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Abstract

Recent continuous learning (CL) research primarily ad-

dresses catastrophic forgetting within a straightforward

learning framework where class and task information are

predefined. However, in the Task-Free Continual Learning

(TFCL), representing a more realistic and challenging CL

scenarios, such information is typically absent. In this pa-

per, we address the online TFCL by introducing an inno-

vative memory management approach, by incorporating a

dynamic memory system for storing selected data represen-

tatives from evolving distributions while a dynamically ex-

pandable memory system enables the retention of essential

long-term knowledge. The proposed dynamic expandable

memory system manages a series of memory distributions,

each designed to represent the information from a distinct

data category. A new memory expansion mechanism that

assesses the proximity between incoming samples and ex-

isting memory distributions is proposed for evaluating when

to add new memory distributions into the system. Addition-

ally, a novel memory distribution augmentation technique is

proposed for selectively gathering suitable samples for each

memory distribution, enhancing the statistical robustness

over time. To prevent memory saturation before the train-

ing phase, we introduce a memory distribution reduction

strategy that automatically eliminates overlapping memory

distributions, ensuring adequate capacity for accommodat-

ing new information in subsequent learning episodes. We

conduct a series of experiments demonstrating that our pro-

posed approach attains state-of-the-art performance in both

supervised and unsupervised learning contexts. The source

code is available at https://github.com/dtuzi123/DEMD.

1. Introduction

Lifelong/Continual learning aims to train a model that is

able to continually capture novel information over time

without forgetting any of the previously learnt knowledge.

Different from the traditional deep learning, which would

consider large dataset for training altogether, continual

learning paradigm aims to learn successively a sequence

of tasks, each defined by using a certain amount of data

for training. When considering training successively a ma-

chine learning model on a sequence of datasets, the model

suffers from significant performance degeneration, caused

by catastrophic forgetting, [42].

Existing models aiming to mitigate catastrophic forget-

ting in continual learning can be summarized into three dif-

ferent branches : rehearsal-based methods [6, 9], which em-

ploy and manage a small size memory buffer for storing

and replaying samples from previous tasks; regularization-

based methods [29, 38], which modify the primary objective

function by adding regularization terms that penalize sig-

nificant changes of certain important network parameters;

and expansion-based methods [11, 24], which dynamically

creates and adds new sub-models and hidden layers into an

expandable framework in order to learn new tasks. Among

these approaches, the rehearsal-based method is a straight

forward approach that balances the usage of memory with

processing the requirements to address network forgetting

in continual learning [17]. However, most rehearsal-based

methods require access to the class and task information for

implementing memory updating mechanisms [4, 53]. Con-

sequently, such methods can not be applied in the Task-Free

Unsupervised Continual Learning (TFUCL), which repre-

sents a more realistic continual learning scenario where

both task and class labels are unavailable.

Numerous studies have addressed mitigating the issue of

classifier forgetting during continual learning, whereas con-

tinual data generative models have received comparatively

less attention [62]. Enabling generative models into con-

tinual learning frameworks can facilitate the implementa-

tion of artificial intelligence generation systems in dynamic,

real-time learning environments, which holds substantial



practical significance. In this paper, we tackle the forgetting

problem associated with training generative models under

the more challenging TFUCL setting. Biological research

concludes that information is continually processed in the

brain through dual slow and fast memory mechanisms [39].

Inspired by these results we propose the Dynamic Expand-

ing Memory Distribution (DEMD) model that integrates

a Dynamic Memory System (DMS) for retaining the dy-

namic information alongside a Dynamic Scalable Memory

System (DSMS) aimed at safeguarding essential long-term

knowledge for the continual learning model. The DSMS

orchestrates an array of continually evolving sub-memory

buffers, each modeling a distinct memory distribution made

up of a low-dimensional feature space aiming to encapsu-

late a compact probabilistic representation. To continuously

accommodate novel information over time, we propose a

novel dynamic memory expansion mechanism that incre-

mentally generates and incorporates new memory distribu-

tions into the DSMS upon detecting shifts in the given data

distributions. This expansion mechanism ensures a suitable

discrepancy among memory distributions, thereby enabling

to capture diverse knowledge while maintaining a compact

memory capacity. Furthermore, we propose a novel mem-

ory augmentation strategy that enhances each memory dis-

tribution by preserving relevant data samples into their cor-

responding sub-memory buffers.

