Logit or Multinomial Probit have also been developed to account for heterogeneity in error term 
variance (e.g., Ben-Akiva and Bierlaire (1999) and Greene et al. (2006)). These models suffer from large estimation times and 
potential confounding effects between cost coefficient correlation and heteroscedasticity among alternatives (Hess and Train, 
2017). Among closed-form models, Chen et al. (2012) addresses the heteroscedasticity issue of MNL by modifying the Logit 
scaling parameter – which controls the variance of the error terms – to relate to the distance of the OD movement. While 
this model captures the heteroscedasticity of error terms across between choice sets, it cannot do so within alternatives of a 
choice set. Castillo et al. (2008) developed the closed-form Multinomial Weibit (MNW) model where the error term standard 
deviation grows linearly with travel cost. Thus, MNW captures the heteroscedasticity of route error terms across and within 
OD movements. Fosgerau and Bierlaire (2009) derive MNW in an alternative way through multiplicative random error terms. 
Chikaraishi and Nakayama (2016) developed the q-Product Logit (qPL) model that generalises both MNL and MNW, where 
one can control the rate at which error term variance increases with travel cost with a parameter 𝑞. Setting 𝑞 = 0 results 
in the MNL model and 𝑞 = 1 results in the MNW model. Yao and Chen (2014) and Xu et al. (2015) also developed Hybrid 
Logit-Weibit models that balance MNL and MNW, but these lack a strong behavioural foundation.

• Accounting for route overlap: Many models have been developed to address the overlap issue, which is often categorised into 
Generalised Extreme Value (GEV) structure models (e.g. Nested or Cross Nested Logit Vovsha, 1997, Paired Combinatorial 
Logit Koppelman and Wen, 2000), simulation models (e.g., Mixed Logit Bekhor et al., 2002, Probit Yai et al., 1997), and 
correction-term models (C-Logit Cascetta et al., 1996, Path Size Logit Ben-Akiva and Bierlaire, 1999). A detailed review of 
correlation-based route choice models can be seen in Duncan et al. (2020). Correction-term models, like MNL, feature simple 
closed-form choice probability functions that are easy to compute and estimate, making them the most commonly used in 
practice.

• Accounting for choice set formation: The assumption of unbounded support for the MNL error terms presents two key issues. 
The first is computational: enumerating the universal set of routes between an origin and destination on a large-scale network 
is infeasible. As a result, route choice models typically rely on sampling protocols to generate a realistic subset of considered 
routes (see Prato (2009) for a review). However, these sampling algorithms often use criteria that are inconsistent with those 
used for calculating route choice probabilities, leading to biased estimates (Frejinger et al., 2009; Frejinger and Bierlaire, 
2010). The second issue is behavioural: travellers cannot process the universal set of routes and are likely to use heuristics 
to build their consideration set (Simon, 1955). Failing to account for the effects of choice set formation is also known to 
bias estimates (Williams and Ortuzar, 1982). To address this, the concept of one-stage choice set formation models has 
been applied to route choice modelling (e.g., Cascetta and Papola (2001) and Martínez et al. (2009) with the Implicit 
Availability/Perception and Constrained MNL models, respectively). These models introduce the concept of fuzzy choice sets 
and penalise the deterministic cost of alternatives that do not meet non-compensatory cutoffs. However, this approach is 
inconsistent with Horowitz and Louviere (1995)’s finding that the same preferences should drive both choice set formation 
and choice probability determination. Additionally, these models are ‘soft’, meaning violating routes only receive reduced 
probabilities rather than strictly zero. Their application to large-scale data has also struggled to produce significant network-
related estimates (Ramming, 2002). A recent stream of models addresses choice set formation implicitly by modifying the 
distributional assumptions of error terms. Specifically, by bounding their support, Watling et al. (2018) with the Bounded 
Logit (BL) model1 and Tan et al. (2024) with the truncated path choice model, these models exclude alternatives from the 
choice sets (assign them zero probabilities) if their systematic cost is not within a bound set on cost. Moreover, these approaches 
do not impose additional assumptions on the decision rule used for choice set formation, aligning with Horowitz and Louviere 
(1995)’s observation that the same preferences should drive both processes.

1 This model was originally termed the Bounded Choice Model but is referred to here as the Bounded Logit model to distinguish it from other bounded 
models, such as the Bounded Weibit and Bounded q-Product Logit models.
2 
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Table 1
Table of acronyms.
 Acronym Meaning  
 MNL/MNW Multinomial Logit/Weibit  
 qPL q-Product Logit  
 BL/BW Bounded Logit/Weibit  
 BqPL Bounded q-Product Logit  
 BPSL/BPSW Bounded Path Size Logit/Weibit  
 BPSqPL Bounded Path Size q-Product Logit  
 GPSL/GPSW Generalised Path Size Logit/Weibit  
 GPSqPL Generalised Path Size q-Product Logit 

Some models have been developed to jointly address two of the three main shortcomings of the MNL model. For instance, the Path 
Size Weibit (Kitthamkesorn and Chen, 2013), Nested Weibit (Gu et al., 2022), and Cross-Nested q-Product Logit models (Chikaraishi 
and Nakayama, 2016) are designed to handle both heteroscedasticity and route correlation. Similarly, the Bounded Path Size 
Logit (BPSL) model (Duncan et al., 2022) accounts for route overlap and choice set formation, though it does not address 
heteroscedasticity. However, to the best of our knowledge, no existing route choice model addresses all three of these deficiencies 
simultaneously.

In this paper, we tackle this gap by developing a new closed-form route choice model that integrates several concepts from the 
literature. We begin by building on Chikaraishi and Nakayama (2016)’s q-Product Logit (qPL) model and Watling et al. (2018)’s 
Bounded Logit (BL) model to derive the Bounded q-Product Logit (BqPL) model. In this model, the error terms are assumed to follow 
a novel truncated q-log–logistic distribution, which is heteroscedastic and has bounded support. The parameter 𝑞 controls the rate 
at which error term variance increases with route cost, and routes that exceed a cost bound receive zero choice probabilities, thus 
implicitly determining the route choice set.

Subsequently, drawing on Duncan et al. (2022)’s Bounded Path Size Logit (BPSL) model, we extend the BqPL model to account 
for correlations between overlapping considered routes by incorporating appropriately-defined path size correction terms into the 
choice probability function. The resulting Bounded Path Size q-Product Logit (BPSqPL) model is a unified framework that can 
collapse into various existing and new models, including path size and/or bounded logit, weibit, and qPL variants.

The structure of the paper is as follows: Section 2 presents the theoretical background and derivation of the BPSqPL model, along 
with a discussion of its collapsing properties. Section 3 demonstrates the model’s theoretical properties by contrasting it with its 
collapsing models. In Section 4, we describe a method to estimate the BPSqPL parameters and their standard errors with observed 
discrete choice data. In Section 5, we estimate the models in a large-scale bicycle route choice case study, comparing goodness-of-fit, 
interpretability, and forecasting performance. We also test the robustness of the estimated parameters with respect to the choice set 
size. Finally, Section 6 concludes with a summary, discussion, and suggestions for future research.

Model acronyms used throughout the paper are presented in Table  1.

2. Model derivation and properties

In this section, we will derive the Bounded q-Product Logit (BqPL) model and its extension to account for route overlap 
consistently: the Bounded Path Size q-Product Logit (BPSqPL) model. These models utilise a generalisation of the relation between 
the systematic and stochastic components of the random cost of alternatives, which may vary between the sum and the product 
depending on the value of a model parameter 𝑞. This assumption allows the variance of the random costs to increase with their 
expected value, and 𝑞 influences this growth rate. We will first introduce in Section 2.1 some preliminary modelling definitions we 
will use to derive the BqPL model. In Section 2.2, we shall then derive the BqPL model, following a method adapted from Watling 
et al. (2018) and Duncan et al. (2022) for deriving the BL model. Special cases of the BqPL model are discussed in Section 2.3. Taking 
inspiration from how Duncan et al. (2022) formulate the BPSL model, in Section 2.5 we integrate analogous path size correction 
terms within the BqPL probability function to formulate the BPSqPL model. In Section 2.6, we summarise the collapsing properties 
of the different presented models and their properties.

2.1. Preliminaries

Here, we introduce some preliminary modelling definitions used to derive the BqPL model. In Section 2.1.1 we define a set of 
‘‘q-operators’’, a set of functions used to formulate the qPL model in Chikaraishi and Nakayama (2016) that we shall also utilise 
here. These q-operators allow for one to establish a more complex relationship between the systematic and random components 
of route costs. In Section 2.1.2, we introduce the probability distribution we will assume of error terms to derive the BqPL model. 
distributions.
3 
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2.1.1. q-operators
Here, we present some q-operators. First, the ‘‘q-product’’ (Borges, 2004) can be seen as an in-between of the sum and the product. 

The 𝑞 ∈ [0, 1] parameter controls the closeness to the sum or product. It is defined for 𝑎 > 0 and 𝑏 > 0 such that 𝑎1−𝑞 + 𝑏1−𝑞 − 1 > 0
as: 

𝑎 ⊗𝑞 𝑏 =
(

𝑎1−𝑞 + 𝑏1−𝑞 − 1
)

1
1−𝑞
+ (1)

where (.)+ = max(0, .). Its limiting cases are lim𝑞→1 𝑎 ⊗𝑞 𝑏 = 𝑎𝑏 and 𝑎 ⊗0 𝑏 = 𝑎 + 𝑏 − 1. We can similarly define the ‘‘q-ratio’’ as the 
inverse operator of the q-product: 

𝑎 ⊘𝑞 𝑏 =
(

𝑎1−𝑞 − 𝑏1−𝑞 + 1
)

1
1−𝑞
+ (2)

Its limiting cases are lim𝑞→1 𝑎⊘𝑞 𝑏 = 𝑎∕𝑏 and 𝑎⊘0 𝑏 = 𝑎−𝑏+1. It is the inverse of the q-product because 𝑎⊗𝑞 (1⊘𝑞 𝑎) = 1. Additionally, 
for any positive real number 𝑥, we define the ‘‘q-logarithm’’ (Tsallis, 1994) as: 

ln𝑞(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥1−𝑞 − 1
1 − 𝑞

if 𝑞 ≠ 1

ln(𝑥) if 𝑞 = 1
(3)

Notably, ln0(𝑥) = 𝑥−1. We have that ln𝑞(𝑎⊗𝑞𝑏) = ln𝑞(𝑎)+ln𝑞(𝑏). The inverse function of the q-logarithm is given by the ‘‘q-exponential’’: 

exp𝑞(𝑥) =

⎧

⎪

⎨

⎪

⎩

(1 + (1 − 𝑞)𝑥)
1

1−𝑞
+ if 𝑞 ≠ 1

exp(𝑥) if 𝑞 = 1
(4)

We have the property that, for any 𝑥 > 0, exp𝑞(ln𝑞(𝑥)) = ln𝑞(exp𝑞(𝑥)) = 𝑥.
These functions retain the morphism properties of the classic exponential and logarithms, e.g., ln𝑞(𝑎 ⊘𝑞 𝑏) = ln𝑞(𝑎) − ln𝑞(𝑏), 

ln𝑞(𝑎 ⊗𝑞 𝑏) = ln𝑞(𝑎) − ln𝑞(𝑏), exp𝑞(𝑎 + 𝑏) = exp𝑞(𝑎)⊗𝑞 exp𝑞(𝑏) and exp𝑞(𝑎 − 𝑏) = exp𝑞(𝑎)⊘𝑞 exp𝑞(𝑏).

2.1.2. Probability distributions
The BqPL model is derived by assuming random error terms follow a new probability distribution named the Truncated q-Log-

Logistic distribution. This distribution is derived from a series of other distributions. The Truncated q-log–logistic distribution is 
derived by truncating a q-log–logistic distribution. The q-log–logistic distribution is derived by taking the q-ratio of two q-Gumbel 
distributions. The q-Gumbel distribution is derived by introducing a q-logarithm operator to transform the dependent variable in 
the Gumbel distribution. It thus generalises both the Gumbel and Weibull distributions.

We shall thus begin by defining the q-Gumbel distribution as introduced in Chikaraishi and Nakayama (2016), which has the 
following Probability Distribution Function (PDF): 

𝑓𝑞𝐺(𝑥|𝜃, 𝜇, 𝑞) = 𝜃𝑥−𝑞 exp
(

−𝜃(ln𝑞(𝑥) − ln𝑞(𝜇))
)

exp
[

−exp
(

−𝜃(ln𝑞(𝑥) − ln𝑞(𝜇))
)]

(5)

𝜃 is the scale parameter, 𝜇 is the location parameter, and 𝑞 is the heteroscedasticity parameter. Indeed, 𝑞 parametrises the rate 
at which the variance of the 𝑞-Gumbel increases with 𝜇 (an illustration can be found in Chikaraishi and Nakayama (2016)). Its 
Cumulative Distribution Function (CDF) is given by: 

𝐹𝑞𝐺(𝑥|𝜃, 𝜇, 𝑞) = 1 − exp
[

−exp
(

−𝜃(ln𝑞(𝑥) − ln𝑞(𝜇))
)]

(6)

As one can see, the q-Gumbel distribution is derived by replacing logarithm operators with q-logarithm operators in the Gumbel 
distribution. Note that, as shown in Chikaraishi and Nakayama (2016), the q-Gumbel distribution is equivalent to the Gumbel 
distribution for 𝑞 = 0 and equivalent to the Weibull distribution for 𝑞 = 1. As proved in Chikaraishi and Nakayama (2016), the 
q-Gumbel distribution variance increases with its mean 𝜇, which allows the qPL model to account for heteroscedasticity.

