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The common bean (Phaseolus vulgaris L.) is a legume pulse crop that provides significant dietary and ecosystem benefits globally. We 
investigated 2 key traits, determinacy and photoperiod sensitivity, that are integral to its management and crop production, and that 
were early selected during the domestication of both Mesoamerican and Andean gene pools. Still, significant variation exists among 
common bean landraces for these traits. Since landraces form the basis for trait introgression in prebreeding, understanding these traits’ 
genetic underpinnings and relation with population structure is vital for guiding breeding and genetic studies. We explored genetic ad-
mixture, principal component, and phylogenetic analyses using whole-genome sequencing to define subpopulations and gene pools. 
We used genome-wide association mapping (GWAS) to identify marker-trait associations in a diversity panel of common bean landraces. 
We observed a clear correlation between these traits, gene pool, and subpopulation structure. We found extensive admixture between 
the Andean and Mesoamerican gene pools in some regions. We identified 13 QTLs for determinacy and 10 QTLs for photoperiod sen-
sitivity and underlying causative genes. Our study identified known and novel causative genes and a high proportion of pleiotropic ef-
fects for these traits in common bean, and likely translatable to other legume species.
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Introduction

The common bean is a global staple that provides significant diet-

ary and economic services by improving health and nutrition 

while helping to reduce poverty, specifically in developing coun-

tries. Common beans have also been labeled as one of the 

essential crops to mediate climate change due to their lower 

environmental impact and protection of food and nutritional se-

curity (Foyer et al. 2016). Common beans are cultivated mainly 

as grain legumes, but the immature seeds, pods, and leaves are 

also eaten (Blair et al. 2010; Ganesan and Xu 2017). There are hun-

dreds of varieties, and the prevailing type grown in a country de-

pends on market preferences (Rawal and Navarro 2019). Common 

beans are rich in essential dietary components, such as pro-

tein, minerals, fiber, and micronutrients (Patto et al. 2015; Blair, 

Izquierdo, et al. 2013; Castro-Guerrero et al. 2016; Ganesan and 

Xu 2017), and protect against some forms of malnutrition, includ-

ing stunting in children and micronutrient deficiencies (Jha et al. 

2015; Suarez-Martinez et al. 2016; Ganesan and Xu 2017; 

Bernardi et al. 2023). As legumes, common beans have a symbiotic 

relationship with nitrogen-fixing bacteria, allowing them to fix 

atmospheric nitrogen and enhance nitrogen levels in the soil, 

thereby reducing the need for expensive chemical fertilizers while 

improving yields (Mylona et al. 1995; Cusworth et al. 2021; 

Mupangwa et al. 2021; Phiri and Njira 2023). Despite its widespread 

usability, trait segregation within and among bean landraces is 

still widespread, especially for critical agronomic traits such as 

growth habit and photoperiod.

The common bean underwent 2 separate domestications re-

sulting in 2 gene pools: Andean and Mesoamerican. In addition, 

there are different races, intermediate species, and admixed ac-

cessions due to genetic isolation, fragmentation, and artificial se-

lection for different morphological traits. The gene pools of 

common beans grow in a large variety of environments in the neo-

tropics. These ecogeographic conditions, together with isolation 

by distance, have disrupted the gene flow between wild and do-

mesticated common beans, and between the different gene pools 

(Santalla et al. 2004; Beebe et al. 2012). Consequently, there are 

large differences in their life history traits, morphology, and gen-

etics (Gepts and Debouck 1991; Broughton et al. 2003; Beebe et al. 

2012; Bitocchi et al. 2017). Another difference is cultivars are com-

monly autogamous and annual, while wild common beans and 
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related species can be perennial and allogamous (Debouck et al. 

1993; Schier et al. 2019; Chacon-Sanchez et al. 2021).

Photoperiod insensitivity and determinacy arose separately in 

both gene pools during the domestication of common beans, likely 

co-selected by growers (Weller et al. 2019; Repinski et al. 2012). Wild 

common beans tend to be indeterminate and photoperiod sensitive, 

requiring a particular day length to flower. Indeterminate growth is 

advantageous in the wild due to competition with surrounding 

vegetation, while photoperiod sensitivity (PS) was likely reinforced 

by divergent natural selection and local adaptation. On the other 

hand, photoperiod insensitivity was selected (likely unconsciously) 

as cultivated common beans were spread along a greater range of 

latitudes and environments. Determinacy, a developmental feature 

that causes common beans to have a terminal inflorescence when 

switching to a reproductive state (Cavalcante et al. 2020), optimized 

agricultural management and harvesting efficiency. Determinate 

common beans tend to have a bush growth habit with reduced 

branching and vining abilities compared with the indeterminate 

varieties (Kwak et al. 2012), therefore translocating biomass re-

sources into an increased fitness output. While indeterminate 

and photoperiod sensitive landraces are common, the combined 

selection for photoperiod insensitivity and determinacy resulted 

in common bean varieties with shorter flowering periods, earlier 

maturation, and easier management during harvesting (Daba 

et al. 2016; González et al. 2016). Photoperiod insensitivity and deter-

minacy are advantageous traits from an agronomical point of view 

due to earlier harvesting and shorter exposure to unfavorable wea-

ther patterns under climate change, consequently providing better 

food security for communities (Perez et al. 2020; Botero and Barnes 

2022).

Modern breeding programs are moving beyond a yield-centered 

paradigm to target resistance to biotic and abiotic stress, and also 

nutritional quality (Singh and Schwartz 2010; Assefa et al. 2019; 

Caproni et al. 2020; Kachinski et al. 2022). Landraces and crop wild 

relatives offer a promising reservoir of genetic diversity for these 

traits by introgression from the landraces into the elite genetic 

background (Tai et al. 2014; Hu et al. 2021; Suarez, Polania et al. 

2021; Suarez, Urban, et al. 2021). However, understanding the genet-

ic diversity, population structure, patterns of adaptations, and how 

these correlate with determinacy and photoperiod insensitivity is 

required to guarantee the retention of these key domesticated traits 

within future breeding cycles, given their association with crop 

management and production (Beebe et al. 2012).