The proposed DEMD method initially allocates higher

memory capacities for the dynamic memory system, max-

imizing the storage of data samples to furnish ample train-

ing data during the model’s early learning stages. As the

training progresses, the DEMD progressively aims to in-

crease the capacity of the DSMS to retain essential long-

term information while systematically discarding previ-

ously memorized samples from the DMS, thereby maintain-

ing a streamlined memory system. Moreover, once the over-

all memory capacity reaches its limit, this memory strat-

egy ceases to accommodate new data samples in subse-

quent learning sessions. To solve this challenge, we in-

troduce an innovative memory distribution reduction tech-

nique that autonomously eliminates those memories record-

ing overlapping knowledge, following a discrepancy assess-

ment. This reduction mechanism consistently ensures suf-

ficient memory capacity to retain novel information over

time while maintaining the overall discrepancy among the

memory distributions from DEMD, facilitating the preser-

vation of a diversity of knowledge even when faced with

a severely constrained memory capacity. Furthermore, we

present a novel theoretical framework that offers theoreti-

cal insights and guarantees for the proposed memory-based

management methodology.

We summarize our contributions as follows : (1) We pro-

pose a novel memory approach, namely the Dynamic Ex-

pansionable Memory Distribution (DEMD), that processes

data through a dual fast-slow memory optimization mecha-

nism; (2) We propose a novel dynamic memory expansion

mechanism that automatically adds new memory distribu-

tions into the dynamic expansionable memory system with-

out requiring any supervised signals; (3) We propose a novel

memory distribution augmentation approach that evolves

and augments each memory distribution by selectively ac-

cumulating appropriate data samples over time; (4) A novel

memory reduction approach that automatically removes re-

dundant memory distributions, continually providing suffi-

cient memory capacities for preserving the novel informa-

tion at the end of the training process; (5) We develop a

novel theory framework to analyze and provide theoretical

guarantees for the proposed memory approach.

2. Related Work

Rehearsal-based methods represent a popular way to ad-

dress model forgetting by managing a small-size memory

buffer for preserving past data samples. Such methods have

shown good results in continual learning [7, 8, 19, 20, 25,

43, 46, 47, 54]. Other studies have improved the perfor-

mance of the rehearsal-based methods by regularizing the

objective function [2, 9, 12±14, 26, 37, 38, 41, 51, 57].

Moreover, rehearsal-based methods can be implemented by

training a generative model such as a Variational Autoen-

coder (VAE) or a Generative Adversarial Network (GAN)

[18], aiming to preserve and replay past data samples when

learning new information. Such approaches are able to re-

produce memorized data samples without requiring mem-

ory buffers [1, 30, 44, 52, 67].

Knowledge Distillation (KD) based methods train a dual

teacher-student network, by aligning the outputs of its

teacher and student components in order to compress the

model structure [23]. One typical KD-based approach,

called Learning Without Forgetting (LWF) [35] specifically

encourages a student module to remember the input pat-

tern of its corresponding teacher, thus relieving network

forgetting. A well known KD method combined with an

rehearsal-like approach is the Incremental classifier and

Representation Learning (iCaRL) [45]. Specifically, iCaRL

employs a new nearest-mean-of-exemplars classification

strategy to learn a robust classifier. Another study proposes

a self-supervised distillation mechanism to maintain all pre-

viously learnt features and representations, minimizing net-

work forgetting [8]. However the KD models’ performance

decreases when significantly increasing the number of tasks

to learnt during the continual learning.

Dynamic Network Architectures. Dynamic expansion mod-

els would increase the model’s capacity to capture new in-

formation with new network layers or modules, resulting in

mixture models, addressing the training scaling problems

when increasing the number of tasks, [11, 24, 27, 43, 48,

55, 58, 68]. The Continual Generative Knowledge Distil-



lation (CGKD) [64] is a dynamic expansion framework re-

plying data through generation, which dynamically creates

and adds new experts into a mixture system. One of the

advantages of the dynamic expansion models is that they

can chronologically preserve the best performances in the

given tasks, sometimes by freezing previously learnt sub-

networks/experts [27]. In addition, recent studies have pro-

posed to build experts based on the new backbones such as

the Vision Transformer (ViT) [15]. The dynamic expansion

model [16, 61] was shown to improve the model’s perfor-

mance on any individual task during the continual learning.

However, the primary weakness of such dynamic expansion

models is that it requires considerable storage space as well

as computational costs. We provide additional discussions

about the related works in Appendix-A from the Supple-

mentary Material (SM).

3. Methodology

3.1. Preliminary

Continual learning, unlike the conventional learning which

would utilize a huge training dataset at once for training

a model [21], specifically seeks to enable the development

of the model across a succession of learning tasks [66].

