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Abstract

The Multinomial Logit (MNL) model is widely used in route choice modelling due to
its simple closed-form choice probability function. However, MNL assumes that the error
terms are independently and identically distributed with infinite support. As a result, it
imposes homoscedasticity, meaning that long and short trips share the same error variance,
disregards correlations between overlapping routes, and assigns non-zero choice probabilities
to all available routes, regardless of their cost. This paper addresses these limitations by
developing a closed-form route choice model. We introduce the Bounded q-Product Logit
(BqPL) model, which incorporates heteroscedastic error terms with bounded support. The
parameter q controls the rate at which error term variance increases with trip cost, and routes
that violate cost bounds receive zero choice probabilities, implicitly defining the route choice
set. Furthermore, we extend the BqPL model to account for correlations between overlap-
ping routes by integrating path size correction terms within the choice probability function,
resulting in the Bounded Path Size q-Product Logit (BPSqPL) model. We illustrate the
properties of the BPSqPL model on small-scale networks, contrasting it with a range of
existing choice models into which it can collapse. We then present a method to estimate
the model parameters and standard errors, using bootstrapping. Finally, we estimate the
model using a large-scale bicycle route choice case study, comparing its goodness-of-fit, inter-
pretability, and forecasting ability with relevant collapsing models. We also test the impact
of the choice set size on the estimated parameters. The results underscore the importance
of addressing the three key limitations of the MNL model and demonstrate the effectiveness
of the BPSqPL model in doing so.

Keywords: route choice, heteroscedasticity, route overlap, choice set formation, large-scale
application

Highlights

• Derivation of a heteroscedastic route choice model implicitly determining considered routes

• Extension to consistently account for route overlap through integrating path size terms

• Demonstration of model properties, contrasting with existing models

• Parameter estimation and interpretation in a large-scale bicycle route choice case study

• Comparison of fit, predictive ability, and behavioural implications with existing models
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1 Introduction

The Multinomial Logit (MNL) is a Random Utility Model (RUM) (McFadden (1974)) which is
widely used in route choice applications due to its simple closed-form choice probability function
that is quick and easy to compute and estimate. MNL makes, however, several questionable
assumptions of the random error terms, leading to some behavioural limitations:

• Homoscedasticity of the error terms: MNL assumes that the error terms for all routes
of all OD movements are identically distributed with the same variance, i.e. the error
terms are homoscedastic. However, as Bhat (1995) argues, the amount and variability of
unobserved characteristics of routes is likely to differ from one route to another, both of
routes within a choice set and between choice sets (Munizaga et al. 2000). Longer routes,
for instance, are likely to have greater variability in their unobserved characteristics than
shorter routes, meaning there should be greater variance in their error terms.

• Independence of the error terms: MNL assumes that the error terms for all routes are
independently distributed. Error terms are likely to be correlated, however, as routes tend
to be highly overlapping, sharing links and their unobserved characteristics with many
other routes (Ben-Akiva and Bierlaire 1999; Cascetta et al. 1996). It is thus unrealistic
to assume that there is no covariance between the error terms, as there is likely to be a
correlation between the unobserved attributes of routes.

• Non-bounded support of the error terms: The MNL model assumes that error terms have
infinite support, meaning that, theoretically, every possible alternative, no matter how im-
probable, has a non-zero probability of being chosen. This assumption is often unrealistic,
especially in practical scenarios like route choice, where travellers typically avoid highly
circuitous or inefficient routes. Real-life networks contain many such routes that are rarely,
if ever, considered (Bovy 2009; Duncan et al. 2022). Consequently, the MNL struggles to
account for the natural process of choice set formation, where only a subset of alternatives
is genuinely considered by decision-makers.

Numerous route choice modelling approaches have been developed to address each of these
limitations.

• Accounting for heteroscedasticity: Bhat (1995) developed a heteroscedastic logit model
where the error term for each route has a different scale. However, the model is not closed-
form and is computationally expensive to compute in real-life networks. Other models
building on Mixed Logit or Multinomial Probit have also been developed to account for
heterogeneity in error term variance (e.g., Ben-Akiva and Bierlaire (1999); Greene et al.
(2006)). These models suffer from large estimation times and potential confounding effects
between cost coefficient correlation and heteroscedasticity among alternatives (Hess and
Train 2017). Among closed-form models, Chen et al. (2012) addresses the heteroscedastic-
ity issue of MNL by modifying the Logit scaling parameter – which controls the variance
of the error terms – to relate to the distance of the OD movement. While this model
captures the heteroscedasticity of error terms across between choice sets, it cannot do so
within alternatives of a choice set. Castillo et al. (2008) developed the closed-form Multi-
nomial Weibit (MNW) model where the error term standard deviation grows linearly with
travel cost. Thus, MNW captures the heteroscedasticity of route error terms across and
within OD movements. Fosgerau and Bierlaire (2009) derive MNW in an alternative way
through multiplicative random error terms. Chikaraishi and Nakayama (2016) developed
the q-Product Logit (qPL) model that generalises both MNL and MNW, where one can
control the rate at which error term variance increases with travel cost with a parameter
q. Setting q = 0 results in the MNL model and q = 1 results in the MNW model. Yao and
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Chen 2014 and Xu et al. 2015 also developed Hybrid Logit-Weibit models that balance
MNL and MNW, but these lack a strong behavioural foundation.

• Accounting for route overlap: Many models have been developed to address the overlap
issue, which is often categorised into Generalised Extreme Value (GEV) structure models
(e.g. Nested or Cross Nested Logit (Vovsha 1997), Paired Combinatorial Logit (Koppel-
man and Wen 2000)), simulation models (e.g., Mixed Logit (Bekhor et al. 2002), Probit
(Yai et al. 1997)), and correction-term models (C-Logit (Cascetta et al. 1996), Path Size
Logit (Ben-Akiva and Bierlaire 1999)). A detailed review of correlation-based route choice
models can be seen in Duncan et al. (2020). Correction-term models, like MNL, feature
simple closed-form choice probability functions that are easy to compute and estimate,
making them the most commonly used in practice.

• Accounting for choice set formation: The assumption of unbounded support for the MNL
error terms presents two key issues. The first is computational: enumerating the universal
set of routes between an origin and destination on a large-scale network is infeasible. As
a result, route choice models typically rely on sampling protocols to generate a realistic
subset of considered routes (see Prato (2009) for a review). However, these sampling
algorithms often use criteria that are inconsistent with those used for calculating route
choice probabilities, leading to biased estimates Frejinger et al. 2009; Frejinger and Bierlaire
2010. The second issue is behavioural: travellers cannot process the universal set of routes
and are likely to use heuristics to build their consideration set Simon 1955. Failing to
account for the effects of choice set formation is also known to bias estimates Williams and
Ortuzar 1982. To address this, the concept of one-stage choice set formation models has
been applied to route choice modelling (e.g., Cascetta and Papola 2001; Martínez et al. 2009
with the Implicit Availability/Perception and Constrained MNL models, respectively).
These models introduce the concept of fuzzy choice sets and penalise the deterministic
cost of alternatives that do not meet non-compensatory cutoffs. However, this approach
is inconsistent with Horowitz and Louviere (1995)’s finding that the same preferences
should drive both choice set formation and choice probability determination. Additionally,
these models are ’soft’, meaning violating routes only receive reduced probabilities rather
than strictly zero. Their application to large-scale data has also struggled to produce
significant network-related estimates Ramming 2002. A recent stream of models addresses
choice set formation implicitly by modifying the distributional assumptions of error terms.
Specifically, by bounding their support, Watling et al. (2018) with the Bounded Logit (BL)
model1 and Tan et al. (2024) with the truncated path choice model, these models exclude
alternatives from the choice sets (assign them zero probabilities) if their systematic cost
is not within a bound set on cost. Moreover, these approaches do not impose additional
assumptions on the decision rule used for choice set formation, aligning with Horowitz and
Louviere (1995)’s observation that the same preferences should drive both processes.

Some models have been developed to jointly address two of the three main shortcomings of the
MNL model. For instance, the Path Size Weibit (Kitthamkesorn and Chen 2013), Nested Weibit
(Gu et al. 2022), and Cross-Nested q-Product Logit models (Chikaraishi and Nakayama 2016)
are designed to handle both heteroscedasticity and route correlation. Similarly, the Bounded
Path Size Logit (BPSL) model (Duncan et al. 2022) accounts for route overlap and choice set
formation, though it does not address heteroscedasticity. However, to the best of our knowledge,
no existing route choice model addresses all three of these deficiencies simultaneously.

In this paper, we tackle this gap by developing a new closed-form route choice model that in-
tegrates several concepts from the literature. We begin by building on Chikaraishi and Nakayama

1This model was originally termed the Bounded Choice Model but is referred to here as the Bounded Logit
model to distinguish it from other bounded models, such as the Bounded Weibit and Bounded q-Product Logit
models.
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(2016)’s q-Product Logit (qPL) model and Watling et al. (2018)’s Bounded Logit (BL) model
to derive the Bounded q-Product Logit (BqPL) model. In this model, the error terms are as-
sumed to follow a novel truncated q-log-logistic distribution, which is heteroscedastic and has
bounded support. The parameter q controls the rate at which error term variance increases with
route cost, and routes that exceed a cost bound receive zero choice probabilities, thus implicitly
determining the route choice set.

Subsequently, drawing on Duncan et al. (2022)’s Bounded Path Size Logit (BPSL) model,
we extend the BqPL model to account for correlations between overlapping considered routes by
incorporating appropriately-defined path size correction terms into the choice probability func-
tion. The resulting Bounded Path Size q-Product Logit (BPSqPL) model is a unified framework
that can collapse into various existing and new models, including path size and/or bounded
logit, weibit, and qPL variants.

The structure of the paper is as follows: Section 2 presents the theoretical background and
derivation of the BPSqPL model, along with a discussion of its collapsing properties. Section
3 demonstrates the model’s theoretical properties by contrasting it with its collapsing models.
In Section 4, we describe a method to estimate the BPSqPL parameters and their standard
errors with observed discrete choice data. In Section 5, we estimate the models in a large-
scale bicycle route choice case study, comparing goodness-of-fit, interpretability, and forecasting
performance. We also test the robustness of the estimated parameters with respect to the choice
set size. Finally, Section 6 concludes with a summary, discussion, and suggestions for future
research.

Model acronyms used throughout the paper are presented in Table 1.