Next, we shall derive a q-Log-Logistic distribution by taking the q-ratio of two independent q-Gumbel distributions. Let 𝑋
and 𝑌  follow two independent q-Gumbel distributions with the same scale and 𝑞 parameter, i.e., 𝑋 ∼ 𝑞Gumbel(𝜃, 𝜇𝑋 , 𝑞) and 
𝑌 ∼ 𝑞Gumbel(𝜃, 𝜇𝑌 , 𝑞). Then, their q-ratio 𝑍 = 𝑋 ⊘𝑞 𝑌  follows a q-Log-Logistic distribution, whose CDF, denoted 𝐹𝑞𝐿, is given 
by: 

𝐹𝑍 (𝑥) = 𝐹𝑞𝐿(𝑥|𝜃, 𝜇, 𝑞) ∶=
1

1 + exp
[

−𝜃(ln𝑞(𝑥) − ln𝑞(𝜇𝑍 ))
] (7)

where 𝜇𝑍 = 𝜇𝑋 ⊘𝑞 𝜇𝑌 . This is proven as follows:

Proof.  Let us assume two variables 𝑋 ∼ 𝑞Gumbel(𝜃, 𝜇𝑋 , 𝑞), 𝑌 ∼ 𝑞Gumbel(𝜃, 𝜇𝑌 , 𝑞) as defined above. If 𝑞 = 1, the result comes 
directly from the Weibit proof from Gu et al. (2022). If 𝑞 ≠ 1, we have that ln𝑞(𝑋 ⊘𝑞 𝑌 ) = ln𝑞(𝑋) − ln𝑞(𝑌 ). As proved in Chikaraishi 
and Nakayama (2016), ln𝑞(𝑋) ∼ Gumbel(𝜃, ln𝑞(𝜇𝑋 )) and ln𝑞(𝑌 ) ∼ Gumbel(𝜃, ln𝑞(𝜇𝑌 )). Their difference is thus Logistically distributed, 
i.e., ln𝑞(𝑋 ⊘𝑞 𝑌 ) ∼ Logistic(𝜃, 𝜇), where 𝜇 = ln𝑞(𝜇𝑋 ) − ln𝑞(𝜇𝑌 ) = ln𝑞(𝜇𝑋 ⊘𝑞 𝜇𝑌 ). It has the following CDF:

𝐹ln (𝑋⊘ 𝑌 )(𝑥|𝜃, 𝜇) = Pr
(

ln𝑞(𝑋 ⊘𝑞 𝑌 ) ≤ 𝑥
)

= 1

𝑞 𝑞 1 + exp(−𝜃(𝑥 − 𝜇))

4 
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The function 𝑥 → exp𝑞(𝑥) is monotonically increasing, meaning that:
𝐹ln𝑞 (𝑋⊘𝑞𝑌 )(𝑥) = Pr

(

ln𝑞(𝑋 ⊘𝑞 𝑌 ) ≤ 𝑥
)

= Pr
(

𝑋 ⊘𝑞 𝑌 ≤ exp𝑞(𝑥)
)

= 𝐹𝑋⊘𝑞𝑌 (exp𝑞(𝑥))

Thus,

𝐹𝑋⊘𝑞𝑌 (𝑥) = 𝐹ln𝑞 (𝑋⊘𝑞𝑌 )(ln𝑞(𝑥))

= 1
1 + exp

[

−𝜃(ln𝑞(𝑥) − ln𝑞(𝜇))
]

where 𝜇 = 𝜇𝑋 ⊘𝑞 𝜇𝑌  □

The proposed Truncated q-Log-Logistic distribution is derived by left-truncating the q-Log-Logistic distribution at a lower bound 
1⊘𝑞𝜙 for some 𝜙 ≥ 1. If 𝑋 ∼ q-Log–logistic(𝜃, 𝜇, 𝑞), we define the CDF of the Truncated q-Log-Logistic distribution as the distribution 
of the 𝑋 given that its value is larger than the truncation threshold 1⊘𝑞 𝜙:

𝐹𝑞𝑇 (𝑥|𝜃, 𝜇, 𝑞, 𝜙) = P(𝑋 ≤ 𝑥|𝑋 ≥ 1⊘𝑞 𝜙)

=
P(𝑋 ≤ 𝑥;𝑋 ≥ 1⊘𝑞 𝜙)

P(𝑋 ≥ 1⊘𝑞 𝜙)

=
P(1⊘𝑞 𝜙 ≤ 𝑋 ≤ 𝑥)
1 − P(𝑋 ≤ 1⊘𝑞 𝜙)

=

⎧

⎪

⎨

⎪

⎩

𝐹𝑞𝐿(𝑥|𝜃, 𝜇, 𝑞) − 𝐹𝑞𝐿(1⊘𝑞 𝜙|𝜃, 𝜇, 𝑞)
1 − 𝐹𝑞𝐿(1⊘𝑞 𝜙|𝜃, 𝜇, 𝑞)

if 𝑥 ≥ 1⊘𝑞 𝜙

0 if 0 ≤ 𝑥 < 1⊘𝑞 𝜙
(8)

where 𝐹𝑞𝐿 is the CDF of the q-Log-Logistic distribution, given in Eq.  (7). The PDF of the Truncated q-Log-Logistic distribution can 
be found by differentiating the CDF with respect to 𝑥: 

𝑓𝑞𝑇 (𝑥|𝜃, 𝜇, 𝑞, 𝜙) =

⎧

⎪

⎨

⎪

⎩

𝑓𝑞𝐿(𝑥|𝜃, 𝜇, 𝑞)
1 − 𝐹𝑞𝐿(1⊘𝑞 𝜙|𝜃, 𝜇, 𝑞)

if 𝑥 ≥ 1⊘𝑞 𝜙

0 if 0 ≤ 𝑥 < 1⊘𝑞 𝜙
(9)

where 𝑓𝑞𝐿 = 𝜕𝐹𝑞𝐿∕𝜕𝑥, i.e.,

𝑓𝑞𝐿(𝑥|𝜃, 𝜇, 𝑞) = 𝜃𝑥−𝑞 exp(𝜃(ln𝑞(𝑥) − 𝜇))
[

1 + exp(𝜃(ln𝑞(𝑥) − 𝜇))
]−2

The Truncated q-Log-Logistic CDF can be written compactly as:

𝐹𝑞𝑇 (𝑥|𝜃, 𝜇, 𝑞, 𝜙) =
(𝐹𝑞𝐿(𝑥|𝜃, 𝜇, 𝑞) − 𝐹𝑞𝐿(1⊘𝑞 𝜙|𝜃, 𝜇, 𝑞))+

1 − 𝐹𝑞𝐿(1⊘𝑞 𝜙|𝜃, 𝜇, 𝑞)

where (.)+ is the operator max(0, .). The CDF of the Truncated q-Log-Logistic distribution for some fixed values of parameters is 
plotted in Fig.  1. We observe that, for 𝜙 = 1, the CDF equals zero for all 𝑥 < 1, then tends to the q-Log-Logistic distribution CDF 
when 𝑥 tends to +∞. We also see that, for 𝜇 = 1, the CDF gradient is steeper than for 𝜇 = 3, which means that its values have less 
variance. This highlights the heteroscedasticity property of the q-Log-Logistic and its truncated version.

2.2. Derivation of the bounded q-product logit model

Here we derive the BqPL model, following a similar approach to how the BL model is derived in Duncan et al. (2022) (see 
Supplementary Material Appendix A of that paper). For pedagogical purposes, we shall briefly describe how the BL model is derived 
so that it is clear what is different in the derivation of the BqPL model. Suppose a decision-maker faces a route choice situation 
with a choice set  = {1,… , 𝑛}. Suppose that each alternative 𝑖 ∈  can be described by some observed attributes aggregated 
within a positive systematic cost function 𝑐𝑖 > 0. To account for the analyst’s lack of knowledge of the actual route cost that the 
decision-maker perceives, the costs have random errors. For the BL model, it is assumed that this random error is additive to the 
systematic cost: 𝐶𝑖 = 𝑐𝑖 + 𝜖𝑖, where 𝜖𝑖 is the error term for route 𝑖. Now, the BL model supposes that each route is compared with 
an imaginary reference alternative 𝑟∗ in terms of the difference in random cost:

𝐶𝑖 − 𝐶𝑟∗ = (𝑐𝑖 + 𝜖𝑖) − (𝑐𝑟∗ + 𝜖𝑟∗ ) = 𝑐𝑖 − 𝑐𝑟∗ + 𝜖𝑖 − 𝜖𝑟∗ = 𝑐𝑖 − 𝑐𝑟∗ + 𝜀𝑖

where 𝜀𝑖 is the difference random error term for route 𝑖 with the reference alternative. The MNL model can be derived by assuming 
the 𝜖𝑖 error terms are Gumbel distributed, and thus, the 𝜀𝑖 difference random error terms assume the Logistic distribution. The BL 
model, however, proposes that the difference random error terms 𝜀𝑖 assume a Truncated Logistic distribution, obtained by left-
truncating a Logistic distribution with mean 0 and scale 𝜃 at a lower bound of −𝜙 for some 𝜙 > 0. The consequent BL choice 
probability function imposes a bound 𝜙 on the difference in systematic cost with the reference alternative, with violating routes 
receiving zero choice probabilities.
5 
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Fig. 1. q-Log-Logistic and Truncated q-Log-Logistic CDFs for 𝜇 = 1 and 𝜇 = 3, all the other parameters being fixed.

For the BqPL model, rather than supposing that the random error is additive to the systematic cost, we suppose the random error 
relates via a q-product operator to the systematic cost: 𝐶𝑖 = 𝑐𝑖 ⊗𝑞 𝜖𝑖. The q-ratio in random cost between route 𝑖 and the reference 
alternative is thus:

𝐶𝑖 ⊘𝑞 𝐶𝑟∗ = (𝑐𝑖 ⊗𝑞 𝜖𝑖)⊘𝑞 (𝑐𝑟∗ ⊗𝑞 𝜖𝑟∗ ) = 𝑐𝑖 ⊘𝑞 𝑐𝑟∗ ⊗𝑞 𝜖𝑖 ⊘𝑞 𝜖𝑟∗ = 𝑐𝑖 ⊘𝑞 𝑐𝑟∗ ⊗𝑞 𝜀𝑖

It is important to note that while we define 𝜖𝑖 as the random cost error term for alternative 𝑖, its distribution is not explicitly specified. 
The only distributional assumption is made on the relative error term, defined as 𝜀𝑖 = 𝜖𝑟∗ ⊘𝑞 𝜖𝑖. The BqPL model can be derived 
without assuming a random utility for each alternative, but instead by considering only the relative random utility with respect 
to the reference alternative. This approach, along with further discussion on the error term distribution and heteroscedasticity, is 
presented in Appendix  D. The qPL model can be derived by assuming 𝜀𝑖 = 𝜖𝑖 ⊘𝑞 𝜖𝑟∗  follows a q-Log-Logistic distribution. For the 
BqPL model, the q-ratio of random error terms 𝜀𝑖 is assumed to follow a Truncated q-Log-Logistic distribution with mean 0, scale 
𝜃, 𝑞-parameter 𝑞, and bound 𝜙. This implies that:

Pr(𝜖𝑖 ⊘𝑞 𝜖𝑟∗ ≤ 1⊘𝑞 𝜙) = 0

or equivalently,
Pr(𝐶𝑖 ⊘𝑞 𝐶𝑟∗ ≤ 𝑐𝑖 ⊘𝑞 (𝜙⊗𝑞 𝑐𝑟∗ )) = 0

meaning that the random cost q-ratio must be within a bound 𝜙 ≥ 1 of the systematic cost q-ratio. The probability of choosing an 
alternative 𝑖 ∈  over a reference alternative 𝑟∗ is given by:

Pr(𝑖|{𝑖, 𝑟∗}) = Pr(𝐶𝑖 ≤ 𝐶𝑟∗ )

= Pr(𝑐𝑖 ⊗𝑞 𝜖𝑖 ≤ 𝑐𝑟∗ ⊗𝑞 𝜖𝑟∗ )

= Pr(𝜖𝑖 ⊘𝑞 𝜖𝑟∗ ≤ 𝑐𝑟∗ ⊘𝑞 𝑐𝑖)

= Pr(𝜀𝑖 ≤ 𝑐𝑟∗ ⊘𝑞 𝑐𝑖) (10)

Assuming that 𝜀𝑖 = 𝜖𝑖 ⊘𝑞 𝜖𝑟∗  follows a truncated q-Log-Logistic distribution with scale parameter 𝜃, a location parameter of 1, a 
shape parameter 𝑞 and a bound parameter 𝜙, the choice probabilities can be rewritten:

Pr(𝑖|{𝑖, 𝑟∗}) = 𝐹𝑞𝑇 (𝑐𝑟∗ ⊘𝑞 𝑐𝑖|𝜃, 1, 𝑞, 𝜙)

=

⎧

⎪

⎨

⎪

𝐹𝑞𝐿(𝑐𝑟∗ ⊘𝑞 𝑐𝑖|𝜃, 1, 𝑞) − 𝐹𝑞𝐿(1⊘𝑞 𝜙|𝜃, 1, 𝑞)
1 − 𝐹𝑞𝐿(1⊘𝑞 𝜙|𝜃, 1, 𝑞)

if 𝑐𝑟∗ ⊘𝑞 𝑐𝑖 ≥ 1⊘𝑞 𝜙

0 otherwise

⎩

6 
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=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1 + 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖)

− 1
1 + 𝑒−𝜃 ln𝑞 (1⊘𝑞𝜙)

1 − 1
1 + 𝑒−𝜃 ln𝑞 (1⊘𝑞𝜙)

if 𝑐𝑟∗ ⊘𝑞 𝑐𝑖 ≥ 1⊘𝑞 𝜙

0 otherwise

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑒𝜃 ln𝑞 (𝜙) − 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖)

(1 + 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖))(1 + 𝑒𝜃 ln𝑞 (𝜙))
𝑒𝜃 ln𝑞 (𝜙)

1 + 𝑒𝜃 ln𝑞 (𝜙)

if 𝑐𝑟∗ ⊘𝑞 𝑐𝑖 ≥ 1⊘𝑞 𝜙

0 otherwise

=

⎧

⎪

⎨

⎪

⎩

𝑒𝜃 ln𝑞 (𝜙) − 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖)

(1 + 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖))𝑒𝜃 ln𝑞 (𝜙)
if 𝑐𝑟∗ ⊘𝑞 𝑐𝑖 ≥ 1⊘𝑞 𝜙

0 otherwise

We define the odds ratio as 𝜂𝑖 = Pr(𝑖|{𝑖,𝑟∗})
1−Pr(𝑖|{𝑖,𝑟∗}) . First, 1 − Pr(𝑖|{𝑖, 𝑟∗}) can be expressed as follows:

1 − Pr(𝑖|{𝑖, 𝑟∗}) =
⎧

⎪

⎨

⎪

⎩

1 − 𝑒𝜃 ln𝑞 (𝜙) − 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖)

(1 + 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖))𝑒𝜃 ln𝑞 (𝜙)
if 𝑐𝑟∗ ⊘𝑞 𝑐𝑖 ≥ 1⊘𝑞 𝜙

1 otherwise

=

⎧

⎪

⎨

⎪

⎩

𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖⊘𝑞𝜙) + 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖)

(1 + 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖))𝑒𝜃 ln𝑞 (𝜙)
if 𝑐𝑟∗ ⊘𝑞 𝑐𝑖 ≥ 1⊘𝑞 𝜙

1 otherwise

Consequently, we can simplify 𝜂𝑖 as:

𝜂𝑖 =

(

𝑒𝜃 ln𝑞 (𝜙) − 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖)
)

+

𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖⊘𝑞𝜙) + 𝑒−𝜃 ln𝑞 (𝑐𝑟∗⊘𝑞𝑐𝑖)

=

(

𝑒−𝜃 ln𝑞 (𝑐𝑖⊘𝑞 (𝜙⊗𝑞𝑐𝑟∗ )) − 1
)

+

(𝑒𝜃 ln𝑞 (𝜙) + 1)
We retrieve the choice probabilities of 𝑖 among the choice set  using the log-odds ratio formula:

Pr(𝑖|) = 𝑒ln(𝜂𝑖)
∑

𝑗∈ 𝑒ln(𝜂𝑗 )

i.e., 

𝑃 B𝑞PL𝑖 ∶= Pr(𝑖|) =

(

𝑒−𝜃 ln𝑞 (𝑐𝑖⊘𝑞 (𝜙⊗𝑞𝑐∗𝑟 )) − 1
)

+
∑

𝑗∈

(

𝑒−𝜃 ln𝑞 (𝑐𝑗⊘𝑞 (𝜙⊗𝑞𝑐∗𝑟 )) − 1
)

+

(11)

For the BL model, Watling et al. (2018) proposed defining the reference alternative as the alternative with the cheapest systematic 
cost, i.e., 𝑐𝑟∗ = min𝑗∈ 𝑐𝑗 . And, they specify the bound so that it is relative to the cheapest cost, i.e. a route receives a zero choice 
probability if it has a cost 𝑐𝑖 ≥ 𝜑min𝑗∈ 𝑐𝑗 . This is because the desired bounding condition is relative to the scale of costs for each 
OD movement.