In this paper, we concentrate on a more intricate scenario

where we consider a model trained in an online batch-to-

batch learning without having access to any task or class

information. Let Dj = {xi}
nDi

i=1 and D̃j = {xi}
nD̃i

i=1 de-

note the j-th unlabeled training and testing sets within the

data space X ∈ R
W×H×C , where W , H , and C represent

the image width, height, and number of channels, respec-

tively. nDi and nD̃i denote the total number of training

and testing samples, respectively. In a class-incremental

learning scenario, the training dataset Dj is typically made

available for training by being partitioned into C ′ subsets

{Dj
1, · · · ,D

j
C′}, with each subset Dj

c containing data sam-

ples from one or more adjacent categories. A data stream

S = {Dj
1, · · · ,D

j
C′} can be sequentially constructed from

these subsets successively made available for training af-

ter being divided into n data batches within the batch-to-

batch learning paradigm, represented as S =
⋃n

c=1{Xc}.

During a specific training duration (Ti), only the associated

data batch Xi = {x(1,i), · · · ,x(b,i)} is accessible, while all

previously seen data batches {X1, · · · ,Xi−1} remain inac-

cessible, where b indicates the batch size. The objective of

a generative model Gθi in the TFUCL setting is to identify

the optimum parameter set θi that effectively minimizes the

distance between the distribution of the generated images

and the empirical distribution formed by all previously seen

data batches at the learning stage Ti :

θ∗i = argmax
θi∈Θ

{Fdis(PX0:i
,PXθi

)} , (1)

where Fdis(·, ·) is a probability distance to evaluate the

difference between two distributions. PX0:i and PXθi
,

denoting the empirical data distribution of all previously

seen data batches {X1, · · · ,Xi} and the generated images

Xθi ∼ Gθi produced by the generator Gθi , respectively.

θ∗i is the optimal parameter set estimated after the learn-

ing at Ti, which minimizes the distance between PX0:i and

PXθi
. Once the model finishes the final training time (Tn),

we evaluate the model’s performance on the whole testing

dataset D̃j = {xi}
nD̃i

i=1 using the model’s generative perfor-

mance criterion. In the experiments we also extend this un-

supervised continual learning model to the case when class

labels are available during the training, such is the case in

the supervised continual learning.

3.2. The Memory System Structure

To effectively capture both short-term and long-term infor-

mation in continual learning, we introduce an innovative

memory approach consisting of a Dynamic Memory Sys-

tem (DMS), designated as MD
i , and a Dynamic Scalable

Memory System (DSMS), denoted as MDS
i , where the sub-

script i corresponds to the memory buffers refreshed at Ti.
Specifically, the updating mechanism for the DMS employs

a Last In First Out (LIFO) strategy, which is designed to re-

tain recent information. The DSMS focuses on safeguard-

ing essential and enduring information related to all previ-

ously learned categories, thereby effectively mitigating the

issue of network forgetting. More precisely, we characterize

MDS
i as an expanding collection of t memory distributions,

represented as {PM(1), · · · ,PM(t)}, where t is adjustable

over time to accommodate environmental changes. Each

memory distribution PM(j) is constructed from a collection

of retained samples stored within a corresponding fixed-size

sub-memory buffer M(j). Notably, evaluating the prob-

ability distances between these distributions presents chal-

lenges due to the lack of having explicit probability den-

sity functions. Drawing inspiration from existing research

that summarizes data samples through a defined multidi-

mensional Gaussian distribution within a low-dimensional

latent space [22, 49], we propose to formulate the memory

distribution in the latent space. Specifically, we propose a

mapping function f : X → Z that transforms a data sam-

ple into a low-dimensional feature space Z ∈ R
d′

, where d′

represents the dimensionality of the feature space. Utiliz-

ing f(·) enables us to derive a set of feature vectors for the

sub-memory buffer M(j) as follows :

ZM(j) = {z | z = f(xc), c = 1, 2, · · · , |M(j)|} , (2)

where xc ∈ M(j) is the c-th memorized sample from

M(j) and |M(j)| denotes the number of samples for

M(j). By using ZM(j), we calculate the mean vector and



covariance matrix as :

µM(j)(s) =
1

d′

∑d′

c=1
{zc(s)} ,

ΣM(j)(s, s
′) = E[(zc(s)− µM(j)(s))

(zc(s
′)− µM(j)(s

′))] ,

(3)

where µM(j)(s) denotes the s-th dimension of the

mean vector µM(j) = {µM(j)(1) · · · , µM(j)(d
′)} and

ΣM(j)(s, s
′) denotes the variance between zc(s) and zc(s

′)
that are the s-th and s′-th dimension of the feature vector

zc obtained by xc using f(·). Let us denote ΣM(j) =
{ΣM(j)(1, 1), · · · ,ΣM(j)(d, d

′)} as a covariance matrix.