Common beans in Colombia are diverse regarding growth habits 

and PS. Colombia is the northernmost part of the Andean gene pool 

and south of the Mesoamerican and may act as a region of conflu-

ence between them. Consequently, it has been proposed that the 

region has a large amount of admixture and introgressive hybrid-

ization (Tohme et al. 1996; Blair et al. 2007; Blair, Cortes, et al. 2013; 

Leitao, Bicho, et al. 2021). Admixture and hybridization lead to intro-

gressions from differential parental origins, introducing new alleles 

and novel epistatic interaction into a population, allowing for new 

trait combinations that could merge exotic variation from diverse 

germplasm with more agronomically desirable traits such as deter-

minacy and photoperiod insensitivity.

Considering the above hypothesis, we characterized 144 repre-

sentative landraces from Colombia and neighboring countries, to-

gether with controls from other regions, using whole-genome 

re-sequencing. We utilized genome-wide association mapping 

(GWAS) to identify significant SNPs for photoperiod insensitivity 

and determinacy in this diversity panel. The novelty of this 

work lies in that prior research commonly focused on the 

Mesoamerican diversity rather than the Andean, due to the 

greater genetic diversity in the former, and had ignored admixed 

materials as an essential source of variation. Furthermore, 

research has rarely utilized whole-genome sequencing of com-

mon bean accessions to undertake a GWAS on determinacy and 

photoperiod insensitivity phenotypes. Instead, previous work 

has mostly used QTL mapping and low-density marker panels, re-

sulting in poor resolution (Kwak et al. 2008; González et al. 2016; 

García-Fernández et al. 2021).

Materials and methods
Diversity panel
The diversity panel was comprised of 144 genotypes mainly from 

Colombia and surrounding countries in Central and South 

America (Fig. 1). The panel contained accessions from elite back-

grounds, landraces, heirlooms, weedy, and wild materials. The 

material was sourced from the International Centre for Tropical 

Agriculture (CIAT)’s genebank, the Leibniz Institute of Plant 

Genetics and Crop Plant Research (IPK)’s genebank, and heirlooms 

bought from the catalogs from “Jungle Seeds” (JungleSeeds 2020) 

and (Beans and Herbs 2020) in 2020. The panel was chosen to in-

clude control accessions from the Andean and Mesoamerican 

gene pools and races, while representing diverse seed coat colors 

and varying genetic backgrounds from Colombia and neighboring 

countries to focus on putatively admixed varieties.

Genotyping
The genotypes were whole genome re-sequenced using Illumina 

short reads. The accessions were grown at the Norwich 

Research Park (Norwich, UK) in 2021 until the expansion of the 

first true leaf, after which they were snap-frozen (∼50–100 mg). 

The genomic DNA extraction for short-read sequencing from 

each accession was completed using a Qiagen DNAeasy kit 

(Qiagen, Germany). The DNA concentration of the samples was 

quantified for quality control using the Tecan Plate Read Infinite 

F200 Pro for a fluorometry-based assay. The sequencing of the 

samples was completed by Genomic services at Earlham 

Institute (Norwich, UK). LITE libraries, a cost-effective low- 

volume variant of the standard Illumina TruSeq DNA protocol, 

were constructed for the 144 accessions and were sequenced 

using 2 NovaSeq 6000 S4 v 1.5 flow cells with 150 bp paired-end 

reads, following the protocol in (Kirkwood et al. 2021).

Phenotyping
All 144 common bean accessions were evaluated at the Norwich 

Research Park (Norwich, UK) in temperature-controlled glass-

houses. The experiments were conducted in 2 seasons; summer 

2022 with long daylength (16:8) and winter 2023 with short day-

length (12:12). The accessions were organized in a randomized 

block design with 3 or 2 replications, respectively. Management 

was conducted according to recommendations for common 

bean cultivation.

The diversity panel was characterized for the days to flowering 

(DTF), seed size (SS), weight of 100 seeds (E100_SW; estimated based 

on the weights of seeds harvested and projected to 100 seeds), de-

terminacy (D; terminal flower bud presence) (Cavalcante et al. 

2020), and PS (flowering in none, 1 or both seasons). DTF was split 

into the 2 seasons due to PS in certain accessions and PS was char-

acterized in 3 ways for the GWAS.

The statistical analysis of variance (1-way ANOVA) of the 

phenotypic data was done in R, then the Pearsons’s correlation co-

efficient was calculated and visualized using the R package “corr-

plot” (Wei and Simko 2021).

2 | K. E. Denning-James et al.
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Preprocessing genotype data
The raw sequence reads were processed with TrimGalore (v. 0.5.0) 

(Krueger et al. 2023) to remove adapters and poor-quality reads, 

and then quality checked using FastQC (Wingett and Andrews 

2018) and MultiQC (Ewels et al. 2016). The trimmed reads were 

aligned to the Andean reference genome, Phaseolus vulgaris 

G19833, v2.1 (Schmutz et al. 2014) downloaded from Phytozome 

(Goodstein et al. 2012) with BWA-MEM (v 0.7.13) (Li and Durbin 

2009) and “-M -R” to add read group information and allow com-

patibility with GATK. SAMtools (v 1.7) combined, compressed, 

and sorted the aligned files (Danecek et al. 2021). Picardtools 

(https://broadinstitute.github.io/picard/) (v 2.1.1) marked dupli-

cates and BamTools indexed the alignments (Barnett et al. 2011). 

The percentage of alignments were calculated at this stage. The 

genotype data were divided into 10 Mbp regions (Garrison and 

Marth 2012) (v 1.0.2) to run the Genome Analysis ToolKit (GATK 

v 4.2) haplotype caller with default parameters (Van der Auwera 

and O’Connor 2020). This identified 20.2 million variant loci 

(∼17.1 M SNPs and ∼3.4 M indels).

Population structure analysis
The resulting VCF file from GATK using the Andean reference 

(“Andean VCF”) was filtered further with BCFtools to retain calls 

with a minimum depth of 5 reads per variant call (FMT/DP ≥ 5), a 

locus call quality over 30, maximum missing calls per locus of 

5%, to keep only biallelic SNP locus, and for a minor allele fre-

quency over 2%. The resulting VCF had ∼9 million SNP loci. Then, 

the VCF was filtered for a maximum heterozygosity of 20% per lo-

cus using TASSEL 5 (v. 20230314) (Bradbury et al. 2007). This was 

then filtered for linkage disequilibrium (LD) (based on LD decay) 

and thinned with a window size of 10 bps using BCFtools prune.

