
This is a repository copy of Software testing for extended reality applications: a systematic
mapping study.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227609/

Version: Published Version

Article:

Gu, R., Rojas, J.M. orcid.org/0000-0002-0079-5355 and Shin, D. (2025) Software testing
for extended reality applications: a systematic mapping study. Automated Software
Engineering, 32 (2). 56. ISSN 0928-8910

https://doi.org/10.1007/s10515-025-00523-7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/s10515-025-00523-7
https://eprints.whiterose.ac.uk/id/eprint/227609/
https://eprints.whiterose.ac.uk/

Automated Software Engineering (2025) 32:56

https://doi.org/10.1007/s10515-025-00523-7

Software testing for extended reality applications:
a systematic mapping study

Ruizhen Gu1 · José Miguel Rojas1 · Donghwan Shin1

Accepted: 21 April 2025

© The Author(s) 2025

Abstract

Extended Reality (XR) is an emerging technology spanning diverse application

domains and offering immersive user experiences. However, its unique characteris-

tics, such as six degrees of freedom interactions, present significant testing challenges

distinct from traditional 2D GUI applications, demanding novel testing techniques to

build high-quality XR applications. This paper presents the first systematic mapping

study on software testing for XR applications. We selected 34 studies focusing on

techniques and empirical approaches in XR software testing for detailed examination.

The studies are classified and reviewed to address the current research landscape,

test facets, and evaluation methodologies in the XR testing domain. Additionally, we

provide a repository summarising the mapping study, including datasets and tools ref-

erenced in the selected studies, to support future research and practical applications.

Our study highlights open challenges in XR testing and proposes actionable future

research directions to address the gaps and advance the field of XR software testing.

Keywords Software testing · Extended reality · Systematic mapping

1 Introduction

The global market for Extended Reality (XR) has grown significantly in recent years

—estimated at USD 77 bn in 2024— and is expected to continue its rapid expansion

to cross USD 3 tn by 20371, reflecting the increasing adoption and technological

1 Market forecast available at: https://www.researchnester.com/reports/extended-reality-market/4863

B Ruizhen Gu

rgu10@sheffield.ac.uk

José Miguel Rojas

j.rojas@sheffield.ac.uk

Donghwan Shin

d.shin@sheffield.ac.uk

1 School of Computer Science, University of Sheffield, Sheffield, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-025-00523-7&domain=pdf
https://www.researchnester.com/reports/extended-reality-market/4863

 56 Page 2 of 49 Automated Software Engineering (2025) 32:56

maturation of XR across multiple sectors. The industry continues to evolve with

major technology companies investing heavily in this space. In late 2024, Google

announced Android XR, a dedicated XR operating system built for next-generation

computing experiences2. The platform is developed in collaboration with Samsung

for their forthcoming headset (expected in 2025), which might represent a signif-

icant shift in the XR landscape, further accelerating mainstream adoption. While

entertainment–particularly video games–remains the most popular application domain

for XR technologies (Rodriguez and Wang 2017), various other fields have also

benefited from its rapid development, including education (Kavanagh et al. 2017),

engineering (Tadeja et al. 2020), military (Lele 2013), and medicine (Kim et al. 2017).

This broad spectrum of applications underscores the transformative potential of XR

technologies beyond consumer entertainment.

XR is an umbrella term encompassing Augmented, Mixed and Virtual Reality

(resp. AR, MR and VR). XR applications (hereafter, XR apps) are software programs

designed to run on XR-compatible devices. These apps typically feature virtually

organised spaces populated with virtual objects and interactive elements, allowing

users to explore scenes and engage with digital content. For instance, Pokémon Go3,

a phenomenal AR mobile game, utilises GPS and cameras of mobile devices to

overlay virtual content onto real-world locations. More immersive experiences are

offered through head-mounted displays (HMDs), such as VR headsets (e.g., PlaySta-

tion VR24) and AR headsets (e.g., Apple Vision Pro5 and Meta Quest 36).

As XR apps become increasingly prevalent across diverse and critical domains and

multiple platforms and devices, their development and testing have grown significantly

more complex (Andrade et al. 2020). XR apps possess unique characteristics that

distinguish them from traditional apps, such as mobile 2D apps. These include real-

time responsiveness and complex interactions, enabling users to select and manipulate

virtual objects or navigate through virtual environments (Doerner et al. 2022). These

differences pose unique challenges for software testing. For example, in the context of

generating test sequences, Android apps have finite interaction paths when navigating

between different activities (i.e., individual screens of an app) (Su et al. 2017). In

contrast, XR apps involve virtually infinite interaction possibilities; even a simple task,

such as moving towards and interacting with a virtual object, requires accounting for

countless variations in interaction sequences (Andrade et al. 2023). These complexities

necessitate advanced software testing methods to ensure that XR apps operate reliably

and meet user expectations.

Many XR platforms now include simulation capabilities that allow developers to test

and debug apps without requiring physical headset usage, such as Meta XR Simulator7

2 https://blog.google/products/android/android-xr/
3 https://pokemongolive.com
4 https://playstation.com/ps-vr2
5 https://apple.com/apple-vision-pro
6 https://meta.com/gb/quest/quest-3
7 https://developers.meta.com/horizon/documentation/unity/xrsim-intro

123

https://blog.google/products/android/android-xr/
https://pokemongolive.com
https://playstation.com/ps-vr2
https://apple.com/apple-vision-pro
https://meta.com/gb/quest/quest-3
https://developers.meta.com/horizon/documentation/unity/xrsim-intro

Automated Software Engineering (2025) 32:56 Page 3 of 49 56

and Unity XR Device Simulator8. For instance, Meta XR Simulator supports Meta

Quest app development by enabling keyboard, mouse, or game controller simulation of

XR interactions. The simulator also features a valuable record and replay function that

captures input sequence and verifies consistent behaviour across executions. While

record-and-replay is a common testing approach for GUI apps that simplifies the

automation of complex usage scenarios (Hu et al. 2015; Modarressi et al. 2024),

it has limitations, such as poor maintainability, where the captured test frequently

breaks when the app’s UI changes, requiring substantial manual updates to remain

effective (Lam et al. 2017).

Unlike traditional software, which benefits from well-established surveys covering

various testing practices (Zein et al. 2016; Garousi et al. 2013), to the best of our

knowledge, there are currently no available comprehensive systematic review studies

dedicated to XR software testing. Critical aspects, such as testing practices, tools,

frameworks, and general testing guidelines, remain largely unexplored.

To address this gap, we present a systematic mapping study on XR software testing.

Systematic mapping is a methodology designed to survey the literature, provide a

comprehensive overview of a topic, identify research gaps, and offer insights into future

research directions. By carefully following the guidelines proposed by Petersen et al.

(2015), we selected a total of 34 primary studies as the subjects for this mapping (see

Appendix Afor the details of the studies). We systematically classified and extracted

data from these studies to investigate the current research status in XR software testing,

explore key testing facets (e.g., activities and objectives), and examine the evaluation

methodologies used. To facilitate future research, we compile and present the tools

and datasets used in the studies. Finally, we identify the limitations and challenges in

XR software testing and highlight potential avenues for advancing the field.

The main contributions of this systematic mapping study are as follows:

• We provide an in-depth survey of the current software testing methods for XR apps,

shedding light on the state-of-the-art in this emerging domain. The data extraction

template used to derive these findings is included as part of the study.

• We compile a repository of existing tools and datasets used in XR software testing

to support future research in the field. The repository, along with the data extraction

results, is publicly available at: https://sites.google.com/view/xr-testing.

• We identify critical challenges in XR software testing and outline potential research

directions to address these challenges and advance the field.

This paper is structured as follows. Section 2 presents the background of this work,

key definitions and a primer on XR user interaction. Section 3 discusses the moti-

vation behind this work and summarises relevant related studies. Section 4 details

our methodology, including the process for searching and selecting relevant literature.

Section 5 presents the results of our study and answers to our research questions.

Section 6 discusses the findings and explores their implications for the field of XR

software testing. Section 7 summarises the key contributions and concludes the paper.

8 https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/xr-device-simulator-

overview.html

123

https://sites.google.com/view/xr-testing
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/xr-device-simulator-overview.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/xr-device-simulator-overview.html

 56 Page 4 of 49 Automated Software Engineering (2025) 32:56

2 Background

This section provides background on Extended Reality (XR), covering key concepts

and terminology across various immersive technologies that form the foundation of

this mapping study. Table 1 lists abbreviations frequently used throughout this paper.

We introduce the nature of XR applications and their user interaction models, followed

by relevant software testing concepts–particularly focusing on automated testing, test

automation, and GUI testing approaches.

2.1 Extended reality

Over recent years, the development of virtual technologies, such as VR and AR, has

grown rapidly. These advancements allow users to immersively interact with virtual

objects and virtual environments with specific devices, such as HMDs and controllers.

Figure 1 illustrates the differences between XR technologies using the reality-

virtuality continuum introduced by Milgram et al. (1994). The continuum spans from

fully real environments (reality, on the left) to entirely virtual ones (virtual reality, on

the right). The proportion of real versus virtual elements shifts along the continuum:

reality diminishes while virtuality increases, and vice versa. AR, MR, and VR represent

distinct forms of XR across this spectrum.

Augmented Reality (AR) is positioned near the reality end of the continuum; it

overlays virtual objects onto the real world in real time, allowing users to interact with

both. A prominent example is the mobile game Pokémon Go (Fig. 2a), where virtual

creatures and widgets are superimposed onto real-world environments.

Mixed Reality (MR) bridges AR and VR by blending real and virtual environments,

enabling real-time interaction between physical and digital elements. Virtual objects

in MR behave as if they existed in the real world, offering enhanced functionality

and immersion. For instance, car designers can use MR to manipulate 3D models of

car components, refining designs with seamless interaction between real and virtual

Table 1 Summary of frequent abbreviations

Abbrev. Definition

XR Extended reality, an umbrella term encompassing augmented (AR), mixed (MR), and virtual

(VR) reality technologies.

VR Virtual reality, a computer-generated simulation that immerses users in a virtual environment

using 3D displays and motion tracking.

AR Augmented reality, a technology overlaying digital content onto the real-world visual envi-

ronment.

MR Mixed reality, a technology blending real and virtual worlds, allowing physical and digital

objects to interact.

DOF Degree of freedom, the number of independent ways an object can move or rotate in three-

dimensional space.

HMD Head-mounted display, a wearable display device positioned in front of the user’s eyes to

provide immersive visual experiences.

123

Automated Software Engineering (2025) 32:56 Page 5 of 49 56

Fig. 1 Reality-virtuality continuum

elements (Fig. 2b 9). This capability goes beyond enhancing real-world experiences

with added information by allowing deeper integration and interaction between realms.

As XR technologies continue to evolve, the distinction between AR and MR has

become blurred, with the terms AR and MR often used interchangeably in both indus-

trial and academic contexts. Doerner et al. (2022). For clarity throughout this paper,

we maintain the distinction between these two technologies based on the definitions

provided above, with AR focusing on overlaying information and MR enabling deeper

integration between real and virtual elements.

Virtual Reality (VR) is located at the virtuality end of the continuum, VR immerses

users entirely in a digital environment, blocking out the real world. For instance, Fig. 2c

shows Resident Evil 4 VR Mode10, a VR video game, where players perform actions

like shooting and reloading within a fully virtual setting.

2.1.1 XR applications

Most XR apps are developed using 3D engines and platforms, like Unity11and Unreal

Engine12 (Roberts 2023), which support deployment on various platforms, such as

Android, iOS and the web (Scheibmeir and Malaiya 2019; Qiao et al. 2019). A typi-

cal XR app consists of interconnected scenes, analogous to activities in Android apps,

each representing a unique virtual environment. Using Unity as an example, scenes are

composed of GameObjects and components. GameObjects are the graphic elements

that users can interact with, while components provide functionalities to GameObjects

(e.g., animation, video playback) (Technologies 2024). The hierarchical structure of

XR scenes, including object relationships and properties (e.g., behaviours, appear-

ances), is managed using specialised data structures called scene graphs (Walsh 2022).

9 https://newsroom.porsche.com/en/2024/innovation/porsche-mixed-reality-workshop-augmented-

reality-34998.html
10 https://store.playstation.com/en-gb/product/EP0102-PPSA07412_00-RE4RDLC000000028
11 https://unity.com/
12 https://www.unrealengine.com/

123

https://newsroom.porsche.com/en/2024/innovation/porsche-mixed-reality-workshop-augmented-reality-34998.html
https://newsroom.porsche.com/en/2024/innovation/porsche-mixed-reality-workshop-augmented-reality-34998.html
https://store.playstation.com/en-gb/product/EP0102-PPSA07412_00-RE4RDLC000000028
https://unity.com/
https://www.unrealengine.com/

 56 Page 6 of 49 Automated Software Engineering (2025) 32:56

Fig. 2 Examples of AR, MR, and VR scenes

Although XR apps can be built with different frameworks and languages, this core

structure is consistent across platforms.

Figure 3a depicts the scene graph of an XR environment, including objects such

as a Road and a Car. The Car object is further divided into sub-objects like Body,

Spoiler, and Wheels. Figure 3b presents the corresponding XR scene in the Unity

Editor, showcasing the hierarchical relationships among these objects.

Fig. 3 (a) Scene Graph (b) Unity Scene Structure

123

Automated Software Engineering (2025) 32:56 Page 7 of 49 56

2.1.2 Interaction with XR applications

In XR apps, user interaction typically involves three main tasks (Kim et al. 2020;

Doerner et al. 2022): (1) navigation: controlling the user’s position and viewing direc-

tion within the virtual environment; (2) selection: choosing a point, area, volume, or

specific virtual object; (3) manipulation: modifying the parameters of virtual objects,

such as their location, orientation, or size. Although these tasks are conceptually

similar to those in traditional 2D graphical user interfaces, their execution in XR is

significantly more complex (Emery et al. 2001; Doerner et al. 2022).

This increased complexity arises primarily from the degrees of freedom (DOF)

involved-the number of ways an object can move in space. In 2D interfaces, interactions

typically involve rigid bodies with three DOF: two translations (horizontal and vertical)

and one rotation. In contrast, 3D objects in XR apps operate with six DOF (6DOF),

encompassing three translational movements (forward/backward, up/down, left/right)

and three rotational movements (yaw, pitch and roll). The additional DOF in XR

interactions introduces multiple layers of complexity, demanding more sophisticated

interaction techniques and testing methodologies.

The choice of input device is a critical factor in enabling effective interaction

within XR environments. Unlike traditional 2D apps, which rely on menus, buttons,

and toolbars, XR apps often require specialised hardware to support their unique

interaction paradigms. While mobile and web-based XR apps typically run on con-

ventional devices like smartphones and web browsers, delivering more immersive

XR experiences usually demands dedicated devices, such as HMDs, These devices

are specifically designed to handle complex and dynamic interactions in XR apps,

including 6DOF tracking. This capability enables precise mapping of the user’s phys-

ical actions, such as movement, rotation, and gestures, into immersive environments,

allowing more natural and intuitive interactions.

In a virtual environment, user inputs are processed in real-time, where even slight

variations can significantly alter scene behaviour and the input sequence required to

complete a task (Andrade et al. 2023). This dynamic nature makes reproducing exact

input sequences for task replication particularly challenging. In contrast, traditional

GUI software, such as 2D mobile applications, can often be modelled as finite state

machines (FSMs) (Su et al. 2017), where input events required to reach a specific state

are finite and reproducible. This allows for controlled and predictable interactions.

However, XR apps rely on 6DOF interactions and real-world context, introducing

unpredictability. For instance, an XR app may present varying virtual content depend-

ing on the user’s current location or physical surroundings, making it far more complex

to test and replicate specific input sequences compared to traditional 2D GUI apps.

Similarly, although XR apps and 3D video games share common foundations,

such as development with the same 3D engines (Bouvier et al. 2008), they differ

significantly in interaction mechanisms and real-world integration. This systematic

mapping study distinguishes XR apps from 3D video games, acknowledging their

shared technological roots but unique user experiences and testing challenges.