Acronym Meaning

MNL/MNW Multinomial Logit/Weibit
qPL q-Product Logit
BL/BW Bounded Logit/Weibit
BqPL Bounded q-Product Logit
BPSL/BPSW Bounded Path Size Logit/Weibit
BPSqPL Bounded Path Size q-Product Logit
GPSL/GPSW Generalized Path Size Logit/Weibit
GPSqPL Generalized Path Size q-Product Logit

Table 1: Table of acronyms

2 Model derivation and properties

In this section, we will derive the Bounded q-Product Logit (BqPL) model and its extension to
account for route overlap consistently: the Bounded Path Size q-Product Logit (BPSqPL) model.
These models utilise a generalisation of the relation between the systematic and stochastic
components of the random cost of alternatives, which may vary between the sum and the product
depending on the value of a model parameter q. This assumption allows the variance of the
random costs to increase with their expected value, and q influences this growth rate. We will
first introduce in Section 2.1 some preliminary modelling definitions we will use to derive the
BqPL model. In Section 2.2, we shall then derive the BqPL model, following a method adapted
from Watling et al. (2018) and Duncan et al. (2022) for deriving the BL model. Special cases
of the BqPL model are discussed in Section 2.3. Taking inspiration from how Duncan et al.
(2022) formulate the BPSL model, in Section 2.5 we integrate analogous path size correction
terms within the BqPL probability function to formulate the BPSqPL model. In Section 2.6,
we summarise the collapsing properties of the different presented models and their properties.
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2.1 Preliminaries

Here, we introduce some preliminary modelling definitions used to derive the BqPL model. In
Section 2.1.1 we define a set of "q-operators", a set of functions used to formulate the qPL model
in Chikaraishi and Nakayama (2016) that we shall also utilise here. These q-operators allow for
one to establish a more complex relationship between the systematic and random components
of route costs. In Section 2.1.2, we introduce the probability distribution we will assume of error
terms to derive the BqPL model. distributions.

2.1.1 q-Operators

Here, we present some q-operators. First, the "q-product" (Borges 2004) can be seen as an
in-between of the sum and the product. The q ∈ [0, 1] parameter controls the closeness to the
sum or product. It is defined for a > 0 and b > 0 such that a1−q + b1−q − 1 > 0 as:

a⊗q b =
(
a1−q + b1−q − 1

) 1
1−q

+ (1)

where (.)+ = max(0, .). Its limiting cases are lim
q→1

a⊗q b = ab and a⊗0 b = a+ b− 1. We can

similarly define the "q-ratio" as the inverse operator of the q-product:

a⊘q b =
(
a1−q − b1−q + 1

) 1
1−q

+ (2)

Its limiting cases are lim
q→1

a ⊘q b = a/b and a ⊘0 b = a − b + 1. It is the inverse of the q-

product because a ⊗q (1 ⊘q a) = 1. Additionally, for any positive real number x, we define the
"q-logarithm" (Tsallis 1994) as:

lnq(x) =


x1−q − 1

1− q
if q ̸= 1

ln(x) if q = 1
(3)

Notably, ln0(x) = x− 1. We have that lnq(a⊗q b) = lnq(a) + lnq(b). The inverse function of the
q-logarithm is given by the "q-exponential":

expq(x) =

{
(1 + (1− q)x)

1
1−q

+ if q ̸= 1

exp(x) if q = 1
(4)

We have the property that, for any x > 0, expq(lnq(x)) = lnq(expq(x)) = x.
These functions retain the morphism properties of the classic exponential and logarithms,

e.g., lnq(a⊘q b) = lnq(a)− lnq(b), lnq(a⊗q b) = lnq(a)− lnq(b), expq(a+ b) = expq(a)⊗q expq(b)
and expq(a− b) = expq(a)⊘q expq(b).

2.1.2 Probability distributions

The BqPL model is derived by assuming random error terms follow a new probability distribution
named the Truncated q-Log-Logistic distribution. This distribution is derived from a series of
other distributions. The Truncated q-log-logistic distribution is derived by truncating a q-
log-logistic distribution. The q-log-logistic distribution is derived by taking the q-ratio of two
q-Gumbel distributions. The q-Gumbel distribution is derived by introducing a q-logarithm
operator to transform the dependent variable in the Gumbel distribution. It thus generalises
both the Gumbel and Weibull distributions.

We shall thus begin by defining the q-Gumbel distribution as introduced in Chikaraishi and
Nakayama (2016), which has the following Probability Distribution Function (PDF):
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fqG(x|θ, µ, q) = θx−q exp (−θ(lnq(x)− lnq(µ))) exp [− exp (−θ(lnq(x)− lnq(µ)))] (5)

θ is the scale parameter, µ is the location parameter, and q is the heteroscedasticity parameter.
Indeed, q parametrises the rate at which the variance of the q-Gumbel increases with µ (an
illustration can be found in Chikaraishi and Nakayama (2016)). Its Cumulative Distribution
Function (CDF) is given by:

FqG(x|θ, µ, q) = 1− exp [− exp (−θ(lnq(x)− lnq(µ)))] (6)

As one can see, the q-Gumbel distribution is derived by replacing logarithm operators with
q-logarithm operators in the Gumbel distribution. Note that, as shown in Chikaraishi and
Nakayama (2016), the q-Gumbel distribution is equivalent to the Gumbel distribution for q = 0
and equivalent to the Weibull distribution for q = 1. As proved in Chikaraishi and Nakayama
(2016), the q-Gumbel distribution variance increases with its mean µ, which allows the qPL
model to account for heteroscedasticity.

Next, we shall derive a q-Log-Logistic distribution by taking the q-ratio of two independent
q-Gumbel distributions. Let X and Y follow two independent q-Gumbel distributions with the
same scale and q parameter, i.e., X ∼ qGumbel(θ, µX , q) and Y ∼ qGumbel(θ, µY , q). Then,
their q-ratio Z = X ⊘q Y follows a q-Log-Logistic distribution, whose CDF, denoted FqL, is
given by:

FZ(x) = FqL(x|θ, µ, q) :=
1

1 + exp [−θ(lnq(x)− lnq(µZ))]
(7)

where µZ = µX ⊘q µY . This is proven as follows:

Proof. Let us assume two variables X ∼ qGumbel(θ, µX , q), Y ∼ qGumbel(θ, µY , q) as defined
above. If q = 1, the result comes directly from the Weibit proof from Gu et al. (2022). If
q ̸= 1, we have that lnq(X ⊘q Y ) = lnq(X) − lnq(Y ). As proved in Chikaraishi and Nakayama
2016, lnq(X) ∼ Gumbel(θ, lnq(µX)) and lnq(Y ) ∼ Gumbel(θ, lnq(µY )). Their difference is thus
Logistically distributed, i.e., lnq(X ⊘q Y ) ∼ Logistic(θ, µ), where µ = lnq(µX) − lnq(µY ) =
lnq(µX ⊘q µY ). It has the following CDF:

Flnq(X⊘qY )(x|θ, µ) = Pr (lnq(X ⊘q Y ) ≤ x) =
1

1 + exp(−θ(x− µ))

The function x → expq(x) is monotonically increasing, meaning that:

Flnq(X⊘qY )(x) = Pr (lnq(X ⊘q Y ) ≤ x) = Pr
(
X ⊘q Y ≤ expq(x)

)
= FX⊘qY (expq(x))

Thus,

FX⊘qY (x) = Flnq(X⊘qY )(lnq(x))

=
1

1 + exp [−θ(lnq(x)− lnq(µ))]

where µ = µX ⊘q µY

The proposed Truncated q-Log-Logistic distribution is derived by left-truncating the q-Log-
Logistic distribution at a lower bound 1⊘q ϕ for some ϕ ≥ 1. If X ∼ q-Log-logistic(θ, µ, q), we
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define the CDF of the Truncated q-Log-Logistic distribution as the distribution of the X given
that its value is larger than the truncation threshold 1⊘q ϕ:

FqT (x|θ, µ, q, ϕ) = P(X ≤ x|X ≥ 1⊘q ϕ)

=
P(X ≤ x;X ≥ 1⊘q ϕ)

P(X ≥ 1⊘q ϕ)

=
P(1⊘q ϕ ≤ X ≤ x)

1− P(X ≤ 1⊘q ϕ)

=


FqL(x|θ, µ, q)− FqL(1⊘q ϕ|θ, µ, q)

1− FqL(1⊘q ϕ|θ, µ, q)
if x ≥ 1⊘q ϕ

0 if 0 ≤ x < 1⊘q ϕ

(8)

where FqL is the CDF of the q-Log-Logistic distribution, given in Equation 7. The PDF of the
Truncated q-Log-Logistic distribution can be found by differentiating the CDF with respect to
x:

fqT (x|θ, µ, q, ϕ) =


fqL(x|θ, µ, q)

1− FqL(1⊘q ϕ|θ, µ, q)
if x ≥ 1⊘q ϕ

0 if 0 ≤ x < 1⊘q ϕ

(9)

where fqL = ∂FqL/∂x, i.e.,

fqL(x|θ, µ, q) = θx−q exp(θ(lnq(x)− µ)) [1 + exp(θ(lnq(x)− µ))]−2

The Truncated q-Log-Logistic CDF can be written compactly as:

FqT (x|θ, µ, q, ϕ) =
(FqL(x|θ, µ, q)− FqL(1⊘q ϕ|θ, µ, q))+

1− FqL(1⊘q ϕ|θ, µ, q)

where (.)+ is the operator max(0, .). The CDF of the Truncated q-Log-Logistic distribution for
some fixed values of parameters is plotted in Figure 1. We observe that, for ϕ = 1, the CDF
equals zero for all x < 1, then tends to the q-Log-Logistic distribution CDF when x tends to +∞.
We also see that, for µ = 1, the CDF gradient is steeper than for µ = 3, which means that its
values have less variance. This highlights the heteroscedasticity property of the q-Log-Logistic
and its truncated version.

2.2 Derivation of the Bounded q-Product Logit Model

Here we derive the BqPL model, following a similar approach to how the BL model is derived in
Duncan et al. (2022) (see Supplementary Material Appendix A of that paper). For pedagogical
purposes, we shall briefly describe how the BL model is derived so that it is clear what is different
in the derivation of the BqPL model. Suppose a decision-maker faces a route choice situation
with a choice set R = {1, ..., n}. Suppose that each alternative i ∈ R can be described by some
observed attributes aggregated within a positive systematic cost function ci > 0. To account for
the analyst’s lack of knowledge of the actual route cost that the decision-maker perceives, the
costs have random errors. For the BL model, it is assumed that this random error is additive
to the systematic cost: Ci = ci + ϵi, where ϵi is the error term for route i. Now, the BL model
supposes that each route is compared with an imaginary reference alternative r∗ in terms of the
difference in random cost:

Ci − Cr∗ = (ci + ϵi)− (cr∗ + ϵr∗) = ci − cr∗ + ϵi − ϵr∗ = ci − cr∗ + εi

where εi is the difference random error term for route i with the reference alternative. The
MNL model can be derived by assuming the ϵi error terms are Gumbel distributed, and thus,
the εi difference random error terms assume the Logistic distribution. The BL model, however,
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Figure 1: q-Log-Logistic and Truncated q-Log-Logistic CDFs for µ = 1 and µ = 3, all the other
parameters being fixed.

proposes that the difference random error terms εi assume a Truncated Logistic distribution,
obtained by left-truncating a Logistic distribution with mean 0 and scale θ at a lower bound of
−ϕ for some ϕ > 0. The consequent BL choice probability function imposes a bound ϕ on the
difference in systematic cost with the reference alternative, with violating routes receiving zero
choice probabilities.

