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Localised Frequency Latent Domain Watermarking

of DDIM Generated Images

Qiran Lai and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

ABSTRACT

Stable Diffusion models, relying on iterative generative la-

tent diffusion processes, have recently achieved remarkable

results in producing realistic and diverse images. Meanwhile,

the widespread application of generative models raised sig-

nificant concerns about the origins of image content or the

infringement of intellectual property rights. Consequently, a

method for identifying AI generated images and/or other in-

formation about their origins is imperatively necessary. To

address these requirements we propose to embed watermarks

during one of the diffusion iterative steps of the DDIM. Such

watermarks are required to be recoverable while also robust to

possible changes to the generated watermarked images. The

watermarks are embedded in the localized regions of the la-

tent space frequencies. The binary watermarks are detected

from the generated watermarked images by means of a CNN

watermark detector. The robustness of the CNN watermark

detector is improved through training by considering various

distortions to the watermarked images.

Index Terms— Image Generation, Digital Watermarking,

Denoising Diffusion Implicit Model, Copyright protection.

1. INTRODUCTION

Image generative models, such as the Variational Autoen-

coder (VAE) [1], Generative Adversarial Networks (GAN)

[2] or the Denoising Diffusion Models (DDIMs) [3], de-

veloped for synthesising artificial images, have lately found

many applications. Among the generative models, the Stable

Diffusion [4] has lately became the most popular genera-

tive model, due to the quality as well as the diversity of the

generated images. Diffusion models [3, 5, 6], implement

gradually adding noise and denoising processes. The image

information is learnt during the denoising process, ensuring a

high quality of the resulting image. However, the widespread

use of AI-generated images raised concerns [7] about their

misuse, including for human deception, as well as about rais-

ing copyright infringement claims. In order to address such

concerns, digital watermarks [8, 9, 10] can be used to identify

the AI-generated images. The problem with watermarking

Stable Diffusion generated images is represented by trade-off

between achieving watermark robustness and their invisibil-

ity in the generated images, given that both are dependent on

the strength of the embedded watermark changes. Traditional

methods add watermarks as post-generation, but such wa-

termarks can easily be removed. In this paper we propose a

new method, namely the Localised Frequency Latent Domain

Watermarking (LFLDW), which embeds watermarks in one

of the internal diffusion steps, ensuring the resulting image

quality while enhancing watermark robustness as well.

Previous studies can be divided into three main categories:

1) embedding watermarks directly into images [9, 11]; 2) em-

bedding changes during the VAE stage of the generative sta-

ble diffusion process [12]; 3) embedding watermarks during

the diffusion process itself [13, 14, 15]. Compared with other

approaches, embedding watermarks into the diffusion process

has major advantages given that it represents the image gener-

ation component during which most DDIM’s parameters are

updated (ten times more parameters are changed than for the

VAE enabling the diffusion), resulting in watermarks that are

difficult to remove which are also robust and secure.

A promising direction of research is by embedding tree-

rings watermark changes in the Fourier domain [14] of the

DDIM [5] initial diffusion latent variables. In addition, the

improved frequency domain watermarking method called Zo-

Diac [15] uses backpropagation to get better trainable diffu-

sion noise when embedding the watermark, resulting in the

watermarked image becoming more similar to the one ini-

tially intended to be generated. However, this approach has

at least two limitations: 1) it requires the original image for

embedding the watermark; 2) it employs backpropagation to

optimize the initial diffusion noise each time when producing

the watermarked images.

The proposed Localised Frequency Latent Domain Wa-

termarking (LFLDW) provides the following advantages over

the existing generative image watermarking approaches : 1)

Watermarks can be embedded in any iteration of the diffu-

sion denoising mechanism, ensuring control over the water-

marked image properties while enhancing the watermark se-

curity; 2) Watermarks are embedded in the middle frequency

range of the latent domain, ensuring a better trade-off between

the watermark visibility and its robustness to image compres-

sion and other distortions; 3) A neural network is trained for

extracting the watermark, ensuring a high watermark predic-

tion accuracy while achieving significant watermark robust-

ness advantages over other approaches.