123

 56 Page 8 of 49 Automated Software Engineering (2025) 32:56

2.2 Software testing

Software testing is a practical engineering activity in software development, aimed

at ensuring the quality of a software system by evaluating the system under test

(SUT) (Ammann et al. 2008).

A central element of software testing is the test case, which specifies the conditions

for executing the SUT in a certain way. Test cases typically include inputs, execu-

tion conditions, and expected results, known as oracles, to validate the software’s

behaviour (Washizaki 2024; Barr et al. 20215) and detect faults.

Testing spans multiple levels, each with distinct objectives: (1)unit testing verifies

individual components, such as methods or classes, in isolation; (2) integration testing

examines interactions between components, such as method calls across modules; (3)

system testing assesses overall behaviour, including non-functional requirements like

security and usability. These levels ensure comprehensive evaluation, targeting specific

aspects of the system’s design and functionality.

Manual testing is time-consuming and resource-intensive, making it impractical for

exhaustive testing in large programs. While human testers are indispensable for tasks

requiring creativity or domain knowledge, automated testing is increasingly relied

upon to streamline repetitive tasks and enhance test coverage.

2.2.1 Automated testing and test automation

Automated testing and test automation are related terms in the testing domain. We

acknowledge these terms might have diverse definitions across academia and industry.

For clarity and consistency in this paper, we define automated testing as the automa-

tion of both test generation and execution, while test automation refers solely to the

automation of test execution (e.g., driven by manually created test data).

Automated testing reduces the reliance on manual effort by automating the creation

and execution of test cases. This approach improves efficiency, consistency and thor-

oughness in testing, particularly for complex and large-scale systems. Test oracles are

an essential part of automated testing and generating accurate and robust oracles is a

challenging problem (Molina et al. 2025).

On the other hand, test automation often relies on manually crafted test data,

involving script-based testing frameworks. For instance, tools like Espresso and

UIAutomator are scripted-based testing frameworks for Android apps, offering intu-

itive GUI testing approaches for developers (Gu and Rojas 2023).

Complex domains like GUI apps can significantly benefit from automated test-

ing and test automation, as these approaches can systematically simulate real-world

interactions and validate expected outcomes.

By addressing the challenges of scalability and repeatability, automated testing and

test automation have become essential in modern software development, complement-

ing manual efforts to ensure comprehensive quality assurance.

123

Automated Software Engineering (2025) 32:56 Page 9 of 49 56

2.2.2 GUI testing

System testing is crucial for GUI apps, complementing unit testing by focusing on

user interactions to ensure the software meets requirements and quality standards.

In 2D GUI apps such as Android apps, system testing typically treats the apps as

a black box, interacting with the GUI widgets to validate functionality (Kong et al.

2019). Test automation for these apps can be classified into three generations based on

the abstraction level of GUI elements (Ardito et al. 2019): (1) coordinate-based: inter-

actions rely on exact screen coordinates; (2) layout-based: GUI elements are identified

by properties like unique IDs; (3) image recognition-based: components are identi-

fied through image matching. On the other hand, test generation tools are developed to

automatically generate the test cases and execute them within the SUT. They typically

create interaction sequences like button clicks or text input to systematically explore

the SUT and validate functionality against expected behaviours.

Testing 3D GUIs, such as those found in video games and XR apps, presents signif-

icantly greater challenges due to their fine-grained interactivity and complex spatial

relationships, which renders automated testing particularly difficult (Politowski et al.

2022) Emerging methods leveraging advanced techniques–such as evolutionary algo-

rithms and reinforcement learning–aim to systematically explore the 6DOF spaces.

However, substantial challenges remain, such as handling flexible camera movements

to adjust the user’s point of view (Zheng et al. 2019).

3 Related work andmotivation

To explore related work on XR software testing, we conducted a preliminary literature

search. During the process, we identified a few secondary studies, such as systematic

mapping studies and literature reviews, vaguely related to testing XR applications. For

example, Börsting et al. (2022) conducted an informal review of software engineer-

ing techniques for AR apps, analysing their applicability across various engineering

phases, including requirement engineering, implementation and testing. With regard to

testing, the study emphasised the importance of interaction testing and test automation

for AR user interfaces. However, it noted significant challenges, such as the lack of for-

mal definitions for AR-specific interactions and the need for tailored testing approaches

for unique AR components (e.g., animations, transformations). These challenges pose

significant obstacles to achieving effective automated interaction testing. Addition-

ally, the study discussed the prevalent reliance on user-based usability testing in AR,

which often involves labour-intensive user studies. This reliance underscores the need

for more reproducible and efficient testing approaches to reduce manual effort and

improve scalability. While this study offered a broad overview of software engineer-

ing for AR, our work specifically focuses on the unique challenges and methodologies

of software testing for XR apps (i.e., including but not limited to AR).

Kuri et al. (2021) conducted a mapping study focusing on software quality metrics

for validating VR products (e.g., code quality, audio quality, quality of experience)

rather than software testing techniques. The study found that the existing metrics

are primarily tailored to specific app types, such as educational apps, making them

123

 56 Page 10 of 49 Automated Software Engineering (2025) 32:56

less applicable to other domains like manufacturing for instance. Researchers tend

to develop custom quality metrics and evaluation methodologies, highlighting the

need for a general framework that assesses VR app quality across various dimensions

(e.g., code, video, audio). With the majority of existing metrics focused on the quality

of experience and relying on manual evaluation, the study highlights the need for

automated, objective methods or metrics to assess software quality.

3.1 Usability of XR applications

While our preliminary literature search did not uncover any systematic review ded-

icated explicitly to XR software testing, we did find several studies evaluating XR

system’s usability, i.e., the ease of use of specific software systems (Hertzum 2020).

Ramaseri et al. (2019) reviewed usability and performance evaluation in VR sys-

tems. They identified key usability issues including health and safety issues, social

issues and sensory constraints. The study also identified usability evaluation methods,

such as cognitive evaluation (Brown-Johnson et al. 2015), user analysis (Barbieri et al.

2017), and group testing (Chen et al. 2013).

Dey et al. (2018) conducted a systematic review of AR usability studies from

2005 to 2014. They analysed 369 user studies across various application domains

such as education, entertainment, and industry. The most common data collection

method was questionnaires, resulting in subjective ratings being the most widely used

measure. Kim et al. (2020) reviewed VR systems from a human-computer interaction

(HCI) perspective. The findings aligned with those of Dey et al. (2018), highlighting

subjective measures as the dominant approach for evaluating VR/AR usability.

Both Ramaseri et al. (2019) and Kim et al. (2020) identified cybersickness as a

significant usability issue in XR systems. Cybersickness, a form of visually-induced

motion sickness experienced in immersive environments, manifests through symp-

toms such as nausea, disorientation and headaches (Davis et al. 2014). Various

factors may cause cybersickness regarding individuals (e.g., illness, posture), devices

(e.g., lag, calibration), and tasks (e.g., control, duration) (Davis et al. 2014). Stud-

ies aiming to comprehensively assess cybersickness by employing subjective and/or

objective measures exist. Subjective measures, e.g., the Simulator Sickness Ques-

tionnaire (SSQ) (Robert et al. 1993), evaluate participants’ self-reported symptoms.

Objective measures, in contrast, primarily involve real-time physiological data collec-

tion such as heart rate variability (HRV) or eye tracking while participants perform

specific tasks (Kamińska et al. (2022); Qu et al. (2022); Kundu et al. (2023)).

Yang et al. (2022) conducted a systematic review focusing on the use of machine

learning (ML) techniques to study cybersickness. The review examined 26 studies

that utilised ML approaches with biometric and neuro-physiological signals, such

as electroencephalogram (EEG) and electrocardiogram (ECG) data obtained from

wearable devices, for the automated detection of cybersickness.

These studies emphasise the unique usability challenges posed by XR systems

compared to traditional software. Testing user interactions in XR is essential, espe-

cially because human behaviour in these environments is highly complex and cannot

be mathematically modelled to guarantee predictable outcomes (Doerner et al. 2022).

123

Automated Software Engineering (2025) 32:56 Page 11 of 49 56

While automated approaches show potential in addressing usability issues like cyber-

sickness detection, they largely depend on user involvement. This reliance on manual

testing or live user data collection is time-consuming and costly.

Although these findings highlight the importance of user-centric evaluations, they

also expose a gap in exploring software-centric testing approaches. Unlike user-centric

methods, software-centric testing can detect failures earlier in the development process

and offer more efficient, systematic, and automated testing capabilities. Our mapping

study seeks to bridge this gap by examining studies that address usability issues from

a software-centric perspective.

3.2 Motivation

There is a noticeable gap in the literature regarding a comprehensive overview of

testing practices for XR applications. While recent research on VR app testing high-

lights the scarcity of literature on software engineering practices specifically for the

VR domain (Andrade et al. 2023), this observation extends to the broader XR domain,

which remains significantly underexplored. The gap underscores the need for a formal

and in-depth mapping study to analyse existing evidence on XR app testing challenges

and techniques, identify research gaps, and suggest further research directions, poten-

tially including systematic literature reviews on specific aspects of XR testing.

Most secondary studies related to XR software testing have primarily focused on

usability, a trend that aligns with the findings of Kuri et al. (2021). While usability is

important for XR experiences, this limited focus has a significant gap in understand-

ing the broader landscape of XR software testing methodologies. To fill this gap, we

conduct this systematic mapping study to provide a comprehensive overview of soft-

ware testing methodologies for XR apps. Our focus is on techniques and frameworks

that prioritise software requirements, specifically addressing XR software testing chal-

lenges.

Our study adopts an inclusive approach by incorporating empirical studies that,

while not directly proposing testing methods, offer valuable insights or theories bene-

ficial to testing. For example, studies analysing common bug types in XR apps provide

foundational knowledge that can inform the development of testing strategies. This

broader inclusion ensures a more holistic understanding of XR software testing.

4 Mapping study

This systematic mapping study follows the guidelines proposed by Petersen et al.

(2015) and is inspired by other systematic mapping studies (Zein et al. 2016; Zhang

et al. 2023). As shown in Fig. 4, our mapping process consists of three stages: (1) plan-

ning, where the research questions and the scope of the literature search are formulated,

(2) conducting, where the authors specify a search strategy, search, and select primary

studies, then apply classification and data extraction processes to them subsequently,

(3) reporting the mapping, presenting the outcomes of the study, with complete details

of primary studies and extracted data available in the appendix and repository.

123

 56 Page 12 of 49 Automated Software Engineering (2025) 32:56

Fig. 4 Process of the mapping study

4.1 Planning themapping

4.1.1 Research questions

This study aims to develop a comprehensive classification scheme by analysing rel-

evant evidence and insights from the existing literature on software testing for XR

applications. The scope extends beyond the studies that introduce novel testing tech-

niques for XR apps, encompassing a broader range of research, including empirical

studies that provide valuable information for XR software testing (e.g., analysing com-

mon bug types within XR software). Moreover, the study seeks to identify research

gaps and challenges and outline future research directions. We therefore formulate the

following research questions (RQs):

RQ1: What is the current status of XR application testing research? This question

provides an overview of the current landscape in XR software testing research.

It will explore general aspects such as the number of publications over recent

years, major publication venues, and common research types. Additionally,

we will investigate the most discussed and emerging topics within XR testing

research and which XR technologies (e.g., VR, AR) are the primary focus of

current research.

RQ2: What are the test facets involved in XR applications? This research question

aims to provide a comprehensive overview of software testing practices for XR

applications, including test activities, concerns, and techniques.

RQ2.1: What test activities are involved in XR applications? This sub-question

seeks to identify and categorise the test activities relevant to XR app testing,

such as test data generation and test execution. By exploring these activities,

we aim to understand the current practices in XR app testing and identify

potential areas for improvement.

123

Automated Software Engineering (2025) 32:56 Page 13 of 49 56

RQ2.2: What are the primary test concerns in XR applications? This sub-question

focuses on the key concerns in testing XR apps, particularly the objectives

(e.g., verifying functionality, improving usability) and targets (e.g., user

interfaces, XR-specific requirements) of testing. Understanding these con-

cerns helps to clarify the goals and challenges in XR app testing.

RQ2.3: What test techniques are employed in XR applications? This sub-question

investigates the specific testing techniques used on XR apps, such as ran-

dom testing, mutation testing, and model-based testing. By analysing these

techniques, we aim to investigate the common testing approaches for XR

systems.

RQ3: To what extent are XR testing approaches validated? This RQ explores how

the testing methodologies for XR apps are validated. We assess the metrics and

environments (e.g., simulation or real devices) used to evaluate their effective-

ness.

4.1.2 Search string

As the research questions aim to investigate the current research status of XR software

testing, it is possible that some studies do not directly focus on testing techniques

but instead analyse other aspects related to testing. For example, some studies may

investigate the characteristics or challenges of XR systems, such as identifying issues

or limitations in XR apps, which can indirectly inform testing practices. Specifically,

we tackle this by also including studies that explore the nature of bugs (or faults,

etc.) in XR apps, aiming to collect studies analysing them or proposing techniques

to detect them. Since XR software testing is still in its early stages, identifying and

understanding such issues may still be underexplored.

To ensure that the search process identifies primary studies addressing the RQs, we

followed the guidelines by Kitchenham and Charters (2007) to break down the research

questions into individual facets using the PICOC model (population, intervention,

comparison, outcomes, and context), which then serves as the foundation for designing

the search query. The PICOC model is defined in Table 2 and based on this model, the

search query for the digital libraries is:

Search String = ($X R AND $X Racr) AND ($T OR $B)

Table 2 PICOC criteria applied to this study

Criterion Description

Population XR-related software

Intervention Testing techniques or relevant studies addressing testing aspects

Comparison Not applicable

Outcome Insights into methodologies or practices for testing XR applications

Context Peer-reviewed publications

123

 56 Page 14 of 49 Automated Software Engineering (2025) 32:56

Table 3 Synonyms in $XR, $XRacr , $T , and $B

Synonyms Metadata

$XR “virtual reality” OR “augmented reality” OR “mixed reality” OR

“extended reality”

title, full text

$XRacr VR OR AR OR XR OR MR title

$T test OR detect OR detection OR verify OR verification title

$B bug OR fault OR defect OR error title

Here, $XR denotes the synonyms of extended reality; $XRacr are the acronyms cor-

responding to these terms; $T represents the synonyms of testing; and $B are the

synonyms of bugs. The synonyms used in the search query are detailed in Table 3.

The search string is searched with the studies’ titles, and $XR is additionally

searched with full text to ensure $XRacr in the titles genuinely referred to extended

reality. For example, MR also stands for “magnetic resonance” (Charron et al. 2018),

which would yield irrelevant results. By structuring the search string this way, we

avoid retrieving extraneous findings related to unrelated fields like medicine.

4.1.3 Search evaluation

To evaluate the quality of the search string, we follow the guidelines of Petersen et al.

(2015), using a test set of relevant papers, all of which should be found by the search

string. We identified eight studies during our initial literature review (Wang 2022;

Wang et al. 2023; Rzig et al. 2019; Rafi et al. 2023; Bierbaum et al. 2003; Corrêa

Souza et al. 2018; Li et al. 2020; Andrade et al. 2020) to compose the test set. These

studies cover different testing aspects (e.g., functionality, usability, empirical studies),

ensuring that the search results include studies with diverse focuses. We refine the

search string iteratively until the search results contain all the studies from the test set.

4.1.4 Digital library

To cover as many relevant studies as possible, we conduct our search using Ope-

nAlex13, a bibliographic database that indexes scientific papers from major digital

libraries, including IEEE Xplore Digital Library14, ACM Digital Library15, and Sco-

pus16 (Priem et al. 2022). OpenAlex’s filter features allow us to restrict the search

to studies in the fields of Computer Science and Engineering, reducing irrelevant

search results Zein et al. 2016; Tramontana et al. 2019. This restriction excludes papers

13 https://openalex.org/
14 https://ieeexplore.ieee.org/
15 https://dl.acm.org/
16 https://www.scopus.com/

123

https://openalex.org/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.scopus.com/

Automated Software Engineering (2025) 32:56 Page 15 of 49 56

focused on the applications of XR in other disciplines, such as Medicine and Social

Sciences.