For the BqPL model, rather than supposing that the random error is additive to the system-
atic cost, we suppose the random error relates via a q-product operator to the systematic cost:
Ci = ci ⊗q ϵi. The q-ratio in random cost between route i and the reference alternative is thus:

Ci ⊘q Cr∗ = (ci ⊗q ϵi)⊘q (cr∗ ⊗q ϵr∗) = ci ⊘q cr∗ ⊗q ϵi ⊘q ϵr∗ = ci ⊘q cr∗ ⊗q εi

It is important to note that while we define ϵi as the random cost error term for alternative i,
its distribution is not explicitly specified. The only distributional assumption is made on the
relative error term, defined as εi = ϵr∗ ⊘q ϵi. The BqPL model can be derived without assuming
a random utility for each alternative, but instead by considering only the relative random utility
with respect to the reference alternative. This approach, along with further discussion on the
error term distribution and heteroscedasticity, is presented in Appendix D. The qPL model can
be derived by assuming εi = ϵi⊘q ϵr∗ follows a q-Log-Logistic distribution. For the BqPL model,
the q-ratio of random error terms εi is assumed to follow a Truncated q-Log-Logistic distribution
with mean 0, scale θ, q-parameter q, and bound ϕ. This implies that:

Pr(ϵi ⊘q ϵr∗ ≤ 1⊘q ϕ) = 0

or equivalently,
Pr(Ci ⊘q Cr∗ ≤ ci ⊘q (ϕ⊗q cr∗)) = 0

meaning that the random cost q-ratio must be within a bound ϕ ≥ 1 of the systematic cost
q-ratio. The probability of choosing an alternative i ∈ R over a reference alternative r∗ is given
by:
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Pr(i|{i, r∗}) = Pr(Ci ≤ Cr∗)

= Pr(ci ⊗q ϵi ≤ cr∗ ⊗q ϵr∗)

= Pr(ϵi ⊘q ϵr∗ ≤ cr∗ ⊘q ci)

= Pr(εi ≤ cr∗ ⊘q ci) (10)

Assuming that εi = ϵi ⊘q ϵr∗ follows a truncated q-Log-Logistic distribution with scale param-
eter θ, a location parameter of 1, a shape parameter q and a bound parameter ϕ, the choice
probabilities can be rewritten:

Pr(i|{i, r∗}) = FqT (cr∗ ⊘q ci|θ, 1, q, ϕ)

=


FqL(cr∗ ⊘q ci|θ, 1, q)− FqL(1⊘q ϕ|θ, 1, q)

1− FqL(1⊘q ϕ|θ, 1, q)
if cr∗ ⊘q ci ≥ 1⊘q ϕ

0 otherwise

=


1

1 + e−θ lnq(cr∗⊘qci)
− 1

1 + e−θ lnq(1⊘qϕ)

1− 1

1 + e−θ lnq(1⊘qϕ)

if cr∗ ⊘q ci ≥ 1⊘q ϕ

0 otherwise

=



eθ lnq(ϕ) − e−θ lnq(cr∗⊘qci)

(1 + e−θ lnq(cr∗⊘qci))(1 + eθ lnq(ϕ))

eθ lnq(ϕ))

1 + eθ lnq(ϕ)

if cr∗ ⊘q ci ≥ 1⊘q ϕ

0 otherwise

=


eθ lnq(ϕ) − e−θ lnq(cr∗⊘qci)

(1 + e−θ lnq(cr∗⊘qci))eθ lnq(ϕ)
if cr∗ ⊘q ci ≥ 1⊘q ϕ

0 otherwise

We define the odds ratio as ηi =
Pr(i|{i,r∗})

1−Pr(i|{i,r∗}) . First, 1 − Pr(i|{i, r∗}) can be expressed as
follows:

1− Pr(i|{i, r∗}) =

1− eθ lnq(ϕ) − e−θ lnq(cr∗⊘qci)

(1 + e−θ lnq(cr∗⊘qci))eθ lnq(ϕ)
if cr∗ ⊘q ci ≥ 1⊘q ϕ

1 otherwise

=


e−θ lnq(cr∗⊘qci⊘qϕ) + e−θ lnq(cr∗⊘qci)

(1 + e−θ lnq(cr∗⊘qci))eθ lnq(ϕ)
if cr∗ ⊘q ci ≥ 1⊘q ϕ

1 otherwise

Consequently, we can simplify ηi as:

ηi =

(
eθ lnq(ϕ) − e−θ lnq(cr∗⊘qci)

)
+

e−θ lnq(cr∗⊘qci⊘qϕ) + e−θ lnq(cr∗⊘qci)

=

(
e−θ lnq(ci⊘q(ϕ⊗qcr∗ )) − 1

)
+

(eθ lnq(ϕ) + 1)

We retrieve the choice probabilities of i among the choice set R using the log-odds ratio formula:

Pr(i|R) =
eln(ηi)∑

j∈R
eln(ηj)
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i.e.,

PBqPL
i := Pr(i|R) =

(
e−θ lnq(ci⊘q(ϕ⊗qcr∗ )) − 1

)
+∑

j∈R

(
e−θ lnq(cj⊘q(ϕ⊗qcr∗ )) − 1

)
+

(11)

For the BL model, Watling et al. (2018) proposed defining the reference alternative as the
alternative with the cheapest systematic cost, i.e., cr∗ = min

j∈R
cj . And, they specify the bound

so that it is relative to the cheapest cost, i.e. a route receives a zero choice probability if it has
a cost ci ≥ φmin

j∈R
cj . This is because the desired bounding condition is relative to the scale of

costs for each OD movement.
To specify the BqPL model so that it has the same bounding condition as the BL model, we

set ϕ = φcr∗ ⊘q cr∗ , where φ > 1 is the relative cost bound parameter. The consequent BqPL
choice probability function is as follows for route i:

P rel. BqPL
i := Pr(i|R) =

(
exp(−θ lnq(ci ⊘q (φmin

l∈R
cl)))− 1

)
+∑

j∈R

(
exp(−θ lnq(cj ⊘q (φmin

l∈R
cl)))− 1

)
+

=

(
exp(−θ(lnq(ci)− lnq(φmin

l∈R
cl)))− 1

)
+∑

j∈R

(
exp(−θ(lnq(cj)− lnq(φmin

l∈R
cl)))− 1

)
+

(12)

With this BqPL choice probability function, an alternative will receive a non-zero choice prob-
ability if and only if ci < φmin

l∈R
cl. Although in this study we specify the BqPL bound as a

relative cost bound to be consistent with the BL model, one can also specify the bound in other
ways with different implications, see Appendix A for a discussion.

2.3 Special cases of the BqPL model

Under certain specifications of the model parameters, the BqPL model can collapse into existing
and new models. In this section, we summarise them.

2.3.1 When φ → +∞: the qPL model

When φ tends to infinity, the BqPL model collapses to Chikaraishi and Nakayama (2016)’s qPL
model. Rearranging the BqPL probability relation in Equation 12:

P rel. BqPL
i =

exp(−θ lnq(ci))

(
1− exp(θ lnq(ci ⊘q (φmin

l∈R
cl)))

)
+∑

j∈R
exp(−θ lnq(cj))

(
1− exp(θ lnq(ci ⊘q (φmin

l∈R
cl)))

)
+

(13)

As lim
φ→+∞

exp(θ lnq(ci ⊘q (φmin
l∈R

cl))) = 0, we have that, from Equation 13:

lim
ϕ→+∞

(
exp(−θ lnq(ci ⊘q (φmin

l∈R
cl)))− 1

)
+∑

j∈R

(
exp(−θ lnq(cj ⊘q (φmin

l∈R
cl))− 1

)
+

=
exp(−θ lnq(ci))∑

j∈R
exp(−θ lnq(cj))

= P qPL
i (14)
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2.3.2 When q = 0: the BL model

When q = 0, as lnq(x) = x − 1 for any x > 0, the BqPL collapses to Watling et al. (2018)
Bounded Logit (BL), with the following choice probabilities:

P rel. BqPL
i,q=0 =

(
exp(−θ(ci − φmin

l∈R
cl))− 1

)
+∑

j∈R

(
exp(−θ(cj − φmin

l∈R
cl))− 1

)
+

(15)

2.3.3 When q = 1: the Bounded Weibit (BW) model

When q = 1, as lnq(x) = ln(x) for any x > 0, the BqPL collapses to what we will refer to as the
Bounded Weibit (BW) model, i.e., a bounded model which collapses to the Multinomial Weibit
model (Castillo et al. 2008) when the bound tends to +∞. Its choice probabilities are given by:

PBW
i := PBqPL

i,q=1 =

(
(ci/φmin

l∈R
cl)

−θ − 1

)
+∑

j∈R

(
(cj/φmin

l∈R
cl)−θ − 1

)
+

(16)

2.4 Model variance

A key feature of the Bounded q-Product Logit model is its inherent heteroscedasticity, meaning
the variance of the decision noise is not constant but varies with the deterministic cost structure.
This property emerges naturally from the model’s definition of the random cost q-ratio:

Ci ⊘q Cr∗ = (ci ⊘q cr∗)⊗q εi

=
(
(ci ⊘q cr∗)

1−q + ε1−q
i − 1

) 1
1−q

where εi is an error term drawn from a truncated q-LogLogistic distribution with a mean of
1, which is equivalent to say that Ci⊘qCr∗ is drawn from a truncated q-LogLogistic distribution
with a mean of ci ⊘q cr∗

The theoretical variance of the random cost q-ratio is therefore given by:

Var(Ci ⊘q Cr∗) =

∫ ∞

1⊘qϕ

((
(ci ⊘q cr∗)

1−q + ε1−q
i − 1

) 2
1−q

)
fqT (εi | θ, 1, q, ϕ) dεi−(∫ ∞

1⊘qϕ

(
(ci ⊘q cr∗)

1−q + ε1−q
i − 1

) 1
1−q

fqT (εi | θ, 1, q, ϕ) dεi

)2

Where fqT is the truncated q-LogLogistic distribution PDF, given in Equation 9. This expression
for the variance has no closed-form solution and must hence be evaluated numerically. Figure
2 illustrates how the variance evolves with both the shape parameter q and the deterministic
component of the cost ratio. Notably, when q = 0, corresponding to the Bounded Logit model,
the variance remains relatively stable across different cost difference levels. As q increases,
however, the variance becomes increasingly sensitive to the deterministic q-cost ratio ci ⊘q cr∗ ,
revealing the heteroscedastic nature of the model: variance grows with the cost disparity between
alternatives.
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Figure 2: Variance of the random cost q-Ratio, for a fixed bound ϕ = 1.3 and θ = 5

2.5 Accounting for route correlation: The Bounded Path Size q-Product
Logit model

In this section, we extend the BqPL model to account for route correlation. Path size correction
models are widely used in route choice due to their applicability to large choice sets and the
extensive work to accurately approximate the correlation structure of routes. Path size correction
models capture correlations between overlapping routes by including heuristic correction factors
within the probability relation to penalising routes for sharing links with other routes. These
correction factors depend upon path size terms that measure the distinctiveness of a route: the
less distinct a route is (i.e., the more it overlaps / shares links with other routes), the greater the
penalisation. Path size correction terms have been incorporated, for example, within Logit (Ben-
Akiva and Bierlaire (1999)), Weibit (Kitthamkesorn and Chen (2013)), and Hybrid Logit-Weibit
(Xu et al. 2015) probability relations.