2. GENERATIVE DIFFUSION DOMAIN

WATERMARKING

The Denoising Diffusion Model (DDIM) [3, 6, 16] image

generation process consists of a succession of dual-step it-

erative Markov Chain processes of successive noise additions

followed by denoising steps. During these steps, the image

is synthesized from latent spaces through optimization. The

Stable Diffusion [4] uses a pre-trained CLIP model [17] as a

text encoder receiving user prompts as inputs and a UNet net-

work [18] as the diffusion network backbone, while a VAE,

consisting of an encoder and a decoder, compresses the fea-

ture space for accelerating the image generation.

The DDIM [5] improved the Denoising Diffusion Prob-

abilistic Models (DDPM) [3] by reducing the randomness

while accelerating the dual sampling process, through :

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ (xt)√

ᾱt

)

︸ ︷︷ ︸
predicted x0

+
√

1− ᾱt−1 − σ2
t · ϵθ (xt)

︸ ︷︷ ︸
direction pointing to xt

+ σtϵt︸︷︷︸
random noise

(1)

where σ2
t = η ·

√
(1− ᾱt−1) / (1− ᾱt)

√
(1− ᾱt/ᾱt−1),

and the standard deviation σ is a weighting parameter while

x1, . . . ,xT are latent variables. θ are the network parameters

and ᾱt is the cumulative multiplication of α’s controlling the

noise strength in the forward process.

For σt = 0, the reverse mechanism of the diffusion model

becomes a deterministic process without noise, which means

that DPM can skip some steps and eliminate the dependency

on the Markov chain, according to the relationship :

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ (xt)√

ᾱt

)
+
√
1− ᾱt−1 ·ϵθxt

(2)

The proposed Localised Frequency Latent Domain Water-

marking (LFLDW) method, which is illustrated in Fig. 1, uses

the latent space created by the Denoising Diffusion Implicit

Model (DDIM) [3] in order to embed watermarks, considered

as sequences of bits. The watermarks are embedded in the fre-

quency coefficients, provided by the Fast Fourier Transform

(FFT) of the latent code, obtained at a specific denoising step

of the DDIM image generation pipeline. The frequency do-

main watermarking provides an ideal watermarking control

environment enabling the trade-off between the watermark

visibility and its robustness to JPEG compression, noise ad-

dition or blurring attacks [9]. The reconstructed latent code

using the Inverse FFT (IFFT) is then fed into the DDIM it-

erative process, which proceeds accordingly, resulting in an

image carrying the given watermark without causing visible

changes. Then a specialised neural network is trained to be

used to detect the watermark from the generated image, even

when the watermarked image is distorted.

Fig. 1: The Localised Frequency Latent Domain Watermark-

ing (LFLDW) architecture using the Fourier frequency coef-

ficients of the latent space for embedding the watermark.

3. WATERMARK EMBEDDING

During the noise generation stage of the DDIM, we have a

4-channel latent code zt, when generating the image of size

N × M , at iteration t, t ≤ T , where T is the total number

of iterations for the DDIM process. The watermark can be

embedded in various t iterations of the DDIM and this was

studied in an ablation study. Then, the Fast Fourier Trans-

form (FFT) is used to convert a chosen channel of the latent

code zt to the frequency domain. The real components of a

set of coefficients located within a circular ring of frequencies

D = {{ctij}|r1 < ∥f tij∥ =
√

(cti − N
2
)2 + (ctj − M

2
)2 <

r2, i = 1, . . . , N, j = 1, . . . ,M}, where ctij are the coeffi-

cients corresponding to the real part of the Fourier domain,

and r1 and r2 represent the inner and outer radius bounds of

the ring of |D| frequencies, chosen to be watermarked. We

then consider the average of all real parts of the Fourier co-

efficients ctm =
∑N

i=1

∑M

j=1

cij

NM
. We embed the watermark

w = {wl}Ll=1
, consisting of a sequence of N bits, into the

selected coefficients using :

ĉtij = ctm + γ(2wl − 1) (3)

where ĉtij , for {i, j} ∈ D, represents the frequencies carry-

ing the watermark signal and for the watermark digits l =
1, . . . , L, where L is the watermark size (L = 8 in the exper-

iments) and γ represents the watermark strength.

After embedding all L watermark bits, the latent code is

reconstructed by the Inverse Fast Fourier Transform (IFFT)

and then the iterative DDIM process continues from this la-

tent code with the image reconstruction and for the further

{t− 1, . . . , 0} iterations, without any changes from the usual

DDIM procedure. Eventually, the watermarked generated im-

age is produced.