4.1.5 Selection criteria

After executing the search string in the digital library, a list of potentially relevant

studies is retrieved. To ensure that we only include studies aligned with the mapping

study’s objectives and capable of answering the research questions, we developed a

set of selection criteria (Petersen et al. 2008). As suggested by Petersen et al. (2015),

we piloted the selection criteria (using a sample of 100 studies from the search results)

and refined them until consensus was reached among the three authors of this paper

that the criteria effectively included relevant studies and excluded irrelevant ones. As

a result of this process, we applied the following inclusion criteria (ICs) and exclusion

criteria (ECs):

I C1 : Studies must involve software testing techniques, challenges or limitations for

extended reality software applications.

I C2 : Studies published between January 2000 to July 2024.

I C3 : Studies written in English, published in peer-reviewed journals or conference

proceedings, and available in full text.

I C4 : Studies must be primary studies rather than secondary studies such as system-

atic literature reviews.

EC1 : The focus of the studies is not testing but other software development aspects,

such as analysis, design or implementation.

EC2 : Studies do not focus on software-related aspects, such as requirements or

integrity, but instead emphasise other areas like user perceptions or hardware

configurations.

EC3 : Studies are duplicated in the search results, including extended versions of

existing results.

EC4 : Studies published in the form of abstract or panel discussion.

4.2 Conducting themapping

To streamline the methodological information, this subsection provides the fundamen-

tal and essential information for conducting this mapping study, including search and

selection strategy, classification scheme and data extraction, with more details that can

be found at the online repository at https://sites.google.com/view/xr-testing.

4.2.1 Search and selection strategy

The search strategy consists of automated search and manual snowballing. The steps

of the search and selection process are illustrated in Fig. 5 and detailed below:

123

https://sites.google.com/view/xr-testing

 56 Page 16 of 49 Automated Software Engineering (2025) 32:56

Fig. 5 Literature search and selection process. The numbers on the arrows indicate the number of studies

provided to the next stage

• Stage 1: The search process begins with formulating an initial search string (§4.1.2)

to retrieve potential relevant studies from the digital library (§4.1.4).

• Stage 2: Selection criteria from §4.1.517 are applied by reviewing titles and

abstracts, with three authors independently evaluating each study and resolving

conflicts through consensus meetings to ensure rigour.

• Stage 3: Backward snowballing is conducted on retained studies following

guidelines by Wohlin (2014), with exhaustive iterations performed to ensure com-

prehensive coverage.

• Stage 4: Full-text reviews are conducted on remaining studies, focusing specifi-

cally on exclusion criteria E1 and E2 (§4.1.5) to ensure only truly relevant studies

proceed to the classification phase.

After completing this process, the remaining studies form the primary studies for

this mapping study. These studies proceed to subsequent phases, including classifica-

tion and data extraction. The full list can be found in Appendix A.

4.2.2 Classification scheme

The classification scheme organises the primary studies into broad categories to pro-

vide a structured overview of the field (Kitchenham and Charters 2007). Following

the guidelines by Petersen et al. (2015), we applied topic-independent classification,

including publication venue and research type, and topic-specific classification.

For topic-specific classification, we utilised the systematic keywording of abstracts

method outlined by Petersen et al. (2008), extracting keywords from abstracts (con-

sulting introductions and conclusions when needed) to consolidate them into broader

categories. To ensure the reliability of keywording, one author classified all stud-

ies, while two others independently classified half each, with disagreements resolved

through consensus meetings.

17 Excluding IC2 and IC3 which are applied automatically using OpenAlex’s filtering feature. The full

filters applied by OpenAlex can be found at https://bit.ly/3zTxwCS.

123

https://bit.ly/3zTxwCS

Automated Software Engineering (2025) 32:56 Page 17 of 49 56

4.2.3 Data extraction

To address the RQs outlined in §4.1.1, we systematically extracted data from each pri-

mary study, following guidelines by Kitchenham and Charters (2007). We composed a

data extraction form (Table 4), including general publication information and research-

question-specific data. Additionally, for reproducibility and practical application, we

identified testing-relevant datasets and tools referenced in the primary studies.

For clarity and consistency, the data extraction form was pilot-tested with our initial

study set (§4.1.3). To mitigate bias, one author extracted data from all primary studies,

Table 4 Data Extraction Form

Data Item Description (and possible values) RQ

Title Title of the study –

Authors Names of the study’s authors –

Year Publication year of the study RQ1

Venue Name of the publication venue –

Venue Type Type of the venue (e.g., conference, workshop, journal) RQ1

Topic Primary focus area of the study (e.g., usability testing, automated

testing)

RQ1

Research Type Research type of the study (e.g., solution proposal, validation

research)

RQ1

Technology Immersive technology specified in the study (e.g., XR, VR, AR) RQ1

Test Activity Specific Test activity involved (e.g., test data generation, test tool

development, test execution)

RQ2.1

Test Objective Primary objective of the testing approach (e.g., functionality, usabil-

ity, security)

RQ2.2

Test Target Focus of the testing approaches (e.g., general, GUI, XR-specific

requirements)

RQ2.2

Test Level Scope of the testing activities (i.e., unit testing, integration testing,

system testing)

RQ2.3

Test Type Type of testing performed (e.g., black box, white box) RQ2.3

Test Technique Core methodologies used for testing (e.g., search-based testing,

mutation testing)

RQ2.3

Evaluation Environment Environment for evaluating the testing approaches (e.g., Unity Editor,

HMD, mobile device)

RQ3

Metrics Metrics used to evaluate testing techniques (e.g., coverage, mutation

score)

RQ3

Datasettrain Details of datasets used for training machine learning-based

approaches, including content types (e.g., video, image) and dataset

size

discuss.

Dataseteval Details of datasets for evaluating testing techniques, including con-

tent types and size

discuss.

Tool Details of software tools proposed or used by the study discuss.

123

 56 Page 18 of 49 Automated Software Engineering (2025) 32:56

with the other authors reviewing the results, and any disagreements were resolved

through consensus meetings.

After the classification and data extraction processes, we analysed and formulated

the retrieved data to address the RQs. The analysis results are presented in §5.

4.3 Reporting themapping

The report contains two parts. The first part comprises this paper, which outlines the

study’s methodology and findings, and the second part is the data extraction form,

which details the raw data collected and the basis for the study’s conclusions. The

complete results of the classification and data extraction are publicly accessible at:

https://sites.google.com/view/xr-testing.

4.4 Threats to validity

This section addresses potential threats to the completeness of the literature search and

selection process. This threat is influenced by the search string choice, the bibliographic

database limitations, and the robustness of the literature selection process.

To mitigate the risk of excluding relevant studies during the selection process,

three authors independently screened all search results, following the most inclusive

approach. Conflicts were resolved through consensus discussions. While the inter-rater

agreement was not formally measured, our approach prioritised achieving absolute

consensus to maximise the inclusion of relevant studies.

We acknowledge potential limitations in our search strategy–solely using OpenAlex

as the digital library–may affect the thoroughness of our study. While OpenAlex

indexes publications from major digital libraries such as IEEE, ACM, and Scopus,

we recognise that it does not index some relevant studies (e.g., those that may exist

exclusively in specialised venues or databases). Additionally, very recently published

studies might not have been indexed in OpenAlex at the time of our search, creating

a temporal bias against the latest research.

To mitigate these risks, we adopted an exhaustive iterative snowballing strategy.

We systematically identified relevant studies from the reference lists of each included

study and repeated this process until no new relevant studies were discovered. Our

snowballing process involved three iterations, which significantly reduced the likeli-

hood of missing important contributions to the field.

5 Results

In this section, we present the results of this mapping study, including information

about the search and selection results of the primary studies, and answer the research

questions based on the information from the primary studies.

123

https://sites.google.com/view/xr-testing

Automated Software Engineering (2025) 32:56 Page 19 of 49 56

The initial search returned 1167 studies from OpenAlex. The selection process, as

outlined in §4.2.1, reduced this to 135 studies after applying the selection criteria.

In parallel with deep filtering, backward snowballing identified 53 additional studies,

resulting in a final set of 34 primary studies for this mapping study (see Appendix A

for the complete list of primary studies).

Figure 6 shows the publication trend of the primary studies from January 2000 to

July 2024. The data reveal that the XR software testing research field was relatively

inactive before 2017, with only two studies published. However, starting in 2017,

the number of studies began to increase gradually, reaching a peak in 2023, with ten

studies published that year. As the literature search for this study was conducted in

July 2024, the number of studies published in 2024 was not completely recorded.

5.1 RQ1: research status

To address RQ1, which explores the current status of research in XR software testing,

we present the classification results of the primary studies. Additionally, we analyse

the immersive technologies (e.g., AR, VR) featured as testing subjects in these studies,

providing insights into the technologies most frequently explored in this domain.

The studies are classified based on the following criteria: (1) venue types (e.g.,

conferences, journals), (2) study topics (e.g., automated testing, usability testing), and

(3) research types (e.g., solution proposal, evaluation research).

5.1.1 Venues

The distribution of primary studies by venue type is presented in Fig. 7. Conferences

emerge as the dominant venue type, accounting for about 38% of the primary studies.

Fig. 6 Publication years of primary studies

123

 56 Page 20 of 49 Automated Software Engineering (2025) 32:56

Fig. 7 Distribution of publication venue types for the primary studies

Journals are the second most common venue, publishing approximately 26% of the

studies. Workshops and symposiums each represent about 18% of the total primary

studies18. The complete list of all publication venues for the primary studies is available

at: https://sites.google.com/view/xr-testing.

5.1.2 Topics

As explained in §4.2.2, we carefully categorise the primary studies into eight topics.

Table 5 presents the resulting classification. Overall, automated testing emerges as

the most prominent topic, with seven studies (21% of the total). Usability testing

and security testing each account for six studies (18%). XR-specific testing and scene

testing, each contribute four studies (12%), while test automation and open-source

projects each comprise three studies (9%). Finally, stakeholder survey represents the

least explored topic, with only one study (3%).

Below we provide details for each topic, including: (1) description: a general

overview of the topic, (2) examples: summaries of representative studies within the

topic, and (3) implications: insights into the potential consequences, proposed solu-

tions, or general guidelines for addressing the challenges associated with the topic.

XR-specific Testing

• Description: Testing techniques for XR-specific requirements like collision,

occlusion, registration, and tracking (Doerner et al. 2022).

• Examples: Collision and occlusion are critical real-time requirements in XR apps,

where the former refers to the interaction between objects when they come into

contact and the latter occurs when objects block each other from view Breen

18 The distinction between symposiums and conferences is not always clear. For classification purposes,

venues with “conference" in their tile are categorised as conferences and those with “symposium" are

classified as symposiums

123

https://sites.google.com/view/xr-testing

Automated Software Engineering (2025) 32:56 Page 21 of 49 56

Table 5 Research topics in the primary studies

Topic Primary studies Number

XR-specific testing PS16, PS17, PS20, PS22 4

Scene testing PS4, PS12, PS32, PS33 4

Security testing PS2, PS13, PS14, PS15, PS18, PS30 6

Usability testing PS1, PS7, PS10, PS11, PS19, PS21 6

Automated testing PS3, PS5, PS8, PS23, PS24, PS25, PS27 7

Test automation PS9, PS26, PS34 3

Open-source projects PS6, PS28, PS31 3

Stakeholder survey PS29 1

et al. 2000; Doerner et al. 2022. Testing these aspects ensures realistic interactions

between virtual and real objects. PS17 Andrade et al. 2023 proposes an approach

that automatically generates test data to detect incorrect collision and occlusion in

VR apps.

• Implications: Testing XR-specific requirements demands a deep understanding

of their impact on software behaviour, and tailored testing techniques for these

unique challenges.

Scene Testing

• Description: Validates XR functionality through exploration of XR scenes and

interaction with virtual objects.

• Examples: PS32 (Wang et al. 2023) and PS33 (Wang 2022) introduced VR scene

testing techniques, focusing on exploring environments, triggering interactable

objects, and optimising interaction routes.

• Implications: Scene testing extends principles of 2D GUI testing into more com-

plex 3D environments with 6DOF interactions.

Usability Testing

• Description: Identifies usability issues (e.g., side effects) in XR software.

• Examples: PS1 (Jung et al. 2017), PS19 (Li et al. 2024), and PS21 (Kim et al.

2017) proposed approaches for detecting cybersickness, a prevalent side effect in

VR systems using visual content (e.g., screenshots) analysis.

• Implications: While most existing research employs user-centric methods, such

as user studies (§3.1), understanding the root causes of these usability issues would

enable the development of systematic software-centric approaches.

Security Testing

• Description: Identifies and mitigates security and privacy issues in XR software.

Security testing detects system intrusion and addresses vulnerability, while privacy

testing protects users’ sensitive information.

123

 56 Page 22 of 49 Automated Software Engineering (2025) 32:56

• Examples: PS18 (Lehman et al. 2022) introduces a framework to address privacy

issues in mobile AR apps, while PS15 (Valluripally et al. 2023) targets attacks that

disrupt VR user experiences.

• Implications: Security and privacy testing should account for XR-specific fea-

tures, such as interaction with physical environments and differentiation between

real and virtual objects (Casey et al. 2021).

Automated Testing

• Description: Automates both test generation and execution for functional testing,

without specifically targeting XR-specific or non-functional requirements.

• Examples: PS23 (Rafi et al. 2023) and PS27 (Yang et al. 2024) tackle the oracle

problem of object misplacement in AR apps using neural networks to detect errors

in screenshots depicting object misplacement scenarios.

• Implications: Effective test automation often requires a thorough understanding

of system requirements or test oracles, which is essential for systematically gen-

erating reliable test data.

Test Automation

• Description: Automating test execution but not test generation.

• Examples: PS34 (Figueira and Gil 2022) presents a unit testing framework for

Unity-based VR/AR apps using manually created test scripts.

• Implications: Test automation often involves script-based testing frameworks for

automated execution driven by predefined tests.

Open-source Projects

• Description: Empirical studies that analyse open-source XR projects to gain

insights into current testing practices and challenges.

• Examples: PS6 (Li et al. 2020) examines bugs in open-source WebXR projects to

explore bug symptoms and root causes, while PS31 (Rzig et al. 2019) investigates

open-source VR projects and reveals their insufficiency in testing.

• Implications: Studying open-source projects provides valuable empirical data and

practical recommendations for the emerging field of XR software testing.

Stakeholder Survey

• Description: Surveys and interviews with real-world stakeholders like XR users

and developers, gathering perspectives on testing practices and challenges.

• Examples: PS29 (Andrade et al. 2020) surveys XR stakeholders to understand

software testing practices, highlighting key concerns and common faults, such as

interaction issues and crashes.

• Implications: Stakeholder surveys provide real-world insights, complementing

open-source project analysis and guiding testing improvements.

123

Automated Software Engineering (2025) 32:56 Page 23 of 49 56

5.1.3 Research types

For research types, we adopt the classification categories proposed by Wieringa et al.

(2006): solution proposal, validation research, evaluation research, philosophical

paper, opinion paper, and experience paper. These categories have been carefully

reviewed and adapted to align with the scope of XR software testing, ensuring rele-

vance to the primary studies. Notably, a study can span multiple categories, such as

studies that propose solutions and include initial validation.

Table 6 summarises the results. Solution proposal and validation research emerges

as the most prevalent research type, encompassing 15 studies (44% of the total).

Solution proposal accounts for 6 studies (18%), evaluation research includes 5 studies

(15%), and solution proposal and evaluation research covers 4 (12%). On the other

hand, validation research and philosophical papers each account for 2 studies (6%).

Notably, no opinion paper and experience paper were identified in the primary studies.

Similar to the approach in §5.1.2, we present the description and examples of each

research type based on the primary studies.