Then we form the memory distribution to represent a com-

pact representation for the associated sub-memory buffer

(M(j)) by considering :

PM(j) = N (µM(j),ΣM(j)) . (4)

By using the explicit probability distribution, we can easily

evaluate the discrepancy among memory distributions using

probabilistic distances.

3.3. Discrepancy-based Memory Optimization

An optimal memory system MDS
i should satisfy two as-

pects : (1) Each memory component representation should

capture information which is distinct from the others;

(2) The memory system MDS
i should be deployed on a

small number of memory components, thus limiting the

number of required parameters. To achieve these two goals,

we formulate the memory system updating as a min-max

constrained optimization problem, expressed as :

min
t=1,··· ,n

{

max
{

t
∑

c=1

{

t−c−1
∑

j=1

Fd(PM(j),PM(c))
}}}

,

s.t Fd(PM(j),PM(c)) ≤ λ , (5)

where Fd(·, ·) is the distance between two probability den-

sities and λ is a pre-defined hyperparameter ensuring an ap-

propriate discrepancy between two memory distributions.

However, finding the optimal solutions from Eq. (5) us-

ing the gradient-based approaches is intractable because t

is a discrete variable. Instead, we implement the goals from

Eq. (5) by introducing a novel memory distribution expan-

sion approach that appropriately adds a new sub-memory

buffers into MDS
i at a certain training time (Ti) :

min
c=1,··· ,b,j=1,··· ,t

{F ′
d(x(c,i),PM(j))} > λ , (6)

where x(c,i) is the c-th sample from the data batch Xi at Ti
and F ′

d(·, ·) is a distance measure defined as :

F ′
d(x(c,i),PM(j)) = 1−

∑d′

s=1 f(x(c,i))[s]µM(j)(s)
√

∑d′

s=1(f(x(c,i))(s))2
√

∑d′

s=1(µM(j)(s))2
,

(7)

Algorithm 1 The training of the DSRF framework.

Input: The total number of training steps n; The model’s

parameters and the total number of memory distributions;

Output: The model’s parameters

for i < n do
Step 1 (Check the model expansion).

if t = 0 then
M(1) = {x(1,1), · · · ,x(b,1)}, t = t+ 1

if |M(1)| = ρ then
Form PM(1) using Eq. (4)

if minc=1,··· ,b{F
′
d(x(c,i),PM(j))} > λ then

Build M(t+ 1) and add it into MDS
i

t = t+ 1

else
Step 2 (The memory distribution augmentation)

for c = 1, c ≤ b do
j∗ = argmin

j=1,··· ,t
{F ′

d(f(x(c,i)),PM(j))}

if |M(j∗)| = ρ then

if |MD
i | + |MDS

i | = ρall and |MD
i | ≠ 0

then

Randomly remove one data from MD
i

Add x(c,i) into M(j∗)

else
Add x(c,i) into M(j∗)

Step 3 (The memory distribution reduction)

if |MD
i |+ |MDS

i | = ρall and |MD
i | = 0 then

j∗, c∗ = argmin
j,c=1,··· ,t,j ̸=c

{Fd(PM(j),PM(c))

if Fdp(PM(j∗)) < Fdp(PM(c∗)) then

Remove PM(j∗) from MDS
i

else

Remove PM(c∗) from MDS
i

where f(x(c,i))(s) and µM(j)(s) denote the s-th dimen-

sion of the feature vector of x(c,i) and the s-th dimension

of µM(j). Given that Fd(·, ·) is a probability distance that

cannot be utilized for a pair of samples, we propose the

adoption of cosine similarity distance F ′
d(·, ·) for two pri-

mary reasons: (1) It has a low storage requirement while

having a high computational efficiency, particularly for low-

dimensional feature spaces; (2) It is constrained within a

range of -1 to 1, being easier to determine the threshold λ.

Upon satisfying the criterion defined in Eq. (6) at Ti, we

utilize the novel sample x(c,i) to initialize a new memory

distribution (the sub-memory buffer M(t + 1)) and incor-

porate it into MDS
i as :

M(t+ 1) = {x(c,i)}, (8)