The population structure of the panel was analyzed using 

ADMIXTURE (v 1.3.0) (Alexander and Lange 2011) on a subset of 

88,786 SNP loci. ADMIXTURE was run for K = 2 to K = 10 and the 

ideal number of K was determined using the cross-validation er-

ror. Accessions were allocated a group when their membership 

coefficient (q) was greater than 0.7. Plotting was completed in R 

using the packages “ggplot2’ (Ginestet 2011).

Genome-wide association study
The “Andean VCF” from GATK was filtered with BCFtools (v 1.12) 

(Danecek et al. 2021) for biallelic loci, a minor allele frequency of 

1% and thinned with a window size of 5 bp. To understand the 

genetic relationship between accessions, we used a principal com-

ponent analysis (PCA) generated with GAPIT v.3 (Wang and Zhang 

2021) on a subset of 2,572,124 loci.

A genome-wide association study investigated marker-trait asso-

ciation for determinacy and photoperiod insensitivity phenotypes 

Fig. 1. Distribution of the 127 common beans with location data that were used in this study. The coordinates of the capital city were used for those 
without coordinate data. Produced with QGIS.
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using GAPIT v.3 (Wang and Zhang 2021) with 3 principal compo-

nents. We ran with the models Bayesian-information 

and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) 

(Huang et al. 2019), Fixed and random model Circulating 

Probability Unification (FarmCPU) (Liu et al. 2016), and Mixed 

Linear Model (MLM) (Zhang et al. 2010). BLINK and FarmCPU were 

identified as the best multi-locus models for different heritability le-

vels, improving statistical power (Huang et al. 2019; Merrick et al. 

2022; Cebeci et al. 2023). While MLM was chosen for single-locus ana-

lysis as a baseline for comparison to BLINK and FarmCPU.

GAPIT was run on the whole panel (144 accessions) and on the 

Andean subpanel (as defined at K2 ADMIXTURE; 108 accessions). 

To run BLINK, GAPIT completed the analysis with the option 

“Random.model = TRUE” as not to calculate R2 for phenotypic 

variance explained values after GWAS. The quantile-quantile 

(QQ) plots were used to understand the suitability of the models 

to the data. Plotting was completed in R using the package 

“ggplot2’ (Ginestet 2011).

Selecting significant loci, candidate gene mining, 
and functional annotation
Significant marker-trait associations (MTAs) were investigated 

further when they had a −log10(P-value) over 7 and were con-

firmed by 2 models from GAPIT. QTLs were defined as ±100 kbp 

from the MTA based on the estimated LD decay distances in com-

mon bean diversity panels and by using a r2 
= 0.25 cutoff (esti-

mated decay as 114 kb) (Moghaddam et al. 2016; Valdisser et al. 

2017; Campa et al. 2018; Raggi et al. 2019; Wu et al. 2020, 2024; 

Ugwuanyi et al. 2022; Reinprecht et al. 2023). This is shorter than 

the calculated recombination rate in common bean of 3.72 cM/ 

Mb (Bhakta et al. 2015). LD decay was estimated for the diversity 

panel (mean R2 
= 0.27) and subpopulation at K = 2 (Andean 

mean R2 
= 0.21, Mesoamerican mean R2 

= 0.2) using PopLDdecay 

software following Wu et al. (2020) (Zhang et al. 2019).

Identified loci were compared with the Andean reference 

genome, Phaseolus vulgaris G19833 v2.1 in JBrowse (Schmutz 

et al. 2014; Diesh et al. 2023) while considering “highimpact” 

mutations identified by SnpEff (Cingolani et al. 2012). Once 

genes were identified, their putative function was explored 

using PhytoMine (Goodstein et al. 2012) (Phaseolus vulgaris 

v.2), BLAST (Camacho et al. 2009) against the nonredundant 

protein database at NCBI, and finally against the TAIR data-

base if no gene function could be identified in close relatives 

(Huala et al. 2001). The loci were compared with previous studies 

and literature. PulseDB was used for comparison, particularly for 

QTLs and markers related to developmental and flowering pheno-

types (Humann et al. 2019). QTLs and markers were mapped to the 

reference genome to estimate the conversion from cM to Mb in 

JBrowse.

Results
Population structure
The diversity panel split into the 2 gene pools, the Andean and 

Mesoamerican (Figs. 2a and 3a). At K6 (Fig. 2b), the Mesoamerican 

group split into 2 subpopulations (M1 and M2), while the Andean 

subgroup split into 4 subpopulations. Two of these subpopulations 

included only accessions from Colombia and were named C1 and 

C2. A subpopulation containing accessions from Colombia and 

Ecuador/Peru was named C-EP. The remaining subpopulation was 

named A1. In the PCA (Fig. 3a), PC 1 explained 38.8% of the variation 

in our diversity splitting the 2 gene pools, while PC2 accounted for 

5.06% of the variation, splitting the Mesoamerican subgroups (M1 

and M2) and separating C-EP from the other Andean subgroups. A 

total of 11 accessions were classified as admixed between the 

Andean and Mesoamerican gene pools (Admx_AM), as they had 

an ancestry composition lower than 70% from either of the origins 

(q < 0.7). The Admx_AM accessions were all indeterminate and pro-

duced a variety of seed sizes. Seven were landraces and 2 were wild. 

There was also a mix of photoperiod sensitive and insensitive 

accessions.

The Colombian subgroups (C1 and C2; Fig. 2b) contained me-

dium and large seeded landraces. However, the subpopulations 

distinguished by determinacy; C1 contained mainly insensitive 

determinate accessions while C2 contained sensitive indeter-

minate accessions. The A1 group contained large and medium 

seeded landraces that were mainly photoperiod insensitive. 

The C-EP population contained accessions from Ecuador, Peru, 

and Colombia. This group contained large-seeded indeterminate 

landraces and also included accessions from races previously 

identified to be from the Andean gene pool. The Mesoamerican 

subgroups (M1 and M2; Fig. 2b) were also distinguished by 

phenotypic data. They both contained indeterminate and deter-

minate accessions; however, M1 was mainly medium seeded 

while M2 was mainly small seeded. This is summarized in 

Table 1 and Supplementary Table 1.

Colombian accessions can be found within all the subgroups 

and admixed groups at K = 6 (Fig. 2b). While the admixture acces-

sions are mainly from Colombia, while 1 sample is a wild 

“Ecuador” accession.