To specify the BqPL model so that it has the same bounding condition as the BL model, we set 𝜙 = 𝜑𝑐𝑟∗ ⊘𝑞 𝑐𝑟∗ , where 𝜑 > 1 is 
the relative cost bound parameter. The consequent BqPL choice probability function is as follows for route 𝑖:

𝑃 rel. B𝑞PL𝑖 ∶= Pr(𝑖|) =

(

exp(−𝜃 ln𝑞(𝑐𝑖 ⊘𝑞 (𝜑min𝑙∈ 𝑐𝑙))) − 1
)

+
∑

𝑗∈
(

exp(−𝜃 ln𝑞(𝑐𝑗 ⊘𝑞 (𝜑min𝑙∈ 𝑐𝑙))) − 1
)

+

=

(

exp(−𝜃(ln𝑞(𝑐𝑖) − ln𝑞(𝜑min𝑙∈ 𝑐𝑙))) − 1
)

+
∑

𝑗∈
(

exp(−𝜃(ln𝑞(𝑐𝑗 ) − ln𝑞(𝜑min𝑙∈ 𝑐𝑙))) − 1
)

+

(12)

With this BqPL choice probability function, an alternative will receive a non-zero choice probability if and only if 𝑐𝑖 < 𝜑min𝑙∈ 𝑐𝑙. 
Although in this study we specify the BqPL bound as a relative cost bound to be consistent with the BL model, one can also specify 
the bound in other ways with different implications, see Appendix  A for a discussion.

2.3. Special cases of the BqPL model

Under certain specifications of the model parameters, the BqPL model can collapse into existing and new models. In this section, 
we summarise them.
7 
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2.3.1. When 𝜑 → +∞: the qPL model
When 𝜑 tends to infinity, the BqPL model collapses to Chikaraishi and Nakayama (2016)’s qPL model. Rearranging the BqPL 

probability relation in Eq.  (12): 

𝑃 rel. B𝑞PL𝑖 =
exp(−𝜃 ln𝑞(𝑐𝑖))

(

1 − exp(𝜃 ln𝑞(𝑐𝑖 ⊘𝑞 (𝜑min𝑙∈ 𝑐𝑙)))
)

+
∑

𝑗∈ exp(−𝜃 ln𝑞(𝑐𝑗 ))
(

1 − exp(𝜃 ln𝑞(𝑐𝑖 ⊘𝑞 (𝜑min𝑙∈ 𝑐𝑙)))
)

+

(13)

As lim𝜑→+∞ exp(𝜃 ln𝑞(𝑐𝑖 ⊘𝑞 (𝜑min𝑙∈ 𝑐𝑙))) = 0, we have that, from Eq.  (13): 

lim
𝜑→+∞

(

exp(−𝜃 ln𝑞(𝑐𝑖 ⊘𝑞 (𝜑min𝑙∈ 𝑐𝑙))) − 1
)

+
∑

𝑗∈
(

exp(−𝜃 ln𝑞(𝑐𝑗 ⊘𝑞 (𝜑min𝑙∈ 𝑐𝑙))) − 1
)

+

=
exp(−𝜃 ln𝑞(𝑐𝑖))

∑

𝑗∈ exp(−𝜃 ln𝑞(𝑐𝑗 ))
= 𝑃 𝑞PL

𝑖 (14)

2.3.2. When 𝑞 = 0: the BL model
When 𝑞 = 0, as ln𝑞(𝑥) = 𝑥 − 1 for any 𝑥 > 0, the BqPL collapses to Watling et al. (2018) Bounded Logit (BL), with the following 

choice probabilities: 

𝑃 rel. B𝑞PL𝑖,𝑞=0 =

(

exp(−𝜃(𝑐𝑖 − 𝜑min𝑙∈ 𝑐𝑙)) − 1
)

+
∑

𝑗∈
(

exp(−𝜃(𝑐𝑗 − 𝜑min𝑙∈ 𝑐𝑙)) − 1
)

+

(15)

2.3.3. When 𝑞 = 1: the Bounded Weibit (BW) model
When 𝑞 = 1, as ln𝑞(𝑥) = ln(𝑥) for any 𝑥 > 0, the BqPL collapses to what we will refer to as the Bounded Weibit (BW) model, i.e., a 

bounded model which collapses to the Multinomial Weibit model (Castillo et al., 2008) when the bound tends to +∞. Its choice 
probabilities are given by: 

𝑃 BW𝑖 ∶= 𝑃 B𝑞PL𝑖,𝑞=1 =

(

(𝑐𝑖∕𝜑min𝑙∈ 𝑐𝑙)−𝜃 − 1
)

+
∑

𝑗∈
(

(𝑐𝑗∕𝜑min𝑙∈ 𝑐𝑙)−𝜃 − 1
)

+

(16)

2.4. Model variance

A key feature of the Bounded q-Product Logit model is its inherent heteroscedasticity, meaning the variance of the decision noise 
is not constant but varies with the deterministic cost structure. This property emerges naturally from the model’s definition of the 
random cost q-ratio:

𝐶𝑖 ⊘𝑞 𝐶𝑟∗ = (𝑐𝑖 ⊘𝑞 𝑐𝑟∗ )⊗𝑞 𝜀𝑖

=
(

(𝑐𝑖 ⊘𝑞 𝑐𝑟∗ )1−𝑞 + 𝜀1−𝑞𝑖 − 1
)

1
1−𝑞

where 𝜀𝑖 is an error term drawn from a truncated q-LogLogistic distribution with a mean of 1, which is equivalent to say that 
𝐶𝑖 ⊘𝑞 𝐶𝑟∗  is drawn from a truncated q-LogLogistic distribution with a mean of 𝑐𝑖 ⊘𝑞 𝑐𝑟∗

The theoretical variance of the random cost q-ratio is therefore given by:

Var(𝐶𝑖 ⊘𝑞 𝐶𝑟∗ ) =∫

∞

1⊘𝑞𝜙

(

(

(𝑐𝑖 ⊘𝑞 𝑐𝑟∗ )1−𝑞 + 𝜀1−𝑞𝑖 − 1
)

2
1−𝑞

)

𝑓𝑞𝑇 (𝜀𝑖 ∣ 𝜃, 1, 𝑞, 𝜙) 𝑑𝜀𝑖−

(

∫

∞

1⊘𝑞𝜙

(

(𝑐𝑖 ⊘𝑞 𝑐𝑟∗ )1−𝑞 + 𝜀1−𝑞𝑖 − 1
)

1
1−𝑞 𝑓𝑞𝑇 (𝜀𝑖 ∣ 𝜃, 1, 𝑞, 𝜙) 𝑑𝜀𝑖

)2

where 𝑓𝑞𝑇  is the truncated q-LogLogistic distribution PDF, given in Eq.  (9). This expression for the variance has no closed-form 
solution and must hence be evaluated numerically. Fig.  2 illustrates how the variance evolves with both the shape parameter 𝑞
and the deterministic component of the cost ratio. Notably, when 𝑞 = 0, corresponding to the Bounded Logit model, the variance 
remains relatively stable across different cost difference levels. As 𝑞 increases, however, the variance becomes increasingly sensitive 
to the deterministic q-cost ratio 𝑐𝑖 ⊘𝑞 𝑐𝑟∗ , revealing the heteroscedastic nature of the model: variance grows with the cost disparity 
between alternatives.

2.5. Accounting for route correlation: The bounded path size q-product logit model

In this section, we extend the BqPL model to account for route correlation. Path size correction models are widely used in route 
choice due to their applicability to large choice sets and the extensive work to accurately approximate the correlation structure of 
routes. Path size correction models capture correlations between overlapping routes by including heuristic correction factors within 
the probability relation to penalising routes for sharing links with other routes. These correction factors depend upon path size terms 
that measure the distinctiveness of a route: the less distinct a route is (i.e., the more it overlaps/shares links with other routes), 
the greater the penalisation. Path size correction terms have been incorporated, for example, within Logit (Ben-Akiva and Bierlaire, 
1999), Weibit (Kitthamkesorn and Chen, 2013), and Hybrid Logit-Weibit (Xu et al., 2015) probability relations.

Recently, Duncan et al. (2022) explored how to incorporate path size correction terms within the BL model, developing a Bounded 
Path Size Logit (BPSL) model, where careful consideration was given over the definition of the path size term so that correlation 
8 
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Fig. 2. Variance of the random cost q-Ratio, for a fixed bound 𝜙 = 1.3 and 𝜃 = 5.

is captured between only the routes defined as considered by the model through the cost bound. The contention is that penalising 
considered routes for overlapping with non-considered routes would be unrealistic. Careful consideration was also given to ensure 
the path size terms were continuous as routes cross from being considered to non-considered as costs cross from below to above the 
bound (and vice versa), thus ensuring a continuous choice probability function.

A key property of the BPSqPL model is that Path-Size correction terms are not included in route utilities (generalised route costs). 
As a result, route overlap affects route choice probabilities but does not influence the formation of the choice set. This approach 
is justified both behaviourally and practically. Behaviourally, we argue that a route is not inherently unrealistic simply because it 
overlaps significantly with others. Additionally, unlike traditional route attributes, Path-Size correction terms are neither directly 
observable nor comparable by travellers, making it unlikely that they would influence route consideration. To our knowledge, no 
empirical evidence supports excluding highly overlapping routes from choice sets based on behavioural factors.

From a mathematical perspective, incorporating Path-Size corrections into route costs leads to undesirable model properties. 
As discussed in Appendix C of Duncan et al. (2022), doing so violates key desirable properties, such as ensuring continuity of the 
probability function and preventing unrealistic routes from influencing the Path-Size terms of realistic routes. For these reasons, our 
model accounts for route overlap in choice probabilities but not in the bounding condition for choice set formation.

For the BqPL model, we take inspiration from the BPSL model to formulate a Bounded Path Size q-Product Logit (BPSqPL) model, 
where the path size terms are defined appropriately to capture correlations between considered routes only and a continuous choice 
probability function is maintained. Let us assume a route choice situation with the universal choice set  of routes. Each route 
𝑖 ∈  consists of a set of links 𝐴𝑖 ⊆ 𝐴, where 𝐴 is the universal set of links in the network. These links are defined by attributes 
aggregated in positive cost functions 𝑡𝑎, 𝑎 ∈ 𝐴, parameterised by a vector of parameters 𝜶. The total cost 𝑐𝑖 of route 𝑖 is link-additive, 
i.e. 𝑐𝑖 =

∑

𝑎∈𝐴𝑖
𝑡𝑎. For fixed parameters 𝜶, 𝜑, we define ̄(𝜶, 𝜑) ⊆  as the subset of considered routes with a cost less than 𝜑 times 

the cheapest route cost:

̄(𝜶, 𝜑) =
{

𝑖 ∈ , 𝑐𝑖(𝜶) < 𝜑min
𝑙∈

𝑐𝑙(𝜶)
}

The BPSqPL choice probability function for route 𝑖 is: 

𝑃 BPSqPL𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝛾BPSqPL𝑖

)𝜂
(

exp(−𝜃(ln𝑞(𝑐𝑖) − ln𝑞(𝜑min𝑙∈ 𝑐𝑙))) − 1
)

∑

𝑗∈̄

(

𝛾BPSqPL𝑗

)𝜂
(

exp(−𝜃(ln𝑞(𝑐𝑗 ) − ln𝑞(𝜑min𝑙∈ 𝑐𝑙))) − 1
)

if 𝑖 ∈ ̄

0 otherwise

(17)

where (𝛾BPSqPL𝑖 )𝜂 is the path size correction factor for considered route 𝑖 ∈ ̄ (non-considered routes do not have path size terms). 
𝜂 ≥ 0 is the path size scaling parameter scaling sensitivity to route distinctiveness, and 𝛾BPSqPL𝑖 ∈ (0, 1] is the path size term for 
considered route 𝑖 ∈ ̄, calculated as follows: 

𝛾BPSqPL𝑖 =
∑

𝑎∈𝐴𝑖

𝑡𝑎
𝑐𝑖

(

exp(−𝜃(ln𝑞(𝑐𝑖) − ln𝑞(𝜑min𝑙∈ 𝑐𝑙))) − 1
)

∑

𝑗∈̄
(

exp(−𝜃(ln𝑞(𝑐𝑖) − ln𝑞(𝜑min𝑙∈ 𝑐𝑙))) − 1
)

𝛿𝑎𝑗
(18)

𝛿𝑎𝑗 is equal to 1 if route 𝑗 uses link 𝑎 ∈ 𝐴𝑖, and zero otherwise. 𝛾BPSqPL𝑖  is specified so that (a) non-considered routes with costs 
above the bound, i.e. routes 𝑗 ∉ ̄, do not contribute to reducing the path size terms of considered routes with costs below the 
9 
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Fig. 3. Model collapsing.

bound, and (b) the path size term function is continuous as routes enter and exit the considered route set ̄ (as costs cross from 
below to above the bound and vice versa). It is also formulated in terms of summing over 𝑗 ∈ ̄ rather than with (.)+ functions to 
avoid occurrences of 0/0. As special cases of the BPSqPL model, the following existing models can be obtained:

• The BPSL model (Duncan et al., 2022) when 𝑞 = 0
• The alternative GPSL (GPSL’) model (Duncan et al., 2020) when 𝑞 = 0 and 𝜑 → +∞

Moreover, the following new models can be obtained:

• A Bounded Path Size Weibit (BPSW) model when 𝑞 = 1
• An alternative Generalised Path Size qPL’ (GPSqPL’) model when 𝜑 → +∞
• An alternative Generalised Path Size Weibit (GPSW) model when 𝑞 = 1 and 𝜑 → +∞

The choice probability functions for each of these models are provided in Appendix  B.