PM(t+1) = N (µM(t+1) = f(x(c,i)),ΣM(t+1) = I) ,



Figure 1. The optimization process of the proposed Dynamic Expanding Memory Distribution (DEMD) model, consisting of three steps at

a training time (Ti), i = 1, · · · , n. In the first step, we dynamically create the first memory distribution M(1). In the subsequent learning,

if Eq. (6) is satisfied at Ti, we create a new memory distribution and add it into the memory system M
DS
i . In the second step, we get the

incoming data batch Xi at Ti. For each sample x(c,i) from Xi, where Eq. (6) is not fulfilled, we choose an appropriate memory distribution

using Eq. (9). If the selected memory distribution is full, we add x(c,i) into the DMS (MD
i ), otherwise, we add x(c,i) into the selected

memory distribution. In the second step, if the total memory capacity is full, we first determine a pair of the knowledge-overlapping

memory distributions using Eq. (10) and then choose and remove the redundant memory using Eq. (11).

where we employ the identity matrix I ∈ R
d′×d′

as the

initial covariance matrix. In contrast, when the criterion

defined in Eq. (6) is not satisfied, we perform the memory

distribution selection for storing incoming data samples, de-

scribed in the following section.

3.4. Memory Representation Augmentation

One of the objectives in Eq. (5) is to enhance the discrep-

ancy among memory distributions in order to increase the

memory representation by the DEMD model. To accom-

plish this, we propose to incentivize each memory distri-

bution to encapsulate distinct information. This is realized

through a novel memory distribution augmentation strategy

that incrementally enriches the memorized statistical data

representation over time. Specifically, if for an incoming

data sample x(c,i) from the data batch Xi at time Ti, Eq. (6)

is not fulfilled, we selectively assign that to an appropriate

memory distribution according to :

j∗ = argmin
j=1,··· ,t

{F ′
d(f(x(c,i)),PM(j))} , (9)

where j∗ is the index of the selected memory distribu-

tion PM(j∗) (the sub-memory buffer M(j∗)) used to store

x(c,i). If the selected sub-memory buffer M(j∗) is full

|M(j∗)| = ρ, where ρ represents its maximum capacity, we

add x(c,i) into the dynamic memory system MD
i . When the

overall memory capacity is full |MD
i |+ |MDS

i | = ρall, we

automatically remove the earliest memorized samples from

MD
i , which enables an efficient memory allocation for the

DSMS in subsequent learning.

3.5. The Redundant Memory Reduction

When the DMS is empty, |MD
i | = ∅, and the DSMS is full,

|MD
i | = ρall, the memory system can fail to safeguard es-

sential long-term information leading to potential forgetful-

ness issues. In such situations, the system should eliminate

extraneous memory distributions to ensure adequate capac-

ity for new critical data sample retention. Drawing upon

the results provided by Eq. (5), we introduce an innovative

methodology for memory distribution reduction that sys-

tematically discards redundant memory distributions while

preserving the discrepancy among the remaining distribu-

tions. Specifically, we begin by identifying a pair of mem-

ory distributions characterized by the minimal probability

distance, defined as :

{j∗, c∗} = argmin
j,c=1,··· ,t,j ̸=c

{Fd(PM(j),PM(c))} , (10)

where j∗ and c∗ are the indices of the selected memory dis-

tributions. Given that both PM(j) and PM(c) are defined as

explicit probability distributions, there are various measures

which can be used for implementing the probability dis-

tance function Fd(·, ·). These include the Jensen±Shannon

(JS) divergence, Kullback±Leibler (KL) divergence, or the

Wasserstein metric. For our analysis, we opted for the sym-

metrical KL divergence due to two key considerations: (1)

it possesses an analytical solution applicable to two ex-

plicit probability distributions; (2) it is substantiated by the

findings outlined in Theorem 1 from Section 4 and is un-

derpinned by theoretical assurances. Consequently, in the

alignment with Eq. (5), it is imperative that each remaining

memory distribution exhibits a substantial difference from

one another, after the memory distribution reduction phase.

Therefore, we propose employing a discrepancy measure in

order to eliminate one of the memory distributions, articu-

lated as follows :

Fdp(PM(j∗)) =
∑t

j=1
{Fd(PM(j),PM(j∗))} . (11)



Table 1. The FrÂechet Inception Distance (FID) score evaluated on 5,000 testing data samples for the class-incremental setting.

Datasets DEMD DCM-SE DCM-JS LTS LGM CGKD-GAN CGKD-WAE MeRGANs

Split MNIST 23.62 28.57 30.63 71.67 66.31 54.34 47.98 49.96

Split Fashion 40.16 46.65 43.38 128.84 109.20 85.23 88.16 127.55

Split SVHN 59.42 61.52 62.61 87.25 72.60 101.2 100.15 81.35

Split CIFAR10 73.27 82.74 76.58 124.22 177.15 115.38 162.12 121.74

Average 49.11 54.87 53.30 102.99 106.31 89.05 99.54 95.15

Table 2. FID score for the imbalanced class setting, evaluated on

5,000 testing data.