The Andean accessions had a lower proportion of heterozygous 

sites (<0.1) than the Mesoamerican accessions, which were more 

heterozygous (Fig. 3b). The 6 highly heterozygous accessions 

(>25% of the loci) were found within the Andean X Mesoamerican 

hybrid (Admixed-AM) subpopulation (Fig. 3b) and were from 

Colombia. Finally, the outlier accession with the lowest alignment 

to the Andean reference genome and low proportion of heterozy-

gous sites was a wild accession from Ecuador.

Phenotypic variation and correlations
The correlation coefficient was estimated for each pair of traits 

(Fig. 4), averaged over 2 seasons or studied in both years. There 

was a positive correlation between DTF from winter and summer 

(r = 0.57). Both DTF were negatively correlated with PS [r = −0.72 

(DTF_S22), r = −0.77 (DTF_W23)] and D [r = −0.35 (DTF_S22), 

r = −0.43 (DTF_W23)]. Population structure at either 2 or 6 ances-

tries (K2, K6) was positively correlated with D [r = 0.32 (K6), r = 0.37 

(K2)] but negatively correlated with SS [r = −0.44 (K6), r = −0.4 (K2)] 

and E100_SW [r = −0.37 (K6), r = −0.47 (K2)]. SS was not correlated 

with DTF_S22, DTF_W23, D, or PS (r = −0.13, r = −0.07, r = −0.12, 

r = 0.09). However, E100_SW was positively correlated with PS 

(r = 0.18) and SS (r = 0.87) but negatively correlated with DTF_S22 

(r = −0.22). Then D and PS were positively correlated (r = 0.45).

Figure 5, a–c showed the distributions of the phenotyping for 

traits E100_SW, S22_DTF, and W23_DTF, respectively. The seed 

weights (Fig. 5a) were normally distributed, while the DTF in 

summer and winter (Fig. 5, b and c) were binomial distributions; 

the peaks were around 42- and 54-days postsowing in summer, 

and around 70- and 90 days in winter. When analyzing the 

phenotypes by subpopulation, we can see that C-EP (Fig. 2b) 

did not flower during winter in the UK, W23_DTF, as was mainly 

photoperiod sensitive. This is further supported by the correl-

ation plot (Fig. 4). Furthermore, determinacy, photoperiod 

insensitivity, and DTF are correlated. The determinate acces-

sions flower earlier than the indeterminate, supporting the bino-

mial distribution.
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GWAS for determinacy
The GWAS was performed using the models BLINK, FarmCPU, and 

MLM with GAPIT (Fig. 6, a and b). The QQ plots (Fig. 6, c and d) pro-

vided evidence that the selected models were well fitted to iden-

tify significant MTAs for the dataset. We identified 13 MTAs with 

a significant P-value (−log10(P-value) > 7), corresponding to 13 

QTLs. We focused on 7 significant MTAs that were identified for 

the whole panel based on the criteria laid out in the methods (ver-

tical lines in Fig. 6). The 7 QTLs were found on chromosomes Pv01, 

Pv07, Pv08, Pv09, and Pv10 (Table 2). Five of the 7 QTLS were also 

identified for the Andean subset.

Putative candidate genes were identified for determinacy based 

on the significant MTAs and corresponding QTL windows. The 

identified genes and QTLs are listed in Supplementary Tables 2

and 3.

GWAS for PS
The GWAS was performed using the BLINK and FarmCPU models 

with GAPIT (Fig. 7, a and b). The QQ plots (Fig. 7, c and d) provide 

evidence that the selected models are fitted to identify significant 

MTAs for the dataset. We identified 10 QTLs (-log10(P-value) > 7). 

We focused on 6 QTLs for the whole panel based on criteria laid 

out in the methods. The MTAs were found on chromosomes 

Pv04, Pv05, Pv07, Pv08, and Pv09 (vertical lines in Fig. 7). Six 

QTLs were identified for the Andean subset panel in 

Chromosomes Pv05, Pv07, Pv08, Pv09, and Pv11. The QTL in Pv04 

and Pv09 were found in the full dataset only. The QTL in Pv9 and 

Pv11 were found in the Andean subset only. Candidate genes 

were identified for the significant MTAs and their corresponding 

QTLs. The identified genes and QTLs are listed in Supplementary 

Tables 2 and 3.

Discussion

We delimited subpopulations in a panel of 144 accessions, initially 

divided by domestication event into the 2 Andean and the 

Mesoamerican gene pools (Figs. 2 and 3) (Blair, Cortes, et al. 

2013; Kami et al. 1995). The Mesoamerican gene pool is generally 

more diverse (Mamidi et al. 2013; Schmutz et al. 2014) with less in-

fluence from domestication bottlenecks. Furthermore, the 

Mesoamerican gene pool within our diversity panel is also more 

heterozygous, suggesting that the Andean gene pool has under-

gone fewer outcrossing events. These crosses between gene pools 

occur during common bean dissemination, breeding programs 

and selection based on market preferences (Hoyos-Villegas et al. 

2017; de Almeida et al. 2020; Botero et al. 2021; Bellucci et al. 

2023). However, care needs to be taken when utilizing market 

sampling information. This is highlighted by the 2 “Peruvian” ac-

cessions collected from markets that fall with the Mesoamerican 

subpopulation (Supplementary Table 1).

Admixture was commonly observed in the panel, including 26 

admixed Andean accessions, 5 admixed Mesoamerican acces-

sions, and 11 Mesoamerican × Andean accessions. This supports 

our initial hypothesis that Colombia and neighbouring countries 

hold large common bean variation, including hybrids between 

both gene pools (Gori et al. 2022; Myers et al. 2000; Pironon et al. 