2.6. Summary of model properties and collapsing

The BPSqPL model developed in the previous section accounts for the three deficiencies of the MNL model noted in the 
introduction:

• Heteroscedasticity is accounted for by assuming a distribution for the error terms where error variance increases with systematic 
cost. The rate at which variance increases with cost can be controlled by the heteroscedasticity parameter 𝑞, where 𝑞 = 0 results 
in no increase, and 𝑞 = 1 results in quadratic growth.

• Route overlap is accounted for by including path size correction terms within the probability function that penalise routes for 
sharing links with other routes. 𝜂 is the path size scaling parameter that controls the penalisation.

• Choice set formation is accounted for by bounding the error term distribution so that the model allocates zero choice 
probabilities to routes with systematic costs greater than 𝜑 times the cheapest cost, where 𝜑 is the relative cost bound 
parameter.

In accounting for all three deficiencies, the BPSqPL model is an advantage over several existing and new models that only account 
for one or two deficiencies. The BPSqPL also provides a unified framework for these models, where, under different settings of the 
model parameters, it can collapse into different models. Fig.  3 presents a schematic diagram of under which settings of the model 
parameters BPSqPL can collapse into different models, and Table  2 indicates which properties its collapsing models can account for.
10 
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Table 2
Properties of different models BPSqPL can collapse into.
 Model Route correlation Heteroscedasticity Choice set formation 
 MNL  
 GPSL’ ✓  
 MNW ✓  
 qPL ✓  
 BL ✓  
 GPSW’ ✓ ✓  
 GPSqPL’ ✓ ✓  
 BPSL ✓ ✓  
 BqPL ✓ ✓  
 BPSW ✓ ✓ ✓  
 BPSqPL ✓ ✓ ✓  

Fig. 4. Two-alternative example, with costs 𝑥 and 𝑥 + 1.

Fig. 5. Binary choice probabilities of the route with cost 𝑥 against route with cost 𝑥 + 1, according to the MNL (𝑞 = 0), qPL (𝑞 = 0.2 and 𝑞 = 0.5) and MNW 
(𝑞 = 1) models.

3. Demonstrations of model properties

In this section, we will demonstrate the properties of the developed BqPL and BPSqPL models in small-scale route choice 
examples, and contrast with associated collapsing models.

3.1. Accounting for heteroscedasticity

For the first example, we show how the different models’ choice probabilities evolve in the binary route choice case illustrated 
in Fig.  4. The two routes, denoted 1 and 2, have respective costs 𝑐1 = 𝑥 and 𝑐2 = 𝑥+1, with 𝑥 > 0. The choice probabilities of Route 
1 with cost 𝑥 according to the MNL, qPL and MNW are given in Fig.  5. We observe that the MNL probability does not depend on 𝑥, 
as it is only sensitive to the difference in cost. Conversely, the MNW probability decreases with 𝑥, as it is sensitive to the cost ratio. 
This property is related to the random cost variance of both routes, which increases with 𝑥. Consequently, the likelihood that the 
perceived cost of Route 2 is smaller than that of Route 1 increases with 𝑥. The MNW probability tends to 0.5 as 𝑥 goes to infinity 
because the 𝑥∕(𝑥+1) ratio tends to 1. The qPL is sensitive to the q-ratio of costs and is between the MNL and MNW. The parameter 
𝑞 influences how close the model would behave closer to an MNL or an MNW.
11 



L. Cazor et al. Transportation Research Part B 199 (2025) 103275 
Fig. 6. Binary choice probabilities of the route with cost 𝑥 against route with cost 𝑥+ 1, according to the BL (𝑞 = 0), BqPL (𝑞 = 0.2 and 𝑞 = 0.5) and BW (𝑞 = 1) 
models. The respective non-bounded counterparts are given in dashes.

Fig. 7. Toy network with 7 links and 5 routes.

3.2. Accounting for heteroscedasticity and choice set formation

In this subsection, we compare the BL, BqPL and BW models with their non-bounded counterparts, using the same example as 
in Section 3.1 (Fig.  4). The choice probabilities are plotted in Fig.  6. Each bounded model gives a probability of one to Route 1 for 
all 𝑥 ≤ 1. Indeed, for 𝑥 < 1, the cost ratio of the two routes exceeds the relative cost bound, i.e. (𝑥 + 1)∕𝑥 > 𝜑 = 2. Thus, Route 
2 has zero probability. This illustrates that all the relative models will have the same bounding condition. For 𝑥 > 1, the choice 
probabilities become non-zero for both alternatives and collapse to their unbounded counterparts when 𝑥 → +∞.

We finally notice that the higher the value of 𝑞, the closer BqPL is to the BW, and the lower the value of 𝑞, the closer the BqPL 
is to the BL.

3.3. Accounting for heteroscedasticity, choice set formation and route correlation

Next, we showcase the properties of the (BPSqPL) and its special cases (the BPSL when 𝑞 = 0, the BPSW when 𝑞 = 1, see 
Appendix  B for their choice probabilities) on a test network. The network displayed in Fig.  7 consists of seven links with costs 
parameterised by 𝜆 > 0 and 0 < 𝜌 < 𝜆. These links form five routes connecting O and D: Route 1, using links 1 and 3; Route 2, 
using links 1 and 4; Route 3, using links 2 and 5; Route 4, using links 2 and 6; and Route 5, using link 7. Each route but Route 
4 has a cost of 𝜆, while Route 4 has a cost of 𝜆 + 𝜌. A distinct characteristic of this network is that Route 3 is correlated to Route 
4, which becomes less desirable than the other routes as 𝜌 increases. This property will highlight the difference between the BPSx 
(BPSW/BPSL/BPSqPL) model correction and the typically used Path size correction from Ben-Akiva and Bierlaire (1999). The route 
properties are summarised in Table  3.

We plot the choice probabilities of each alternative in Figs.  9 and 8 as a function of the ratio 𝜌∕𝜆. The ratio 𝜌∕𝜆 varies between 
0 and 1, and is an indicator of how distinct the routes 1 to 4 are (for 𝜌∕𝜆 = 0, they are confounded, for 𝜌∕𝜆 = 1, they are completely 
distinct). To mimic a short and long trip setting, we plot these for two different values of 𝜆 ∈ {1, 10}.

We first plot the choice probabilities of models that do not use any Path size correction nor bounding (Fig.  8(a), (b), and (c)) and 
models that use bounding but do not use any Path size correction (here, the BqPL, Fig.  8(d)). First, we can see that the MNL, MNW 
and qPL choice probabilities behave similarly for 𝜆 = 1 (left figures). For the three models, the probability of Route 4 decreases as 
it becomes less competitive when 𝜌 increases. For 𝜆 = 10, we see that the three models have different behaviours: for the MNL (Fig. 
8(a)), the decrease of the Route 4 choice probabilities is steeper (as a function of 𝜌∕𝜆) than for 𝜆 = 1. This is because the MNL is 
sensitive to cost differences. For the MNW (Fig.  8(b)), we observe that the left and right plots are the same. That is because the 
12 
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Table 3
Set of routes using the network from Fig.  7.
 Route Links Cost  
 1 1–3 𝜆  
 2 1–4 𝜆  
 3 2–5 𝜆  
 4 2–6 𝜆 + 𝜌 
 5 7 𝜆  

Fig. 8. Choice probabilities as a function of 𝜌 on the example network from Fig.  7.

MNW choice probabilities are only sensitive to the cost ratio between Route 4 and the other routes, which is equal to (𝜆 + 𝜌)∕𝜆
(i.e., the choice probabilities do not depend on the scale of the OD movement). The qPL (Fig.  8(c)) is an in-between to the MNL 
and MNW, as the choice probabilities are sensitive to the cost q-Ratio. Finally, the BqPL (Fig.  8(d)), while behaving similarly as the 
qPL, has Route 4 choice probabilities that equal zero when its relative cost to the other routes reach the relative cost bound (for 
𝜌 = 0.8𝜆). This impacts the choice probabilities’ steepness, as seen on the left when compared to the qPL (Fig.  8(c)). Finally, we 
observe that regardless of their overlap with other routes, alternatives 1, 2, 3 and 5 have the same choice probabilities.

This shortcoming is tackled by the BPSqPL model, which is presented in Fig.  9. This figure also displays the BqPL model with Path 
size correction (referred to as the BqPL-PS) according to the path size correction term of Ben-Akiva and Bierlaire (1999) (Fig.  9(a)). 
We chose to include this model as it uses the most commonly used correction term in the literature. The BqPL-PS choice probability 
expression is given in Appendix  C. For the BqPL-PS (Fig.  9(a)), we observe that the correlation between routes is accounted for. 
Route 5 gets the largest choice probability for the BqPL-PS, as it does not overlap with other routes. Still, Route 3 has the same 
penalisation as Routes 1 and 2, even though it is correlated to a less realistic (nay non-considered) alternative. This is argued to 
be a main deficiency of using a standard path size correction term, according to Duncan et al. (2020), and is solved in the BPSqPL 
model (Fig.  9(b)). According to this Figure, Route 5 also gets the largest choice probability, as it is distinct to all the other routes 
for any value of 𝜌. For 𝜌 = 0, Routes 1 and 2 and Routes 3 and 4 are confounded, so they get equal split probability that are half 
as large as the one of Route 5. On all the plots, we observe that the probability of choosing Route 3 collapses to the one of Route 
5 when 𝜌 increases, as Route 4 gets more unrealistic. For 𝜌 > 0.8𝜆, the cost of Route 4 increases over the bound, so it is assigned a 
zero probability and Route 3 is thus assigned the same probability as Route 5 (which does not overlap with any other route).
13 
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Fig. 9. Choice probabilities as a function of 𝜌 on the example network from Fig.  7.
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4. Parameter estimation approach

In this section, we discuss the estimation of the BPSqPL parameters from observed choice data. Let us assume that we observe 
𝑁 choices. An observation 𝑛 ∈ {1, .., 𝑁} has a choice set 𝑛, and the index of the chosen alternative is given by 𝑖𝑛 ∈ 𝑛. To estimate 
the BPSqPL model and its special cases, we adopt a Constrained Maximum Likelihood Estimation (MLE) technique. The constraints 
on the parameter space exist to avoid the occurrence of zero probabilities for chosen alternatives, whose existence would raise zero 
likelihood. This is operationalised using a technique described in Duncan et al. (2022), originally developed for the BPSL model. If 
𝜶 parametrises the cost function of any alternative and any choice set 𝑐𝑖(𝜶). The parameter subspace is given by:

𝛩 =
{

(𝜶, 𝜑),∀𝑛 ∈ {1, .., 𝑁}, 𝑐𝑖𝑛 ≤ 𝜑min
𝑗∈𝑛

𝑐𝑗

}

This also ensures that the likelihood function is continuous over the constrained parameter space. To ensure that the estimated 
parameters remain in 𝛩, we defined the following log-likelihood function. If 𝛽 is the vector containing all the model parameters 

𝐿𝐿(𝛽) =
𝑁
∑

𝑛=1

⎧

⎪

⎨

⎪

⎩

log(𝑃 BPSqPL𝑖𝑛
(𝛽)) if (𝜶, 𝜑) ∈ 𝛩

−999 otherwise
(19)

This formulation ensures that the couple (𝜶, 𝜑) remains in the domain 𝛩 when using maximisation algorithms. In this paper, we 
optimise the log-likelihood using the L-BFGS-B algorithm. A potential issue is that the BPSqPL likelihood function is not guaranteed 
to be concave. MLE solutions are not guaranteed to be unique. However, in our case study from Section 5, we plotted the likelihood 
surface around the estimated parameters and found no evidence of nonconcavity. We estimated the model using several randomly 
generated initial conditions and always found the same estimates. When choosing the initial conditions, it is important to ensure 
that the initial parameters (𝜶0, 𝜑0) belong to the restricted space 𝛩. This can be done by first choosing the initial cost function 
parameters 𝜶0, then calculating the highest relative cost over the observed choices, and choosing the initial bound as higher than 
this value, i.e., 

𝜑0 ≥ max
𝑛∈{1,…,𝑁}

𝑐𝑖𝑛 (𝜶0)
min𝑗∈𝑛 𝑐𝑗 (𝜶0)

∶= 𝜑min (20)

For instance, 𝜑0 can be drawn from a shifted exponential distribution at 𝜑min.
The likelihood function of bounded models is non-differentiable (Cazor et al., 2024a); it is thus, in theory, impossible to derive 

its Hessian matrix analytically, which prevents deriving MLE standard errors. However, these standard errors can be derived 
numerically using methods such as bootstrapping (Efron and Tibshirani, 1986), which we do in this paper.

5. Case study: Bicycle route choice in the greater copenhagen area

This section benchmarks the various models presented in Table  2 against each other on a large-scale bicycle route choice dataset.

5.1. The data

The case utilised a large-scale crowd-sourced data set of bicycle GPS trajectories received from Hövding.2 The original dataset 
covers the entire Greater Copenhagen Area (see Fig.  10) in the period from the 16th September 2019 until 31st May 2021. For a 
detailed description of the data, the bicycle network, and the algorithms applied for data processing, we refer to Łukawska et al. 
(2023). The final dataset for model estimation consists of a subset of this dataset containing 4134 trips made by 4134 cyclists.

The network can be represented as a directed graph 𝐺 = (𝑉 ,𝐸) where 𝐸 is the set of links and 𝑉  is the set of nodes. The network 
size is large, with |𝐸| = 420,973 and |𝑉 | = 324,492. The network data was collected from Open Street Map (OSM3). The attributes 
of link 𝑎 ∈ 𝐸 are as follows:

• 𝐿𝑎 (km): Link length
• 𝐸𝑎 (m): Link elevation gain when steepness >3.5%
• No𝑎 (km): Link length without bicycle infrastructure
• 𝑆𝑎 (km): Link length on a non-asphalt surface (i.e. gravel, cobblestones)
• 𝑊𝑎 (km): Link length on wrong ways (cycling against traffic).

2 https://hovding.com.
3 www.openstreetmap.org.
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Fig. 10. Heatmaps of anonymised GPS trajectories from Hövding.

Fig. 11. Relative costs distribution of the generated choice set and observed routes, using the MNL estimates from Table  4.

5.2. Choice set generation

Due to the extensive network size, it was not feasible to enumerate the universal set of routes between each set of observed 
origin and destination. We thus generated a representative universal choice set. This choice set generation algorithm uses a stochastic 
simulation approach (Nielsen, 2004; Bovy and Fiorenzo-Catalano, 2007), drawing a large number (10,000) of routes on the network 
between each OD, with random lengths. These lengths were normally distributed around the actual lengths, i.e., for each link 𝑎 ∈ 𝐴
with length 𝐿𝑎, we drew a new value 𝐿̂𝑎 ∼  (𝐿𝑎, 𝜎𝐿𝑎), where 𝜎 is a dispersion parameter. In this study, we used a value of 𝜎 = 0.5. 
These routes were then filtered with a local optimality criterion (Abraham et al., 2013; Fischer, 2020), defined as the minimum 
length of a subpath that is not the shortest path. This criterion constrains the presence of small detours on routes and their mutual 
overlap. Fig.  11 shows the relative cost distribution of the generated and observed routes. We observe that these distributions differ, 
indicating that travellers may exclude certain generated routes from their choice sets, particularly those with high relative costs that 
are never chosen.