Recently, Duncan et al. (2022) explored how to incorporate path size correction terms within
the BL model, developing a Bounded Path Size Logit (BPSL) model, where careful consideration
was given over the definition of the path size term so that correlation is captured between only
the routes defined as considered by the model through the cost bound. The contention is that
penalising considered routes for overlapping with non-considered routes would be unrealistic.
Careful consideration was also given to ensure the path size terms were continuous as routes
cross from being considered to non-considered as costs cross from below to above the bound
(and vice versa), thus ensuring a continuous choice probability function.

A key property of the BPSqPL model is that Path-Size correction terms are not included
in route utilities (generalized route costs). As a result, route overlap affects route choice prob-
abilities but does not influence the formation of the choice set. This approach is justified both
behaviorally and practically. Behaviorally, we argue that a route is not inherently unrealistic
simply because it overlaps significantly with others. Additionally, unlike traditional route at-
tributes, Path-Size correction terms are neither directly observable nor comparable by travellers,
making it unlikely that they would influence route consideration. To our knowledge, no empiri-
cal evidence supports excluding highly overlapping routes from choice sets based on behavioural
factors.

From a mathematical perspective, incorporating Path-Size corrections into route costs leads
to undesirable model properties. As discussed in Appendix C of Duncan et al. (2022), doing
so violates key desirable properties, such as ensuring continuity of the probability function and
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preventing unrealistic routes from influencing the Path-Size terms of realistic routes. For these
reasons, our model accounts for route overlap in choice probabilities but not in the bounding
condition for choice set formation.

For the BqPL model, we take inspiration from the BPSL model to formulate a Bounded Path
Size q-Product Logit (BPSqPL) model, where the path size terms are defined appropriately to
capture correlations between considered routes only and a continuous choice probability function
is maintained. Let us assume a route choice situation with the universal choice set R of routes.
Each route i ∈ R consists of a set of links Ai ⊆ A, where A is the universal set of links in the
network. These links are defined by attributes aggregated in positive cost functions ta, a ∈ A,
parameterised by a vector of parameters α. The total cost ci of route i is link-additive, i.e.
ci =

∑
a∈Ai

ta. For fixed parameters α, φ, we define R̄(α, φ) ⊆ R as the subset of considered

routes with a cost less than φ times the cheapest route cost:

R̄(α, φ) =

{
i ∈ R, ci(α) < φmin

l∈R
cl(α)

}
The BPSqPL choice probability function for route i is:

PBPSqPL
i =



(
γBPSqPL
i

)η (
exp(−θ(lnq(ci)− lnq(φmin

l∈R
cl)))− 1

)
∑
j∈R̄

(
γBPSqPL
j

)η (
exp(−θ(lnq(cj)− lnq(φmin

l∈R
cl)))− 1

) if i ∈ R̄

0 otherwise

(17)

where (γBPSqPL
i )η is the path size correction factor for considered route i ∈ R̄ (non-considered

routes do not have path size terms). η ≥ 0 is the path size scaling parameter scaling sensitivity
to route distinctiveness, and γBPSqPL

i ∈ (0, 1] is the path size term for considered route i ∈ R̄,
calculated as follows:

γBPSqPL
i =

∑
a∈Ai

ta
ci

(
exp(−θ(lnq(ci)− lnq(φmin

l∈R
cl)))− 1

)
∑

j∈R̄

(
exp(−θ(lnq(ci)− lnq(φmin

l∈R
cl)))− 1

)
δaj

(18)

δaj is equal to 1 if route j uses link a ∈ Ai, and zero otherwise. γBPSqPL
i is specified so that

a) non-considered routes with costs above the bound, i.e. routes j /∈ R̄, do not contribute to
reducing the path size terms of considered routes with costs below the bound, and b) the path
size term function is continuous as routes enter and exit the considered route set R̄ (as costs
cross from below to above the bound and vice versa). It is also formulated in terms of summing
over j ∈ R̄ rather than with (.)+ functions to avoid occurrences of 0/0. As special cases of the
BPSqPL model, the following existing models can be obtained:

• The BPSL model (Duncan et al. 2022) when q = 0

• The alternative GPSL (GPSL’) model (Duncan et al. 2020) when q = 0 and φ → +∞

Moreover, the following new models can be obtained:

• A Bounded Path Size Weibit (BPSW) model when q = 1

• An alternative Generalised Path Size qPL’ (GPSqPL’) model when φ → +∞

• An alternative Generalised Path Size Weibit (GPSW) model when q = 1 and φ → +∞

The choice probability functions for each of these models are provided in Appendix B.
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2.6 Summary of model properties and collapsing

The BPSqPL model developed in the previous section accounts for the three deficiencies of the
MNL model noted in the introduction:

• Heteroscedasticity is accounted for by assuming a distribution for the error terms where
error variance increases with systematic cost. The rate at which variance increases with
cost can be controlled by the heteroscedasticity parameter q, where q = 0 results in no
increase, and q = 1 results in quadratic growth.

• Route overlap is accounted for by including path size correction terms within the proba-
bility function that penalise routes for sharing links with other routes. η is the path size
scaling parameter that controls the penalisation.

• Choice set formation is accounted for by bounding the error term distribution so that the
model allocates zero choice probabilities to routes with systematic costs greater than φ
times the cheapest cost, where φ is the relative cost bound parameter.

In accounting for all three deficiencies, the BPSqPL model is an advantage over several
existing and new models that only account for one or two deficiencies. The BPSqPL also
provides a unified framework for these models, where, under different settings of the model
parameters, it can collapse into different models. Figure 3 presents a schematic diagram of
under which settings of the model parameters BPSqPL can collapse into different models, and
Table 2 indicates which properties its collapsing models can account for.

BPSqPL

BqPL BPSW GPSqPL'

GPSL'qPLBL

MNL

BPSL

BW GPSW'

MNW

Figure 3: Model collapsing
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Model Route Correlation Heteroscedasticity Choice set formation

MNL

GPSL’ ✓

MNW ✓

qPL ✓

BL ✓

GPSW’ ✓ ✓

GPSqPL’ ✓ ✓

BPSL ✓ ✓

BqPL ✓ ✓

BPSW ✓ ✓ ✓

BPSqPL ✓ ✓ ✓

Table 2: Properties of different models BPSqPL can collapse into

3 Demonstrations of model properties

In this section, we will demonstrate the properties of the developed BqPL and BPSqPL models
in small-scale route choice examples, and contrast with associated collapsing models.

3.1 Accounting for heteroscedasticity

For the first example, we show how the different models’ choice probabilities evolve in the binary
route choice case illustrated in Figure 4. The two routes, denoted 1 and 2, have respective costs
c1 = x and c2 = x+1, with x > 0. The choice probabilities of Route 1 with cost x according to
the MNL, qPL and MNW are given in Figure 5. We observe that the MNL probability does not
depend on x, as it is only sensitive to the difference in cost. Conversely, the MNW probability
decreases with x, as it is sensitive to the cost ratio. This property is related to the random cost
variance of both routes, which increases with x. Consequently, the likelihood that the perceived
cost of Route 2 is smaller than that of Route 1 increases with x. The MNW probability tends
to 0.5 as x goes to infinity because the x/(x + 1) ratio tends to 1. The qPL is sensitive to the
q-ratio of costs and is between the MNL and MNW. The parameter q influences how close the
model would behave closer to an MNL or an MNW.

O D

Figure 4: Two-alternative example, with costs x and x+ 1

3.2 Accounting for heteroscedasticity and choice set formation

In this subsection, we compare the BL, BqPL and BW models with their non-bounded counter-
parts, using the same example as in Section 3.1 (Figure 4). The choice probabilities are plotted
in Figure 6. Each bounded model gives a probability of one to Route 1 for all x ≤ 1. Indeed, for
x < 1, the cost ratio of the two routes exceeds the relative cost bound, i.e. (x+ 1)/x > φ = 2.
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Figure 5: Binary choice probabilities of the route with cost x against route with cost x + 1,
according to the MNL (q = 0), qPL (q = 0.2 and q = 0.5) and MNW (q = 1) models

Thus, Route 2 has zero probability. This illustrates that all the relative models will have the same
bounding condition. For x > 1, the choice probabilities become non-zero for both alternatives
and collapse to their unbounded counterparts when x → +∞.

We finally notice that the higher the value of q, the closer BqPL is to the BW, and the lower
the value of q, the closer the BqPL is to the BL.
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Figure 6: Binary choice probabilities of the route with cost x against route with cost x + 1,
according to the BL (q = 0), BqPL (q = 0.2 and q = 0.5) and BW (q = 1) models. The
respective non-bounded counterparts are given in dashes.

3.3 Accounting for heteroscedasticity, choice set formation and route corre-
lation

Next, we showcase the properties of the (BPSqPL) and its special cases (the BPSL when q = 0,
the BPSW when q = 1, see Appendix B for their choice probabilities) on a test network. The
network displayed in Figure 7 consists of seven links with costs parametrised by λ > 0 and
0 < ρ < λ. These links form five routes connecting O and D: Route 1, using links 1 and 3; Route
2, using links 1 and 4; Route 3, using links 2 and 5; Route 4, using links 2 and 6; and Route
5, using link 7. Each route but Route 4 has a cost of λ, while Route 4 has a cost of λ + ρ. A
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distinct characteristic of this network is that Route 3 is correlated to Route 4, which becomes
less desirable than the other routes as ρ increases. This property will highlight the difference
between the BPSx (BPSW/BPSL/BPSqPL) model correction and the typically used Path size
correction from Ben-Akiva and Bierlaire (1999). The route properties are summarised in Table
3.