2020). The wider crosses between gene pools compared with 

within gene pools resulted in a larger observed heterozygosity in 

the hybrid accessions, supporting the outcrossing events and 

movement between gene pools. One implication of this study is 

that admixed Colombian hybrid landraces bridge Andean and 

Mesoamerican gene pools, and novel allelic and epistatic inter-

actions likely filtered out deleterious effects (Cichy et al. 2015) 

due to stronger purifying selection with increased recombin-

ation. After all, recombination increases local effective 

a

b

Fig. 2. Analysis of the population structure of 144 accessions belonging to our diversity panel focusing on Colombia at K = 2, Andean or Mesoamerican 
groups a) and K = 6 b). (C-EP) accessions mainly from Peru, then Ecuador and Colombia; (A1) Andean accessions from a variety of South American 
countries; (C1) mostly determinate Colombian landraces; (C2) indeterminate Colombian landraces; (M1) mainly medium seeded** from Central America 
and Colombia; (M2) mainly small seeded** from Central America and Colombia. (Admx_AM) Andean X Mesoamerican hybrids; (Admx_A) and (Admx_M) 
admixed accessions between subpopulations (ancestry composition q < 0.7 at K = 6). **P < 0.01 using a 2-tailed student t-test with unequal variance.
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population size (Ne) and limits Hill–Robertson interference (Hill 

and Robertson 2007). This suggests the Colombian hybrids have 

promising potential for breeding. However, the diversity panel 

may also be biased and underestimating their prevalence in 

other regions due to the large number of Colombian accessions 

in our diversity panel.

We observed some traits associated with demography, includ-

ing determinacy and PS: C1 and C2 shared origin but could be se-

parated by ancestry admixture analysis, and were characterized 

by different determinacy, as C1 contained mainly determinate ac-

cessions, and C2 mainly indeterminate accessions. Furthermore, 

the population structure suggests that Colombian farmers have 

not selected varieties based on the seed characteristics studied 

(e.g. SS) (Botero et al. 2021).

Indeterminate and photoperiod sensitive landraces were com-

mon, despite the combined selection for photoperiod insensitivity 

and determinacy resulting in common bean varieties with shorter 

flowering periods (DTF) and easier management. Prior research 

supports the correlation between DTF and phenotypes such as 

seed weight, determinacy and growth habit (Tar’an et al. 2002; 

Moghaddam et al. 2016; Hoyos-Villegas et al. 2017; Elias et al. 

2021; Vargas et al. 2021). These phenotypes are related to apical 

meristems and floral development (Sablowski 2007).

We observed the distribution of DTF values, in either summer 

or winter, were bimodal, i.e. had 2 peaks (Fig. 5, b and c). This likely 

occurred due to the determinate types flowering first and then fol-

lowed by the indeterminate beans (Coelho et al. 2023). The distri-

bution also correlates to growth habits as bush types typically 

flower earlier than climbing types (Ugwuanyi et al. 2022). 

Figure 2a supports that PS arose during domestication in both 

gene pools (Weller et al. 2019).

The Andean accessions within our diversity panel were large 

and medium seeded while the Mesoamerican accessions were 

small and medium sized, which supports previous research 

(Blair et al. 2009). Among the Mesoamerican accessions, the 

Mesoamerican race is characterized by small-seeds, while the 

Durango–Jalisco race is characterized by medium seeds (Beebe 

et al. 2000; Zhang et al. 2008; Blair et al. 2009; Giordani et al. 2022). 

We could not separate our diversity panel into subpopulations 

matching these races due to a lack of Mesoamerican diversity in 

the panel, a limited genetic component for the SS trait, or intro-

gressions occurring in the Mesoamerican Colombian accessions.

Fig. 3. a) Principle component analysis (PCA) plot of PC1 against PC2. b) Proportion of heterozygous sites against the percentage of read pair alignment to 
the Andean reference genome G19833 (Schmutz et al. 2014). The colors illustrate the population structure of our diversity panel.

Table 1. Phenotypic characteristics associated with each subpopulation.

Subpopulation Gene pool Determinancy Photo. sen. Seed size Origin

C1 Andean Mainly determinate Insensitive Mainly large Colombia and Ecuador
C2 Andean Indeterminate Mainly sensitive Mainly large Colombia
A1 Andean Both Mainly insensitive Mainly large South America, Heirlooms, 

Colombia
C-EP Andean Indeterminate Sensitive Large Colombia, Ecuador, Peru
Admix_A Andean Mainly indeterminate Both Mainly large Colombia and South America
M1 Mesoamerican Mainly indeterminate Both Mainly 

medium**
Central America, Colombia, 

Heirlooms, Peru
M2 Mesoamerican Mainly indeterminate Mainly insensitive Mainly small** Central America, Colombia
Admix_M Mesoamerican Mainly indeterminate Insensitive Small and 

medium
Colombia, Brazil, Heirlooms, 

Central America
Admix_AM AxM hybrids Indeterminate Mainly sensitive Mainly medium Colombia and Ecuador
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Interestingly, Ecuador accessions are often separated from 

Andean subgroups, suggesting that they are members of the 

PhI group or a possible sister species Phaseolus debouckii 

(Chacon-Sanchez et al. 2007; Rendon-Anaya et al. 2017). Further 

to this, the wild Ecuador accession is separated from both gene 

pools (Figs. 2 and 3), suggesting a separate ancestry originating 

from Ecuador or Peru (Bitocchi et al. 2012; Bitocchi et al. 2017). 

Finally, the C-EP group (Fig. 2b) are mainly photoperiod sensitive 

(Fig. 5f), possibly due to a different domestication history or due 

to their quatorial provenance not necessitating evolution under 

fluctuating photoperiods.

By leveraging this diversity panel and its trait segregation 

across the demographic stratification, we prioritized 13 QTLs for 

determinacy and 10 QTLs for PS. Four of the QTLs for PS, and 4 

for determinacy, were also identified only for the Andean subset, 

but not the whole panel. The Andean gene pool has adapted to 

lower latitudes than the Mesoamerican pool, resulting in differen-

tial selection for PS between the 2 gene pools. The LD was esti-

mated as 114 kb from an R2 cutoff of 0.25, this value is 

consistent with WGS data of diversity panels rather than breeding 

populations (Campa et al. 2018; Diniz et al. 2018; Reinprecht et al. 

2023; Ambachew et al. 2024). LD in common beans is impacted 

by the evolutionary and breeding history of the accessions in the 

diversity panel; therefore, a 200 kb region accounts for the higher 

resolution of WGS as well as allowing for LD (Moghaddam et al. 

2016; Valdisser et al. 2017).

During this study we completed analysis with the Andean ref-

erence genome (Schmutz et al. 2014). This reference genome was 

selected for being the most complete at the time of analysis and 

because our panel has a higher proportion of Andean accessions 

based on population structure analysis (Fig. 2). The accessions 

also had higher alignments to the Andean reference genome 

(92.5% ± 1 and 89.9% ± 1.1% for the Andean and Mesoamerican 

subpopulations, respectively) and no difference in metrics to the 

Mesoamerican reference genomes (Supplementary Table 1).