5.3. Estimation results

In this case study, we compare the estimation results of 18 models:
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Fig. 12. Likelihood profile around the BPSqPL model estimates.

• MNL, MNW, and qPL, which assume additive, multiplicative, and q-multiplicative relations, respectively, between the 
systematic and stochastic parts of random cost.

• MNL-PS, MNW-PS, and qPL-PS, which incorporate a simple path size correction term from Ben-Akiva and Bierlaire (1999) to 
account for route overlap. These ‘‘regular’’ path size models are estimated to benchmark with the more advanced path size 
corrected models (see next bullet). The models are presented in Appendix  C.

• GPSL’, GPSW’, and GPSqPL’, which incorporate more advanced path size correction terms that associated bounded models 
collapse into, see Appendix  B.

• Bounded versions of the nine models above, i.e., BL, BW, BqPL, BL-PS, BW-PS, BqPL-PS, BPSL, BPSW, and BPSqPL. The 
difference between the BL-PS, BW-PS, BqPL-PS models and the BPSL, BPSW, BPSqPL models is that the former use the Ben-
Akiva and Bierlaire (1999) path size term where overlap is captured between all route regardless of whether they are used 
or unused, whereas the latter use an appropriately-defined path size term to address this issue. The BL-PS, BW-PS, BqPL-PS 
models are given in Appendix  C and the BPSL, BPSW, BPSqPL models are given in Appendix  B.

Every model is estimated in a ‘‘willingness-to-detour’’ space (analogous to the ‘‘willingness-to-pay’’ space), as the cost coefficient 
associated with Length is fixed to 1. Every other cost coefficient can be interpreted as the expected amount of detour travellers will 
take to avoid the attribute (e.g., wrong ways). For a network link 𝑎, we thus define its cost𝑡𝑎 as: 

𝑡𝑎 = 𝐿𝑎 + 𝛼𝐸 × 𝐸𝑎 + 𝛼No × No𝑎 + 𝛼𝑆 × 𝑆𝑎 + 𝛼𝑊 ×𝑊𝑎 (21)

The cost of a route 𝑖 using the set of links 𝐴𝑖 ⊆ 𝐸 is given by:
𝑐𝑖 =

∑

𝑎∈𝐴𝑖

𝑡𝑎

The objective is to study to what extent each generalisation of the logit impacts the model fit and interpretation. We will also 
investigate the number of alternatives cut off by each model’s relative cost bound.

The results are presented in Tables  4 and 5. All the estimated parameters were significant at the 0.01 level. Each extension of 
the MNL and its one additional parameter significantly affects model fit, which can be seen in a decrease in the BIC for the more 
complex models. For the models for which the likelihood concavity was not guaranteed, we estimated the model with several sets of 
initial conditions, which were drawn from a uniform distribution within a reasonable range of values, using the method described 
in Eq.  (20) from Section 4. The final estimates were always the same, regardless of the initial conditions. The likelihood profiles 
were plotted to verify the local behaviour of functions around the model estimates, as shown in Fig.  12 for the BPSqPL model. We 
observe that the optimisation did not suffer from the potential non-concavity and converged to an optimum.

We observe that Weibit models fit our dataset better than their corresponding Logit models. The q-Product Logit, which 
generalises both models, also fits the data significantly better than the Weibit. The parameter 𝑞 is estimated to be between 0.562 
and 0.706, indicating that the perceived cost variance increases for longer trips. This increase is, however, lower than quadratic 
with systematic cost. In Fig.  13(a), we plot a histogram of the trip costs of the chosen routes in the estimation dataset, using the 
length-normalised cost function from the qPL model estimates from Table  4. In Fig.  13(b), we plot how the variance of the route 
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Fig. 13. Demonstration of the increasing variance for longer trips on the observed route, using the qPL estimated parameters.

Table 4
Model estimates, unbounded models.
 Model MNL qPL MNW MNL-PS MNW-PS qPL-PS GPSL’ GPSW’ GPSqPL’ 
 Length – – – – – – – – –  
 Elevation gain 0.00352 0.00658 0.0075 0.0027 0.0065 0.0047 0.00354 0.00785 0.00537 
 No Bike infrastructure 0.182 0.183 0.184 0.153 0.156 0.154 0.15 0.182 0.153  
 Non-smooth surface 0.194 0.2 0.202 0.156 0.168 0.162 0.143 0.198 0.152  
 Wrong way 0.332 0.358 0.368 0.278 0.313 0.3 0.242 0.387 0.262  
 Scale (𝜃) −28.5 −51.76 −64.13 −33.61 −78.6 −58.69 −19 −53.9 −32.06  
 Path size term (𝜂) – – 1.105 2.344 1.09 1.608 1.09 1.522  
 𝑞 – 0.706 – – – 0.671 – – 0.624  
 Final LL −11,087 −10,363 −10,495 −10,881 −10,300 −10,172 −10,315 −10,206 −9747  
 BIC 22,192 20,748 21,008 21,784 20,622 20,369 20,652 20,434 19,519  
 Adj. 𝜌2 0.513 0.545 0.539 0.522 0.548 0.553 0.547 0.552 0.572  
 N. of parameters 5 6 5 6 6 7 6 6 7  

costs increases with their systematic value, again using the qPL estimated parameters and the variance computation method from 
Chikaraishi and Nakayama (2016). This plot shows a non-linear increase of the variance with deterministic cost.

For the bounded models, which account for choice set formation (Table  5), we see that the relative cost bound is rather stable 
across models, estimated between 1.102 and 1.162. This suggests that cyclists never considered using routes that were more than 
10.2% to 16.2% more costly than the cheapest in the choice set. We also observe that non-considered routes (allocated zero 
probability) represented between 41.9 and 68.5% of the pre-generated routes, suggesting that our choice-set generation method 
included a significant amount of behaviourally unrealistic routes.

We also observe that the scale is the only parameter that varies between models, while the taste parameters are rather stable. 
The different scales are linked to the different assumed distributions for the error terms (Gumbel, q-Gumbel or Weibull), whose 
variance behaves differently when route length increases. For instance, the models output a willingness to detour between 15.1% 
and 18.4% to ride on bicycle infrastructure rather than in mixed traffic on the car lanes. We also see that, for every model, the 
willingness to detour to avoid one meter of steep elevation is rather low and fluctuates relatively more (between 0.26% and 0.78% 
per meter of elevation). This is most likely due to the flat topography of the Greater Copenhagen Area. Overall, This implies that 
accounting for heteroscedasticity, choice set formation, and alternative correlation does not change the taste interpretation (at least 
in this dataset) but is of good value for getting closer to realistic substitution patterns between routes and more reliable forecasting.

Notably, when comparing Path size specifications, the more advanced and consistent one greatly improves the fit (GPSx’ vs. 
x-PS models and BPSx models vs. Bx-PS models). This suggests that this weighting is more behaviourally realistic. It is also worth 
noticing that, while there is only a small improvement in fit between the qPL and BqPL (respectively, MNW and BW), it is much 
larger between the GPSqPL’ and its bounded version, the BPSqPL (respectively, GPSW’ and BPSW). This suggests that combining 
these extensions, in this case, is more powerful than using only some of them.

5.4. Estimate precision

For the bounded models, the likelihood function is non-differentiable at certain points. This may prevent calculating the Hessian 
if the estimates are located near these points. We thus do not assess estimate precision by analytically computing standard errors 
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Table 5
Model estimates, bounded models.
 Model BL B-qPL BW BL-PS BW-PS BqPL-PS BPSL BPSW BPSqPL  
 Length – – – – – – – – –  
 Elevation gain 0.0031 0.00616 0.0071 0.0026 0.0065 0.0045 0.0036 0.0045 0.00438 
 No Bike infrastructure 0.17 0.181 0.183 0.152 0.155 0.151 0.159 0.157 0.155  
 Non-smooth surface 0.171 0.198 0.201 0.158 0.167 0.16 0.153 0.159 0.153  
 Wrong way 0.31 0.356 0.367 0.291 0.312 0.296 0.267 0.274 0.262  
 Scale (𝜃) −25.42 −50.5 −63.77 −27.89 −78.59 −58.68 −14.71 −42.28 −28.56  
 Path size term (𝜂) – – – 1.088 2.34 1.122 1.643 1.4 1.571  
 𝑞 – 0.688 – – – 0.67 – – 0.562  
 Relative cost bound 𝜑 1.111 1.149 1.159 1.102 1.162 1.126 1.105 1.115 1.115  
 Final LL −10,791 −10,357 −10,493 −10,557 −10,299 −10,163 −9910 −9876 −9683  
 BIC 21,604 20,739 21,008 21,139 20,623 20,355 19,845 19,777 19,395  
 Adj. 𝜌2 0.526 0.545 0.539 0.536 0.548 0.554 0.565 0.566 0.575  
 N params 6 7 6 7 7 8 7 7 8  
 % of routes cut by 𝜑 66.3% 53.4% 49.9% 68.5% 41.9% 56.8% 65.7% 61.5% 60.3%  

Fig. 14. Distributions of the bootstrapping estimates for the BqPL model over 𝑁 = 5000 random draws of observations.

of estimates using the inverse Hessian, as is commonly done. We instead adopt a bootstrapping approach, which is also a common 
procedure (see e.g., Petrin and Train (2003) and Duncan et al. (2022)). An example of the bootstrapping results has been plotted 
in Fig.  14 for the BqPL model. As can be seen, the histograms of the bootstrapping estimates resemble normal distributions, which 
are fitted and plotted in red. This suggests asymptotic normality of the maximum likelihood estimates.

The bootstrapping estimates and standard errors are presented in Tables  6 and 7. These estimates facilitate conducting t-tests 
on the model parameters. The results indicate that, for all models, every parameter of the cost function—except the elevation gain 
parameter—is significantly different from zero at the 0.1% confidence level. The elevation gain parameter is only significant at the 
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Table 6
Bootstrapping estimates, unbounded models.
 Model MNL qPL MNW GPSL’ GPSW’ GPSqPL’  
 Length – – – – – –  
 Elevation gain 0.0038 (0.0019) 0.0067 (0.0021) 0.0075 (0.0021) 0.00369 (0.0016) 0.00667 (0.0023) 0.00547 (0.0018) 
 No Bike infrastructure 0.182 (0.0179) 0.183 (0.0165) 0.182 (0.0171) 0.153 (0.0134) 0.152 (0.0124) 0.150 (0.0124)  
 Non-smooth surface 0.194 (0.0078) 0.2 (0.0069) 0.201 (0.0070) 0.143 (0.0062) 0.159 (0.0056) 0.152 (0.0046)  
 Wrong way 0.332 (0.0123) 0.358 (0.0121) 0.366 (0.0129) 0.243 (0.0095) 0.387 (0.0105) 0.262 (0.0101)  
 Scale (𝜃) −28.6 (0.6975) −51.77 (1.2761) −64.42 (1.3027) −19.02 (0.3346) −45.20 (0.7080) −32.01 (0.6483)  
 Path size term (𝜂) – – 1.614 (0.0042) 1.308 (0.0374) 1.519 (0.0357)  
 𝑞 – 0.706 (0.0222) – – – 0.625 (0.0153)  

Table 7
Bootstrapping estimates, bounded models.
 Model BL BqPL BW BPSL BPSW BPSqPL  
 Length – – – – – –  
 Elevation gain 0.0045 (0.0023) 0.0063 (0.0020) 0.0075 (0.0022) 0.0034 (0.0007) 0.0050 (0.0016) 0.0044 (0.0023) 
 No Bike infrastructure 0.164 (0.0103) 0.181 (0.0157) 0.181 (0.0166) 0.149 (0.0080) 0.156 (0.0112) 0.151 (0.0109)  
 Non-smooth surface 0.176 (0.0062) 0.198 (0.0069) 0.201 (0.0071) 0.150 (0.0032) 0.158 (0.0045) 0.153 (0.0048)  
 Wrong way 0.321 (0.0121) 0.356 (0.0118) 0.365 (0.0128) 0.263 (0.0070) 0.272 (0.0100) 0.258 (0.0081)  
 Scale (𝜃) −24.96 (0.6844) −50.5 (1.346) −63.99 (1.371) −14.69 (0.3415) −42.45 (1.025) −28.55 (0.7305) 
 Path size term (𝜂) – – – 1.655 (0.0396) 1.405 (0.0367) 1.497 (0.0419)  
 𝑞 – 0.688 (0.0249) – – – 0.656 (0.0160)  
 Relative cost bound 𝜑 1.110 (0.0024) 1.149 (0.0065) 1.159 1.102 (0.0011) 1.114 (0.0024) 1.117 (0.0024)  

5% level across all models. Both the scale and path-size terms are also significantly different from zero at the 0.1% confidence level. 
When estimated, the parameter 𝑞 is significantly different from both zero and one at the 0.1% confidence level. Additionally, the 
relative cost bound is significantly different from infinity at the 0.1% confidence level. Note that to test the relative cost bound 𝜑
against infinity is equivalent to testing its inverse 𝜑−1 against zero. From Daly et al. (2012), the standard error of 𝜑−1 is given by 
se(𝜑−1) = se(𝜑)∕𝜑2, which allows for running the t-test against zero.

5.5. Experiments on choice sets

As it is computationally infeasible to generate the universal set of routes, even when restricting their relative cost to the cheapest 
alternative to 1.1, our model estimation relied on pre-generated choice sets, known as the ‘‘representative universal choice set’’. In 
this section, we investigate the influence of the composition of this representative choice set on the parameter estimates. To do 
this, we follow a similar experiment to that conducted by Prato and Bekhor (2007). Rather than using choice sets of up to 10,000 
alternatives (as described in 5.2), which becomes too large to efficiently estimate the Path-Size corrected models, we chose to operate 
with a maximum size of 1000 alternatives for this experiment. The procedure was as follows:

• A maximum of 1000 unique routes were randomly drawn for each OD from the 10,000 routes (or fewer routes if less than 
1000 unique routes among the 10,000 generated routes). We denote these the initial choice sets.

• We estimated the BPSqPL model using these initial choice sets.
• For each OD, we randomly drew respectively 25, 50, and 75% of the alternatives from their initial choice sets, making sure 
we included the chosen alternative, to form new choice sets.