Datasets DEMD DCM-SE DCM-JS

Split MNIST 26.95 29.16 30.62

Split Fashion 43.27 46.91 48.49

Split SVHN 57.92 60.58 65.00

Split CIFAR10 79.13 82.28 90.44

Average 51.81 54.73 58.63

If Fdp(PM(j∗)) < Fdp(PM(c∗)), then we remove the mem-

ory distribution Mj∗ from the DSMS (MDS
i ), otherwise,

we remove Mc∗ .

3.6. Algorithm Framework

In the following we provide the algorithm steps for the

learning procedure, which is also illustrated in the dia-

gram from Fig. 1, while the corresponding pseudocode is

in Algorithm 1 for the proposed DEMD framework, which

is summarized into three steps at a certain training time Ti:

Step 1 (Check the memory expansion). In the initial learn-

ing procedure, we dynamically create the first sub-memory

buffer M(1) and continually store incoming data samples

into M(1) until this buffer is full. Then, we form the mem-

ory distribution PM(1) by calculating the mean vector and

covariance matrix using Eq. (3). In the subsequent learning,

if the expansion criterion defined in Eq. (6) is satisfied, we

create a new memory distribution, MD
i .

Step 2 (Memory representation augmentation). When the

expansion criterion defined in Eq. (6) is not satisfied, we

use Eq. (9) to update the appropriate memory distribution

PM(j∗) for a given incoming sample x(c,i) ∈ Xi at Ti. If

PM(j∗) is full |M(j∗)| = ρ, we store x(c,i) into the DMS

(MD
i ), otherwise, we store x(c,i) into M(j∗).

Step 3 (Redundant memory reduction). If the memory ca-

pacity is full |MD
i |+ |MDS

i | = ρall and the DMS (MD
i ) is

empty, we perform the memory distribution reduction pro-

cess, based on checking the redundancy using Eq. (10) and

Eq. (11).

4. Theoretical Analysis and Guarantees

The Variational Autoencoder (VAE) [31] is the most pop-

ular model for unsupervised generative modeling. A VAE

consists of an encoder and a decoder and is trained based

on achieving a lower bound to the sample log-likelihood,

called the Evidence Lower Bound (ELBO), as the primary

objective function. The ELBO can also be used as the per-

formance criterion for unsupervised generative modeling.

In this paper, we formulate the decreasing in the ELBO as

the forgetting assessment process and develop a novel the-

ory framework to analyze the forgetting behavior of the pro-

posed memory-based approach under the TFUCL scenario.

First we provide some important definitions.

Definition 1 (The empirical memory distribution.) PM(j)

represents the embedding memory distribution for M(j)
and we define P

M̂(j)
as the empirical data distribution of

M(j) in the data space. Let PMDS
i

denote the empirical

distribution of MDS
i at Ti. Let P

MDS
i

,M̂(1):M̂(t)
be the em-

pirical distribution of the memory systems MDS
i and MD

i .

Theorem 1 Let S denote a data stream while the DSMS

already contains t memory distributions at Ti. We derive a

lower bound for a VAE model at Ti, expressed as :

EPx0:i

[

log pθi(x)
]

≥ EP
MDS

i
,M̂(1):M̂(t)

[

log pθi(x)
]

− Fd

(

Px0:i
,P

MDS
i

,M̂(1):M̂(t)

)

(12)

−FA

(

P
MDS

i
,M̂(1):M̂(t)

,Px0:i ,Pθi

)

,

where the last term FA

(

P
MDS

i
,M̂(1):M̂(t)

,Px0:i
,Pθi

)

from

the Right-Hand-Side (RHS) of Eq. (12) is defined as :
∣

∣Fd

(

P
MDS

i
,M̂(1):M̂(t)

,Pθi

)

−DKL

(

Px0:i
|| Pθi

)
∣

∣

+ EPi

[

pW i(x) log pW i(x)
]

− EP
MDS

i
,M̂(1):M̂(t)

[

(13)

p
MDS

i
,M̂(1):M̂(t)

(x) log p
MDS

i
,M̂(1):M̂(t)

(x)
]

,

where pW i(x) and p
MDS

i
,M̂(1):M̂(t)

(x) are the density

functions for Px0:i and P
MDS

i
,M̂(1):M̂(t)

, respectively.

Fd

(

Px0:i ,PMDS
i

,M̂(1):M̂(t)

)

is the symmetrical KL diver-

gence, defined as :

DKL

(

Px0:i
|| P

MDS
i

,M̂(1):M̂(t)

)

+DKL

(

Px0:i
|| P

MDS
i

,M̂(1):M̂(t)

)

,
(14)



Table 3. FID results when considering datasets with complex images as well as when learning two different domains.