QTLs and candidate genes associated 
with determinacy
Three QTLs in chromosome 1

We identified a determinacy QTL in chr 1 -Pv01- (D1.4-D1.6; 

Table 2), identified in other studies (Moghaddam et al. 2016; da 

Silva et al. 2018; Kamfwa et al. 2019; Sedlar et al. 2020; Vargas 

et al. 2021; Keller et al. 2022) as a hotspot of allelic variation, named 

the Fin locus. The Fin locus has been mapped to ∼44.5 Mb 

(Pérez-Vega et al. 2010; Kamfwa et al. 2019). This co-segregates 

with an upstream gene, TFL1y (Phvul.001G189200), a candidate 

gene for flowering, vegetative growth, rate of plant production, 

and determinacy (Kwak et al. 2008, 2012; Repinski et al. 2012; 

Cichy et al. 2015; González et al. 2016; Campa et al. 2018; Delfini 

et al. 2021). Consequently, the Fin locus has pleiotropic effects 

due to associations with many development traits such as deter-

minacy, shoot biomass, DTF, days to maturity, plant architecture, 

embryo abortion, number of pods per plant, number of seeds per 

plant (seed yield and weight), and disease resistance (Miklas et al. 

2001; González et al. 2016; Delfini et al. 2021; Soler-Garzón et al. 

2024). However, segregation for this QTL hotspot in Pv01 may 

prove difficult in breeding programs due to these pleiotropic ef-

fects (Vargas et al. 2021).

Further candidate genes have been identified in this QTL, 

such as Phvul.001G192200. This gene is an ortholog of LIGHT- 

REGULATED WD1 (LWD1), a gene involved in the circadian rhythm 

pathway (Wu et al. 2008; Moghaddam et al. 2016; Delfini et al. 2021), 

or Phvul.001G192300, which is an ortholog of SPINDLY (SPY). SPY 

interacts with genes in the reproductive pathway (Tseng et al. 

2004; Moghaddam et al. 2016; da Silva et al. 2018) and has been as-

sociated with days to maturity (Reinprecht et al. 2023).

Another QTL we identified on Pv01 (D1.3; Table 2) contains the 

gene Phvul.001G168700. This gene is related to the phytochrome 

interacting factor 1 (PIF1) transcription factor isoform X1 in the 

legume Vigna radiata (Bateman et al. 2023). This bHLH transcrip-

tion factor is involved in many light-dependent pathways in plant 

development and interacts with circadian clock genes (Kim et al. 

2016).

QTL D7.1 in chromosome 7

The QTL at Pv07 (D7.1) was identified in the whole and Andean 

panel. The QTL contains the gene Phvul.007G244700. This is re-

lated to a transcriptional corepressor, Leunig-homolog in Vigna 

radiata (Bateman et al. 2023). In Arabidopsis, Luenig-homologs 

have functional redundancy with Leunigs (LUGs), and are in-

volved in embryo and floral development (Sitaraman et al. 

2008). This QTL has been associated with SS, seed weight, and 

growth habit (Kwak et al. 2008; da Silva et al. 2018; Elias et al. 

2021; Keller et al. 2022), suggesting it may have pleiotropic 

effects.

QTL D8.2 in chromosome 8

The QTL identified on Pv08 (D8.2; Table 2) for determinacy has 

previously been identified for plant architecture (da Silva et al. 

2018). However, no gene with a clear function was identified. 

We have, however, identified a possible candidate gene for fur-

ther investigation; Phvul.008G170000. This encodes a putative 

fantastic 4 (FAF) domain-containing protein. In Arabidopsis, FAF 

proteins regulate shoot meristem size and architecture (Wahl 

et al. 2010).

Fig. 4. Pearson correlation coefficients among five agronomic traits and 
population structure measured in 144 common bean genotypes grown at 
the Norwich Research Park, Norwich, UK in 2022 and 2023. K6, K6 
subgroups from ADMIXTURE; K2, K2 subgroups from ADMIXTURE; D, 
determinacy; PS, photoperiod sensitivity; SS, seed size; E100_SW, 
estimated weight of 100 seeds; DTF_W23, DTF from winter 2023; DTF_S22, 
DTF from summer 2022. *P < 0.05; **P < 0.01; ***P < 0.001.
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QTL D9.1 in chromosome 9

The QTL D9.1 in chr 9 was identified in the whole and Andean panel. 

Nearby QTLs have been identified for yield and determinacy 

(Kamfwa et al. 2015; Campa et al. 2018). The gene Phvul.009G138100 

is found within this QTL and contains the significant MTA found by 

GAPIT (Wang and Zhang 2021). This gene has an insertion that pos-

sibly affects function (Cingolani et al. 2012). This gene is uncharacter-

ized in common bean but has homology to the root meristem growth 

factor 9 from Glycine soja (Goodstein et al. 2012; Bateman et al. 2023). 

This growth factor is expressed in the roots and flowers, regulating 

and maintaining apical meristems, and therefore both root and floral 

development, SS, and leaf architecture (Chen et al. 2019; Shinohara 

2021). Although it has previously been identified as a candidate 

gene associated with Mesoamerican domestication (Schmutz et al. 

2014), we found the QTL in the Andean panel, suggesting that it 

has also played a role in the Andean domestication event.

QTL D10.1 in chromosome 10

The QTL on Pv10 (D10.1) is located near QTLs for plant height 

and number of nodules and near genes associated with meta-

bolic changes during domestication, once again suggesting 

pleiotropic effects (Delfini et al. 2021; de Souza et al. 2023). 

Three of the genes within this region encode bHLHLZip 

proteins: Phvul.010G158500, Phvul.010G158300, and Phvul. 

010G158200. These bHLH transcription factors may be involved 

in the regulation of flowering genes (Zhou et al. 2019). The gene 

Phvul.010G158500 displays nonsynonymous modifications in 

our panel, including insertions, deletions, and other variants 

linked to frameshift mutations and gained stop codons 

(Cingolani et al. 2012). Homology to Vigna angularis suggests 

this gene may be related to the transcription factor bHLH25, 

and possibly linked to a circadian rhythm-associated protein 

(Goodstein et al. 2012).