• We re-estimated the BPSqPL with these new choice sets.
• We repeated the last two steps 5 times to assess the variability of the estimates
Table  8 presents the average estimates for the model using subsets of the initial choice sets, with standard deviations between 

experiments shown in italics. Fig.  15 illustrates the average relative parameter estimates compared to their initial values (estimated 
using the initial choice sets), along with the standard deviations across the 5 repetitions (also listed in Table  8). The low standard 
deviations in Table  8 indicate that the estimates and final likelihoods remained stable across experiments (𝛼𝐸 is the least stable 
parameter as it is the least significant). The taste parameters of the cost function (𝜶, as given in Eq.  (21)) are generally stable across 
the choice set sizes. The relative cost bound is the most stable parameter, suggesting that a large choice set is not essential for its 
identification. Among the parameters, the Path-Size term (𝜂) exhibits the most variation across the choice set sizes, consistent with 
Prato and Bekhor (2007) for the PSL model. Meanwhile, the scale parameter (𝜃) increases in absolute value as the choice set grows. 
This suggests that when fewer routes are included, choice probabilities become more dispersed across the choice set.

5.6. Model validation

We performed Monte-Carlo cross-validation on our dataset to assess the model’s predictive performance and test for overfitting. 
To do so, we repeated 𝑁 = 10 (as in Cazor et al. (2024b)) times the following steps:
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Table 8
Comparison of the initial BPSqPL estimates on the whole choice set and the mean estimates of the BPSqPL using the reduced choice sets. Standard deviation 
values across experiments are shown in italics.
 Relative size to full choice sets 𝛼𝐸 𝛼No 𝛼𝑆 𝛼𝑊 𝜂 𝜃 𝜑 𝑞 Final LL  
 100% 3.835 0.128 0.130 0.234 1.936 −39.33 1.107 0.641 −10,874.2 
 75% Mean 4.133 0.129 0.130 0.235 1.998 −38.37 1.107 0.647 −9966.9  
 SD 0.279 0.0013 0.0006 0.0008 0.0045 0.0880 0.0007 0.0025 7.04  
 50% Mean 4.100 0.130 0.131 0.238 2.084 −37.02 1.105 0.657 −8762.4  
 SD 0.316 0.0016 0.0014 0.0023 0.0093 0.391 0.0008 0.0093 8.23  
 25% Mean 3.966 0.134 0.134 0.244 2.263 −34.05 1.104 0.666 −6889.0  
 SD 0.383 0.0040 0.0020 0.0007 0.0071 0.533 0.0009 0.0126 16.79  

Fig. 15. Relative parameter estimates for the different choice set subsets. The error bars output the standard deviation of the relative parameter estimates across 
experiments.

Table 9
Average log-likelihood on the cross-validation sets.
 Model MNL qPL BL BqPL BPSL BPSqPL  
 Average LL −3217.48 −3009.63 −3107.61 −3005.12 −2872.35 −2817.81 

1. Randomly split the original dataset 𝑆 into a training 𝑆𝑡 and validation set 𝑆𝑣 (|𝑆𝑡| = 0.7|𝑆|; |𝑆𝑣| = 0.3|𝑆|).
2. Estimate all the models on the training set 𝑆𝑡, obtain, for each model 𝑚, the training parameters 𝛽𝑡𝑚.
3. Calculate, for each model 𝑚, the log-likelihood on the validation set, LL = ∑

𝑥∈𝑆𝑣
log𝑃𝑚

𝑖𝑥
(𝛽𝑡𝑚), where 𝑖𝑥 is the index of the 

chosen alternative for observation 𝑥 ∈ 𝑆𝑣

The cross-validation results are shown in Fig.  16 and Table  9. We observe that these results corroborate the fit values found in 
Tables  4 and 5, i.e., that the BPSqPL is the best-performing model in every cross-validation experiment, followed by the BPSL, the 
BqPL, the qPL, the BL and the MNL. This indicates that these models did not overfit the data. Moreover, we observed that the model 
estimates across the experiments were stable.

6. Conclusion

In this paper, we have developed new closed-form choice models that generalise the MNL to account for heteroscedasticity of 
the error terms, correlations between overlapping routes, and choice set formation effects through setting a bound on the relative 
cost distribution. We first developed a model that combines (Chikaraishi and Nakayama, 2016)’s q-Product Logit (qPL) model with 
Watling et al. (2018)’s Bounded Logit (BL) model, to derive a Bounded q-Product Logit (BqPL) model. It is derived by assuming a 
Truncated q-Log-Logistic distribution for random error term differences and can be seen as a one-stage choice set formation model. 
We then extended the BqPL model to account for route overlap in a fashion similar to Duncan et al. (2022)’s BPSL model.

The BPSqPL model remains parsimonious and easy to estimate by introducing only one additional parameter per property. 
We also proposed simplified versions of this model that omit one or more properties (e.g., a Bounded Path Size Weibit model, 
which has a less flexible form of heteroscedasticity). Model properties were first demonstrated using small-scale examples and 
then benchmarked against existing models in a large-scale bicycle route choice case study. We presented a method to estimate the 
BPSqPL using a constrained version of the Maximum Likelihood Estimation technique. As the likelihood function of bounded models 
is non-differentiable, we used a bootstrapping method to compute standard errors of the estimates.
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Fig. 16. Cross-validation results.

Our findings from the large-scale application show that accounting for heteroscedasticity, route overlap, and choice set formation 
considerably improves model fit and predictive accuracy. The estimate for the 𝑞 parameter also indicates that error term variance 
does increase with expected route cost but is slightly slower than the quadratic increase assumed by a Weibit model. These 
enhancements were achieved without a substantial increase in model complexity. Additionally, these models offer more realistic 
substitution patterns between alternatives due to consistent path size corrections and the exclusion of unrealistic alternatives, which 
account for about 50% of the generated representative universal choice set of routes. The values of the taste coefficients for the 
observed attributes also remained stable across models. In the route choice context, while it is computationally intractable to 
generate the universal choice sets for large-scale case studies, we studied the choice set robustness of the estimated parameters. 
The results indicate that the choice set size has little influence on the estimated taste parameters and relative cost bound while 
having some influence on the path-size correction and scale parameters.

In this study, the focus has been on route choice modelling. There is scope, however, for applying the BPSqPL model to other 
choice situations. For example, activity-based models (Danalet and Bierlaire, 2015; Pougala et al., 2023) adopt a similar network 
representation, where the correlation between alternatives can be captured through path size correction terms. One could develop a 
cross-nested version of the BqPL model to capture correlations between alternatives for choice situations that are not network-based. 
Without the correlation, the BqPL model is still a useful model for capturing heteroscedasticity and cost bounds on alternatives, such 
as mode or destination choice. Another potential stream of research could be to include route correlation in the choice set formation 
process, possibly by devising a choice model which sets a bound on the overlap between routes. This could perhaps be done by 
adopting Rasmussen et al. (2024)’s conjunctive bounded logit model.
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Fig. 17. q-Ratio bounding condition expressed as an absolute bounding condition.

Appendix A. Bounding conditions

As can be seen in the BqPL model choice probabilities, the parameter 𝑞 not only influences how the variance of error terms 
increases with systematic cost but also on the condition on which an alternative receives a non-zero probability, which we refer to 
as the bounding condition.

According to the BqPL, the choice probability of an alternative 𝑖 ∈  will be greater than 0 if and only if, for some 𝜙 > 1, 
𝑐𝑖 ⊘𝑞 𝜙 ⊗𝑞 𝑉𝑟∗  is larger than 0. This happens when 𝑐𝑖 is lower than 𝑉𝑟∗ ⊗𝑞 𝜙, i.e., the systematic cost is lower than the q-product 
between the reference alternative systematic cost and the bound. When 𝑞 = 0, this happens when 𝑐𝑖 is lower than 𝑐𝑟∗ + (𝜙 − 1), 
meaning that the difference of costs is bounded: it is an absolute bounding condition. When 𝑞 = 1, it happens when 𝑐𝑖 is lower than 
𝜙𝑐𝑟∗ , meaning that the cost ratio is bounded: it is a relative bounding condition. While relative absolute bounding conditions are 
intuitive, it is harder to understand what the q-product bounding condition means. To illustrate it, we plot in Fig.  17 how the 
q-Ratio translates into an absolute bounding condition for different values of 𝑞. To do so, we plot, for a fixed value of 𝜙, the value 
𝜑𝑎𝑏𝑠 so that

𝑐𝑖 ⊘𝑞 𝑐𝑟∗ = 𝜙 ⟺ 𝑐𝑖 − 𝑐𝑟∗ = 𝜑𝑎𝑏𝑠

We plot the maximum difference 𝑐𝑖−𝑐𝑟∗  so that 𝑖 has a non-zero probability as a function of 𝑐𝑖. We see that, for 𝑞 = 0, it is constant to 
𝜙−1 = 1. This means that, whatever the value of 𝑐𝑟∗ , 𝑐𝑖 must be at most one unit higher than 𝑐𝑟∗  to be given a non-zero probability. 
For 𝑞 = 1, as expected, the absolute bound increases linearly with 𝑐𝑟∗ (for 𝑐𝑟∗ = 1, we need 𝑐𝑖 < 2, i.e. a difference of 1, for 𝑐𝑟∗ = 10, 
we need 𝑐𝑖 < 20, i.e. a difference of 10). The absolute bound grows with 𝑐𝑖, but slower than linearly for any value in between.

Similarly, in Fig.  18, we plot how a q-Relative could translate into a variable relative bound by plotting the value 𝜑𝑟𝑒𝑙 so that
𝑐𝑖 ⊘𝑞 𝑐𝑟∗ = 𝜙 ⟺ 𝑐𝑖∕𝑐𝑟∗ = 𝜑𝑟𝑒𝑙

This plot shows a constant relative bound for 𝑞 = 1, as the MNW already has a relative bounding condition. For 𝑞 < 1, the relative 
bound decreases with 𝑐𝑖, which means the bound on the ratio 𝑐𝑖∕𝑐𝑟∗  gets smaller with larger 𝑐𝑖. For the extreme case 𝑞 = 0, 𝜙𝑟𝑒𝑙 is 
inversely proportional to 𝑐𝑖 (for 𝑐𝑖 = 11, 𝑖 will have zero probability when 𝑐𝑟∗ ≤ 10, i.e. 𝑐𝑖∕𝑐𝑟∗ ≥ 1.1, while when 𝑐𝑖 = 2, 𝑖 will have 
zero probability when 𝑐𝑟∗ ≤ 1, i.e. 𝑐𝑖∕𝑐𝑟∗ ≥ 2).

Appendix B. Special cases of the BPSqPL model

In this section, we detail the choice probabilities of the special cases (i.e., the models that can be obtained by fixing one or more 
parameters) of the BPSqPL model developed in this paper. Some of these models have been already developed in the literature, 
some others are new. Again, let us assume a route choice situation with a choice set . Each route 𝑖 ∈  consists of a set of links 
𝐴𝑖 ⊆ 𝐴, where 𝐴 is the set of links in the studied network. These links are defined by attributes aggregated in positive cost functions 
𝑡𝑎, 𝑎 ∈ 𝐴, parameterised by a vector of parameters 𝜶. The cost of route 𝑖 is defined by some observed attributes aggregated in a cost 
function 𝑐𝑖. This cost of route 𝑖 is link-additive, i.e. 𝑐𝑖 =

∑

𝑎∈𝐴𝑖
𝑡𝑎. For fixed parameters 𝜶, 𝜑, we define ̄(𝜶, 𝜑) ⊆  the subset of 

routes with a cost less than 𝜑 > 1 times the cheapest route cost:

̄(𝜶, 𝜑) =
{

𝑖 ∈ , 𝑐𝑖 ≤ 𝜑min
𝑙∈

𝑐𝑙

}
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Fig. 18. q-Ratio bounding condition expressed as a relative bounding condition.

B.1. When 𝑞 = 0: the BPSL model (Duncan et al., 2022)

The BPSL model is obtained when the heteroscedasticity parameter 𝑞 is fixed to 0. 

𝑃 BPSL𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝛾BPSL𝑖
)𝜂 (exp(−𝜃(𝑐𝑖 − 𝜑min𝑙∈ 𝑐𝑙)) − 1

)

∑

𝑗∈̄

(

𝛾BPSL𝑗

)𝜂
(

exp(−𝜃(𝑐𝑗 − 𝜑min𝑙∈ 𝑐𝑙)) − 1
)

if 𝑖 ∈ ̄

0 otherwise

(22)

where (𝛾BPSqPL𝑖 )𝜂 is the path size correction factor for considered route 𝑖 ∈ ̄ (non-considered routes do not have path size terms). 
𝜂 ≥ 0 is the path size scaling parameter scaling sensitivity to route distinctiveness, and 𝛾BPSqPL𝑖 ∈ (0, 1] is the path size term for 
considered route 𝑖 ∈ ̄, calculated as follows: 

𝛾BPSL𝑖 =
∑

𝑎∈𝐴𝑖

𝑡𝑎
𝑐𝑖

(

exp(−𝜃(𝑐𝑖 − 𝜑min𝑙∈ 𝑐𝑙)) − 1
)

∑

𝑗∈̄
(

exp(−𝜃(𝑐𝑖 − 𝜑min𝑙∈ 𝑐𝑙)) − 1
)

𝛿𝑎𝑗
(23)

B.2. When 𝑞 = 1: the BPSW model

The BPSW model is obtained when the heteroscedasticity parameter 𝑞 is fixed to 1. 

𝑃 BPSW𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝛾BPSW𝑖
)𝜂 ((𝑐𝑖∕𝜑min𝑙∈ 𝑐𝑙)−𝜃 − 1

)

∑

𝑗∈̄

(

𝛾BPSW𝑗

)𝜂
(

(𝑐𝑗∕𝜑min𝑙∈ 𝑐𝑙)−𝜃 − 1
)

if 𝑖 ∈ ̄

0 otherwise

(24)

where (𝛾BPSW𝑖 )𝜂 is the path size correction factor for considered route 𝑖 ∈ ̄ (non-considered routes do not have path size terms). 
𝜂 ≥ 0 is the path size scaling parameter scaling sensitivity to route distinctiveness, and 𝛾BPSW𝑖 ∈ (0, 1] is the path size term for 
considered route 𝑖 ∈ ̄, calculated as follows: 

𝛾BPSW𝑖 =
∑

𝑎∈𝐴𝑖

𝑡𝑎
𝑐𝑖

(

(𝑐𝑖∕𝜑min𝑙∈ 𝑐𝑙)−𝜃 − 1
)

∑

𝑗∈̄
(

(𝑐𝑗∕𝜑min𝑙∈ 𝑐𝑙)−𝜃 − 1
)

𝛿𝑎𝑗
(25)

B.3. When 𝜑 → +∞: the GPSqPL’ model

The GPSqPL’ model is obtained when the relative cost bound tends to infinity. 