Validation research

• Description: Providing initial validations of solutions or problems, typically

involving limited experiments in controlled, simplified settings, such as toy appli-

cations (e.g., research prototypes or low-popularity open-source apps) and datasets

of minimal complexity.

• Examples: PS12 (Gunawan et al. 2023) introduces a black-box testing approach

for a VR musical instrument game, using equivalence partition to design the test

cases. Validation was limited to manual assessment of test results without system-

atic methodologies.

Evaluation Research

• Description: Conducts rigorous testing in real-world settings, addressing mean-

ingful research questions. These studies engage real users or practitioners or

evaluate with practical applications, such as industrial software or widely used

open-source projects, and using datasets derived from real-world scenarios.

• Examples: PS31 (Rzig et al. 2019) conducted an empirical study on VR automated

testing in open-source VR projects, revealing gaps in current practices.

Table 6 Research types in the primary studies

Research type Number of studies

Validation research 2

Evaluation research 5

Solution proposal 6

Solution proposal and validation research 15

Solution proposal and evaluation research 4

Philosophical papers 2

123

 56 Page 24 of 49 Automated Software Engineering (2025) 32:56

Solution Proposal

• Description: Proposes innovative approaches to XR testing challenges, focusing

on theoretical benefits with minimal empirical evidence. These studies typically

use basic examples and lack experimental validation with real-world applications.

• Examples: PS3 (Prasetya et al. 2021) presents an autonomous agent-based test-

ing framework for XR systems. The study details the architecture and potential

applications but without experimental assessment.

Solution Proposal and Validation Research

• Description: Combines proposing novel solutions with preliminary validation,

typically in simplified experimental settings.

• Examples: PS23 (Rafi et al. 2023) presents a technique for detecting object mis-

placement issues in AR apps. It is validated using Unity-provided examples rather

than real-world apps.

Solution Proposal and Evaluation Research

• Description: Proposes novel solutions and rigorously evaluates them in real-world

contexts.

• Examples: PS19 (Li et al. 2024) introduces a technique to detect stereoscopic

visual inconsistencies in VR apps, validated using screenshots from real-world

VR apps available on the Steam store.

Philosophical Papers

• Description: Focuses on theoretical perspectives or conceptual frameworks rather

than implementing technical solutions. These studies aim to propose new ways of

thinking about challenges, without presenting concrete implementations.

• Examples: PS13 (Kilger et al. 2021) outlines general guidelines for detecting

and preventing cybersecurity attacks in MR environments, identifying threats and

countermeasures but offering no implementations.

The majority of primary studies, 25 out of 34 (74%), propose novel solutions for

XR software testing problems. Among these, 15 (60%) include only basic validation,

highlighting the emerging nature of the field, with limited research evaluated in real-

world scenarios.

The first empirical evaluation study was published in 2019 (PS26). More recently,

2023 saw the introduction of two novel testing solutions evaluated in real-world con-

texts (PS16 and PS32). This trend suggests increasing potential for applying XR testing

techniques in practical, real-world environments in the near future.

5.1.4 Immersive technology

We analyse the primary studies by examining the specific immersive technologies

targeted for testing in these studies. Figure 8 summarises the technologies examined

123

Automated Software Engineering (2025) 32:56 Page 25 of 49 56

Fig. 8 Immersive technologies of primary studies

in the primary studies. About 59% of the studies focus on testing VR apps, while

approximately 26% target AR apps. Only a small number of studies explore broader

or integrated scopes: three focus on XR systems19, one investigates MR testing, and

one addresses both VR and AR testing.

The findings indicate that while VR and AR testing have received significant

research attention, studies addressing broader scopes are still in the early stages of

development within the research landscape.

The answer to RQ1, i.e., the current status of XR application testing

research, is as follows:

Publication trends: Research on XR software testing has grown steadily,

increasing from 2 publications in 2017 to 10 in 2023.

Publication venues: Conferences and journals are the main publication

venues, representing 38% and 26% of the studies, respectively.

Research topics: Automated testing is the most prevalent research topic,

accounting for 21% of studies, followed by usability testing and security test-

ing, each contributing 18%.

Research types: 74% of studies propose novel XR testing solutions, with 60%

relying on preliminary validations in controlled settings.

Immersive technologies: VR dominates with 59% of studies and AR repre-

sents 26%. XR, MR, and cross-technology research contributes 15%.

In summary, XR software testing is an emerging field, steadily gaining momen-

tum.

19 We acknowledge XR is an umbrella term that includes VR, AR, and MR; this categorisation is based

on each study’ specific context and terminology.

123

 56 Page 26 of 49 Automated Software Engineering (2025) 32:56

5.2 RQ2: testing facets

We classify the primary studies based on three key test facets: test activities (e.g., test

generation, test execution), test concerns (including objectives like functionality and

security, and targets such as user interaction and collision), and test techniques (e.g.,

random testing, model-based testing). To ensure the meaningfulness of the extracted

information, we exclude the studies that do not directly yield testing facets, which

are five studies identified as empirical studies (PS2, PS6, PS28, PS29, PS31) and two

classified as philosophical papers (PS13 and PS24). The remaining 27 studies are

analysed to address this research question.

5.2.1 RQ2.1: test activities

Figure 9 visualises the distribution of test activities in the primary studies using a word

cloud. The size of each keyword in the word cloud corresponds to its frequency, with

larger keywords appearing more frequently in the test activities.

For instance, “test" is the most prominent keyword, reflecting its centrality across

various activities. Among these, “generation" and “automation" are the next most

prominent keywords, indicating that activities such as test generation and test automa-

tion are the most frequently addressed activities in the studies.

11 studies include the keywords “test” and “automation”, and all are associated with

the test activity test automation. On the other hand, eight studies include the keywords

“test" and “generation", among them, three involve the activity test generation, and five

involve test input generation. The distinctions between the three activities are: (1) test

automation only automates the execution of tests and does not include generating test

data or oracles; (2) test input generation involves creating test input data, which can be

done either manually or automatically, but it does not include test oracle generation;

(3) test generation automates the creation of both test inputs and test oracles. Among

Fig. 9 Word cloud based on the test activities of the primary studies

123

Automated Software Engineering (2025) 32:56 Page 27 of 49 56

these activities, test generation is the least explored, appearing in only three studies,

indicating its higher technical challenges compared to the other test activities.

Other recurring activities include oracle prediction, test execution, and attack detec-

tion. These findings highlight a clear focus on minimising manual effort and enabling

scalable testing for XR software.

5.2.2 RQ2.2 test concerns

Test concerns cover both test objectives (e.g., functionality, usability, security) and

test targets (e.g., cybersickness, collision) of testing.

Test Objective We categorise the primary studies into six groups based on their test

objectives: (1) functionality: testing whether the functional specifications are correctly

implemented, (2) usability: assessing whether SUT negatively impact user experience,

(3) security: ensuring the SUT is protected from external attacks, (4) privacy: verifying

that user’s personal data is safeguarded against local threats, (5) performance: checking

whether the SUT meets specific performance requirements (e.g., response time), and

(6) load: evaluating the SUT’s behaviour, reliability, or stability under stress.

Table 7 provides an overview of the test objectives. Among these, functionality is

the most common objective in the primary studies. It is worth noting that individual

studies can cover multiple test objectives. For instance, PS7 (Lehman et al. 2023)

addresses functionality, usability, and performance. It proposes a testing framework

for system testing of mobile AR apps. The framework provides features such as col-

lecting usability information, including the quality of the user experience in AR scenes;

monitoring performance metrics, such as frames per second (FPS) traces, to identify

performance dips; detecting functional edge cases through long-term monitoring.

Test Target To illustrate the relationship between test objectives and their associated

test targets, we present a bubble chart highlighting how specific test targets align with

certain test objectives. Importantly, a single study can address multiple test targets

under a single test objective. For example, PS17 focuses on the test objective func-

tionality and includes the test targets collision and occlusion.

Table 7 Test objectives in the primary studies

Test objective Primary Studies Number

Functionality PS3, PS4, PS5, PS7, PS8, PS9, PS12, PS16, PS17, PS22, PS23, PS25,

PS26, PS27, PS32, PS33, PS34

17

Usability PS1, PS7, PS8, PS10, PS11, PS19, PS20, PS21 8

Security PS14, PS15, PS30 3

Privacy PS15, PS18 2

Performance PS7, PS8 2

Load PS8 1

123

 56 Page 28 of 49 Automated Software Engineering (2025) 32:56

Figure 10 shows the bubble chart. Among the test objectives, functionality is the

most comprehensive, covering nine distinct test targets. The most studied target under

this objective is user interaction, which focuses on testing interaction features in XR

systems and has been examined in five studies. Other notable targets include general,

which are the general guidelines for testing XR systems, and scene exploration, where

testing focuses on exploring the XR scenes, each represented by three studies.

The second most prevalent test objective, usability, encompasses five test targets.

Among these, cybersickness is the most studied, appearing in three studies, while

user interaction is addressed in two studies. These findings align with the critical

importance of user experience and the operational and interactional aspects of XR

systems, emphasising the primary focus on XR software testing efforts.

The other test objectives, i.e., security, privacy, performance, and load, cover fewer

test targets. Both security and privacy are linked to two test targets each, while per-

formance and load are associated with only one test target each.

This analysis underscores the diversity of test targets within each objective and

highlights relatively well-explored areas versus those requiring further investigation.

5.2.3 RQ2.3 test techniques

We address this sub-question by analysing the test level (e.g., system testing, unit

testing), test type (i.e., black-box or white-box testing) and the specific techniques

employed (e.g., random testing, search-based testing).

Test Level A single study can address multiple test levels. For instance, PS9 introduces

preliminary solutions for both unit testing and system-level interaction in VR systems.

Fig. 10 Bubble chart of test objectives against test targets

123

Automated Software Engineering (2025) 32:56 Page 29 of 49 56

Table 8 provides an overview of the test levels explored in the primary studies.

System testing is the most prominent test level, featured in 22 studies. In contrast, unit

testing and non-functional testing each appear in only three studies, while integration

testing is represented by a single study.

Test levels do not apply to PS16. The study proposes a technique for recommending

potential test types (i.e., animation, colliding, and general) for VR systems but does

not explicitly perform any testing actions. Therefore, PS16 is excluded from the data

extraction for both test level and test type.

Test Type We define white-box testing as testing that requires access to the source code

of the SUT, such as instrumentation or static analysis. In contrast, black-box testing

does not involve internal information about the SUT. Instead, it relies on analysing

the system’s input and output behaviour, such as evaluating screenshots or video

recordings of specific actions in the XR systems. Notably, a single study may include

both black-box and white-box testing methods.

In our analysis, we excluded three studies categorised under the non-functional test-

ing level (discussed in the previous paragraph) from the extraction of test types. This is

because black-box and white-box testing typically focus on verifying the functionality

of the SUT.

Table 9 presents a summary of the findings. The distribution studies utilising black-

box testing and white-box testing are relatively balanced, with 13 and 10 studies,

respectively. In addition to the four excluded studies, two studies lack sufficient evi-

dence to determine their test type and are therefore categorised as unclear. newline

Test Techniques Table 10 summarises the test techniques utilised in the primary stud-

ies. A few studies that do not employ specific testing techniques but instead provide

general testing guidelines are excluded from the table. Additionally, a single study

may apply multiple test techniques. In total, 14 distinct techniques are identified, with

two being adopted by multiple studies: machine learning-based testing, used in nine

studies, and model-based testing, applied in four studies. These findings align with

Table 8 Test levels in the primary studies

Test Level Primary Studies Number

System Testing PS1, PS3, PS4, PS5, PS7, PS8, PS9, PS10, PS11, PS12, PS17, PS18,

PS19, PS20, PS21, PS22, PS23, PS25, PS26, PS27, PS32, PS33

22

Integration Testing PS26 1

Unit Testing PS9, PS26, PS34 3

Non-functional Testing PS14, PS15, PS30 3

Not Applicable PS16 1

123

 56 Page 30 of 49 Automated Software Engineering (2025) 32:56

Table 9 Test types in the primary studies

Test Type Primary Studies Number

Black-box Testing PS1, PS11, PS12, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS25, PS26 13

White-box Testing PS3, PS4, PS7, PS9, PS10, PS26, PS27, PS32, PS33, PS34 10

Unclear PS5, PS8 2

Not Applicable PS14, PS15, PS16, PS30 4

the characteristics of XR systems. Machine learning techniques are particularly well-

suited for handling the rich graphical interfaces of XR systems, such as identifying

faults using app screenshots. Meanwhile, model-based testing simplifies the inherent

complexity of XR systems by abstracting them into models, facilitating systematic

testing.

To further investigate the most predominant test technique, machine learning-based

testing, we examine the dataset used in these studies to train the ML models for testing

in §6.2.

Although the remaining test techniques are each represented by only one study,

this diversity highlights the successful exploration and adoption of various innova-

tive approaches in the emerging field of XR software testing. Future research could

explore the underrepresented areas like integration testing and expand the application

of emerging test techniques.

Table 10 Test techniques in the primary studies

Test Technique Primary Studies Number

Static Analysis PS4 1

Dynamic Analysis PS4 1

Statistical Analysis PS15 1

Image Processing PS1 1

Machine Learning PS11, PS14, PS15, PS17, PS19, PS21, PS23, PS27, PS30 9

Model-based Testing PS3, PS4, PS5, PS10 4

Search-based Testing PS32 1

Mutation Testing PS25 1

Metamorphic Testing PS17 1

Random Search PS33 1

Greedy Search PS33 1

Record and Playback PS25 1

Runtime Monitoring PS18 1

Equivalence Partition PS12 1

123

Automated Software Engineering (2025) 32:56 Page 31 of 49 56

The answer to RQ2, i.e., the test facets involved in XR applications, is as

follows:

Test activities: The most common test activities involve test automation (11

studies) and test generation (8 studies), reflecting a focus on reducing manual

effort in testing XR software.

Test concerns: The primary test objectives are functionality (17 studies) and

usability (8 studies). The most frequent test targets for functionality are user

interaction (5 studies), while for usability, the key focus is cybersickness (3

studies). These align with critical user experience and interactional aspects of

XR systems.

Test techniques: System testing is the dominant test level (22 studies), with

black-box and white-box testing nearly balanced. Machine learning is the most

prevalent technique (9 studies), followed by model-based testing (4 studies).

5.3 RQ3: evaluation

We address RQ3 by presenting the evaluation metrics reported in the studies and the

evaluation environment used to assess the testing techniques.

Several studies lack concrete evaluation, as they do not fall under the research

types of evaluation research or validation research (§5.1.3). Specifically, six solution

proposals, five empirical studies and two philosophical papers are excluded from the

extraction of evaluation metrics and environments.

5.3.1 Metrics

Table 11 summarises the evaluation metrics used in the primary studies. As discussed in

§5.2.3, ML-based testing is the most prevalent technique, represented by nine studies.

Among these, seven studies used standard ML metrics, such as precision, recall, and

F1-score, to evaluate ML performance. One study relies on classification results,

which provide general information on the number of correctly classified cases.

The studies identify four kinds of coverage metrics: (1) method coverage: measures

the percentage of methods exercised by tests out of the total number of methods; (2)

model coverage: calculates the proportion of states covered by tests in a model as

used in model-based testing, such as a finite state machine; (3) requirement coverage:

computes the percentage of nodes covered in a requirement flow graph, which is

derived from an XR app’s scene graph; (4) object coverage, assesses the percentage

of interactable objects triggered by tests. Coverage metrics are utilised in four studies,

with one covering both method and object coverage. Similarly, manual validation,

where results are manually verified, is also used in four studies.