O D

Figure 7: Toy network with 7 links and 5 routes

Route Links Cost

1 1-3 λ
2 1-4 λ
3 2-5 λ
4 2-6 λ+ ρ
5 7 λ

Table 3: Set of routes using the network from Figure 7

We plot the choice probabilities of each alternative in Figures 9 and 8 as a function of the
ratio ρ/λ. The ratio ρ/λ varies between 0 and 1, and is an indicator of how distinct the routes
1 to 4 are (for ρ/λ = 0, they are confounded, for ρ/λ = 1, they are completely distinct). To
mimic a short and long trip setting, we plot these for two different values of λ ∈ {1, 10}.

We first plot the choice probabilities of models that do not use any Path size correction nor
bounding (Figure 8 (a), (b), and (c)) and models that use bounding but do not use any Path
size correction (here, the BqPL, Figure 8 (d)). First, we can see that the MNL, MNW and
qPL choice probabilities behave similarly for λ = 1 (left figures). For the three models, the
probability of Route 4 decreases as it becomes less competitive when ρ increases. For λ = 10, we
see that the three models have different behaviours: for the MNL (Figure 8 (a)), the decrease of
the Route 4 choice probabilities is steeper (as a function of ρ/λ) than for λ = 1. This is because
the MNL is sensitive to cost differences. For the MNW (Figure 8 (b)), we observe that the left
and right plots are the same. That is because the MNW choice probabilities are only sensitive
to the cost ratio between Route 4 and the other routes, which is equal to (λ + ρ)/λ (i.e., the
choice probabilities do not depend on the scale of the OD movement). The qPL (Figure 8 (c))
is an in-between to the MNL and MNW, as the choice probabilities are sensitive to the cost
q-Ratio. Finally, the BqPL (Figure 8 (d)), while behaving similarly as the qPL, has Route 4
choice probabilities that equal zero when its relative cost to the other routes reach the relative
cost bound (for ρ = 0.8λ). This impacts the choice probabilities’ steepness, as seen on the left
when compared to the qPL (Figure 8 (c)). Finally, we observe that regardless of their overlap
with other routes, alternatives 1, 2, 3 and 5 have the same choice probabilities.
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This shortcoming is tackled by the BPSqPL model, which is presented in Figure 9. This
figure also displays the BqPL model with Path size correction (referred to as the BqPL-PS)
according to the path size correction term of Ben-Akiva and Bierlaire (1999) (Figure 9 (a)). We
chose to include this model as it uses the most commonly used correction term in the literature.
The BqPL-PS choice probability expression is given in Appendix C. For the BqPL-PS (Figure
9 (a)), we observe that the correlation between routes is accounted for. Route 5 gets the largest
choice probability for the BqPL-PS, as it does not overlap with other routes. Still, Route 3 has
the same penalisation as Routes 1 and 2, even though it is correlated to a less realistic (nay
non-considered) alternative. This is argued to be a main deficiency of using a standard path
size correction term, according to Duncan et al. (2020), and is solved in the BPSqPL model
(Figure 9 (b)). According to this Figure, Route 5 also gets the largest choice probability, as it is
distinct to all the other routes for any value of ρ. For ρ = 0, Routes 1 and 2 and Routes 3 and
4 are confounded, so they get equal split probability that are half as large as the one of Route
5. On all the plots, we observe that the probability of choosing Route 3 collapses to the one of
Route 5 when ρ increases, as Route 4 gets more unrealistic. For ρ > 0.8λ, the cost of Route 4
increases over the bound, so it is assigned a zero probability and Route 3 is thus assigned the
same probability as Route 5 (which does not overlap with any other route).
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0.0 0.2 0.4 0.6 0.8 1.0
ρ/λ, given λ= 1, θ= 1, q= 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
M

N
W

i

MNW
Routes 1, 2, 3, 5
Route 4

0.0 0.2 0.4 0.6 0.8 1.0
ρ/λ, given λ= 10, θ= 1, q= 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
M

N
W

i

MNW
Routes 1, 2, 3, 5
Route 4

(b) MNW, Left: λ = 1, Right: λ = 10

Figure 8: Choice probabilities as a function of ρ on the example network from Figure 7.
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Figure 9: Choice probabilities as a function of ρ on the example network from Figure 7.
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4 Parameter estimation approach

In this section, we discuss the estimation of the BPSqPL parameters from observed choice data.
Let us assume that we observe N choices. An observation n ∈ {1, .., N} has a choice set Cn, and
the index of the chosen alternative is given by in ∈ Cn. To estimate the BPSqPL model and
its special cases, we adopt a Constrained Maximum Likelihood Estimation (MLE) technique.
The constraints on the parameter space exist to avoid the occurrence of zero probabilities for
chosen alternatives, whose existence would raise zero likelihood. This is operationalised using
a technique described in Duncan et al. (2022), originally developed for the BPSL model. If
α parametrises the cost function of any alternative and any choice set ci(α). The parameter
subspace is given by:

Θ =

{
(α, φ),∀n ∈ {1, .., N}, cin ≤ φmin

j∈Cn
cj

}
This also ensures that the likelihood function is continuous over the constrained parameter space.
To ensure that the estimated parameters remain in Θ, we defined the following log-likelihood
function. If β is the vector containing all the model parameters

LL(β) =

N∑
n=1

{
log(PBPSqPL

in
(β)) if (α, φ) ∈ Θ

−999 otherwise
(19)

This formulation ensures that the couple (α, φ) remains in the domain Θ when using maximi-
sation algorithms. In this paper, we optimise the log-likelihood using the L-BFGS-B algorithm.
A potential issue is that the BPSqPL likelihood function is not guaranteed to be concave. MLE
solutions are not guaranteed to be unique. However, in our case study from Section 5, we plotted
the likelihood surface around the estimated parameters and found no evidence of nonconcavity.
We estimated the model using several randomly generated initial conditions and always found
the same estimates. When choosing the initial conditions, it is important to ensure that the ini-
tial parameters (α0, φ0) belong to the restricted space Θ. This can be done by first choosing the
initial cost function parameters α0, then calculating the highest relative cost over the observed
choices, and choosing the initial bound as higher than this value, i.e.,

φ0 ≥ max
n∈{1,...,N}

cin(α0)

min
j∈Cn

cj(α0)
:= φmin (20)

For instance, φ0 can be drawn from a shifted exponential distribution at φmin.
The likelihood function of bounded models is non-differentiable (Cazor et al. 2024a); it is

thus, in theory, impossible to derive its Hessian matrix analytically, which prevents deriving MLE
standard errors. However, these standard errors can be derived numerically using methods such
as bootstrapping (Efron and Tibshirani 1986), which we do in this paper.

5 Case study: Bicycle route choice in the Greater Copenhagen
Area

This section benchmarks the various models presented in Table 2 against each other on a large-
scale bicycle route choice dataset.

5.1 The Data

The case utilised a large-scale crowd-sourced data set of bicycle GPS trajectories received from
Hövding2. The original dataset covers the entire Greater Copenhagen Area (see Figure 10) in the

2https://hovding.com
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period from the 16th September 2019 until 31st May 2021. For a detailed description of the data,
the bicycle network, and the algorithms applied for data processing, we refer to Łukawska et al.
(2023). The final dataset for model estimation consists of a subset of this dataset containing
4,134 trips made by 4,134 cyclists.

Figure 10: Heatmaps of anonymised GPS trajectories from Hövding

The network can be represented as a directed graph G = (V,E) where E is the set of links
and V is the set of nodes. The network size is large, with |E| = 420, 973 and |V | = 324, 492.
The network data was collected from Open Street Map (OSM3). The attributes of link a ∈ E
are as follows:

• La (km): Link length

• Ea (m): Link elevation gain when steepness > 3.5%

• Noa (km): Link length without bicycle infrastructure

• Sa (km): Link length on a non-asphalt surface (i.e. gravel, cobblestones)

• Wa (km): Link length on wrong ways (cycling against traffic).

5.2 Choice set generation

Due to the extensive network size, it was not feasible to enumerate the universal set of routes
between each set of observed origin and destination. We thus generated a representative universal
choice set. This choice set generation algorithm uses a stochastic simulation approach (Nielsen
2004, Bovy and Fiorenzo-Catalano 2007), drawing a large number (10,000) of routes on the
network between each OD, with random lengths. These lengths were normally distributed
around the actual lengths, i.e., for each link a ∈ A with length La, we drew a new value
L̂a ∼ N (La, σLa), where σ is a dispersion parameter. In this study, we used a value of σ = 0.5.
These routes were then filtered with a local optimality criterion (Abraham et al. 2013, Fischer
2020), defined as the minimum length of a subpath that is not the shortest path. This criterion
constrains the presence of small detours on routes and their mutual overlap. Figure 11 shows
the relative cost distribution of the generated and observed routes. We observe that these

3www.openstreetmap.org
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distributions differ, indicating that travellers may exclude certain generated routes from their
choice sets, particularly those with high relative costs that are never chosen.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Relative cost to the cheapest alternative

0

100000

200000

300000

400000

Nu
m

be
r o

f r
ou

te
s i

n 
th

e 
ch

oi
ce

 se
ts

(a) Generated routes relative cost distribution

1.00 1.02 1.04 1.06 1.08 1.10
Relative cost to the cheapest alternative

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f o
bs

er
ve

d 
ro

ut
es

(b) Observed routes relative cost distribution

Figure 11: Relative costs distribution of the generated choice set and observed routes, using the
MNL estimates from Table 4.

5.3 Estimation results

In this case study, we compare the estimation results of 18 models:

• MNL, MNW, and qPL, which assume additive, multiplicative, and q-multiplicative rela-
tions, respectively, between the systematic and stochastic parts of random cost.

• MNL-PS, MNW-PS, and qPL-PS, which incorporate a simple path size correction term
from Ben-Akiva and Bierlaire (1999) to account for route overlap. These "regular" path
size models are estimated to benchmark with the more advanced path size corrected models
(see next bullet). The models are presented in Appendix C.

• GPSL’, GPSW’, and GPSqPL’, which incorporate more advanced path size correction
terms that associated bounded models collapse into, see Appendix B.

• Bounded versions of the nine models above, i.e., BL, BW, BqPL, BL-PS, BW-PS, BqPL-
PS, BPSL, BPSW, and BPSqPL. The difference between the BL-PS, BW-PS, BqPL-PS
models and the BPSL, BPSW, BPSqPL models is that the former use the Ben-Akiva and
Bierlaire (1999) path size term where overlap is captured between all route regardless of
whether they are used or unused, whereas the latter use an appropriately-defined path size
term to address this issue. The BL-PS, BW-PS, BqPL-PS models are given in Appendix
C and the BPSL, BPSW, BPSqPL models are given in Apprndix B.