Fig. 5. Frequency distribution of seed weight and days to flower traits evaluated in 2 seasons in a common bean diversity panel. a) E100_SW, estimated 
weight of 100 seeds; b) phenological DTF in the summer 2022 (S22_DTF) and c) in the winter 2023 (W23_DTF) at the Norwich Research Park, excluding 
those which did not flower. The distributions were split into the subpopulations from K6 ADMIXTURE. d) E100_SW***; e) S22_DTF***; f) W23_DTF*. 
Completed a 1-way ANOVA for E100_SW, S22_DTF, and W23_DTF. *P < 0.05; **P < 0.01; ***P < 0.001.
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Candidate genes for PS
QTL PS4.1 in chromosome 4

One QTL for PS was found on Pv04 (PS4.1; Table 2) from the 

analysis on the whole panel. Within this QTL, 4 genes were 

identified, 3 of which (Phvul.004G110200, Phvul.004G110301, and 

Phvul.004G110000) have nonsynonymous mutations such as a 

stop lost, stop gained, or a frameshift mutation in our panel 

(Cingolani et al. 2012). However, the genes are uncharacterized.

Two QTLs in chromosome 5

Two QTLs were identified in Pv05: PS5.2 for the Andean panel and 

PS5.1 for the whole panel. PS5.2 overlaps with a previously identi-

fied QTL for seed weight, DTF, and pod weight (Arriagada et al. 

2022; Reinprecht et al. 2023). However, this previous analysis 

with a limited number of markers did not identify a candidate 

gene. Based on sequence homology with Vigna radiata, we identi-

fied the gene Phvul.005G077000, which encodes a proton gradient 

regulation 5 (PGR5) protein (Bateman et al. 2023). PGR5 is involved 

in plant growth under different light conditions due to interac-

tions with Photosystem I, and consequently putatively associated 

with differentiating PS in our panel (Munekage et al. 2002). The 

QTL PS5.1 contained 2 genes, one of which, Phvul.005G076300, 

may encode a bidirectional sugar transporter, named SWEET pro-

tein. Evidence suggests SWEET proteins have essential roles in 

plant development, including in reproductive organs and bud 

growth (Gautam et al. 2022).

Two QTLs in chromosome 7

Two QTLs were also identified on Pv07. PS7.1 and PS7.2, both in 

the Andean and the whole panel. The QTL PS7.2 contains the 

genes Phvul.007G157400 and Phvul.007G156200. Homology with 

Arabidopsis suggests that Phvul.007G157400 encodes a BANQUE3 

BHLH161 protein. BANQUE3 is negatively regulated by APETALA3 

and PISTILLATA in petals and is involved in light-regulated re-

sponses and flowering time (Huala et al. 2001; Mara et al. 2010). 

Phvul.007G156200 may encode the BHLH transcription factor PIF4 

(Phytochrome Interacting Factor 4) based on homology with Vigna 

radiata and Glycine soja (Goodstein et al. 2012; Bateman et al. 2023). 

PIF4 is a downstream signaling component integrating environ-

mental cues such as light (Bateman et al. 2023).

The QTL PS7.1 overlaps with a previously identified QTL for plant 

production traits (González et al. 2016). The QTL includes the gene 

Phvul.007G117400 which encodes a putative JUMONJI domain- 

containing protein (Goodstein et al. 2012). JUMONJI proteins are in-

volved in multiple plant developmental processes such as flowering 

and leaf senescence (Gan et al. 2014; Liu et al. 2019; Yamaguchi 2021; 

Xin et al. 2024). Phvul.007G117400s homology with a JUMONJI16 ortho-

logue in Vigna radiata also supports this role (Bateman et al. 2023).

Two QTLs in chromosome 8

One of the QTLs found in Pv08 is PS8.1 from the whole panel. This 

QTL has been associated with determinacy (Campa et al. 2018), 

seed weight (Elias et al. 2021), DTF (Raggi et al. 2019), and pod 

Fig. 6. Manhattan plots highlighting markers significantly associated with determinacy on (a) the whole panel and b) the Andean subpanel. The analyses 
were completed with GAPIT and the models are FarmCPU, BLINK, or MLM (Huang et al. 2019; Liu et al. 2016; Wang and Zhang 2021; Zhang et al. 2010). The 
X-axis represents the genomic position of markers and the Y-axis is the −log 10 of the P-values for association with the phenotype. The vertical lines 
correspond to QTLs found by at least 2 models. Point size correlates to −log10(P-value). Quantile-quantile (QQ) plots are provided for c) the whole panel 
and d) the Andean panel.
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number (Kamfwa et al. 2015). Due to the marker technology used, 

the QTL for seed weight was large so had low resolution (Elias et al. 

2021). Our results (Fig. 4) suggest a correlation between DTF, 

determinacy, and PS under the same QTL. The significant MTA 

for this QTL was within the gene Phvul.008G048300. However, 

the function of this gene is currently unclear.

Table 2. QTLs for determinacy and photoperiod sensitivity.

Name Chromosome Start End Trait Panel

D1.1 Chr01 6,512,000 6,521,000 Determinacy Andean + Whole
D1.2 Chr01 11,363,000 11,372,000 Determinacy Andean
D1.3 Chr01 42,404,000 42,413,000 Determinacy Andean + Whole
D1.4 Chr01 44,856,000 44,847,000 Determinacy Whole
D1.5 Chr01 44,932,000 44,941,000 Determinacy Andean + Whole
D1.6 Chr01 45,098,000 45,107,000 Determinacy Whole
D2.1 Chr02 24,821,000 24,830,000 Determinacy Andean
D3.1 Chr03 25,608,000 25,617,000 Determinacy Andean
PS4.1 Chr04 38,316,000 38,325,000 Photo sensitivity Whole
PS5.1 Chr05 16,423,000 16,432,000 Photo sensitivity Whole
PS5.2 Chr05 18,321,000 18,330,000 Photo sensitivity Andean
PS7.1 Chr07 16,829,000 16,838,000 Photo sensitivity Andean + Whole
PS7.2 Chr07 26,485,000 26,494,000 Photo sensitivity Andean + Whole
D7.1 Chr07 36,860,000 36,869,000 Determinacy Andean + Whole
PS8.1 Chr08 4,234,000 4,243,000 Photo sensitivity Whole
D8.1 Chr08 7,440,000 7,449,000 Determinacy Andean
PS8.2 Chr08 8,320,000 8,329,000 Photo sensitivity Andean
D8.2 Chr08 47,582,000 47,591,000 Determinacy Whole
D9.1 Chr09 20,814,000 20,823,000 Determinacy Andean + Whole
PS9.1 Chr09 21,640,000 21,649,000 Photo sensitivity Whole
PS9.2 Chr09 34,445,000 34,454,000 Photo sensitivity Andean
D10.1 Chr10 43,762,000 43,771,000 Determinacy Andean + Whole
PS11.1 Chr11 204,000 213,000 Photo sensitivity Andean