123

 56 Page 32 of 49 Automated Software Engineering (2025) 32:56

Table 11 Evaluation metrics in the primary studies

Metrics Primary Studies Number

Standard ML Metrics PS11, PS14, PS17, PS18, PS19, PS23, PS27, PS30 8

Classification Results PS15 1

Manual Validation PS10, PS12, PS16, PS21 4

Method Coverage PS32 1

Model Coverage PS4 1

Object Coverage PS32, PS33 2

Requirement Coverage PS5 1

Mutation Score PS5, PS25 2

SSQ Score PS21 1

Detected Bugs PS32 1

Object Detection Success PS22 1

Suspiciousness Score PS15 1

However, the reliance on manual validation suggests the need for more systematic

and automated evaluation frameworks, especially as XR systems grow in complexity.

5.3.2 Evaluation environment

To explore what types of environments are involved in the evaluation, such as simula-

tion, mobile devices, and HMDs, we investigate the evaluation environments within

the studies. Table 12 provides the results of evaluation environments. The most com-

mon evaluation environments are HMD (head-mounted display) and Unity Editor,

each represented in six studies. For clarity, we define the environment Unity Editor as

the simulation performed within the Unity’s Scene or Game view20. Mobile device is

the second most common environment, used in four studies, while haptic device and

cloud are the least common, each appearing in one study.

Besides the studies excluded from the extraction of evaluation metrics and environ-

ments due to their research types or empirical nature, five studies lack enough details

to determine the evaluation environment and are therefore labelled as unclear.

The focus on HMDs, Unity Editor, and mobile devices underscores their critical role

in real-word testing, while the limited diversity in environments such as cloud-based

or haptic devices, suggests opportunities for further exploration and innovation.

Furthermore, we notice some studies utilise existing datasets for evaluation. The

details of these datasets (content types, sizes and availability) are discussed in §6.2.

20 https://docs.unity3d.com/Manual/UsingTheEditor.html

123

https://docs.unity3d.com/Manual/UsingTheEditor.html

Automated Software Engineering (2025) 32:56 Page 33 of 49 56

Table 12 Evaluation environments in the primary studies

Evaluation Environment Primary Studies Number

HMD PS10, PS12, PS14, PS21, PS26, PS30 6

Unity Editor PS16, PS17, PS23, PS26, PS32, PS33 6

Mobile Device PS18, PS22, PS26, PS27 4

Haptic Device PS25 1

Cloud PS15 1

Unclear PS4, PS5, PS7, PS11, PS34 5

The answer to RQ3, i.e., the extent of the testing approaches validated, is

as follows:

Out of 27 studies involving valid test activities, six studies do not provide any

evidence on evaluation, leaving 78% of the studies validated through some

form of evaluation.

Metric: The most common evaluation metrics are standard machine learning

metrics, for evaluating machine learning-based techniques. Additionally, man-

ual validation and different types of coverage metrics are equally prevalent.

Environment: The most frequently used evaluation environment HMD, Unity

Editor, and mobile device, reflecting the typical platforms for XR application

development and testing.

6 Discussion

In this section, we discuss the findings and implications of this mapping study. Specif-

ically, we address (1) the key insights and lessons learned from our methodology;

(2) the datasets and tools utilised or proposed in the primary studies; (3) the implica-

tions for practitioners; and (4) the remaining challenges and future research directions

identified through our analysis.

6.1 Mapping studymethodology

While conducting this mapping study, we carefully considered methodological choices

that could influence our findings. Our approach embraces the diverse nature of XR

testing research while acknowledging its potential impacts on interpretation.

123

 56 Page 34 of 49 Automated Software Engineering (2025) 32:56

While differences between research types or publication venues may yield varying

depths of evidence, this diversity enhances the value of our mapping study. By captur-

ing the full spectrum of XR testing research, we provide a more accurate representation

of the field’s current state.

Following the guidelines by Petersen et al. (2015), we deliberately chose an inclu-

sive approach without applying quality assessments during selection. We acknowledge

this introduces certain limitations as analysing heterogeneous studies collectively may

obscure category-specific characteristics. Despite potential influences on the interpre-

tation of trends, we believe the benefits of comprehensive coverage outweigh these

limitations for mapping the emerging research area of XR testing.

6.2 Datasets and Tools

To facilitate future research and practices in XR testing, we present an in-depth inves-

tigation of the datasets and tools identified in our primary studies.

This subsection examines (1) datasets used for training ML models in ML-based

testing techniques, (2) datasets for evaluating testing techniques, (3) industrial tools

employed or referenced in the studies, and (4) research tools used or proposed within

the studies. The availability of the datasets and tools is determined as of the submission

date of this mapping study (December 2024). The resources are organised and can be

accessed at https://sites.google.com/view/xr-testing.

6.2.1 Datasets for training

As discussed in §5.2.3, nine primary studies (PS11, PS14, PS15, PS17, PS19, PS21,

PS23, PS27, PS30) utilised ML-based techniques for testing XR apps. To better under-

stand their capabilities and provide valuable resources for future research and practice,

we analyse the datasets used for training the ML-based techniques. Among the nine

studies, six provide detailed dataset information. We examine their content type, train-

ing set size (excluding test sets), data source, and availability, and summarise our

findings in Table 13.

Table 13 Training datasets used for machine learning-based testing approaches

Study Content Size Source Avail.

PS11 Image 600 experiments F

PS19 Image 20,000 Steam F

PS21 Video 61 UCSD Ped1 & Ped2, Avenue, KITTI T

PS23 Image 720 Unity Mars T

PS27 Image ∼ 2740 Google Play & GitHub F

PS30 Traffic & attacks ∼ 848,000 CIC-IDS2017 T

123

https://sites.google.com/view/xr-testing

Automated Software Engineering (2025) 32:56 Page 35 of 49 56

Dataset PS11 consists of 600 images of XR scenes, containing some texts in their

background. Each image is labelled whether the text is readable or not by human

participants and features various configurations of font styles and background textures.

The dataset is not publicly available.

Dataset PS19 is a subset of 20,000 stereoscopic screenshots, randomly sampled

from an original training set of 154,566 screenshots, collected from 288 VR apps on

Steam21. Steam is one of the largest platforms for video games, including VR apps.

Dataset PS21 is based on multiple datasets, comprising a total of 61 video clips,

each containing 200 frames, to train a model for measuring exceptional motion in

VR video content that contributes to cybersickness. The original datasets are UCSD

Ped1 and Ped2 Mahadevan et al. 2010, Avenue datasets Lu et al. 2013, and KITTI

benchmark datasets Geiger et al. 2013, all are publicly available.

Dataset PS23 consists of 720 screenshots from a basic AR scene provided by Unity

Mars22, a Unity extension for AR/MR content development. The dataset is labelled

via crowdsourcing to identify realistic object placement. It is used to train a model to

identify object misplacement issues in AR systems, capturing variations in placement

gaps, distance, and viewing angles.

Dataset PS27 includes 3043 screenshots from 21 AR apps sourced from the Google

Play Store and GitHub. With 90% (approximately 2740 screenshots) allocated for

training a model to detect object misplacement issues in AR systems. The dataset

is labelled via crowdsourcing to provide placement information. However, the exact

numbers of screenshots in the training and testing subsets are not specified in the paper,

and the dataset is currently not publicly accessible.

Dataset PS30 utilised the Intrusion Detection Evaluation Dataset (CIC-IDS2017)23,

containing over 2.8 million network traffic instance, including normal traffic and

attacks like DoS and DDoS. Reformatted for binary classification (attack vs benign),

it comprises 1,211,327 instances, 70% are used for training. Notable discrepancies

in reported sample sizes between subsets, therefore the training set size is (70% of

1,211,327, which is approximately 848,000) recalculated for consistency.

Overall, the prevalence of image-based training datasets highlights the potential

of image-based techniques to address a wide range of software testing tasks for XR

applications effectively.

6.2.2 Datasets for evaluation

This section focuses on evaluation datasets, potentially encompassing diverse data

points or scenarios, offering broader applicability for testing methodologies, empirical

studies, and potential reuse in future research. Isolated research prototypes or limited

open-source applications are not considered comprehensive datasets.

As discussed in §6.2.1, ML-based techniques often evaluate their performance

using test datasets, i.e., subsets derived from the same datasets as their training data.

Detailed information about these evaluation sets is omitted to avoid redundancy, as

21 https://store.steampowered.com/
22 https://unity.com/products/unity-mars
23 https://www.unb.ca/cic/datasets/ids-2017.html

123

https://store.steampowered.com/
https://unity.com/products/unity-mars
https://www.unb.ca/cic/datasets/ids-2017.html

 56 Page 36 of 49 Automated Software Engineering (2025) 32:56

Table 14 Industrial tools in the primary studies. OSS indicates if the tool is open-source or not

Name Platform Input Test Type OSS

UTF Unity Test scripts Unit T

XRI Unity Interaction designs N/A T

Airtest Unity, Cocos26 Test scripts Scene T

AltUnity Tester Unity, Unreal Test scripts Scene F

ML-Agents Unity Training env. Scene T

clumsy Windows N/A Network T

Wireshark Windows, Linux, macOS N/A Network T

they may only differ from the training sets in size. Apart from these, most studies

utilised research prototypes or basic open-source applications.

Two empirical studies, PS2 and PS6, present independent datasets for evaluation.

Dataset PS2 consists of 390 mobile AR apps from the Google Play Store to conduct an

empirical study on user privacy concerns in mobile AR apps. However, this dataset is

not available. Dataset PS6 collects 368 real bugs from open-source WebXR projects,

labelled with their bug symptoms and root causes and is publicly accessible.

We want to know that multiple studies (PS16, PS17, PS31, PS32, PS33) utilised a

dataset called Unity List, which is no longer accessible27.

6.2.3 Industrial tools

Table 14 highlights industrial tools used or referenced in the primary studies. These

tools address various testing needs, including GUI, unit, and network testing, as well

as one tool for XR interaction development. For each tool, we outline key details such

as supported platforms and engines, input formats, test types, and whether the tool

is open-source. This information is intended to guide researchers and practitioners in

selecting tools suitable for their testing requirements.

Unity Test Framework (UTF)28 is an official testing tool provided by Unity for

unit testing Unity-based projects. It integrates with NUnit 29, a unit testing library for

.NET languages.

XR Interaction Toolkit (XRI)30 is an official Unity package for creating 3D and UI

interactions in VR/AR experiences. While it does not directly facilitate XR app testing,

it is useful for prototyping research apps that can serve as experimental platforms for

testing methodologies.

27 According to Unity List’s X homepage https://x.com/unitylist, it is no longer available.
28 https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html
29 https://nunit.org/
30 https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0

123

https://x.com/unitylist
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html
https://nunit.org/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0

Automated Software Engineering (2025) 32:56 Page 37 of 49 56

Airtest31 is a visual-based UI test automation framework commonly used for video

game testing. It uses screenshot-based locators in test scripts to simulate user actions,

making it suitable for dynamic and visually complex interfaces.

AltUnity Tester32 is a test automation framework designed for games and 3D apps,

supporting UI and functional testing. Test scripts interact with Unity elements using

identifiers such as object names and tags, simulating user actions.

ML-Agents33 is an open-source toolkit by Unity for training intelligent agents in

Unity-based 2D, 3D, and VR/AR environments using various AI methods. It provides

Python APIs for training and Unity C# scripts for environment simulation. With over

17 example Unity environments, it is well-suited for evaluating XR testing approaches,

including agent-based testing Andrade et al. 2023

Clumsy34 and Wireshark35 are tools for network simulation and analysis. Both

were used in PS15 to simulate network- and application-based attacks. These tools

are applicable to networked applications, including XR clients and servers, enabling

the evaluation of resilience and performance under adverse network conditions.

6.2.4 Research tools

This section examines research tools specifically designed for XR testing, excluding

general tools for tasks like data analysis. We assess each tool’s source (primary studies

or external references), key functionalities, supported platforms, and availability. This

analysis is based on publicly available versions, focusing on implementations rather

than techniques reported in the papers. While we did not run the tools, we thoroughly

reviewed their documentation and repositories. Table 15 lists the tools analysed.

iv4XR36 is a suite of tools for automated testing for XR applications. It includes

frameworks for agent-, model-, and reinforcement learning-based testing, as well as

user experience testing.

ARCHIE37 is a Unity Editor plugin for usability testing in mobile and wearable

AR apps. The repository includes Unity-based examples and supports cloud functions.

MAR-Security38 is a framework for preventing hidden operations in mobile AR

apps. Its repository includes an Android project implementing the detection mecha-

nism and scripts for collecting runtime data from Android devices.

StereoID39 is a tool for detecting stereoscopic visual inconsistencies linked to

cybersickness. However, the tool is not currently accessible.

31 https://airtest.netease.com/
32 https://alttester.com/tools/
33 https://github.com/Unity-Technologies/ml-agents
34 https://jagt.github.io/clumsy/
35 https://www.wireshark.org/
36 https://github.com/iv4xr-project
37 https://github.com/lehmansarahm/ARCHIE
38 https://github.com/lehmansarahm/MAR-Security
39 https://sites.google.com/view/stereoid

123

https://airtest.netease.com/
https://alttester.com/tools/
https://github.com/Unity-Technologies/ml-agents
https://jagt.github.io/clumsy/
https://www.wireshark.org/
https://github.com/iv4xr-project
https://github.com/lehmansarahm/ARCHIE
https://github.com/lehmansarahm/MAR-Security
https://sites.google.com/view/stereoid

 56 Page 38 of 49 Automated Software Engineering (2025) 32:56

Table 15 Research tools in the primary studies

Name Source Function Platform Avail.

iv4xr PS3 Agent-based testing N/A T

ARCHIE PS7 Usability testing Unity T

MAR-Security PS18 Hidden operation detection Android T

StereoID PS19 Cybersickness detection N/A F

PredART PS23 Object misplacement prediction Unity T

VOPA PS27 Object misplacement assessment N/A F

VRGuide PS32 VR scene exploration Unity T

VRTest PS33 VR scene exploration Unity T

AutoQuest Herbold and Harms (2013) Usability smell detection N/A F

TESTAR Vos et al. (2021) Scriptless GUI testing desktop, web, mobile T

PredART40 includes two types of scripts: a C# camera control script for Unity

projects, and scripts for machine learning model implementation and training.

VOPA41, is a tool designed to assess virtual object misplacement. However, it is

not currently publicly accessible.

VRGuide42 and VRTest43 are automated VR testing tools for scene exploration.

While each tool employs different exploration strategies, both provide Unity scripts

for their implementations.

AutoQUEST (Herbold and Harms 2013) detects usability smell by analysing

recorded user data. While its website44 is accessible, not the source code but compiled

Java (.jar) files are available.

TESTAR45 (Vos et al. 2021) is an open-source tool for scriptless automated testing

of desktop, web and mobile apps at the GUI level. The repository includes documen-

tation for setup and execution. PS24 (Pastor Ricós 2022) references it as a tool that

can extend for scriptless testing in XR environments.

6.3 Implications for practitioners

Based on our analysis of datasets and tools referenced in the primary studies, our

mapping study reveals two useful insights for XR practitioners.

First, regarding tool selection guidance, Table 14 provides a curated selection of

industrial tools organised by platform and testing task. While our findings are based on

the primary studies selected for this mapping study, we acknowledge that additional

options like Meta XR Simulator (discussed in § 1) may also be valuable for certain

testing scenarios.

40 https://sites.google.com/view/predart2022
41 https://sites.google.com/view/vopa-for-artesting/home
42 https://sites.google.com/view/vrguide2023
43 https://sites.google.com/view/vrtest2021
44 https://autoquest.informatik.uni-goettingen.de/trac/wiki
45 https://testar.org/, https://github.com/TESTARtool/TESTAR_dev

123

https://sites.google.com/view/predart2022
https://sites.google.com/view/vopa-for-artesting/home
https://sites.google.com/view/vrguide2023
https://sites.google.com/view/vrtest2021
https://autoquest.informatik.uni-goettingen.de/trac/wiki
https://testar.org/
https://github.com/TESTARtool/TESTAR_dev

Automated Software Engineering (2025) 32:56 Page 39 of 49 56

Second, concerning research-to-practice opportunities, Table 15 highlights the

research tools that address gaps in current industrial offerings. Though these may

require additional implementation effort, they provide cutting-edge capabilities for

organisations with specialised testing needs or those seeking competitive advantages

in XR quality assurance.