Every model is estimated in a "willingness-to-detour" space (analogous to the "willingness-
to-pay" space), as the cost coefficient associated with Length is fixed to 1. Every other cost
coefficient can be interpreted as the expected amount of detour travellers will take to avoid the
attribute (e.g., wrong ways). For a network link a, we thus define its costta as:

ta = La + αE × Ea + αNo × Noa + αS × Sa + αW ×Wa (21)

The cost of a route i using the set of links Ai ⊆ E is given by:

ci =
∑
a∈Ai

ta
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The objective is to study to what extent each generalisation of the logit impacts the model fit
and interpretation. We will also investigate the number of alternatives cut off by each model’s
relative cost bound.

The results are presented in Tables 4 and 5. All the estimated parameters were significant
at the 0.01 level. Each extension of the MNL and its one additional parameter significantly
affects model fit, which can be seen in a decrease in the BIC for the more complex models.
For the models for which the likelihood concavity was not guaranteed, we estimated the model
with several sets of initial conditions, which were drawn from a uniform distribution within a
reasonable range of values, using the method described in Equation 20 from Section 4. The
final estimates were always the same, regardless of the initial conditions. The likelihood profiles
were plotted to verify the local behaviour of functions around the model estimates, as shown
in Figure 12 for the BPSqPL model. We observe that the optimization did not suffer from the
potential non-concavity and converged to an optimum.
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Figure 12: Likelihood profile around the BPSqPL model estimates

We observe that Weibit models fit our dataset better than their corresponding Logit models.
The q-Product Logit, which generalises both models, also fits the data significantly better than
the Weibit. The parameter q is estimated to be between 0.562 and 0.706, indicating that the
perceived cost variance increases for longer trips. This increase is, however, lower than quadratic
with systematic cost. In Figure 13a, we plot a histogram of the trip costs of the chosen routes in
the estimation dataset, using the length-normalised cost function from the qPL model estimates
from Table 4. In Figure 13b, we plot how the variance of the route costs increases with their
systematic value, again using the qPL estimated parameters and the variance computation
method from Chikaraishi and Nakayama (2016). This plot shows a non-linear increase of the
variance with deterministic cost.

For the bounded models, which account for choice set formation (Table 5), we see that the
relative cost bound is rather stable across models, estimated between 1.102 and 1.162. This
suggests that cyclists never considered using routes that were more than 10.2% to 16.2% more
costly than the cheapest in the choice set. We also observe that non-considered routes (allocated
zero probability) represented between 41.9 and 68.5% of the pre-generated routes, suggesting
that our choice-set generation method included a significant amount of behaviorally unrealistic
routes.

We also observe that the scale is the only parameter that varies between models, while the
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Figure 13: Demonstration of the increasing variance for longer trips on the observed route, using
the qPL estimated parameters

taste parameters are rather stable. The different scales are linked to the different assumed distri-
butions for the error terms (Gumbel, q-Gumbel or Weibull), whose variance behaves differently
when route length increases. For instance, the models output a willingness to detour between
15.1% and 18.4% to ride on bicycle infrastructure rather than in mixed traffic on the car lanes.
We also see that, for every model, the willingness to detour to avoid one meter of steep elevation
is rather low and fluctuates relatively more (between 0.26% and 0.78% per meter of elevation).
This is most likely due to the flat topography of the Greater Copenhagen Area. Overall, This
implies that accounting for heteroscedasticity, choice set formation, and alternative correlation
does not change the taste interpretation (at least in this dataset) but is of good value for getting
closer to realistic substitution patterns between routes and more reliable forecasting.

Notably, when comparing Path size specifications, the more advanced and consistent one
greatly improves the fit (GPSx’ vs. x-PS models and BPSx models vs. Bx-PS models). This
suggests that this weighting is more behaviorally realistic. It is also worth noticing that, while
there is only a small improvement in fit between the qPL and BqPL (respectively, MNW and
BW), it is much larger between the GPSqPL’ and its bounded version, the BPSqPL (respec-
tively, GPSW’ and BPSW). This suggests that combining these extensions, in this case, is more
powerful than using only some of them.

24



Model MNL qPL MNW MNL-PS MNW-PS qPL-PS GPSL’ GPSW’ GPSqPL’

Length - - - - - - - - -
Elevation gain 0.00352 0.00658 0.0075 0.0027 0.0065 0.0047 0.00354 0.00785 0.00537
No Bike infrastructure 0.182 0.183 0.184 0.153 0.156 0.154 0.15 0.182 0.153
Non-smooth surface 0.194 0.2 0.202 0.156 0.168 0.162 0.143 0.198 0.152
Wrong way 0.332 0.358 0.368 0.278 0.313 0.3 0.242 0.387 0.262

Scale (θ) -28.5 -51.76 -64.13 -33.61 -78.6 -58.69 -19 -53.9 -32.06
Path size term (η) - - 1.105 2.344 1.09 1.608 1.09 1.522
q - 0.706 - - - 0.671 - - 0.624

Final LL -11,087 -10,363 -10,495 -10,881 -10,300 -10,172 -10,315 -10,206 -9,747
BIC 22,192 20,748 21,008 21,784 20,622 20,369 20,652 20,434 19,519
Adj. ρ2 0.513 0.545 0.539 0.522 0.548 0.553 0.547 0.552 0.572
N. of parameters 5 6 5 6 6 7 6 6 7

Table 4: Model estimates, unbounded models

Model BL B-qPL BW BL-PS BW-PS BqPL-PS BPSL BPSW BPSqPL

Length - - - - - - - - -
Elevation gain 0.0031 0.00616 0.0071 0.0026 0.0065 0.0045 0.0036 0.0045 0.00438
No Bike infrastructure 0.17 0.181 0.183 0.152 0.155 0.151 0.159 0.157 0.155
Non-smooth surface 0.171 0.198 0.201 0.158 0.167 0.16 0.153 0.159 0.153
Wrong way 0.31 0.356 0.367 0.291 0.312 0.296 0.267 0.274 0.262

Scale (θ) -25.42 -50.5 -63.77 -27.89 -78.59 -58.68 -14.71 -42.28 -28.56
Path size term (η) - - - 1.088 2.34 1.122 1.643 1.4 1.571
q - 0.688 - - - 0.67 - - 0.562
Relative cost bound φ 1.111 1.149 1.159 1.102 1.162 1.126 1.105 1.115 1.115

Final LL -10,791 -10,357 -10,493 -10,557 -10,299 -10,163 -9,910 -9,876 -9,683
BIC 21,604 20,739 21,008 21,139 20,623 20,355 19,845 19,777 19,395
Adj. ρ2 0.526 0.545 0.539 0.536 0.548 0.554 0.565 0.566 0.575
N params 6 7 6 7 7 8 7 7 8
% of routes cut by φ 66.3% 53.4% 49.9% 68.5% 41.9% 56.8% 65.7% 61.5% 60.3%

Table 5: Model estimates, bounded models
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5.4 Estimate precision

For the bounded models, the likelihood function is non-differentiable at certain points. This
may prevent calculating the Hessian if the estimates are located near these points. We thus do
not assess estimate precision by analytically computing standard errors of estimates using the
inverse Hessian, as is commonly done. We instead adopt a bootstrapping approach, which is
also a common procedure (see e.g., Duncan et al. (2022); Petrin and Train (2003)). An example
of the bootstrapping results has been plotted in Figure 14 for the BqPL model. As can be seen,
the histograms of the bootstrapping estimates resemble normal distributions, which are fitted
and plotted in red. This suggests asymptotic normality of the maximum likelihood estimates.
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Figure 14: Distributions of the bootstrapping estimates for the BqPL model over N = 5000
random draws of observations

The bootstrapping estimates and standard errors are presented in Tables 6 and 7. These
estimates facilitate conducting t-tests on the model parameters. The results indicate that,
for all models, every parameter of the cost function—except the elevation gain parameter—is
significantly different from zero at the 0.1% confidence level. The elevation gain parameter is
only significant at the 5% level across all models. Both the scale and path-size terms are also
significantly different from zero at the 0.1% confidence level. When estimated, the parameter q
is significantly different from both zero and one at the 0.1% confidence level. Additionally, the
relative cost bound is significantly different from infinity at the 0.1% confidence level. Note that
to test the relative cost bound φ against infinity is equivalent to testing its inverse φ−1 against
zero. From Daly et al. (2012), the standard error of φ−1 is given by se(φ−1) = se(φ)/φ2, which
allows for running the t-test against zero.
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Model MNL qPL MNW GPSL’ GPSW’ GPSqPL’

Length - - - - - -
Elevation gain 0.0038 (0.0019) 0.0067 (0.0021) 0.0075 (0.0021) 0.00369 (0.0016) 0.00667 (0.0023) 0.00547 (0.0018)
No Bike infrastructure 0.182 (0.0179) 0.183 (0.0165) 0.182 (0.0171) 0.153 (0.0134) 0.152 (0.0124) 0.150 (0.0124)
Non-smooth surface 0.194 (0.0078) 0.2 (0.0069) 0.201 (0.0070) 0.143 (0.0062) 0.159 (0.0056) 0.152 (0.0046)
Wrong way 0.332 (0.0123) 0.358 (0.0121) 0.366 (0.0129) 0.243 (0.0095) 0.387 (0.0105) 0.262 (0.0101)

Scale (θ) -28.6 (0.6975) -51.77 (1.2761) -64.42 (1.3027) -19.02 (0.3346) -45.20 (0.7080) -32.01 (0.6483)
Path size term (η) - - 1.614 (0.0042) 1.308 (0.0374) 1.519 (0.0357)
q - 0.706 (0.0222) - - - 0.625 (0.0153)

Table 6: Bootstrapping estimates, unbounded models

Model BL BqPL BW BPSL BPSW BPSqPL

Length - - - - - -
Elevation gain 0.0045 (0.0023) 0.0063 (0.0020) 0.0075 (0.0022) 0.0034 (0.0007) 0.0050 (0.0016) 0.0044 (0.0023)
No Bike infrastructure 0.164 (0.0103) 0.181 (0.0157) 0.181 (0.0166) 0.149 (0.0080) 0.156 (0.0112) 0.151 (0.0109)
Non-smooth surface 0.176 (0.0062) 0.198 (0.0069) 0.201 (0.0071) 0.150 (0.0032) 0.158 (0.0045) 0.153 (0.0048)
Wrong way 0.321 (0.0121) 0.356 (0.0118) 0.365 (0.0128) 0.263 (0.0070) 0.272 (0.0100) 0.258 (0.0081)

Scale (θ) -24.96 (0.6844) -50.5 (1.346) -63.99 (1.371) -14.69 (0.3415) -42.45 (1.025) -28.55 (0.7305)
Path size term (η) - - - 1.655 (0.0396) 1.405 (0.0367) 1.497 (0.0419)
q - 0.688 (0.0249) - - - 0.656 (0.0160)
Relative cost bound φ 1.110 (0.0024) 1.149 (0.0065) 1.159 1.102 (0.0011) 1.114 (0.0024) 1.117 (0.0024)

Table 7: Bootstrapping estimates, bounded models

5.5 Experiments on choice sets

As it is computationally infeasible to generate the universal set of routes, even when restricting
their relative cost to the cheapest alternative to 1.1, our model estimation relied on pre-generated
choice sets, known as the "representative universal choice set". In this section, we investigate
the influence of the composition of this representative choice set on the parameter estimates. To
do this, we follow a similar experiment to that conducted by Prato and Bekhor (2007). Rather
than using choice sets of up to 10,000 alternatives (as described in 5.2), which becomes too large
to efficiently estimate the Path-Size corrected models, we chose to operate with a maximum size
of 1,000 alternatives for this experiment. The procedure was as follows:

• A maximum of 1,000 unique routes were randomly drawn for each OD from the 10,000
routes (or fewer routes if less than 1,000 unique routes among the 10,000 generated routes).
We denote these the initial choice sets.