Datasets DEMD DCM-SE DCM-JS LTS LGM CGKD-GAN CGKD-WAE MeRGANs

CelebA-3DChair 38.16 40.45 82.18 186.25 241.14 132.12 154.45 166.99

CelebA-CACD 45.28 67.30 48.38 124.87 117.76 78.00 142.52 101.97

S-MINIImageNet 140.02 146.98 154.83 179.78 216.06 176.18 241.11 169.26

Table 4. FID scores for assessing the image generation perfor-

mance for datasets containing high-resolution images.

Methods Resolution CelebA-HQ CACD FFHQ

DEMD 128× 128× 3 86.71 55.69 89.72

DCM-SE 128× 128× 3 89.23 69.11 95.02

DCM-JS 128× 128× 3 96.03 57.19 90.80

CGKD-GAN 128× 128× 3 132.65 142.66 157.03

CGKD-WAE 128× 128× 3 139.96 158.32 179.59

DEMD 256× 256× 3 74.17 106.34 121.27

DCM-SE 256× 256× 3 87.39 110.21 123.95

DCM-JS 256× 256× 3 75.18 123.96 129.38

CGKD-GAN 256× 256× 3 168.52 236.98 254.32

CGKD-WAE 256× 256× 3 176.63 240.12 261.37

where DKL(·, ·) is the KL divergence. According to Eq. (12)

we can define the ELBO of Px0:i at Ti as :

EPx0:i

[

log pθi(x)
]

≥ −Fd

(

Px0:i ,PMDS
i

,M̂(1):M̂(t)

)

+ EP
MDS

i
,M̂(1):M̂(t)

[

logLELBO(x; θ
i, ωi)

]

(15)

−FA

(

P
MDS

i
,M̂(1):M̂(t)

,Px0:i
,Pθi

)

,

If the distribution P
MDS

i
,M̂(1):M̂(t)

is equal to the data dis-

tribution Px0:i
, then Eq. (15) becomes the standard ELBO.

The detailed proof is provided in Appendix-C from SM.

Remarks : Observations from Theorem 1 : (1) The term

Fd(·, ·) plays a critical role. If P
MDS

i
,M̂(1):M̂(t)

ap-

proximates Px0:i
, then this term is small, resulting in a

high sample log-likelihood in Eq. (15). (2) By increas-

ing the discrepancy among empirical memory distribu-

tions {P
M̂(1)

, · · · ,P
M̂(t)

} helps P
MDS

i
,M̂(1):M̂(t)

to pre-

serve more information and therefore decrease the distance

term Fd

(

Px0:i ,PMDS
i

,M̂(1):M̂(t)

)

, resulting in better per-

formance. (3) From Eq. (15), an optimal DSMS should

have a small number t of empirical memory distributions

characterized by high discrepancies between each other. To

find the optimal DSMS in practice, we first define PM(j) as

the explicit memory distribution (Gaussian) for each P
M̂(j)

using Eq. (4) and then formulate the memory expansion as

a min-max constrained optimization problem, as in Eq. (5).

5. Experiments

Datasets. We consider several datasets used for evalu-

ating the performance in unsupervised continual learning

[64], including MNIST [34], Fashion [60], SVHN [40]

and CIFAR10 [32]. Each dataset is divided into five sub-

sets by grouping two successive data categories [3], re-

sulting in Split MNIST, Split Fashion, Split SVHN and

Split CIFAR10. We resize each image from all datasets to

32 × 32 × 3 pixels. In addition to the simple datasets, this

paper also evaluates the model’s performance using large-

scale and complex-image datasets, including CACD [10],

MINIImageNet [56], CelebA [36], 3DChair [5] and Ima-

geNet [33]. We provide the additional information about

the experiment setting in the Appendix-B from SM.

5.1. Class-Incremental Learning

In the class-incremental we train various models on the Split

MNIST, Split Fashion, Split SVHN and Split CIFAR10, re-

spectively, learning data from 2 categories (classes) during

each task. By following the setting from [65], the maximum

memory size for all models is set to 2,000 samples and the

batch size as b=64. The results from Tab. 1, compare the

proposed DEDM with Memory Replay GANs (MeRGANs)