6.4 Challenges and future research directions

This section explores the open issues and potential future research directions based

on the findings of this mapping study.

During the study selection process (cf. §4.2.1), some studies are excluded as they

do not directly align with the focus on testing-related research. However, these studies

address challenges that could inspire novel testing approaches by being adapted to

specific XR testing needs. By integrating insights from these excluded studies with

the findings from our mapping study, we aim to present meaningful and actionable

future research directions to advance XR software testing.

6.4.1 Interaction formalisation

As discussed in §5.2.2, user interaction is the most common testing test objective

for functional testing, indicating the importance of interaction testing in XR apps.

In §5.1.2, we classified scene testing studies that validate XR functionality through

interactions with virtual objects and scene navigation. However, these approaches

provide limited context on the specific interactions required to trigger objects (e.g.,

touching) or complete navigation tasks (e.g., reaching a destination).

Unlike 2D GUI apps, where interaction types are relatively straightforward, XR

apps’ 6DOF nature demands more diverse interaction types. Moreover, XR interaction

methods may vary based on the deployment platform and device capabilities.

Drawing from prior research, formal gesture descriptions have proven effective

in automating UI testing for mobile apps (Hesenius et al. 2014) and could similarly

benefit XR apps. However, this requires a predefined set of XR-specific interaction

types, which remains an open challenge (Börsting et al. 2022). Leveraging these pre-

defined interactions could support cross-device compatibility testing and facilitate the

development of reusable testing frameworks for diverse XR platforms.

We recommend systematic empirical studies to categorise XR-specific interactions

(e.g., gestures, haptic feedback) by analysing documentation from XR development

platforms and open-source projects to create standardised interaction taxonomies.

6.4.2 Test oracle automation

In §5.2.1, we identified test automation, test input generation, and test generation as

the most frequent test activities for XR apps. Among these, test generation– which

involves generating both test inputs and oracles–remains the least explored. Non-

crashing functional bugs often require manual validation, with current approaches

focusing primarily on crash bugs due to the lack of automated oracles (Su et al. 2021).

123

 56 Page 40 of 49 Automated Software Engineering (2025) 32:56

Automating oracles is crucial for overcoming this bottleneck and advancing automated

testing (Barr et al. 20215).

While some research has addressed the oracle problem for XR apps, the specific

oracles needed to validate functionality remain unclear and vary by system (Pastor

Ricós 2022). For example, detecting collision and object misplacement may require

distinct oracles, each demanding tailored techniques. Addressing this gap necessitates

a deeper understanding of the problem and the development of novel solutions.

We propose (1) investigating which XR app characteristics can serve as reliable test

oracles, and (2) determining the most effective oracle types (e.g., assertions, contracts,

or metamorphic relationships (Molina et al. 2025)) for different XR testing scenarios.

6.4.3 XR-specific testing

XR-specific requirements encompass a wide range of test targets, including real-time

collision and occlusion, as well as key AR features such as tracking and registra-

tion (Doerner et al. 2022). §5.1.2 identifies XR-specific testing as a primary research

focus in XR software testing.

Additionally, studies identified during the selection process provide insights into

testing these requirements. For example, several studies (Cheng and Qu 2021; Wei and

Xinxin 2012; Xu and Sun 2023; Jin et al. 2021; Zhang et al. 2014) propose effective

collision testing techniques. However, these studies mainly focus on experimental

simulations and have not been applied to specific XR apps. Their methodologies could

be adapted to enable systematic collision testing in XR apps, such as instrumenting

specific objectives in an XR app to yield collision information.

The unique nature of XR-specific requirements calls for novel testing method-

ologies not present in other software domains, underscoring the need for tailored

approaches and further research. For effective testing, we recommend first conduct-

ing systematic studies to analyse the software manifestation of XR-specific features.

This analysis should identify observable behaviours in XR apps and determine which

software testing techniques would be most effective for validating these unique charac-

teristics. Such foundational work is essential before developing specialised XR testing

methodologies.

6.4.4 Software-centric usability testing

Cybersickness is the most common usability issue in XR apps, with several studies

proposing software-centric techniques for automated detection, as detailed in §5.2.2.

Additionally, many user-centric studies explore the nature of cybersickness (§3.1),

providing a foundation for developing software-centric detection methods.

Beyond cybersickness, we identified usability-focused user studies during the study

selection process that could inform automated testing techniques from a software-

centric perspective. For example, Kia et al. (2023) highlighted factors affecting users’

muscular loads during AR app interactions, such as interaction error rates and target

size. These factors could be formalised into software models to automate the detection

of similar usability issues, addressing a broader range of challenges in XR app usability.

123

Automated Software Engineering (2025) 32:56 Page 41 of 49 56

To bridge the gap between software- and user-centric approaches, we recommend

integrating findings from user studies into automated testing frameworks. This integra-

tion would enable the detection of common usability issues without requiring human

evaluation, making usability testing more scalable and consistent across XR apps.

6.4.5 AI for XR testing

Advancements in AI, particularly large language models (LLMs) and reinforcement

learning techniques, present opportunities to enhance XR app testing.

As discussed in §6.4.2, test oracle automation remains a significant challenge in

XR testing. While crowdsourcing has been shown to effectively address oracle-related

tasks (Pastore et al. 2013; Rafi et al. 2023), recent progress in LLMs offers a potential

alternative for automating text-based tasks (Thomas et al. 2024), which benefits the

generation of human-readable assertions, validating expected outputs, and synthesiz-

ing test expectations from natural language specifications.

The oracle problem in XR systems is complex due to their reliance on 3D graph-

ics. However, multimodal LLMs, which process both textual and visual information,

have demonstrated capabilities in understanding graphical content, ranging from 2D

screenshots to 3D assets (Liu et al. 2024; Qiu et al. 2024). These advancements could

enable more robust testing of intricate graphics systems, including XR apps.

Furthermore, LLMs have been effectively used to generate unit tests for Unity-based

game development (Paduraru et al. 2024). Given the shared Unity platform, these

techniques could potentially be adapted for XR app unit testing, further advancing

automation in this domain.

In addition, deep reinforcement learning and imitation learning techniques have

demonstrated capabilities to both play (complete specific tasks) and test (explore

unknown scenarios) video games (Zheng et al. 2019). We suggest leveraging these

techniques to tackle the interactive challenges of XR app testing.

7 Conclusion

This paper presents the methodologies, results, and findings of a systematic mapping

study on software testing for XR applications. From an initial pool of 1167 studies

retrieved from a digital library, we selected 34 relevant studies for in-depth analysis.

We classified these studies and extracted meaningful information to address key

research questions regarding the current research status, test facets (including test

activities, concerns, and techniques), and evaluation methodologies employed in XR

testing. Additionally, we catalogued datasets and tools referenced in these studies,

offering a valuable resource for researchers and practitioners to build upon and advance

their work.

The mapping study identifies several open issues and outlines promising future

research directions. Our findings highlight the growing importance of XR testing and

provide a foundation for advancing methodologies to address its unique challenges. As

XR technology rapidly evolves with new platforms, devices and applications, testing

methodologies must not only adapt to support these innovations but also leverage the

emerging capabilities they offer. Advanced features and hardware capabilities present

123

 56 Page 42 of 49 Automated Software Engineering (2025) 32:56

both challenges and opportunities for testing. Future testing approaches will need to

accommodate the increasing complexity of XR environments and the integration of

AI-driven behaviours that characterize next-generation XR systems.

In our future work, we plan to focus on the challenge of interaction formalisation

for XR testing. By systematically mapping interactions in XR apps to specific user

actions, we aim to develop a comprehensive tool capable of automatically generating

user action sequences for executing certain testing tasks. The tool would also maintain

traceability of action sequences to facilitate bug analysis and reproduction.

8 Appendix A List of primary studies

The list corresponds to the studies prefaced with “PS” throughout the paper.

ID Title

PS1 (Jung et al. 2017) 360◦ Stereo image based VR motion sickness testing system

PS2 (Yang and Zhang 2023) A Study of User Privacy in Android Mobile AR Apps

PS3 (Prasetya et al. 2021) An Agent-based Architecture for AI-Enhanced Automated Testing

for XR Systems, a Short Paper

PS4 (Tramontana et al. 2022) An Approach for Model Based Testing of Augmented Reality Appli-

cations

PS5 (Corrêa Souza et al. 2018) An automated functional testing approach for virtual reality applica-

tions

PS6 (Li et al. 2020) An Exploratory Study of Bugs in Extended Reality Applications on

the Web

PS7 (Lehman et al. 2023) ARCHIE++ : A Cloud-Enabled Framework for Conducting AR Sys-

tem Testing in the Wild

PS8 (Kirayeva et al. 2023) Automated Testing of Functional Requirements for Virtual Reality

Applications

PS9 (Bierbaum et al. 2003) Automated testing of virtual reality application interfaces

PS10 (Harms 2019) Automated Usability Evaluation of Virtual Reality Applications

PS11 (Leykin and Tuceryan 2004) Automatic determination of text readability over textured back-

grounds for augmented reality systems

PS12 (Gunawan et al. 2023) Blackbox Testing on Virtual Reality Gamelan Saron Using Equiva-

lence Partition Method

PS13 (Kilger et al. 2021) Detecting and Preventing Faked Mixed Reality

PS14 (Odeleye et al. 2021) Detecting framerate-oriented cyber attacks on user experience in vir-

tual reality

PS15 (Valluripally et al. 2023) Detection of Security and Privacy Attacks Disrupting User Immer-

sive Experience in Virtual Reality Learning Environments

PS16 (Qin and Hassan 2023) DyTRec: A Dynamic Testing Recommendation tool for Unity-based

Virtual Reality Software

PS17 (Andrade et al. 2023) Exploiting deep reinforcement learning and metamorphic testing to

automatically test virtual reality applications

PS18 (Lehman et al. 2022) Hidden in Plain Sight: Exploring Privacy Risks of Mobile Aug-

mented Reality Applications

PS19 (Li et al. 2024) Less Cybersickness, Please: Demystifying and Detecting Stereo-

scopic Visual Inconsistencies in Virtual Reality Apps

PS20 (Sarupuri et al. 2018) LUTE: A Locomotion Usability Test Environment for Virtual Reality

PS21 (Kim et al. 2017) Measurement of exceptional motion in VR video contents for VR

sickness assessment using deep convolutional autoencoder

123

Automated Software Engineering (2025) 32:56 Page 43 of 49 56

PS22 (Sendari et al. 2020) Performance Analysis of Augmented Reality Based on Vuforia Using

3D Marker Detection

PS23 (Rafi et al. 2023) PredART: Towards Automatic Oracle Prediction of Object Place-

ments in Augmented Reality Testing

PS24 (Pastor Ricós 2022) Scriptless Testing for Extended Reality Systems

PS25 (Corrêa et al. 2020) Software Testing Automation of VR-Based Systems With Haptic

Interfaces

PS26 (Minor et al. 2023) Test automation for augmented reality applications: a development

process model and case study

PS27 (Yang et al. 2024) Towards Automatic Oracle Prediction for AR Testing: Assessing

Virtual Object Placement Quality under Real-World Scenes

PS28 (Andrade et al. 2019) Towards the Systematic Testing of Virtual Reality Programs

PS29 (Andrade et al. 2020) Understanding VR Software Testing Needs from Stakeholders’

Points of View

PS30 (Izuazu et al. 2023) Unravelling the Black Box: Enhancing Virtual Reality Network

Security with Interpretable Deep Learning-Based Intrusion Detec-

tion System

PS31 (Rzig et al. 2019) Virtual Reality (VR) Automated Testing in the Wild: A Case Study

on Unity-Based VR Applications

PS32 (Wang et al. 2023) VRGuide: Efficient Testing of Virtual Reality Scenes via Dynamic

Cut Coverage

PS33 (Wang 2022) VRTest: An Extensible Framework for Automatic Testing of Virtual

Reality Scenes

PS34 (Figueira and Gil 2022) Youkai: A Cross-Platform Framework for Testing VR/AR Apps

Author Contributions R.G: Conceptualization, Methodology, Formal analysis, Investigation, Data Cura-

tion, Writing - Original Draft, Visualization, Project administration J.R: Methodology, Formal analysis,

Investigation, Data Curation, Writing - Review & Editing, Supervision D.S: Methodology, Formal analysis,

Investigation, Data Curation, Writing - Review & Editing, Supervision

Data Availability Data is partially provided within the manuscript and is fully available at https://sites.

google.com/view/xr-testing

Declarations

Competing interests The authors declare no competing interests.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press (2008). https://doi.

org/10.1017/CBO9780511809163

123

https://sites.google.com/view/xr-testing
https://sites.google.com/view/xr-testing
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1017/CBO9780511809163

 56 Page 44 of 49 Automated Software Engineering (2025) 32:56

Andrade, S.A., Nunes, F.L.S., Delamaro, M.E.: Towards the systematic testing of virtual reality programs.

In: 2019 21st symposium on virtual and augmented reality (SVR), pp 196–205 (2019). https://doi.

org/10.1109/SVR.2019.00044

Andrade, S.A., Quevedo AJU, Nunes FLS, et al.: Understanding vr software testing needs from stakeholders’

points of view. In: Symposium on virtual and augmented reality (SVR), pp. 57–66 (2020). https://doi.

org/10.1109/SVR51698.2020.00024

Andrade, S.A., Nunes, F.L.S., Delamaro, M.E.: Exploiting deep reinforcement learning and metamorphic

testing to automatically test virtual reality applications. Software Testing, Verification and Reliability

33(8) (2023). https://doi.org/10.1002/stvr.1863

Ardito, L., Coppola, R., Morisio, M, et al.: Espresso vs. eyeautomate: An experiment for the comparison of

two generations of android gui testing. In: Proc. of the 23rd Intl. Conf. on evaluation and assessment

in software engineering. ACM, EASE ’19, p 13–22 (2019). https://doi.org/10.1145/3319008.3319022

Barbieri L, Bruno F, Muzzupappa M.: Virtual museum system evaluation through user studies. J. Cult.

Herit. 26:101–108 (2017). https://doi.org/10.1016/j.culher.2017.02.005

Barr, E.T., Harman, M., McMinn, P., et al.: The oracle problem in software testing: A survey. IEEE Trans.

Soft. Eng. 41(5), 507–525 (2015). https://doi.org/10.1109/TSE.2014.2372785

Bierbaum, A., Hartling, P., Cruz-Neira, C.: Automated testing of virtual reality application interfaces. In:

Proc. of the Workshop on Virtual Environments 2003. ACM, EGVE ’03, p 107–114 (2003). https://

doi.org/10.1145/3551349.3561160

Börsting I, Heikamp M, Hesenius M, et al.: Software engineering for augmented reality - a research agenda.

Proc ACM Hum-Comput Interact 6 (2022). https://doi.org/10.1145/3532205

Bouvier, P., De Sorbier, F., Chaudeyrac, P., et al.: Cross benefits between virtual reality and games. In: Intl.

Conf. and Industry Symposium on Computer Games, Animation, Multimedia, IPTV, Edutainment and

Security (CGAT’08) (2008). https://doi.org/10.5176/978-981-08-8227-3_cgat08-26

Breen, D., Rose, E., Whitaker, R.: Interactive occlusion and collision of real and virtual objects in augmented

reality. Proc of Eurographics Poitiers, France (2000)

Brown-Johnson C, Berrean B, Cataldo J.: Development and usability evaluation of the mhealth tool for

lung cancer (mhealth tlc): A virtual world health game for lung cancer patients. Patient Education and

Counseling 98 (2015).https://doi.org/10.1016/j.pec.2014.12.006

Casey, P., Baggili, I., Yarramreddy, A.: Immersive virtual reality attacks and the human joystick. IEEE

Transactions on Dependable and Secure Computing 18(2), 550–562 (2021). https://doi.org/10.1109/

TDSC.2019.2907942

Charron, O., Lallement, A., Jarnet, D., et al.: Automatic detection and segmentation of brain metastases

on multimodal mr images with a deep convolutional neural network. Comput. Biol. Med. 95, 43–54

(2018). https://doi.org/10.1016/j.compbiomed.2018.02.004

Chen, C.J., Lau, S.Y., Chuah, K.M., et al.: Group usability testing of virtual reality-based learning envi-

ronments: A modified approach. Procedia - Soc. Behav. Sci. 97, 691–699 (2013). https://doi.org/10.