𝑃GPSqPL’𝑖 =

(

𝛾GPSqPL’𝑖

)𝜂
exp(−𝜃 ln𝑞(𝑐𝑖))

∑

(

𝛾GPSqPL’
)𝜂

exp(−𝜃 ln (𝑐 ))
(26)
𝑗∈ 𝑗 𝑞 𝑗
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where (𝛾GPSqPL’𝑖 )𝜂 is the path size correction factor for route 𝑖 ∈ . 𝜂 ≥ 0 is the path size scaling parameter scaling sensitivity to 
route distinctiveness, and 𝛾GPSqPL’𝑖 ∈ (0, 1] is the path size term for route 𝑖 ∈ , calculated as follows: 

𝛾GPSqPL’𝑖 =
∑

𝑎∈𝐴𝑖

𝑡𝑎
𝑐𝑖

exp(−𝜃 ln𝑞(𝑐𝑖))
∑

𝑗∈ exp(−𝜃 ln𝑞(𝑐𝑗 ))𝛿𝑎𝑗
(27)

B.4. When 𝜑 → +∞ and 𝑞 = 0: the GPSL’ model (Duncan et al., 2020)

The GPSL’ model is obtained when the relative cost bound tends to infinity. 

𝑃GPSL’𝑖 =

(

𝛾GPSL’𝑖
)𝜂 exp(−𝜃𝑐𝑖)

∑

𝑗∈

(

𝛾GPSL’𝑗

)𝜂
exp(−𝜃𝑐𝑗 )

(28)

where (𝛾GPSL’𝑖 )𝜂 is the path size correction factor for route 𝑖 ∈ . 𝜂 ≥ 0 is the path size scaling parameter scaling sensitivity to route 
distinctiveness, and 𝛾GPSL’𝑖 ∈ (0, 1] is the path size term for route 𝑖 ∈ , calculated as follows: 

𝛾GPSqPL’𝑖 =
∑

𝑎∈𝐴𝑖

𝑡𝑎
𝑐𝑖

exp(−𝜃𝑐𝑖)
∑

𝑗∈ exp(−𝜃𝑐𝑗 )𝛿𝑎𝑗
(29)

B.5. When 𝜑 → +∞ and 𝑞 = 1: the GPSW’ model

The GPSW’ model is obtained when the relative cost bound tends to infinity and the heteroscedasticity parameter 𝑞 is fixed to 
1. 

𝑃GPSW’𝑖 =

(

𝛾GPSW’𝑖
)𝜂 𝑐−𝜃𝑖

∑

𝑗∈

(

𝛾GPSW’𝑗

)𝜂
𝑐−𝜃𝑗

(30)

where (𝛾GPSW’𝑖 )𝜂 is the path size correction factor for route 𝑖 ∈ . 𝜂 ≥ 0 is the path size scaling parameter scaling sensitivity to route 
distinctiveness, and 𝛾GPSW’𝑖 ∈ (0, 1] is the path size term for route 𝑖 ∈ , calculated as follows: 

𝛾GPSW’𝑖 =
∑

𝑎∈𝐴𝑖

𝑡𝑎
𝑐𝑖

𝑐−𝜃𝑖
∑

𝑗∈ 𝑐−𝜃𝑗 𝛿𝑎𝑗
(31)

Appendix C. Path size and bounded path size models

We benchmarked the ‘‘consistent’’ path size models in the case study to the typically considered Path size models. The Path size 
models use the Path size correction below (Ben-Akiva and Bierlaire, 1999): 

𝛾PS𝑖 =
∑

𝑎∈𝐴𝑖

𝑡𝑎
𝑐𝑖

1
∑

𝑗∈ 𝛿𝑎𝑗
(32)

It is then possible to obtain the following models:

• The MNL-PS model, combining the choice probabilities from Eq.  (28) with the correction from Eq.  (32)
• The MNW-PS model, combining the choice probabilities from Eq.  (30) with the correction from Eq.  (32)
• The qPL-PS model, combining the choice probabilities from Eq.  (26) with the correction from Eq.  (32)
• The BL-PS model, combining the choice probabilities from Eq.  (22) with the correction from Eq.  (32)
• The BW-PS model, combining the choice probabilities from Eq.  (24) with the correction from Eq.  (32)
• The BL-PS model, combining the choice probabilities from Eq.  (17) with the correction from Eq.  (32)

Appendix D. The BqPL: a relative utility model

In the derivation of the BqPL model, we introduced a random utility 𝑈𝑖 for each alternative 𝑖 ∈ , along with an imaginary 
reference alternative 𝑈𝑟∗ . However, these utilities were not explicitly defined in terms of random distributions. Instead, we only 
assumed that their q-ratio, 𝑈𝑖 ⊘𝑞 𝑈𝑟∗ , followed a truncated log–logistic distribution. This approach primarily helped to establish 
parallels between the BL and MNL models, as well as between the BqPL and qPL models.

In this section, we present an alternative derivation that does not require explicit utility definitions, leading to a more direct 
interpretation of the model.
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D.1. The relative utility framework

The concept of relative utility has been widely discussed in the choice modelling literature (see, e.g., Duesenberry (1949), 
Stadt et al. (1985), Zhang et al. (2004)) and is based on the hypothesis that utilities are only meaningful in comparison to other 
alternatives. In most discrete choice models, choice probabilities remain unchanged under transformations such as shifting (adding a 
constant to all utilities in additive RUMs), scaling (multiplying all utilities by a constant in multiplicative RUMs), or q-multiplication
(in more recent qRUMs, e.g., Nakayama (2013)). This invariance implies that these models do not require defining an absolute 
utility function for each alternative; instead, utilities are defined relative to a reference (or pivot) alternative.

Behaviourally, this aligns with the idea that decision-makers compare alternatives rather than evaluating them against some 
absolute metric. In this appendix, we present the concept of relative utility through the lens of qRUMs, which generalise both 
additive and multiplicative RUMs. Rather than assigning absolute utilities to alternatives, we introduce the notion of random relative 
utility. For an alternative 𝑖 in a choice set , we define its random relative utility 𝑅𝑈𝑖 as:

𝑅𝑈𝑖 = 𝑅𝑉𝑖 ⊗𝑞 𝜀𝑖

where 𝑅𝑉𝑖 represents the deterministic relative utility, based on the observed attributes. In this study, we specify:

𝑅𝑉𝑖 = 𝑉𝑖 ⊘𝑞 𝑉𝑟∗ ,

where the deterministic utility of alternative 𝑖 is expressed relative to the utility of a reference alternative 𝑟∗ using a q-ratio 
transformation. We further specify the reference alternative as the alternative with the highest deterministic utility, i.e.,

𝑉𝑟∗ = max
𝑗∈

𝑉𝑗 .

To determine the choice outcome, the random relative utility is compared to 1: if 𝑅𝑈𝑖 > 1, the alternative 𝑖 is preferred over the 
reference alternative; otherwise, it is not. The probability of selecting alternative 𝑖 over the reference alternative is then given by:

P(𝑖|{𝑖, 𝑟∗}) = P(𝑅𝑈𝑖 ≥ 1)

= P(𝜀𝑖 ≥ 1⊘𝑞 𝑅𝑉𝑖)

= 1 − 𝐹𝜀𝑖 (1⊘𝑞 𝑅𝑉𝑖)

where 𝐹𝜀𝑖  denotes the CDF of 𝜀𝑖. Depending on the assumed distribution of 𝜺 = (𝜀𝑖)𝑖∈ , several choice models can be derived. In the 
following section, we derive the BqPL model introduced in Section 2 of the paper.

D.2. Alternative derivation of the BqPL model

To derive the BqPL model, we assume that the error terms 𝜀𝑖 follow independent Truncated q-LogLogistic distributions defined 
in Eq.  (8) with mean 1, scale 𝜃, heteroscedasticity parameter 𝑞 and truncation parameter 𝜙:

𝜀𝑖 ∼ Trunc. q-LogLogistic(1, 𝜃, 𝑞, 𝜙)

Then, we similarly define the odds ratio as:

𝜂𝑖 =
P(𝑖|{𝑖, 𝑟∗})

1 − P(𝑖|{𝑖, 𝑟∗})

=
1 − 𝐹𝜀𝑖 (1⊘𝑞 𝑅𝑉𝑖)
𝐹𝜀𝑖 (1⊘𝑞 𝑅𝑉𝑖)

Thus, the choice probability follows:

P(𝑖|) =
𝜂𝑖

∑

𝑗∈ 𝜂𝑗

Some algebraic manipulations show that this formulation output the BqPL choice probabilities from Eq.  (11), if we additionally 
define 𝑅𝑉𝑖 = 𝑉𝑖 ⊘𝑞 𝑉𝑟∗ .

D.3. Heteroscedasticity illustration

The distributional assumption on 𝜀𝑖 implies the following distribution for 𝑅𝑈𝑖:

𝑅𝑈𝑖 ∼ Trunc. q-LogLogistic(𝑅𝑉𝑖, 𝜃, 𝑞, 𝜙 ⊗𝑞 𝑅𝑉𝑖)

Figs.  19–21 illustrate how the probability density function (PDF) of 𝑅𝑈𝑖 changes with 𝑅𝑉𝑖 (denoted as 𝜇 in the figure). The figure 
considers two different values of 𝑅𝑉𝑖 and three different values of 𝑞, corresponding to the BL (𝑞 = 0), BqPL (with 𝑞 = 0.5), and BW 
(𝑞 = 1) cases. The PDF of the non-truncated distribution, which corresponds to the MNL, qPL, and MNW models, is also shown. 
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Fig. 19. Relative utility distributions for two values of 𝑅𝑉𝑖 (1 and 2), 𝑞 = 0 (corresponding to the MNL and BL models).

Fig. 20. Relative utility distributions for two values of 𝑅𝑉𝑖 (1 and 2), 𝑞 = 0.5 (corresponding to a version of the qPL and BqPL models).

We observe that, for 𝑞 ≠ 0, the variance of the relative utility distribution (𝑅𝑈𝑖) increases with its deterministic component (𝑅𝑉𝑖). 
This means that when the utility q-ratio with the reference alternative increases, the uncertainty around the value of this q-ratio 
also increases.

In practice, this heteroscedasticity implies:

• Within a choice set: Alternatives with larger deterministic utility differences from the reference alternative exhibit greater 
variance in relative utility.

• Across choice situations: 𝑅𝑉𝑖 is defined by the q-ratio between 𝑉𝑖 and 𝑉𝑟∗. For 𝑞 ∈ [0, 1] , 𝑎∕𝑏 ≤ 𝑎 ⊘𝑞 𝑏 ≤ 𝑎 − 𝑏 + 1, which 
implies that, for a fixed value of 𝑉𝑖 − 𝑉𝑟∗ , 𝑉𝑖 ⊘𝑞 𝑉𝑟∗  increases with 𝑉𝑖 (for instance 1⊘𝑞 2 < 2⊘𝑞 3). This implies that, when the 
scale of choices increases (e.g., OD pairs with larger travel times), the q-ratio between utilities and the reference alternative 
increases, leading to higher variance in relative random utility.

This property, which can also be found for the qPL model, distinguishes the BqPL model from the homoscedastic models such 
as the MNL and BL.
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Fig. 21. Relative utility distributions for two values of 𝑅𝑉𝑖 (1 and 2), 𝑞 = 1 (corresponding to the MNW and BW models).

References

Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F., 2013. Alternative routes in road networks. ACM J. Exp. Algorithmics 18, http://dx.doi.org/10.1145/
2444016.2444019.

Bekhor, S., Ben-Akiva, M.E., Ramming, M.S., 2002. Adaptation of logit kernel to route choice situation. Transp. Res. Rec. 1805 (1), 78–85. http://dx.doi.org/
10.3141/1805-10, Publisher: SAGE Publications Inc.

Ben-Akiva, M., Bierlaire, M., 1999. Discrete choice methods and their applications to short term travel decisions. In: Hall, R.W. (Ed.), Handbook of Transportation 
Science. Springer US, Boston, MA, pp. 5–33. http://dx.doi.org/10.1007/978-1-4615-5203-1_2.

Bhat, C.R., 1995. A heteroscedastic extreme value model of intercity travel mode choice. Transp. Res. Part B: Methodol. 29 (6), 471–483. http://dx.doi.org/10.
1016/0191-2615(95)00015-6.

Borges, E.P., 2004. A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Phys. A 340 (1), 95–101. http://dx.doi.org/10.1016/j.
physa.2004.03.082.

Bovy, P.H.L., 2009. On modelling route choice sets in transportation networks: A synthesis. Transp. Rev. 29 (1), 43–68. http://dx.doi.org/10.1080/
01441640802078673.

Bovy, P.H.L., Fiorenzo-Catalano, S., 2007. Stochastic route choice set generation: Behavioral and probabilistic foundations. Transportmetrica 3 (3), 173–189. 
http://dx.doi.org/10.1080/18128600708685672.

Cascetta, E., Nuzzolo, A., Russo, F., Vitetta, A., 1996. A modified logit route choice model overcoming path overlapping problems. Specification and some 
calibration results for interurban networks. pp. 697–711, ISSN:.

Cascetta, E., Papola, A., 2001. Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand. Transp. 
Res. Part C: Emerg. Technol. 9 (4), 249–263. http://dx.doi.org/10.1016/S0968-090X(00)00036-X.

Castillo, E., Menéndez, J.M., Jiménez, P., Rivas, A., 2008. Closed form expressions for choice probabilities in the Weibull case. Transp. Res. Part B: Methodol. 
42 (4), 373–380. http://dx.doi.org/10.1016/j.trb.2007.08.002.

Cazor, L., Duncan, L.C., Watling, D.P., Nielsen, O.A., Rasmussen, T.K., 2024a. A smooth bounded choice model: Formulation and application to three large-scale 
case studies. J. Choice Model. Under review.

Cazor, L., Watling, D.P., Duncan, L.C., Nielsen, O.A., Rasmussen, T.K., 2024b. A novel choice model combining utility maximization and the disjunctive decision 
rules, application to two case studies. J. Choice Model. 52, 100510. http://dx.doi.org/10.1016/j.jocm.2024.100510.

Chen, A., Pravinvongvuth, S., Xu, X., Ryu, S., Chootinan, P., 2012. Examining the scaling effect and overlapping problem in logit-based stochastic user equilibrium 
models. Transp. Res. Part A: Policy Pr. 46 (8), 1343–1358. http://dx.doi.org/10.1016/j.tra.2012.04.003.

Chikaraishi, M., Nakayama, S., 2016. Discrete choice models with q-product random utilities. Transp. Res. Part B: Methodol. 93, 576–595. http://dx.doi.org/10.
1016/j.trb.2016.08.013.

Daly, A., Hess, S., de Jong, G., 2012. Calculating errors for measures derived from choice modelling estimates. Transp. Res. Part B: Methodol. 46 (2), 333–341. 
http://dx.doi.org/10.1016/j.trb.2011.10.008.

Danalet, A., Bierlaire, M., 2015. Importance sampling for activity path choice. In: 15th Swiss Transport Research Conference.
Duesenberry, J.S., 1949. Income, Saving and the Theory of Consumer Behavior. Harvard economic studies, Harvard University Press.
Duncan, L.C., Watling, D.P., Connors, R.D., Rasmussen, T.K., Nielsen, O.A., 2020. Path Size Logit route choice models: Issues with current models, a 

new internally consistent approach, and parameter estimation on a large-scale network with GPS data. Transp. Res. Part B: Methodol. 135, 1–40. 
http://dx.doi.org/10.1016/j.trb.2020.02.006.