[59], Lifelong Teacher-Student (LTS), [63] and the Lifelong

Generative Modeling (LGM), [44]. The Dynamic Cluster

Memory (DCM) [65] uses a memory buffer for storing data,

employing either the square error or the Jensen±Shannon

(JS) divergence, resulting in the DCM-SE and DCM-JS

models, respectively. The Continual Generative Knowledge

Distillation (CGKD) [64] using GAN and Wasserstein Au-

toencoder (WAE) for replay data generation, are denoted

as CGKD-GAN and CGKD-WAE, respectively. Although

the dynamic expansion models such as CGKD-GAN can

dynamically create new experts and freeze all previously

learnt ones in order to maintain the performance on pre-

vious samples, their performance is lower than the state-

of-the-art memory-based methods such as DCM-SE and

DCM-JS. Such a performance gap is caused by two as-

pects : (1) DCM-SE and DCM-JS employ the Denoising

Diffusion Probabilistic Model (DDPM) as generative model

and can produce better generation results than CGKD-

GAN; (2) Previously created experts in a dynamic expan-

sion framework could not learn from new training samples

before its parameters are frozen. The proposed DEMD out-

performs other baselines on all datasets, as shown in Tab. 1.

5.2. The Imbalanced Class Setting

Class imbalance is a challenging problem in machine learn-

ing where there are sharp variations in the number of train-

ing data for various classes. Most models when trained on a
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Figure 2. Ablation study results. (a) The number of memory distributions and the data distributions (task ID) at each training time Ti. (b)

The expansion signal evaluated by the left hand side of Eq. (6).

class-imbalanced setting would lead to performance degen-

eration. In the following we consider the continual learn-

ing for the class-imbalanced setting. Specifically, the even-

numbered categories are considered as classes with very

few training data, assumed to be only 200 for each class. In

addition, we compare with the current state-of-the-art such

as DCM-SE and DCM-JS on Split MNIST, Split Fashion,

Split SVHN and Split CIFAR10 datasets, respectively. The

maximum memory size for all models is 2,000 and the re-

sults of the class-imbalance setting are shown in Tab. 2.

5.3. Results on Datasets with Complex images

We also evaluate the performance of the proposed approach

on datasets containing complex images considering the

domain-incremental scenario. Thus, we consider learning

CelebA [36], CACD [10] and 3DChair [5] datasets. Follow-

ing the setting from [65], we create two domain-incremental

data by combining CelebA and 3DChair as CelebA-

3DChair, while also considering CelebA and CACD as

CelebA-CACD. The maximum memory size for all mod-

els is 2,000 and the results of various models are reported in

Tab. 3, which shows that the proposed DEMD outperforms

all baselines on complex datasets.

Following the setting from [65], we also consider eval-

uating the performance of various models on a challenging

dataset such as the MINIImageNet [56] that can be used

for few-shot learning [50]. The MINIImageNet [56] dataset

which consists of images from 100 classes, which are di-

vided into 64, 16, and 20 classes, respectively, correspond-

ing to meta-training, meta-validation, and meta-testing in

few-shot learning tasks. We consider to build a data stream,

called the Split MINIImageNet (S-MINIImageNet) that

combines the meta-training and meta-validation datasets.

Specifically, the data stream is divided into 16 subsets and

each part consists of samples from five successive classes.

We train various models on the few-shot learning datasets

and the results are reported in Tab. 3, which shows that the

proposed approach outperforms all other baselines in the

few-shot continual learning setting. Furthermore, we eval-

uate the performance on high-resolution image datasets, in-

cluding CelebA-HQ [36], CACD [10] and FFHQ [28], re-

spectively, and the results are provided in Tab. 4. Accord-

ing to these results, the proposed approach achieves the best

performance on these high-resolution datasets.

5.4. Ablation Study

We perform a series of experiments to analyze the perfor-

mance of the proposed approach under different configura-

tions. More results can be found in Appendix-C from SM.

The memory expansion process. We investigate the dy-

namic expansion process of the DSMS by recording the

number of memory buffers and the learned tasks at each

training time. In Fig. 2a we provide the results after train-

ing the proposed approach on Split MNIST, considering the

threshold for defining new memory buffers as λ = 0.053 in

Eq. (6). The proposed approach adds, almost consistently,

a new memory distribution for each new data category.

The dynamic signals. In Fig. 2b we evaluate the expan-

sion signals using the expression from the left hand side of

Eq. (6). The results show that a large expansion signal cor-

responds to the learning of a new data category, indicating

that the proposed approach provides valid signals to guide

the memory expansion process.

6. Conclusion

This paper addresses forgetting under the TFUC set-
ting by proposing the Dynamic Expanding Memory
Distribution (DEMD) framework that consists of mem-
ory systems DSMS for long-term information and a
DMS for short-term memory. A novel memory expan-
sion mechanism is proposed to incrementally increase
the capacity of the DSMS for capturing critical new
information. Empirical results demonstrate that the
proposed approach achieves state-of-the-art performance.
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