Fig. 7. Manhattan plots highlighting markers significantly associated with photoperiod insensitivity on (a) the whole panel and b) the Andean subpanel. 
The analyses were completed with GAPIT and the models FarmCPU, BLINK, or MLM (Zhang et al. 2010; Liu et al. 2016; Huang et al. 2019; Wang and Zhang 
2021). The X-axis represents the genomic position of markers and the Y-axis is the −log 10 of the P-values for association with the phenotype. The vertical 
lines correspond to QTLs found by at least 2 models. Point size correlates to −log10(P-value). Quantile-quantile (QQ) plots are provided for c) the whole 
panel and d) the Andean panel.
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The other QTL found on Pv08 is PS8.2, which has previously been 

identified for seed weight (Blair et al. 2006). Genes within this QTL in-

clude Phvul.008G085000, Phvul.008G084500, Phvul.008G084900, and 

Phvul.008G084100. Phvul.008G085000 is homologous to gibberellin 

2-oxidase 8 in Arabidopsis (Huala et al. 2001). Gibberellin oxidases 

may respond to light intensity, and can therefore be related to PS 

(Zhang et al. 2022). Phvul.008G084100 is homologous to CLAVATA3 

in Arabidopsis, a gene that regulates shoot and floral meristem de-

velopment (Clark et al. 1995; Hirakawa 2021). Phvul.008G084900 is 

homologous to genes encoding ovate family proteins (OFPs). OFPs 

appear to be sensitive to light stimuli (Shahzaib et al. 2024). 

Phvul.008G084500 has homology with RAVEN/INDETERMINATE 

DOMAIN5 in Arabidopsis, which is linked to GA signaling pathways 

as well as other plant developmental pathways (Sanchez-Corrionero 

et al. 2019; Aoyanagi et al. 2020). Phvul.008G085000 and Phvul. 

008G084900 also both contain insertions or deletions with high- 

impact nonsynonymous mutations which, therefore, possibly 

affect function (Cingolani et al. 2012).

Two QTLs in chromosome 9

A QTL was identified on Pv09 in the Andean panel (PS9.1). This 

was near a QTL associated with grain yield (Elias et al. 2021), 

postharvest index (Sedlar et al. 2020), shoot biomass (Kamfwa 

et al. 2019), SS (da Silva et al. 2018), DTF, and yield (Blair et al. 

2006). Genes within the QTL included Phvul.009G229100, Phvul. 

009G229200, Phvul.009G229700, and Phvul.009G229900. Phvul. 

009G229100 is homologous to PIN3 transcription factor genes, 

involved in regulating root and shoot growth (Goodstein et al. 

2012; Haga and Sakai 2012). Homology with Arabidopsis suggests 

Phvul.009G229200 and Phvul.009G229700 are involved in root 

growth (Huala et al. 2001), and that Phvul.009G229900 encodes 

a HAB1 (Hypersensitive To Aba1) homology to ABI (Abscisic 

Acid-Insensitive)1 gene involved in ABA signal transduction, which 

is regulated by circadian rhythm (Leitao, Santos, et al. 2021; 

Kamrani et al. 2022). The other QTL in PV09 (PS9.2) was found in 

the whole panel and included the gene Phvul.009G145100, which 

was also related to an ABA response gene in Arabidopsis. A nearby 

QTL to PS9.2 was previously identified for DTF (Keller et al. 2022).

QTL PS11.1 in chromosome 11

The QTL at PV11 (PS11.1) was near a QTL for seed weight (da Silva 

et al. 2018) and a QTL for disease resistance (Banoo et al. 2020). This 

may be due to pleiotropic effects or low resolution of the previous 

analysis with a limited number of markers. Within this QTL is the 

gene Phvul.011G004000 which encodes a putative PHD finger pro-

tein. PHDs have been found to be involved in the regulation of 

flowering time (Zhou et al. 2019; Qian et al. 2021). Other genes with-

in the QTL are related to root or shoot growth. For example, hom-

ology of Phvul.011G003200 and Phvul.011G003400 implicates them 

in processes involved in root meristem development (Huala et al. 

2001). Phvul.011G003700 is an uncharacterized gene in common 

bean but homology with Arabidopsis suggests it may be associated 

with phytochrome interacting factor 7 (PIF7) to regulate hypocotyl 

elongation (Huala et al. 2001; Leivar et al. 2008). However, there are 

many genes within this QTL and further research is needed to 

clearly distinguish a candidate gene.

Conclusion

Our common bean panel contains genetic diversity from the Andean 

(4 subgroups) and Mesoamerican (2 subgroups) gene pools. Including 

accessions from Colombia that contain introgressive hybridization 

and admixture diversity from the Andean and Mesoamerican gene 

pools. There was a systematic association between the population 

structure and agronomic traits such as determinacy and PS. In this 

study we identified genomic regions which are connected to known 

and novel putative candidate genes involved in developmental and 

reproductive pathways. We found 13 QTLs associated with deter-

minacy and 10 QTLs associated with PS. One known QTL was the 

Fin locus on Pv01 for determinacy known for its pleiotropic effects 

in plant development. While other putative candidate genes were 

identified due to homology with Glycine soja, Vigna species and 

Arabidopsis. This includes Phvul.008G170000 that encodes a putative 

FAF domain-containing protein. Consequently, GWAS are important 

in identifying MTAs and candidate genes, especially when account-

ing for population structure. By linking candidate genes to pheno-

types, we hope more targeted precision breeding approaches can 

be adopted to improve common bean traits under climate change. 

Nevertheless, this current study and previous ones highlight that 

for some genes and genomic regions, this will be difficult due to 

the high proportion of pleiotropic effects in common beans.
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