4. WATERMARK DETECTOR TRAINING

In order to enhance the watermark robustness to attacks,

we employ a Convolution Neural Network (CNN) which

is trained for detecting the watermarks after considering a



Fig. 2: Watermarked DDIM generated images (bottom) com-

pared to the non-watermarked generated images (top).

variety of distortions. Such distortions are applied to the gen-

erated watermarked image and are consistent with possible

attacks intended to remove the watermark, or produced by

algorithms involved in the usual image processing, such as

image compression. We consider additive noise, colour jitter

changes, image blurring, cropping, JPEG lossy compression,

as well as geometric transformations such as image rotation,

as image attacks. During the training, in the distortion layer,

one of these attacks is randomly chosen each time in order

to be used to distort the watermarked image. The distorted

watermarked images are then used for training the watermark

detector to enable watermark detection after such distor-

tions and eventually increase robustness to the corresponding

attacks. The resulting distorted watermarked images pass

through the same VAE encoder associated with the DDIM,

and then DDIM inversion is employed for estimating the

original latent codes, as in the following :

x̂t
0 =

(
x̂t −

√
1− ᾱtϵθ(xt)

)
/
√
ᾱt

x̂t+1 =
√
ᾱt+1x̂

t
0 +

√
1− ᾱt+1ϵθ(x̂t̃),

(4)

where x̂t̃ is the estimation of x̂t+1, which is replaced by x̂t

in the practical DDIM inversion because their values are very

close to each other for consecutive timesteps. The relevant

latent code channel is chosen from the four channels of the

generated watermarked image and converted to the frequency

domain by FFT. Finally, the CNN watermark detector can pre-

dict the watermark’s real FFT component, denoted as ŵ, from

the resulting images, and the loss function used for training

the CNN network considers the difference between the water-

mark prediction ŵ and the original watermark code w, as :

L = − 1

L

L∑

l=1

[ŵl log (wl) + (1− ŵl) log (1−wl)] , (5)

where L is the number of bits for the watermark w and pre-

dicted watermark ŵ, after considering the distortions. Fol-

lowing the training by considering Eq (5) the watermark ro-

bustness to various attacks is significantly increased.

5. EXPERIMENTS

In the following we apply the proposed Localised Frequency

Latent Domain Watermarking (LFLDW) for watermarking

Denoising Diffusion Implicit Model (DDIM) generated im-

ages and test the watermark visibility and robustness to a

wide variety of processing algorithms or attacks. Randomly

generated watermarks of L = 8 bits each, with the watermark

strength given by γ = 30 in Eq. (3), are embedded into 500

different generated images. For generating the images we had

used prompt texts randomly selected from the COCO dataset,

[19] as well as the dataset Stable-Diffusion-Prompts (SDP)

[20], which generates both graphics and photo-realistic im-

ages. We train the CNN network, according to the proposed

approach from Section 4, using one A40 GPU for about 10

days. The following attacks are considered in the CNN’s dis-

tortion layer to increase watermark’s robustness : a random

crop of 70% or 30%; Gaussian blur, with a kernel of size of

3× 3 and intensity of 2; for JPEG compression, we use lossy

compression with quality factors of 50 or 80; rotation with 90

degrees, -90 degrees; contrast factor 1.5, saturation factor 1.5,

and hue factor 0.25; for additive Gaussian noise, we consider

a standard deviation of 0.1 or 0.3.

Following the methodology from Sections 2 and 3 we em-

bed watermarks into a variety of generated images using dif-

ferent prompts and some watermarked images are shown in

the bottom row of Fig. 2, while on the top row, we show

the same generated images without an embedded watermark.

In the following, we perform experiments for choosing the

diffusion iteration and the range of latent space frequencies,

for optimally embedding the watermark. Two watermarked

generated images, when considering watermark embedding

in different DDIM denoising steps t, are shown on two rows

from Fig. 3 indicating the step t on top. When embedding

the watermark in a denoising step t near the initial iteration T
(denoising iterations are considered in the decreasing order),

the changes caused by the watermark are propagated through

the following iterations while causing some visible changes

when compared to the image generation without watermark,

named the “Original Image” in Fig. 3. However, when the wa-

termarking is performed in an iteration close to the final step

0, then some visible changes caused by the watermark appear

as some unusual shadows, as observed in the images from the

bottom row. Given that no distortions are visible in the third

image from each row of Fig. 3, we conclude that the best it-

eration for the DDIM watermark embedding is a mid-range

diffusion iteration, such as t = 15.