• We estimated the BPSqPL model using these initial choice sets.

• For each OD, we randomly drew respectively 25, 50, and 75% of the alternatives from their
initial choice sets, making sure we included the chosen alternative, to form new choice sets.

• We re-estimated the BPSqPL with these new choice sets.

• We repeated the last two steps 5 times to assess the variability of the estimates

Table 8 presents the average estimates for the model using subsets of the initial choice sets,
with standard deviations between experiments shown in italics. Figure 15 illustrates the average
relative parameter estimates compared to their initial values (estimated using the initial choice
sets), along with the standard deviations across the 5 repetitions (also listed in Table 8). The
low standard deviations in Table 8 indicate that the estimates and final likelihoods remained
stable across experiments (αE is the least stable parameter as it is the least significant). The
taste parameters of the cost function (α, as given in Equation 21) are generally stable across the
choice set sizes. The relative cost bound is the most stable parameter, suggesting that a large
choice set is not essential for its identification. Among the parameters, the Path-Size term (η)
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exhibits the most variation across the choice set sizes, consistent with Prato and Bekhor (2007)
for the PSL model. Meanwhile, the scale parameter (θ) increases in absolute value as the choice
set grows. This suggests that when fewer routes are included, choice probabilities become more
dispersed across the choice set.

Relative size to
full choice sets αE αNo αS αW η θ φ q Final LL

100% 3.835 0.128 0.130 0.234 1.936 -39.33 1.107 0.641 -10,874.2

75% Mean 4.133 0.129 0.130 0.235 1.998 -38.37 1.107 0.647 -9,966.9
SD 0.279 0.0013 0.0006 0.0008 0.0045 0.0880 0.0007 0.0025 7.04

50% Mean 4.100 0.130 0.131 0.238 2.084 -37.02 1.105 0.657 -8,762.4
SD 0.316 0.0016 0.0014 0.0023 0.0093 0.391 0.0008 0.0093 8.23

25% Mean 3.966 0.134 0.134 0.244 2.263 -34.05 1.104 0.666 -6,889.0
SD 0.383 0.0040 0.0020 0.0007 0.0071 0.533 0.0009 0.0126 16.79

Table 8: Comparison of the initial BPSqPL estimates on the whole choice set and the mean
estimates of the BPSqPL using the reduced choice sets. Standard deviation values across exper-
iments are shown in italics.
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Figure 15: Relative parameter estimates for the different choice set subsets. The error bars
output the standard deviation of the relative parameter estimates across experiments.

5.6 Model validation

We performed Monte-Carlo cross-validation on our dataset to assess the model’s predictive
performance and test for overfitting. To do so, we repeated N = 10 (as in Cazor et al. (2024b))
times the following steps:

1. Randomly split the original dataset S into a training St and validation set Sv (|St| =
0.7|S|; |Sv| = 0.3|S|).

2. Estimate all the models on the training set St, obtain, for each model m, the training
parameters βt

m.

3. Calculate, for each model m, the log-likelihood on the validation set, LL =
∑

x∈Sv
logPm

ix
(βt

m),
where ix is the index of the chosen alternative for observation x ∈ Sv
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The cross-validation results are shown in Figures 16 and Table 9. We observe that these
results corroborate the fit values found in Tables 4 and 5, i.e., that the BPSqPL is the best-
performing model in every cross-validation experiment, followed by the BPSL, the BqPL, the
qPL, the BL and the MNL. This indicates that these models did not overfit the data. Moreover,
we observed that the model estimates across the experiments were stable.
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Figure 16: Cross-validation results

Model MNL qPL BL BqPL BPSL BPSqPL

Average LL -3,217.48 -3,009.63 -3,107.61 -3,005.12 -2,872.35 -2,817.81

Table 9: Average log-likelihood on the cross-validation sets

6 Conclusion

In this paper, we have developed new closed-form choice models that generalise the MNL to
account for heteroscedasticity of the error terms, correlations between overlapping routes, and
choice set formation effects through setting a bound on the relative cost distribution. We first
developed a model that combines Chikaraishi and Nakayama (2016)’s q-Product Logit (qPL)
model with Watling et al. (2018)’s Bounded Logit (BL) model, to derive a Bounded q-Product
Logit (BqPL) model. It is derived by assuming a Truncated q-Log-Logistic distribution for
random error term differences and can be seen as a one-stage choice set formation model. We
then extended the BqPL model to account for route overlap in a fashion similar to Duncan et al.
(2022)’s BPSL model.

The BPSqPL model remains parsimonious and easy to estimate by introducing only one
additional parameter per property. We also proposed simplified versions of this model that omit
one or more properties (e.g., a Bounded Path Size Weibit model, which has a less flexible form
of heteroscedasticity). Model properties were first demonstrated using small-scale examples and
then benchmarked against existing models in a large-scale bicycle route choice case study. We
presented a method to estimate the BPSqPL using a constrained version of the Maximum Like-
lihood Estimation technique. As the likelihood function of bounded models is non-differentiable,
we used a bootstrapping method to compute standard errors of the estimates.
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Our findings from the large-scale application show that accounting for heteroscedasticity,
route overlap, and choice set formation considerably improves model fit and predictive accuracy.
The estimate for the q parameter also indicates that error term variance does increase with
expected route cost but is slightly slower than the quadratic increase assumed by a Weibit
model. These enhancements were achieved without a substantial increase in model complexity.
Additionally, these models offer more realistic substitution patterns between alternatives due
to consistent path size corrections and the exclusion of unrealistic alternatives, which account
for about 50% of the generated representative universal choice set of routes. The values of the
taste coefficients for the observed attributes also remained stable across models. In the route
choice context, while it is computationally intractable to generate the universal choice sets for
large-scale case studies, we studied the choice set robustness of the estimated parameters. The
results indicate that the choice set size has little influence on the estimated taste parameters and
relative cost bound while having some influence on the path-size correction and scale parameters.

In this study, the focus has been on route choice modelling. There is scope, however, for
applying the BPSqPL model to other choice situations. For example, activity-based models
(Danalet and Bierlaire 2015; Pougala et al. 2023) adopt a similar network representation, where
the correlation between alternatives can be captured through path size correction terms. One
could develop a cross-nested version of the BqPL model to capture correlations between alter-
natives for choice situations that are not network-based. Without the correlation, the BqPL
model is still a useful model for capturing heteroscedasticity and cost bounds on alternatives,
such as mode or destination choice. Another potential stream of research could be to include
route correlation in the choice set formation process, possibly by devising a choice model which
sets a bound on the overlap between routes. This could perhaps be done by adopting Rasmussen
et al. (2024)’s conjunctive bounded logit model.
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Appendix A Bounding conditions

As can be seen in the BqPL model choice probabilities, the parameter q not only influences how
the variance of error terms increases with systematic cost but also on the condition on which an
alternative receives a non-zero probability, which we refer to as the bounding condition.

According to the BqPL, the choice probability of an alternative i ∈ R will be greater than 0
if and only if, for some ϕ > 1, ci⊘q ϕ⊗q Vr∗ is larger than 0. This happens when ci is lower than
Vr∗ ⊗q ϕ, i.e., the systematic cost is lower than the q-product between the reference alternative
systematic cost and the bound. When q = 0, this happens when ci is lower than cr∗ + (ϕ− 1),
meaning that the difference of costs is bounded: it is an absolute bounding condition. When
q = 1, it happens when ci is lower than ϕcr∗ , meaning that the cost ratio is bounded: it is
a relative bounding condition. While relative absolute bounding conditions are intuitive, it is
harder to understand what the q-product bounding condition means. To illustrate it, we plot
in Figure 17 how the q-Ratio translates into an absolute bounding condition for different values
of q. To do so, we plot, for a fixed value of ϕ, the value φabs so that

ci ⊘q cr∗ = ϕ ⇐⇒ ci − cr∗ = φabs
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We plot the maximum difference ci − cr∗ so that i has a non-zero probability as a function of
ci. We see that, for q = 0, it is constant to ϕ − 1 = 1. This means that, whatever the value of
cr∗ , ci must be at most one unit higher than cr∗ to be given a non-zero probability. For q = 1,
as expected, the absolute bound increases linearly with cr∗ (for cr∗ = 1, we need ci < 2, i.e. a
difference of 1, for cr∗ = 10, we need ci < 20, i.e. a difference of 10). The absolute bound grows
with ci, but slower than linearly for any value in between.
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Figure 17: q-Ratio bounding condition expressed as an absolute bounding condition.

Similarly, in Figure 18, we plot how a q-Relative could translate into a variable relative
bound by plotting the value φrel so that

ci ⊘q cr∗ = ϕ ⇐⇒ ci/cr∗ = φrel

This plot shows a constant relative bound for q = 1, as the MNW already has a relative bounding
condition. For q < 1, the relative bound decreases with ci, which means the bound on the ratio
ci/cr∗ gets smaller with larger ci. For the extreme case q = 0, ϕrel is inversely proportional to
ci (for ci = 11, i will have zero probability when cr∗ ≤ 10, i.e. ci/cr∗ ≥ 1.1, while when ci = 2, i
will have zero probability when cr∗ ≤ 1, i.e. ci/cr∗ ≥ 2).
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Figure 18: q-Ratio bounding condition expressed as a relative bounding condition.
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Appendix B Special cases of the BPSqPL model

In this section, we detail the choice probabilities of the special cases (i.e., the models that can be
obtained by fixing one or more parameters) of the BPSqPL model developed in this paper. Some
of these models have been already developed in the literature, some others are new. Again, let
us assume a route choice situation with a choice set R. Each route i ∈ R consists of a set of links
Ai ⊆ A, where A is the set of links in the studied network. These links are defined by attributes
aggregated in positive cost functions ta, a ∈ A, parameterised by a vector of parameters α. The
cost of route i is defined by some observed attributes aggregated in a cost function ci. This cost
of route i is link-additive, i.e. ci =

∑
a∈Ai

ta. For fixed parameters α, φ, we define R̄(α, φ) ⊆ R

the subset of routes with a cost less than φ > 1 times the cheapest route cost:

R̄(α, φ) =

{
i ∈ R, ci ≤ φmin

l∈R
cl

}
B.1 When q = 0: the BPSL model (Duncan et al. 2022)

The BPSL model is obtained when the heteroscedasticity parameter q is fixed to 0.