1016/j.sbspro.2013.10.289

Cheng, S., Qu, H.: Key Issues of Real-time Collision Detection in Virtual Reality. Intl Journal of Frontiers

in Engineering Technology 3(5) (2021). https://doi.org/10.25236/IJFET.2021.030505

Corrêa, C.G., Delamaro, M.E., Chaim, M.L., et al.: Software testing automation of vr-based systems with

haptic interfaces. Comput. J. 64(5), 826–841 (2020). . https://doi.org/10.1093/comjnl/bxaa054

Corrêa Souza, A.C., Nunes, F.L.S., Delamaro, M.E.: An automated functional testing approach for virtual

reality applications. Software Testing, Verification and Reliability 28(8) (2018). https://doi.org/10.

1002/stvr.1690

Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proc. of the 2014 conference

on interactive entertainment. ACM, IE2014, pp. 1–9 (2014). https://doi.org/10.1145/2677758.2677780

Dey, A., Billinghurst, M., Lindeman, R.W., et al.: A Systematic Review of 10 Years of Augmented Reality

Usability Studies: 2005 to 2014. Frontiers in Robotics and AI 5 (2018). https://doi.org/10.3389/frobt.

2018.00037

Doerner, R., Broll, W., Grimm, P., et al.: (eds) Virtual and Augmented Reality (VR/AR): Foundations and

Methods of Extended Realities (XR). Springer Intl. Publishing (2022). https://doi.org/10.1007/978-

3-030-79062-2

Emery, V., Jacko, J., Kongnakorn, T., et al.: Identifying critical interaction scenarios for innovative user

modeling. In: Proc. of the 1st Intl. Conf. on universal access in human-computer interaction, pp.

481–485 (2001)

123

https://doi.org/10.1109/SVR.2019.00044
https://doi.org/10.1109/SVR.2019.00044
https://doi.org/10.1109/SVR51698.2020.00024
https://doi.org/10.1109/SVR51698.2020.00024
https://doi.org/10.1002/stvr.1863
https://doi.org/10.1145/3319008.3319022
https://doi.org/10.1016/j.culher.2017.02.005
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/3551349.3561160
https://doi.org/10.1145/3551349.3561160
https://doi.org/10.1145/3532205
https://doi.org/10.5176/978-981-08-8227-3_cgat08-26
https://doi.org/10.1016/j.pec.2014.12.006
https://doi.org/10.1109/TDSC.2019.2907942
https://doi.org/10.1109/TDSC.2019.2907942
https://doi.org/10.1016/j.compbiomed.2018.02.004
https://doi.org/10.1016/j.sbspro.2013.10.289
https://doi.org/10.1016/j.sbspro.2013.10.289
https://doi.org/10.25236/IJFET.2021.030505
https://doi.org/10.1093/comjnl/bxaa054
https://doi.org/10.1002/stvr.1690
https://doi.org/10.1002/stvr.1690
https://doi.org/10.1145/2677758.2677780
https://doi.org/10.3389/frobt.2018.00037
https://doi.org/10.3389/frobt.2018.00037
https://doi.org/10.1007/978-3-030-79062-2
https://doi.org/10.1007/978-3-030-79062-2

Automated Software Engineering (2025) 32:56 Page 45 of 49 56

Figueira, T., Gil, A.: Youkai: A cross-platform framework for testing vr/ar apps. In: HCI Intl. 2022 –

Late Breaking Papers: interacting with extended reality and artificial intelligence. Springer Nature

Switzerland, pp. 3–12 (2022). https://doi.org/10.1007/978-3-031-21707-4_1

Garousi, V., Mesbah, A., Betin-Can, A., et al.: A systematic mapping study of web application testing. Inf.

Soft. Technol. 55(8), 1374–1396 (2013). https://doi.org/10.1016/j.infsof.2013.02.006

Geiger, A., Lenz, P., Stiller, C., et al.: Vision meets robotics: The kitti dataset. Intl J. Robot. Res. 32(11),

1231–1237 (2013). https://doi.org/10.1177/0278364913491297

Gu, R., Rojas, J.M.: An empirical study on the adoption of scripted gui testing for android apps. In: 2023

38th IEEE/ACM international conference on automated software engineering workshops (ASEW),

pp. 179–182 (2023). https://doi.org/10.1109/ASEW60602.2023.00030

Herbold, S., Harms, P.: Autoquest – automated quality engineering of event-driven software. In: 2013 IEEE

Sixth Intl. Conf. on software testing, verification and validation workshops, pp. 134–139 (2013).

https://doi.org/10.1109/ICSTW.2013.23

Harms, P.: Automated usability evaluation of virtual reality applications. ACM Trans Comput-Hum Interact

26(3) (2019). https://doi.org/10.1145/3301423

Hertzum, M.: Usability testing: A practitioner’s guide to evaluating the user experience. Syn-

thesis Lectures on Human-Centered Informatics 1, i–105 (2020). https://doi.org/10.2200/

S00987ED1V01Y202001HCI045

Hesenius M, Griebe T, Gries S, et al.: Automating ui tests for mobile applications with formal gesture

descriptions. In: Proc. of the 16th Intl. Conf. on human-computer interaction with mobile devices &

services. ACM, MobileHCI ’14, p 213–222 (2014). https://doi.org/10.1145/2628363.2628391

Hu, Y., Azim, T., Neamtiu, I.: Versatile yet lightweight record-and-replay for android. SIGPLAN Not 50(10),

349–366 (2015). https://doi.org/10.1145/2858965.2814320

Izuazu, U.U., Kim, D.S., Lee, J.M.: Unravelling the black box: Enhancing virtual reality network secu-

rity with interpretable deep learning-based intrusion detection system. In: Intl. Conf. on Information

and Communication Technology Convergence (ICTC), pp 928–931 (2023). https://doi.org/10.1109/

ICTC58733.2023.10392826

Jin, Y., Geng, J., He, Z., et al.: A capsule-based collision detection approach of irregular objects in virtual

maintenance. Assembly Autom. 41(1), 89–105 (2021). https://doi.org/10.1108/AA-12-2019-0224

Jung, S.M., Oh, S.H., Whangbo, T.k.: 360◦ stereo image based vr motion sickness testing system. In: 2017

Intl. Conf. on Emerging Trends & Innovation in ICT (ICEI), pp. 150–153. https://doi.org/10.1109/

ETIICT.2017.7977027

Kamińska, D., Zwoliński, G., Laska-Leśniewicz, A.: Usability testing of virtual reality applications-the

pilot study. Sensors 22(4) (2022). https://doi.org/10.3390/s22041342

Kavanagh, S., Luxton-Reilly, A., Wuensche, B., et al.: A systematic review of virtual reality in education.

Themes Sci. Technol. Educ. 10(2), 85–119 (2017)

Kia, K., Hwang, J., Kim, J.H.: Effects of error rates and target sizes on neck and shoulder biomechanical

loads during augmented reality interactions. Appl. Ergon. 113, 104107 (2023). https://doi.org/10.

1016/j.apergo.2023.104107

Kilger, F., Kabil, A., Tippmann, V., et al.: Detecting and preventing faked mixed reality. In: 2021 IEEE 4th

Intl. Conf. on Multimedia Information Processing and Retrieval (MIPR), pp. 399–405 (2021). https://

doi.org/10.1109/MIPR51284.2021.00074

Kim, H.G., Baddar, W.J., Lim, H.t., et al.: Measurement of exceptional motion in vr video contents for vr

sickness assessment using deep convolutional autoencoder. In: Proc. of the 23rd ACM Symposium on

Virtual Reality Software and Technology. ACM, VRST ’17 (2017). https://doi.org/10.1145/3139131.

3139137

Kim, Y., Kim, H., Kim, Y.O.: Virtual Reality and Augmented Reality in Plastic Surgery: A Review. Arch.

Plast. Surg. 44(3), 179–187 (2017). https://doi.org/10.5999/aps.2017.44.3.179

Kim, Y.M., Rhiu, I., Yun, M.H.: A systematic review of a virtual reality system from the perspective of user

experience. Intl Journal of Human-Computer Interaction 36(10), 893–910 (2020). https://doi.org/10.

1080/10447318.2019.1699746

Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews in software engi-

neering. Tech. Rep. EBSE-2007-01, Keele University (2007)

Kong, P., Li, L., Gao, J., et al.: Automated testing of android apps: A systematic literature review. IEEE

Trans. Reliab. 68(1), 45–66 (2019). https://doi.org/10.1109/TR.2018.2865733

123

https://doi.org/10.1007/978-3-031-21707-4_1
https://doi.org/10.1016/j.infsof.2013.02.006
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1109/ASEW60602.2023.00030
https://doi.org/10.1109/ICSTW.2013.23
https://doi.org/10.1145/3301423
https://doi.org/10.2200/S00987ED1V01Y202001HCI045
https://doi.org/10.2200/S00987ED1V01Y202001HCI045
https://doi.org/10.1145/2628363.2628391
https://doi.org/10.1145/2858965.2814320
https://doi.org/10.1109/ICTC58733.2023.10392826
https://doi.org/10.1109/ICTC58733.2023.10392826
https://doi.org/10.1108/AA-12-2019-0224
https://doi.org/10.1109/ETIICT.2017.7977027
https://doi.org/10.1109/ETIICT.2017.7977027
https://doi.org/10.3390/s22041342
https://doi.org/10.1016/j.apergo.2023.104107
https://doi.org/10.1016/j.apergo.2023.104107
https://doi.org/10.1109/MIPR51284.2021.00074
https://doi.org/10.1109/MIPR51284.2021.00074
https://doi.org/10.1145/3139131.3139137
https://doi.org/10.1145/3139131.3139137
https://doi.org/10.5999/aps.2017.44.3.179
https://doi.org/10.1080/10447318.2019.1699746
https://doi.org/10.1080/10447318.2019.1699746
https://doi.org/10.1109/TR.2018.2865733

 56 Page 46 of 49 Automated Software Engineering (2025) 32:56

Kundu, R.K., Elsaid, O.Y., Calyam, P., et al.: Vr-lens: Super learning-based cybersickness detection and

explainable ai-guided deployment in virtual reality. In: Proc. of the 28th Intl. Conf. on Intelligent User

Interfaces. ACM, IUI ’23, p 819–834 (2023). https://doi.org/10.1145/3581641.3584044

Kirayeva, R.R., Khafizov, M.R., Turdiev, T.T., et al.: Automated testing of functional requirements for

virtual reality applications. In: 2023 IEEE XVI Intl. Scientific and Technical Conference Actual

Problems of Electronic Instrument Engineering (APEIE), pp 1760–1764 (2023). https://doi.org/10.

1109/APEIE59731.2023.10347611

Kuri, M., Karre, S.A., Reddy, Y.R.: Understanding software quality metrics for virtual reality products - a

mapping study. In: Proc. of the Innovations in Software Engineering Conference (Formerly Known as

India Software Engineering Conference). ACM, ISEC ’21 (2021). https://doi.org/10.1145/3452383.

3452391

Lam, W., Wu, Z., Li, D., et al.: Record and replay for android: are we there yet in industrial cases?

In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM,

ESEC/FSE 2017, pp. 854–859 (2017). https://doi.org/10.1145/3106237.3117769

Lehman, S.M., Alrumayh, A.S., Kolhe, K., et al.: Hidden in plain sight: Exploring privacy risks of mobile

augmented reality applications. ACM Trans Priv Secur 25(4) (2022). https://doi.org/10.1145/3524020

Lehman, S.M., Elezovikj, S., Ling, H., et al.: Archie++: A cloud-enabled framework for conducting ar

system testing in the wild. IEEE Trans. Vis. Comput. Graph. 29(4), 2102–2116 (2023). https://doi.

org/10.1109/TVCG.2022.3141029

Lele, A.: Virtual reality and its military utility. J. Ambient Intell. Humanized Comput. 4(1), 17–26 (2013).

https://doi.org/10.1007/s12652-011-0052-4

Li, S., Wu, Y., Liu, Y., et al.: An exploratory study of bugs in extended reality applications on the web. In:

2020 IEEE 31st Intl. symposium on software reliability engineering (ISSRE), pp. 172–183 (2020).

https://doi.org/10.1109/ISSRE5003.2020.00025

Li, S., Gao, C., Zhang, J., et al.: Less cybersickness, please: Demystifying and detecting stereoscopic visual

inconsistencies in virtual reality apps. Proc ACM Softw Eng 1(FSE) (2024). https://doi.org/10.1145/

3660803

Leykin, A., Tuceryan, M.: Automatic determination of text readability over textured backgrounds for

augmented reality systems. In: IEEE/ACM Intl. Symposium on Mixed and Augmented Reality, pp

224–230 (2004). https://doi.org/10.1109/ISMAR.2004.22

Liu, Z., Li, C., Chen, C., et al.: Vision-driven automated mobile gui testing via multimodal large language

model (2024). arXiv:2407.03037

Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: IEEE Intl. Conf. on Computer

Vision, pp. 2720–2727 (2013). https://doi.org/10.1109/ICCV.2013.338

Mahadevan, V., Li, W., Bhalodia, V., et al.: Anomaly detection in crowded scenes. In: IEEE Computer

Society Conf. on Computer Vision and Pattern Recognition, pp. 1975–1981 (2010). https://doi.org/

10.1109/CVPR.2010.5539872

Milgram, P., Takemura, H., Utsumi, A., et al.: Augmented reality: A class of displays on the reality-virtuality

continuum. Telemanipulator and Telepresence Technologies 2351 (1994). https://doi.org/10.1117/12.

197321

Modarressi, S.N., Maurer, F., Wang, N.: Capture and replay testing tool for xr applications. In: RealXR@AVI

(2024). https://api.semanticscholar.org/CorpusID:270563554

Minor, S., Ketoma, .K., Meixner, G.: Test automation for augmented reality applications: a development

process model and case study. i-com 22(3):175–192 (2023). https://doi.org/10.1515/icom-2023-0029

Molina, F., Gorla, A., d’Amorim, M.: Test oracle automation in the era of llms. ACM Trans Softw Eng

Methodol (2025). https://doi.org/10.1145/3715107, just Accepted

Paduraru, C., Stefanescu, A., Jianu, A.: Unit test generation using large language models for unity game

development. In: Proc. of the 1st ACM Intl. Workshop on Foundations of Applied Software Engineering

for Games. ACM, FaSE4Games 2024, p 7–13 (2024). https://doi.org/10.1145/3663532.3664466

Pastor Ricós, F.: Scriptless testing for extended reality systems. In: Research Challenges in Information

Science. Springer Intl. Publishing, pp. 786–794 (2022). https://doi.org/10.1007/978-3-031-05760-

1_56

Pastore, F., Mariani, L., Fraser, G.: Crowdoracles: Can the crowd solve the oracle problem? In: 2013 IEEE

Sixth Intl. Conf. on Software Testing, Verification and Validation, pp. 342–351 (2013).https://doi.org/

10.1109/ICST.2013.13

Odeleye, B., Loukas, G., Heartfield, R., et al.: Detecting framerate-oriented cyber attacks on user experience

in virtual reality. In: 1st Intl. Workshop on Security for XR and XR for Security (2021)

123

https://doi.org/10.1145/3581641.3584044
https://doi.org/10.1109/APEIE59731.2023.10347611
https://doi.org/10.1109/APEIE59731.2023.10347611
https://doi.org/10.1145/3452383.3452391
https://doi.org/10.1145/3452383.3452391
https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1145/3524020
https://doi.org/10.1109/TVCG.2022.3141029
https://doi.org/10.1109/TVCG.2022.3141029
https://doi.org/10.1007/s12652-011-0052-4
https://doi.org/10.1109/ISSRE5003.2020.00025
https://doi.org/10.1145/3660803
https://doi.org/10.1145/3660803
https://doi.org/10.1109/ISMAR.2004.22
http://arxiv.org/abs/2407.03037
https://doi.org/10.1109/ICCV.2013.338
https://doi.org/10.1109/CVPR.2010.5539872
https://doi.org/10.1109/CVPR.2010.5539872
https://doi.org/10.1117/12.197321
https://doi.org/10.1117/12.197321
https://api.semanticscholar.org/CorpusID:270563554
https://doi.org/10.1515/icom-2023-0029
https://doi.org/10.1145/3715107
https://doi.org/10.1145/3663532.3664466
https://doi.org/10.1007/978-3-031-05760-1_56
https://doi.org/10.1007/978-3-031-05760-1_56
https://doi.org/10.1109/ICST.2013.13
https://doi.org/10.1109/ICST.2013.13

Automated Software Engineering (2025) 32:56 Page 47 of 49 56

Petersen, K., Feldt, R., Mujtaba, S., et al.: Systematic mapping studies in software engineering. In: Proc.

of the 12th Intl. Conf. on Evaluation and Assessment in Software Engineering. BCS Learning &

Development Ltd., EASE’08, pp. 68–77 (2008)

Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software

engineering: An update. Inf. Soft. Technol. 64, 1–18 (2015). https://doi.org/10.1016/j.infsof.2015.03.