Duncan, L.C., Watling, D.P., Connors, R.D., Rasmussen, T.K., Nielsen, O.A., 2022. A bounded path size route choice model excluding unrealistic routes: Formulation 
and estimation from a large-scale GPS study. Transp. A: Transp. Sci. 18 (3), 435–493. http://dx.doi.org/10.1080/23249935.2021.1872730.

Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist. Sci. 54–75, 
Publisher: JSTOR.

Fischer, S.M., 2020. Locally optimal routes for route choice sets. Transp. Res. Part B: Methodol. 141, 240–266. http://dx.doi.org/10.1016/j.trb.2020.09.007.
Fosgerau, M., Bierlaire, M., 2009. Discrete choice models with multiplicative error terms. Transp. Res. Part B: Methodol. 43 (5), 494–505. http://dx.doi.org/10.

1016/j.trb.2008.10.004.
28 

http://dx.doi.org/10.1145/2444016.2444019
http://dx.doi.org/10.1145/2444016.2444019
http://dx.doi.org/10.1145/2444016.2444019
http://dx.doi.org/10.3141/1805-10
http://dx.doi.org/10.3141/1805-10
http://dx.doi.org/10.3141/1805-10
http://dx.doi.org/10.1007/978-1-4615-5203-1_2
http://dx.doi.org/10.1016/0191-2615(95)00015-6
http://dx.doi.org/10.1016/0191-2615(95)00015-6
http://dx.doi.org/10.1016/0191-2615(95)00015-6
http://dx.doi.org/10.1016/j.physa.2004.03.082
http://dx.doi.org/10.1016/j.physa.2004.03.082
http://dx.doi.org/10.1016/j.physa.2004.03.082
http://dx.doi.org/10.1080/01441640802078673
http://dx.doi.org/10.1080/01441640802078673
http://dx.doi.org/10.1080/01441640802078673
http://dx.doi.org/10.1080/18128600708685672
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb8
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb8
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb8
http://dx.doi.org/10.1016/S0968-090X(00)00036-X
http://dx.doi.org/10.1016/j.trb.2007.08.002
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb11
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb11
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb11
http://dx.doi.org/10.1016/j.jocm.2024.100510
http://dx.doi.org/10.1016/j.tra.2012.04.003
http://dx.doi.org/10.1016/j.trb.2016.08.013
http://dx.doi.org/10.1016/j.trb.2016.08.013
http://dx.doi.org/10.1016/j.trb.2016.08.013
http://dx.doi.org/10.1016/j.trb.2011.10.008
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb16
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb17
http://dx.doi.org/10.1016/j.trb.2020.02.006
http://dx.doi.org/10.1080/23249935.2021.1872730
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb20
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb20
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb20
http://dx.doi.org/10.1016/j.trb.2020.09.007
http://dx.doi.org/10.1016/j.trb.2008.10.004
http://dx.doi.org/10.1016/j.trb.2008.10.004
http://dx.doi.org/10.1016/j.trb.2008.10.004


L. Cazor et al. Transportation Research Part B 199 (2025) 103275 
Frejinger, E., Bierlaire, M., 2010. On path generation algorithms for route choice models. In: Hess, S., Daly, A. (Eds.), Choice Modelling: the State-of-the-Art and 
the State-of-Practice. Emerald Group Publishing Limited, pp. 307–315. http://dx.doi.org/10.1108/9781849507738-013.

Frejinger, E., Bierlaire, M., Ben-Akiva, M., 2009. Sampling of alternatives for route choice modeling. Transp. Res. Part B: Methodol. 43 (10), 984–994. 
http://dx.doi.org/10.1016/j.trb.2009.03.001.

Greene, W.H., Hensher, D.A., Rose, J., 2006. Accounting for heterogeneity in the variance of unobserved effects in mixed logit models. Transp. Res. Part B: 
Methodol. 40 (1), 75–92. http://dx.doi.org/10.1016/j.trb.2005.01.005.

Gu, Y., Chen, A., Kitthamkesorn, S., 2022. Weibit choice models: Properties, mode choice application and graphical illustrations. J. Choice Model. 44, 100373. 
http://dx.doi.org/10.1016/j.jocm.2022.100373.

Hess, S., Train, K., 2017. Correlation and scale in mixed logit models. J. Choice Model. 23, 1–8. http://dx.doi.org/10.1016/j.jocm.2017.03.001.
Horowitz, J.L., Louviere, J.J., 1995. What is the role of consideration sets in choice modeling? Consideration sets, Int. J. Res. Mark. Consideration sets, 12 (1), 

39–54.http://dx.doi.org/10.1016/0167-8116(95)00004-L, 
Kitthamkesorn, S., Chen, A., 2013. A path-size weibit stochastic user equilibrium model. Transp. Res. Part B: Methodol. 57 (C), 378–397, Publisher: Elsevier.
Koppelman, F.S., Wen, C.-H., 2000. The paired combinatorial logit model: Properties, estimation and application. Transp. Res. Part B: Methodol. 34 (2), 75–89. 

http://dx.doi.org/10.1016/S0191-2615(99)00012-0.
Łukawska, M., Paulsen, M., Rasmussen, T.K., Jensen, A.F., Nielsen, O.A., 2023. A joint bicycle route choice model for various cycling frequencies and trip 

distances based on a large crowdsourced GPS dataset. Transp. Res. Part A: Policy Pr. 176, 103834. http://dx.doi.org/10.1016/j.tra.2023.103834.
Martínez, F., Aguila, F., Hurtubia, R., 2009. The constrained multinomial logit: A semi-compensatory choice model. Transp. Res. Part B: Methodol. 43 (3), 

365–377. http://dx.doi.org/10.1016/j.trb.2008.06.006.
McFadden, D., 1974. The measurement of urban travel demand. J. Public Econ. 3 (4), 303–328. http://dx.doi.org/10.1016/0047-2727(74)90003-6.
Munizaga, M.A., Heydecker, B.G., Ortúzar, J.d., 2000. Representation of heteroskedasticity in discrete choice models. Transp. Res. Part B: Methodol. 34 (3), 

219–240. http://dx.doi.org/10.1016/S0191-2615(99)00022-3.
Nakayama, S., 2013. q-generalized logit route choice an network equilibrium model. Procedia - Soc. Behav. Sci. 80, 753–763. http://dx.doi.org/10.1016/j.sbspro.

2013.05.040.
Nielsen, O.A., 2004. A large scale stochastic multi-class schedule-based transit model with random coefficients. In: Wilson, N.H.M., Nuzzolo, A. (Eds.), Schedule-

Based Dynamic Transit Modeling: Theory and Applications. In: Operations Research/Computer Science Interfaces Series, Springer US, Boston, MA, pp. 53–77. 
http://dx.doi.org/10.1007/978-1-4757-6467-3_4.

Petrin, A., Train, K., 2003. Omitted Product Attributes in Discrete Choice Models. Working Paper Series, National Bureau of Economic Research, http:
//dx.doi.org/10.3386/w9452.

Pougala, J., Hillel, T., Bierlaire, M., 2023. OASIS: Optimisation-based activity scheduling with integrated simultaneous choice dimensions. Transp. Res. Part C: 
Emerg. Technol. 155, 104291. http://dx.doi.org/10.1016/j.trc.2023.104291.

Prato, C.G., 2009. Route choice modeling: Past, present and future research directions. J. Choice Model. 2 (1), 65–100. http://dx.doi.org/10.1016/S1755-
5345(13)70005-8.

Prato, C.G., Bekhor, S., 2007. Modeling route choice behavior: How Relevant Is the Composition of Choice Set? Transp. Res. Rec. 2003 (1), 64–73. 
http://dx.doi.org/10.3141/2003-09, Publisher: SAGE Publications Inc.

Ramming, M.S., 2002. Network Knowledge and Route Choice (Ph.D. thesis). Massachusetts Institute of Technology, T16:36:54Z (Accepted 06 November 2009).
Rasmussen, T.K., Duncan, L.C., Watling, D.P., Nielsen, O.A., 2024. Local detouredness: A new phenomenon for modelling route choice and traffic assignment. 

Transp. Res. Part B: Methodol. 190, 103052. http://dx.doi.org/10.1016/j.trb.2024.103052.
Simon, H.A., 1955. A behavioral model of rational choice. Q. J. Econ. 69 (1), 99–118. http://dx.doi.org/10.2307/1884852, Publisher: Oxford University Press.
Stadt, H.v., Kapteyn, A., van de Geer, S., 1985. The relativity of utility: Evidence from panel data. Rev. Econ. Stat. 67 (2), 179–187. http://dx.doi.org/10.2307/

1924716, Publisher: The MIT Press.
Tan, H., Xu, X., Chen, A., 2024. On endogenously distinguishing inactive paths in stochastic user equilibrium: A convex programming approach with a truncated 

path choice model. Transp. Res. Part B: Methodol. 183, 102940. http://dx.doi.org/10.1016/j.trb.2024.102940.
Tsallis, C., 1994. What are the numbers that experiments provide? Quim. Nova 17 (6), 468–471.
Vovsha, P., 1997. Application of cross-nested logit model to mode choice in tel aviv, Israel, metropolitan area. Transp. Res. Rec. 1607 (1), 6–15. http:

//dx.doi.org/10.3141/1607-02, Publisher: SAGE Publications Inc.
Watling, D.P., Rasmussen, T.K., Prato, C.G., Nielsen, O.A., 2018. Stochastic user equilibrium with a bounded choice model. Transp. Res. Part B: Methodol. 114, 

254–280. http://dx.doi.org/10.1016/j.trb.2018.05.004.
Williams, H.C.W.L., Ortuzar, J.D., 1982. Behavioural theories of dispersion and the mis-specification of travel demand models. Transp. Res. Part B: Methodol. 

16 (3), 167–219. http://dx.doi.org/10.1016/0191-2615(82)90024-8.
Xu, X., Chen, A., Kitthamkesorn, S., Yang, H., Lo, H.K., 2015. Modeling absolute and relative cost differences in stochastic user equilibrium problem. Transp. 

Res. Procedia 7, 75–95. http://dx.doi.org/10.1016/j.trpro.2015.06.005.
Yai, T., Iwakura, S., Morichi, S., 1997. Multinomial probit with structured covariance for route choice behavior. Transp. Res. Part B: Methodol. 31 (3), 195–207. 

http://dx.doi.org/10.1016/S0191-2615(96)00025-2.
Yao, J., Chen, A., 2014. An analysis of logit and weibit route choices in stochastic assignment paradox. Transp. Res. Part B: Methodol. 69, 31–49. 

http://dx.doi.org/10.1016/j.trb.2014.07.006.
Zhang, J., Timmermans, H., Borgers, A., Wang, D., 2004. Modeling traveler choice behavior using the concepts of relative utility and relative interest. Transp. 

Res. Part B: Methodol. 38 (3), 215–234, Publisher: Elsevier.
29 

http://dx.doi.org/10.1108/9781849507738-013
http://dx.doi.org/10.1016/j.trb.2009.03.001
http://dx.doi.org/10.1016/j.trb.2005.01.005
http://dx.doi.org/10.1016/j.jocm.2022.100373
http://dx.doi.org/10.1016/j.jocm.2017.03.001
http://dx.doi.org/10.1016/0167-8116(95)00004-L
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb29
http://dx.doi.org/10.1016/S0191-2615(99)00012-0
http://dx.doi.org/10.1016/j.tra.2023.103834
http://dx.doi.org/10.1016/j.trb.2008.06.006
http://dx.doi.org/10.1016/0047-2727(74)90003-6
http://dx.doi.org/10.1016/S0191-2615(99)00022-3
http://dx.doi.org/10.1016/j.sbspro.2013.05.040
http://dx.doi.org/10.1016/j.sbspro.2013.05.040
http://dx.doi.org/10.1016/j.sbspro.2013.05.040
http://dx.doi.org/10.1007/978-1-4757-6467-3_4
http://dx.doi.org/10.3386/w9452
http://dx.doi.org/10.3386/w9452
http://dx.doi.org/10.3386/w9452
http://dx.doi.org/10.1016/j.trc.2023.104291
http://dx.doi.org/10.1016/S1755-5345(13)70005-8
http://dx.doi.org/10.1016/S1755-5345(13)70005-8
http://dx.doi.org/10.1016/S1755-5345(13)70005-8
http://dx.doi.org/10.3141/2003-09
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb41
http://dx.doi.org/10.1016/j.trb.2024.103052
http://dx.doi.org/10.2307/1884852
http://dx.doi.org/10.2307/1924716
http://dx.doi.org/10.2307/1924716
http://dx.doi.org/10.2307/1924716
http://dx.doi.org/10.1016/j.trb.2024.102940
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb46
http://dx.doi.org/10.3141/1607-02
http://dx.doi.org/10.3141/1607-02
http://dx.doi.org/10.3141/1607-02
http://dx.doi.org/10.1016/j.trb.2018.05.004
http://dx.doi.org/10.1016/0191-2615(82)90024-8
http://dx.doi.org/10.1016/j.trpro.2015.06.005
http://dx.doi.org/10.1016/S0191-2615(96)00025-2
http://dx.doi.org/10.1016/j.trb.2014.07.006
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb53
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb53
http://refhub.elsevier.com/S0191-2615(25)00124-9/sb53

	A closed-form bounded route choice model accounting for heteroscedasticity, overlap, and choice set formation
	Introduction
	Model derivation and properties
	Preliminaries
	q-Operators
	Probability distributions

	Derivation of the Bounded q-Product Logit Model
	Special cases of the BqPL model
	When varphi →+∞: the qPL model
	When q = 0: the BL model
	When q = 1: the Bounded Weibit (BW) model

	Model variance
	Accounting for route correlation: The Bounded Path Size q-Product Logit model
	Summary of model properties and collapsing

	Demonstrations of model properties
	Accounting for heteroscedasticity
	Accounting for heteroscedasticity and choice set formation
	Accounting for heteroscedasticity, choice set formation and route correlation

	Parameter estimation approach
	Case study: Bicycle route choice in the Greater Copenhagen Area
	The Data
	Choice set generation
	Estimation results
	Estimate precision
	Experiments on choice sets
	Model validation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Bounding conditions
	Appendix B. Special cases of the BPSqPL model
	When q = 0: the BPSL model Duncan et al. (2022)
	When q = 1: the BPSW model
	When varphi →+∞: the GPSqPL' model
	When varphi →+∞ and q = 0: the GPSL' model Duncan et al. (2020)
	When varphi →+∞ and q = 1: the GPSW' model

	Appendix C. Path size and Bounded Path Size models
	Appendix D. The BqPL: a relative utility model
	The relative utility framework
	Alternative derivation of the BqPL model
	Heteroscedasticity illustration

	References