PBPSL
i =



(
γBPSL
i

)η (
exp(−θ(ci − φmin

l∈R
cl))− 1

)
∑
j∈R̄

(
γBPSL
j

)η (
exp(−θ(cj − φmin

l∈R
cl))− 1

) if i ∈ R̄

0 otherwise

(22)

where (γBPSqPL
i )η is the path size correction factor for considered route i ∈ R̄ (non-considered

routes do not have path size terms). η ≥ 0 is the path size scaling parameter scaling sensitivity
to route distinctiveness, and γBPSqPL

i ∈ (0, 1] is the path size term for considered route i ∈ R̄,
calculated as follows:

γBPSL
i =

∑
a∈Ai

ta
ci

(
exp(−θ(ci − φmin

l∈R
cl))− 1

)
∑

j∈R̄

(
exp(−θ(ci − φmin

l∈R
cl))− 1

)
δaj

(23)

B.2 When q = 1: the BPSW model

The BPSW model is obtained when the heteroscedasticity parameter q is fixed to 1.

PBPSW
i =



(
γBPSW
i

)η (
(ci/φmin

l∈R
cl)

−θ − 1

)
∑
j∈R̄

(
γBPSW
j

)η (
(cj/φmin

l∈R
cl)−θ − 1

) if i ∈ R̄

0 otherwise

(24)

where (γBPSW
i )η is the path size correction factor for considered route i ∈ R̄ (non-considered

routes do not have path size terms). η ≥ 0 is the path size scaling parameter scaling sensitivity
to route distinctiveness, and γBPSW

i ∈ (0, 1] is the path size term for considered route i ∈ R̄,
calculated as follows:

γBPSW
i =

∑
a∈Ai

ta
ci

(
(ci/φmin

l∈R
cl)

−θ − 1

)
∑

j∈R̄

(
(cj/φmin

l∈R
cl)−θ − 1

)
δaj

(25)
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B.3 When φ → +∞: the GPSqPL’ model

The GPSqPL’ model is obtained when the relative cost bound tends to infinity.

PGPSqPL’
i =

(
γGPSqPL’
i

)η
exp(−θ lnq(ci))∑

j∈R

(
γGPSqPL’
j

)η
exp(−θ lnq(cj))

(26)

where (γGPSqPL’
i )η is the path size correction factor for route i ∈ R. η ≥ 0 is the path size

scaling parameter scaling sensitivity to route distinctiveness, and γGPSqPL’
i ∈ (0, 1] is the path

size term for route i ∈ R, calculated as follows:

γGPSqPL’
i =

∑
a∈Ai

ta
ci

exp(−θ lnq(ci))∑
j∈R exp(−θ lnq(cj))δaj

(27)

B.4 When φ → +∞ and q = 0: the GPSL’ model (Duncan et al. 2020)

The GPSL’ model is obtained when the relative cost bound tends to infinity.

PGPSL’
i =

(
γGPSL’
i

)η
exp(−θci)∑

j∈R

(
γGPSL’
j

)η
exp(−θcj)

(28)

where (γGPSL’
i )η is the path size correction factor for route i ∈ R. η ≥ 0 is the path size scaling

parameter scaling sensitivity to route distinctiveness, and γGPSL’
i ∈ (0, 1] is the path size term

for route i ∈ R, calculated as follows:

γGPSqPL’
i =

∑
a∈Ai

ta
ci

exp(−θci)∑
j∈R exp(−θcj)δaj

(29)

B.5 When φ → +∞ and q = 1: the GPSW’ model

The GPSW’ model is obtained when the relative cost bound tends to infinity and the het-
eroscedasticity parameter q is fixed to 1.

PGPSW’
i =

(
γGPSW’
i

)η
c−θ
i∑

j∈R

(
γGPSW’
j

)η
c−θ
j

(30)

where (γGPSW’
i )η is the path size correction factor for route i ∈ R. η ≥ 0 is the path size scaling

parameter scaling sensitivity to route distinctiveness, and γGPSW’
i ∈ (0, 1] is the path size term

for route i ∈ R, calculated as follows:

γGPSW’
i =

∑
a∈Ai

ta
ci

c−θ
i∑

j∈R c−θ
j δaj

(31)

Appendix C Path size and Bounded Path Size models

We benchmarked the "consistent" path size models in the case study to the typically considered
Path size models. The Path size models use the Path size correction below (Ben-Akiva and
Bierlaire 1999):
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γPS
i =

∑
a∈Ai

ta
ci

1∑
j∈R δaj

(32)

It is then possible to obtain the following models:

• The MNL-PS model, combining the choice probabilities from Equation 28 with the cor-
rection from Equation 32

• The MNW-PS model, combining the choice probabilities from Equation 30 with the cor-
rection from Equation 32

• The qPL-PS model, combining the choice probabilities from Equation 26 with the correc-
tion from Equation 32

• The BL-PS model, combining the choice probabilities from Equation 22 with the correction
from Equation 32

• The BW-PS model, combining the choice probabilities from Equation 24 with the correc-
tion from Equation 32

• The BL-PS model, combining the choice probabilities from Equation 17 with the correction
from Equation 32

Appendix D The BqPL: a relative utility model

In the derivation of the BqPL model, we introduced a random utility Ui for each alternative
i ∈ C, along with an imaginary reference alternative Ur∗ . However, these utilities were not
explicitly defined in terms of random distributions. Instead, we only assumed that their q-ratio,
Ui ⊘q Ur∗ , followed a truncated log-logistic distribution. This approach primarily helped to
establish parallels between the BL and MNL models, as well as between the BqPL and qPL
models.

In this section, we present an alternative derivation that does not require explicit utility
definitions, leading to a more direct interpretation of the model.

D.1 The relative utility framework

The concept of relative utility has been widely discussed in the choice modeling literature (see,
e.g., Duesenberry 1949; Stadt et al. 1985; Zhang et al. 2004) and is based on the hypothesis
that utilities are only meaningful in comparison to other alternatives. In most discrete choice
models, choice probabilities remain unchanged under transformations such as shifting (adding
a constant to all utilities in additive RUMs), scaling (multiplying all utilities by a constant in
multiplicative RUMs), or q-multiplication (in more recent qRUMs, e.g., Nakayama (2013)). This
invariance implies that these models do not require defining an absolute utility function for each
alternative; instead, utilities are defined relative to a reference (or pivot) alternative.

Behaviorally, this aligns with the idea that decision-makers compare alternatives rather than
evaluating them against some absolute metric. In this appendix, we present the concept of
relative utility through the lens of qRUMs, which generalize both additive and multiplicative
RUMs. Rather than assigning absolute utilities to alternatives, we introduce the notion of
random relative utility. For an alternative i in a choice set C, we define its random relative
utility RUi as:

RUi = RVi ⊗q εi
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where RVi represents the deterministic relative utility, based on the observed attributes. In
this study, we specify:

RVi = Vi ⊘q Vr∗ ,

where the deterministic utility of alternative i is expressed relative to the utility of a reference
alternative r∗ using a q-ratio transformation. We further specify the reference alternative as the
alternative with the highest deterministic utility, i.e.,

Vr∗ = max
j∈C

Vj .

To determine the choice outcome, the random relative utility is compared to 1: if RUi > 1,
the alternative i is preferred over the reference alternative; otherwise, it is not. The probability
of selecting alternative i over the reference alternative is then given by:

P(i|{i, r∗}) = P(RUi ≥ 1)

= P(εi ≥ 1⊘q RVi)

= 1− Fεi(1⊘q RVi)

Where Fεi denotes the CDF of εi. Depending on the assumed distribution of ε = (εi)i∈C , several
choice models can be derived. In the following section, we derive the BqPL model introduced in
Section 2 of the paper.

D.2 Alternative derivation of the BqPL model

To derive the BqPL model, we assume that the error terms εi follow independent Truncated
q-LogLogistic distributions defined in Equation 8 with mean 1, scale θ, heteroscedasticity pa-
rameter q and truncation parameter ϕ:

εi ∼ Trunc. q-LogLogistic(1, θ, q, ϕ)

Then, we similarly define the odds ratio as:

ηi =
P(i|{i, r∗})

1− P(i|{i, r∗})

=
1− Fεi(1⊘q RVi)

Fεi(1⊘q RVi)

Thus, the choice probability follows:

P(i|C) = ηi∑
j∈C

ηj

Some algebraic manipulations show that this formulation output the BqPL choice probabilities
from Equation 11, if we additionally define RVi = Vi ⊘q Vr∗ .

D.3 Heteroscedasticity illustration

The distributional assumption on εi implies the following distribution for RUi:

RUi ∼ Trunc. q-LogLogistic(RVi, θ, q, ϕ⊗q RVi)

Figures 19, 20 and 21 illustrate how the probability density function (PDF) of RUi changes
with RVi (denoted as µ in the figure). The figure considers two different values of RVi and three

35



different values of q, corresponding to the BL (q = 0), BqPL (with q = 0.5), and BW (q = 1)
cases. The PDF of the non-truncated distribution, which corresponds to the MNL, qPL, and
MNW models, is also shown.

We observe that, for q ̸= 0, the variance of the relative utility distribution (RUi) increases
with its deterministic component (RVi). This means that when the utility q-ratio with the
reference alternative increases, the uncertainty around the value of this q-ratio also increases.

In practice, this heteroscedasticity implies:

• Within a choice set: Alternatives with larger deterministic utility differences from the
reference alternative exhibit greater variance in relative utility.

• Across choice situations: RVi is defined by the q-ratio between Vi and Vr∗. For q ∈
[0, 1] , a/b ≤ a⊘q b ≤ a− b+ 1 , which implies that, for a fixed value of Vi − Vr∗ , Vi ⊘q Vr∗

increases with Vi (for instance 1⊘q 2 < 2⊘q 3). This implies that, when the scale of choices
increases (e.g., OD pairs with larger travel times), the q-ratio between utilities and the
reference alternative increases, leading to higher variance in relative random utility.

This property, which can also be found for the qPL model, distinguishes the BqPL model
from the homoscedastic models such as the MNL and BL.
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Figure 19: Relative utility distributions for two values of RVi (1 and 2), q = 0 (corresponding
to the MNL and BL models)
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Figure 20: Relative utility distributions for two values of RVi (1 and 2), q = 0.5 (corresponding
to a version of the qPL and BqPL models)
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Figure 21: Relative utility distributions for two values of RVi (1 and 2), q = 1 (corresponding
to the MNW and BW models)
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