In Fig. 4, we show two generated images, and their cor-

responding watermarked counterparts, when considering the

frequency ranges of [r1, r2] = {[4, 13], [19, 28], [31, 40]} for

the latent spaces. In the case of the bottom image, we observe

the presence of ripples in the images’ corners produced, for

certain frequency ranges, by watermarks.

In Table 1, we provide a comparative study for the pro-

posed watermarking methodology when considering various

attacks. We consider JPEG lossy compression with a quality

setting of 50, while a central crop of 90% and rotation with

90 degrees is considered for geometric attacks. We consider



METHODS
Bit accuracy results when considering various image processing algorithms

PSNR
↑

SSIM
↑

CLEAN BRIGHTNESS CROP&RESIZE BLUR GAUSSIAN NOISE JPEG ROTATION

STABLESIG (COCO) [12] 100.00 96.28 97.39 90.55 71.78 85.94 50.0 30.0 0.89

AquaLoRA (COCO) [13] 95.79 93.38 91.44 95.85 93.00 94.92 / 29.85 0.92

LFLDW (COCO) 100.0 98.9 70.4 100.0 99.7 99.8 85.0 34.3 0.849

LFLDW (SDP) 100.00 98.7 70.1 99.9 99.4 99.3 91.4 34.5 0.844

Watermark true positive detection rate

STABLESIG (COCO) [12] 0.993 0.984 0.988 0.903 0.347 0.833 0.580 / /

TREE-RING (COCO) [14] 1.00 1.00 0.140 0.968 0.619 0.946 0.810 11.0 0.52

ZoDiac (COCO) [15] 0.992 0.990 / 0.988 0.984 0.978 0.106 29.4 0.92

AquaLoRA (COCO) [13] 0.990 0.941 0.919 0.994 0.958 0.998 / / /

LFLDW (COCO) 1.00 0.994 0.280 1.00 0.992 0.998 0.670 / /

LFLDW (SDP) 1.00 0.984 0.260 1.00 0.998 0.998 0.830 / /

Table 1: Robustness assessment to various attacks. Bit accuracy is defined as the percentage of matching bits between embedded

watermark w and its prediction ŵ as in [12, 13].

Fig. 3: Watermarked DDIM generated images when consid-

ering embedding at different denoising iterations, with the

non-watermarked images shown as the first on each row. The

PSNRs for the resulting watermarked generated images for

the timesteps t = {35, 15, 2} , are of 28.6, 34.0, and 34.3.

Gaussian blur with a kernel size of 3 × 3 and a strength of

4. We also consider additive Gaussian noise with the mean

of 0 and variance 0.1, while pixels are normalised to [0, 1].

For changing the brightness of the watermarked image, we

consider a brightness strength factor of 2.0.

We also test the watermark robustness when varying the

strength of various image attacks. The robustness tests for

COCO and SDP datasets for Brightness, Additive Noise,

JPEG compression and blurring are provided in the Fig-

ures 5a, 5b, 5c and 5d, respectively. The results from Table 1

and Fig. 5 indicate a high level of robustness to various attacks

for the proposed LFLDW.

6. CONCLUSION AND DISCUSSION

In this paper, we propose a novel method for inserting water-

marks into DDIM generated images, by considering a specific

range of frequencies of the latent space, obtained during one

of the DDIM denoising steps. The watermarks are detected by

means of a convolution neural network (CNN), trained for en-

suring watermark robustness to various attacks. The proposed

approach is shown to be efficient and robust, while it does not

produces significant distortions in the generated watermarked

Fig. 4: Changing the latent space frequency ranges for em-

bedding the watermarks.
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Fig. 5: Robustness tests when increasing the attacks’ strength.

Red and blue lines are the results for COCO and SDP datasets.

image. The watermarking method is specifically designed to

be robust to image compression and smoothing. One limita-

tion is represented by the fact that the embedded watermarks

are not robust to image cropping. Only 8 bits were embed-

ded during the experiments and more bits can be embedded

in frequencies of multiple latent spaces; however, some dis-

tortions may result in this case. Watermarks can be used to

identify the origins of the generated images or specifics of its

generator training, among others.
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