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Training a Dynamic Growing Mixture Model for

Lifelong Learning

Fei Ye1 and Adrian G. Bors2 , IEEE Senior Member

Abstract—Lifelong learning defines a training paradigm that
aims to continuously acquire and capture new concepts from a
sequence of tasks without forgetting. Recently, Dynamic Expan-
sion Models (DEM) have been proposed to address catastrophic
forgetting under the lifelong learning paradigm. However, the
efficiency of dynamic expansion models lacks a thorough expla-
nation based on theoretical analysis. In this paper, we develop a
new theoretical framework that interprets the forgetting process
of the DEM as increasing the statistical discrepancy distance
between the distribution of the probabilistic representation of
the new data and the previously learnt knowledge. This analysis
provides new insights into model’s forgetting behavior. The
theoretical analysis shows that adding new components to a
mixture model represents a trade-off between model complexity
and its performance. Inspired by the theoretical analysis, we
introduce a new dynamic expansion model, called the Growing
Mixture Model (GMM), where generative data components are
added according to the novelty of the incoming task information
compared to what is already known. A new component selection
mechanism considering the model’s already acquired knowledge
is employed for updating new DEM’s components, promoting
efficient future task learning. We also train a compact Student
model with samples drawn through the generative mechanisms
of the GMM, aiming to accumulate cross-domain representations
over time. By employing the Student model we can significantly
reduce the number of parameters and make quick inferences
during the testing phase.

Index Terms—Lifelong generative modelling, Continual learn-
ing, Lifelong learning, Dynamic expansion model.

I. INTRODUCTION

Lifelong learning (LLL) describes a learning paradigm

for training a model to successively learn a series of tasks

without forgetting the information associated with any of them.

Artificial intelligence models have been successfully used in

a wide range of applications, such as image processing [1],

object recognition [2], image translation [3] or image synthesis

[4], [5] among others. However, existing deep learning models

perform well when accessing all training data during a single

learning stage, while they would fail after learning multiple

tasks in succession. The collapse in performance in such cases

is due to catastrophic forgetting [6].

A popular approach to relieve forgetting is the Generative

Replay Mechanism (GRM) [7], which can be implemented by

either a Generative Adversarial Net (GAN) [8] or a Variational

Autoencoder (VAE) [9]. A generative model aims to provide

pseudo-data through successive GRMs which are mixed with
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the data corresponding to a new task, forming a new training

data set used for learning the model in order to avoid forgetting

[10], [11]. GRM-based models have shown good results in

continual classification tasks but they gradually lose their

performance when learning many different tasks. Additionally,

mode collapse [12] represents another drawback for GRMs,

especially when these are repeatedly used for learning distinct

data domains. Combining the dynamic model expansion and

GRM into a unified optimization framework was proposed in

[13], ensuring that model’s capacity is progressively increased

to adapt to significant changes in the data. Nevertheless, this

approach still suffers from forgetting due to the degradation

following repetitions of GRM processes. Other attempts have

been focused on dynamic expansion mechanisms [14] or on

using ensemble structures [15], in which each component is

added on top of a joint network backbone. These approaches

do not have to update the previously learnt network parameters

when learning new data and thus can avoid forgetting [16].

However, such methods do not rely on theoretical guarantees,

and the forgetting behavior behind these methods is not well

understood.

This research study first proposes a novel theoretical frame-

work for assessing the forgetting in GRM-based models,

inspired by the domain adaptation theory [17]. Consequently,

we derive a risk bound for assessing the generalization perfor-

mance on the target domain achieved by a model trained on

a source domain. Unlike the study from [17] which considers

that the source domain is static and does not change over

time, the theoretical framework from this paper evaluates

the performance loss of a model trained on dynamically

changing source domains over time. Moreover, we extend this

framework in order to analyze the forgetting behavior for other

continual learning models, including dynamic expansion and

memory-based models.

Generative modeling is mainly used in unsupervised ma-

chine learning as a means to describe underlying structures

in data. Generative artificial intelligence systems have been

widely adopted in many applications, including for 3D object

detection [18], image editing [19] and medical image segmen-

tation [20]. Enabling generative models in continual learning

without forgetting can lead to developing many new practical

applications dealing with wide data variations. The core issue

addressed in our paper is network forgetting when imple-

menting image generative modeling in continual learning.

Generative model forgetting, unlike forgetting in classification

systems, has not been sufficiently explored before.

Most current AI methods, such as the Generative Replay

Mechanism (GRM) [7], the memory replay [21] and the
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Dynamic Expansion Model (DEM) [22], [23] were shown to

address catastrophic forgetting challenges. However, the GRM

and memory replay methods are not scalable for learning a

growing or infinite number of tasks. Although DEMs can deal

with long sequences of tasks, most such models are primarily

designed for classification tasks [22], [23], and are not suitable

for image generative modeling. Therefore, we introduce a

novel dynamic expansion framework, which can dynamically

create new generative components while learning novel infor-

mation. A new knowledge evaluation approach is proposed

for assessing knowledge similarity between each previously

learnt component and the data distribution corresponding to

the incoming task. The proposed knowledge measure approach

chooses a suitable component for learning a related task that

shares visual concepts consistent with the selected component,

accelerating future task learning. Furthermore, we introduce a

new Knowledge Distillation (KD) based method for a Teacher-

Student architecture, transferring the information learnt by

each component into a lightweight Student module. Thus the

entire learned knowledge is compressed into a unified latent

space, accelerating the inference process and reducing the size

of the model.