007

Politowski, C., Guéhéneuc, Y.G., Petrillo, F.: Towards automated video game testing: still a long way

to go. In: Proc. of the 6th Intl. ICSE Workshop on Games and Software Engineering: Engineering

Fun, Inspiration, and Motivation. ACM, GAS ’22, p 37–43 (2022). https://doi.org/10.1145/3524494.

3527627

Prasetya, I.S.W.B., Shirzadehhajimahmood, S., Ansari, S.G., et al.: An agent-based architecture for ai-

enhanced automated testing for xr systems, a short paper. In: Intl. Conf. on Software Testing,

Verification and Validation Workshops (ICSTW). IEEE, pp. 213–217 (2021). https://doi.org/10.1109/

ICSTW52544.2021.00044

Priem, J., Piwowar, H., Orr, R.: Openalex: A fully-open index of scholarly works, authors, venues, institu-

tions, and concepts (2022). https://arxiv.org/abs/2205.01833

Qiao, X., Ren, P., Dustdar, S., et al.: Web ar: A promising future for mobile augmented reality-state of

the art, challenges, and insights. Proc. of the IEEE 107(4), 651–666 (2019). https://doi.org/10.1109/

JPROC.2019.2895105

Qiu, Z., Liu, W., Feng, H., et al.: Can large language models understand symbolic graphics programs?

(2024).https://arxiv.org/abs/2408.08313

Qu, C., Che, X., Ma, S., et al.: Bio-physiological-signals-based vr cybersickness detection. CCF Transactions

on Pervasive Computing and Interaction 4 (2022). https://doi.org/10.1007/s42486-022-00103-8

Qin, X., Hassan, F.: Dytrec: A dynamic testing recommendation tool for unity-based virtual reality software.

In: Proc. of the 37th IEEE/ACM Intl. Conf. on Automated Software Engineering. ACM, New York,

NY, USA (2023). https://doi.org/10.1145/3551349.3560510

Rafi, T., Zhang, X., Wang, X.: Predart: Towards automatic oracle prediction of object placements in aug-

mented reality testing. In: Proc. of the 37th IEEE/ACM Intl. Conf. on automated software engineering.

ACM (2023). https://doi.org/10.1145/3551349.3561160

Ramaseri Chandra, A.N., El Jamiy, F., Reza, H.: A review on usability and performance evaluation in virtual

reality systems. In: 2019 Intl. Conf. on computational science and computational intelligence (CSCI),

pp. 1107–1114 (2019). https://doi.org/10.1109/CSCI49370.2019.00210

Gunawan, R., Wibisono, Y.P., Primasari, C.H., et al.: Blackbox Testing on Virtual Reality Gamelan Saron

Using Equivalence Partition Method. Jurnal Buana Informatika 14(01), 11–19 (2023). https://doi.org/

10.24002/jbi.v14i01.6606

Robert, S., Kennedy KSBNorman. E., Lane Lilienthal, M.G.: Simulator sickness questionnaire: An enhanced

method for quantifying simulator sickness. The Intl J. Aviat. Psych. 3(3), 203–220 (1993). https://doi.

org/10.1207/s15327108ijap0303_3

Roberts, J.: The ar/vr technology stack: A central repository of software development libraries, platforms,

and tools (2023). https://doi.org/10.48550/arXiv.2305.07842

Rodriguez, I., Wang, X.: An empirical study of open source virtual reality software projects. In: 2017

ACM/IEEE Intl. Symposium on Empirical Software Engineering and Measurement (ESEM), pp.

474–475 (2017). https://doi.org/10.1109/ESEM.2017.65

Rzig, D.E., Iqbal, N., Attisano, I., et al.: Virtual reality (vr) automated testing in the wild: A case study on

unity-based vr applications. In: Proc. of the 32nd ACM SIGSOFT Intl. symposium on software testing

and analysis. ACM, ISSTA 2023, p 1269–1281 (2023). https://doi.org/10.1145/3597926.3598134

Scheibmeir, J., Malaiya, Y.K.: Quality model for testing augmented reality applications. In: 2019 IEEE 10th

Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp.

0219–0226 (2019). https://doi.org/10.1109/UEMCON47517.2019.8992974

Su, T., Meng, G., Chen, Y., et al.: Guided, stochastic model-based gui testing of android apps. In: Proc. of

the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, pp. 245–256 (2017).

https://doi.org/10.1145/3106237.3106298

Su, T., Yan, Y., Wang, J., et al.: Fully automated functional fuzzing of android apps for detecting non-crashing

logic bugs. Proc ACM Program Lang 5(OOPSLA) (2021). https://doi.org/10.1145/3485533

Sarupuri, B., Hoermann, S., Whitton, M.C., et al.: Lute: A locomotion usability test environmentfor virtual

reality. In: 2018 10th Intl. Conf. on Virtual Worlds and Games for Serious Applications (VS-Games),

pp 1–4 (2018). https://doi.org/10.1109/VS-Games.2018.8493432

123

https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/3524494.3527627
https://doi.org/10.1145/3524494.3527627
https://doi.org/10.1109/ICSTW52544.2021.00044
https://doi.org/10.1109/ICSTW52544.2021.00044
https://arxiv.org/abs/2205.01833
https://doi.org/10.1109/JPROC.2019.2895105
https://doi.org/10.1109/JPROC.2019.2895105
https://arxiv.org/abs/2408.08313
https://doi.org/10.1007/s42486-022-00103-8
https://doi.org/10.1145/3551349.3560510
https://doi.org/10.1145/3551349.3561160
https://doi.org/10.1109/CSCI49370.2019.00210
https://doi.org/10.24002/jbi.v14i01.6606
https://doi.org/10.24002/jbi.v14i01.6606
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.48550/arXiv.2305.07842
https://doi.org/10.1109/ESEM.2017.65
https://doi.org/10.1145/3597926.3598134
https://doi.org/10.1109/UEMCON47517.2019.8992974
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3485533
https://doi.org/10.1109/VS-Games.2018.8493432

 56 Page 48 of 49 Automated Software Engineering (2025) 32:56

Tadeja, S., Seshadri, P., Kristensson, P.: Aerovr: An immersive visualisation system for aerospace design

and digital twinning in virtual reality. Aeronaut. J. 124(1280), 1615–1635 (2020). https://doi.org/10.

1017/aer.2020.49

Sendari, S., Firmansah, A., Aripriharta.: Performance analysis of augmented reality based on vuforia using

3d marker detection. In: 2020 4th Intl. Conf. on Vocational Education and Training (ICOVET), pp

294–298 (2020). https://doi.org/10.1109/ICOVET50258.2020.9230276

Technologies, U.: Unity - manual: Gameobject (2024). https://docs.unity3d.com/Manual/class-

GameObject.html, accessed: 13 Aug 2024

Thomas, P., Spielman, S., Craswell, N., et al.: Large language models can accurately predict searcher prefer-

ences. In: Proc. of the 47th Intl. ACM SIGIR conference on research and development in information

retrieval. ACM, SIGIR ’24, p 1930–1940 (2024). https://doi.org/10.1145/3626772.3657707

Tramontana, P., Amalfitano, D., Amatucci, N., et al.: Automated functional testing of mobile applications:

A systematic mapping study. Soft. Qual. J. 27(1), 149–201 (2019). https://doi.org/10.1007/s11219-

018-9418-6

Valluripally, S., Frailey, B., Kruse, B., et al.: Detection of security and privacy attacks disrupting user

immersive experience in virtual reality learning environments. IEEE Trans. Serv. Comput. 16(4),

2559–2574 (2023). https://doi.org/10.1109/TSC.2022.3216539

Vos, T.E.J., Aho, P., Pastor Ricos, F., et al.: testar - scriptless testing through graphical user interface. Soft.

Test. Verif. Reliab. 31(3), e1771 (2021). https://doi.org/10.1002/stvr.1771

Walsh, A.E.: Understanding scene graphs. DrDobb’s Journal 27(7), 17–26 (2002)

Wang, X.: VRTest: An extensible framework for automatic testing of virtual reality scenes. In: Intl. Conf.

on software engineering: companion proceedings (ICSE-Companion). ACM, pp. 232–236 (2022).

https://doi.org/10.1145/3510454.3516870

Wang, X., Rafi, T., Meng, N.: Vrguide: Efficient testing of virtual reality scenes via dynamic cut coverage.

In: 2023 38th IEEE/ACM Intl. Conf. on automated software engineering (ASE). IEEE Computer

Society, pp. 951–962 (2023). https://doi.org/10.1109/ASE56229.2023.00197

Washizaki, H. (ed) Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), Version

4.0. IEEE Computer Society (2024) . https://www.swebok.org

Wei, Z., Xinxin, G.: The collision detection algorithm in virtual reality. In: 2012 Intl. Conf. on computer

science and electronics engineering, pp. 538–541 (2012). https://doi.org/10.1109/ICCSEE.2012.412

Wieringa, R., Maiden, N., Mead, N., et al.: Requirements engineering paper classification and evaluation

criteria: A proposal and a discussion. Requir Eng 11, 102–107 (2006). https://doi.org/10.1007/s00766-

005-0021-6

Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engi-

neering. In: Proc. of the 18th Intl. Conf. on evaluation and assessment in software engineering. ACM,

EASE ’14 (2014). https://doi.org/10.1145/2601248.2601268

Xu, P., Sun, Q.: Virtual reality collision detection based on improved ant colony algorithm. Appl. Sci. 13(11)

(2023). https://doi.org/10.3390/app13116366

Tramontana, P., Luca, M.D., Fasolino, A.R.: An approach for model based testing of augmented reality

applications. In: RCIS Workshops (2022)

Yang, A.H.X., Kasabov, N., Cakmak, Y.O.: Machine learning methods for the study of cybersickness: A

systematic review. Brain Inf. 9(1), 24 (2022). https://doi.org/10.1186/s40708-022-00172-6

Yang, X., Zhang, X.: A study of user privacy in android mobile ar apps. in: proc. of the 37th ieee/acm intl.

conf. on Automated Software Engineering (ASE’22). ACM (2023). https://doi.org/10.1145/3551349.

3560512

Yang, X., Wang, Y., Rafi, T., et al.: Towards automatic oracle prediction for ar testing: Assessing virtual

object placement quality under real-world scenes. In: Proc. of the 33rd ACM SIGSOFT Intl. symposium

on software testing and analysis. ACM, ISSTA 2024, pp. 717–729 (2024). https://doi.org/10.1145/

3650212.3680315

Zein, S., Salleh, N., Grundy, J.: A systematic mapping study of mobile application testing techniques. J.

Syst. Sof. 117, 334–356 (2016). https://doi.org/10.1016/j.jss.2016.03.065

Zhang, M., Zhou, D., Lv, C., et al.: Collision detection technology based on capsule model in virtual main-

tenance. In: Intl. Conf. on Reliability, Maintainability and Safety (ICRMS), pp. 1150–1155 (2014).

https://doi.org/10.1109/ICRMS.2014.7107384

123

https://doi.org/10.1017/aer.2020.49
https://doi.org/10.1017/aer.2020.49
https://doi.org/10.1109/ICOVET50258.2020.9230276
https://docs.unity3d.com/Manual/class-GameObject.html
https://docs.unity3d.com/Manual/class-GameObject.html
https://doi.org/10.1145/3626772.3657707
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1109/TSC.2022.3216539
https://doi.org/10.1002/stvr.1771
https://doi.org/10.1145/3510454.3516870
https://doi.org/10.1109/ASE56229.2023.00197
https://www.swebok.org
https://doi.org/10.1109/ICCSEE.2012.412
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.3390/app13116366
https://doi.org/10.1186/s40708-022-00172-6
https://doi.org/10.1145/3551349.3560512
https://doi.org/10.1145/3551349.3560512
https://doi.org/10.1145/3650212.3680315
https://doi.org/10.1145/3650212.3680315
https://doi.org/10.1016/j.jss.2016.03.065
https://doi.org/10.1109/ICRMS.2014.7107384

Automated Software Engineering (2025) 32:56 Page 49 of 49 56

Zhang, X., Tao, J., Tan, K., et al.: Finding critical scenarios for automated driving systems: A systematic

mapping study. IEEE Trans. Soft. Eng. 49(3), 991–1026 (2023). https://doi.org/10.1109/TSE.2022.

3170122

Zheng, Y., Xie, X., Su, T., et al.: Wuji: Automatic online combat game testing using evolutionary deep

reinforcement learning. In: 2019 34th IEEE/ACM Intl. Conf. on automated software engineering

(ASE), pp. 772–784 (2019). https://doi.org/10.1109/ASE.2019.00077

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

https://doi.org/10.1109/TSE.2022.3170122
https://doi.org/10.1109/TSE.2022.3170122
https://doi.org/10.1109/ASE.2019.00077

	Software testing for extended reality applications: a systematic mapping study
	Abstract
	1 Introduction
	2 Background
	2.1 Extended reality
	2.1.1 XR applications
	2.1.2 Interaction with XR applications

	2.2 Software testing
	2.2.1 Automated testing and test automation
	2.2.2 GUI testing

	3 Related work and motivation
	3.1 Usability of XR applications
	3.2 Motivation

	4 Mapping study
	4.1 Planning the mapping
	4.1.1 Research questions
	4.1.2 Search string
	4.1.3 Search evaluation
	4.1.4 Digital library
	4.1.5 Selection criteria

	4.2 Conducting the mapping
	4.2.1 Search and selection strategy
	4.2.2 Classification scheme
	4.2.3 Data extraction

	4.3 Reporting the mapping
	4.4 Threats to validity

	5 Results
	5.1 RQ1: research status
	5.1.1 Venues
	5.1.2 Topics
	5.1.3 Research types
	5.1.4 Immersive technology

	5.2 RQ2: testing facets
	5.2.1 RQ2.1: test activities
	5.2.2 RQ2.2 test concerns
	5.2.3 RQ2.3 test techniques

	5.3 RQ3: evaluation
	5.3.1 Metrics
	5.3.2 Evaluation environment

	6 Discussion
	6.1 Mapping study methodology
	6.2 Datasets and Tools
	6.2.1 Datasets for training
	6.2.2 Datasets for evaluation
	6.2.3 Industrial tools
	6.2.4 Research tools

	6.3 Implications for practitioners
	6.4 Challenges and future research directions
	6.4.1 Interaction formalisation
	6.4.2 Test oracle automation
	6.4.3 XR-specific testing
	6.4.4 Software-centric usability testing
	6.4.5 AI for XR testing

	7 Conclusion
	8 Appendix A List of primary studies
	References