The proposed GMM framework has two primary advan-

tages compared to current dynamic expansion models : (1)

The proposed GMM framework, besides classification tasks

also addresses image generation in continual learning; (2)

Introduces a novel knowledge distillation approach that can

transfer the knowledge learnt by a complex teacher model to a

fixed-size student module, which can be deployed on resource-

constrained devices; (3) The proposed GMM framework can

effectively address a long sequence of tasks by selectively

creating new experts when similar tasks reappear. We provide

the code in https://github.com/dtuzi123/LifelongGMM.

This paper brings the following contributions :

• We analyze the forgetting process of continual learning

models by formulating the model’s risk from the learning

and forgetting perspectives.

• We propose a dynamically expanding network architec-

ture according to the novelty of the incoming tasks while

reusing existing components whenever learning from data

deemed similar to those acquired in the past.

• We propose a new knowledge distillation (KD) approach

enabling a lightweight Student module to learn the in-

formation accumulated by the GMM together with that

from new tasks. Furthermore, the Student module can

capture cross-domain latent representations over time

while enjoying fast inference during the testing phase.

• Extensive experiments show that the proposed GMM

provides better performances than other methods in both

continual generative modeling and classification tasks.

In Section II we review the related works. The theoretical

framework is provided in Section III and the proposed method-

ology in Section IV. A series of experiments and ablation

studies are provided in Section V, while the conclusions are

drawn in Section VI.

II. RELATED WORKS

In the following we outline the main lifelong learning

research directions : regularization, dynamic architecture and

replay-based models.

A. Regularization-based approaches

Regularization methods alleviate catastrophic forgetting by

introducing an auxiliary term in the objective function, which

penalizes changes in the network’s weights when learning a

new task [24], [25], [26]. Learning Without Forgetting (LwF)

[27] is one of the most popular regularization approaches,

which uses knowledge distillation to enforce the newly trained

network for remembering previously learnt knowledge. Empir-

ical results have shown that the Elastic Weight Consolidation

(EWC) [28] is good at modeling images of random pixel

permutations, while it performs worse when incrementally

learning new data categories. However, a disadvantage of

EWC is that it requires growing computational resources when

learning many tasks. Such a problem was solved in [29],

which considers model updating only for the latest learnt tasks,

while EWC updates the corresponding Fisher matrix using the

moving average [30]. Bayesian inference addressed forgetting

for both continual learning of classification and generation

tasks in the Variational Continual Learning (VCL) [31]. Works

that regulate the learned representations were found to be

robust to forgetting by using adversarial training [16] or meta-

learning [32] in continual learning. However, these approaches

are computationally intensive, given that they rely on inner

iterative optimizations, especially when learning a growing

number of tasks [33].

Regularization can be implemented using either knowledge

distillation [27] or by adding penalty terms in the main

objective function [31]. Specifically, knowledge distillation

defines a loss for the teacher and its corresponding student

module, that aligns the output patterns between them. Such

an approach is related to the proposed GMM framework since

we also implement a teacher-student framework which has

associated a knowledge distillation loss function. Different

from existing lifelong knowledge distillation models such as

that from [27], which uses the same network architecture for

the teacher and student module, the proposed knowledge distil-

lation approach can transfer the knowledge learnt by a complex

teacher module to a lightweight student module, reducing the

storage requirements while accelerating the inference process.

B. Memory replay

Memory replay approaches would either use a generative

replay network or a memory buffer [21], [34], [35] as a replay

mechanism which reproduces the previously learnt information

through data generations when learning novel tasks. A typical

memory replay approach [7] consists of a hybrid framework

made up of a deep generative model and a classifier. The

generator in this framework aims to replay the pseudo-data

which are then merged with the newly given samples to

be learnt, forming a joint dataset. This new dataset is then

used for the lifelong training of the model. However, this

https://github.com/dtuzi123/LifelongGMM
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approach is only used for classification and is not able to learn

new informative data representations that would benefit other

downstream tasks [36]. Memory reply lifelong learning models

would either use a Variational Autoencoder (VAE) [9], or a

Generative Adversarial Network (GAN) [8] as the Generative

Replay Mechanism (GRM). Achille et al. [37] proposed a new

continual learning approach based on the VAE framework,

aiming to capture meaningful representations across different

data domains over time. The Minimum Description Length

(MDL) principle is used in the Variational Assorted Surprise

Exploration (VASE) [38] for encouraging learning disentan-

gled representations. However, VAE-based generations often

result in blurred images [1], [39] leading to degenerate per-

formances when learning several datasets characterized by

complex information. This problem is addressed by using

better generative replay networks, such as GANs [36], [40].

However, also GANs suffer from mode collapse after learning

several entirely different data domains [12].

Generative models used as generative replay networks are

related to the proposed GMM framework. However, unlike the

existing generative memory methods such as VASE [38] for

example, which trains a unique generative model and thus is

unable to address a long sequence of tasks, the proposed GMM

framework explores and combines advantages from both GRM

and dynamic expansion methods into a unified framework,

achieving better performance when learning a long sequence

of tasks.

C. Lifelong generative modeling

Different from continual supervised learning, which usually

learns classifiers to implement classification tasks, lifelong

generative modeling aims to train a deep generative model

capable of continually capturing underlying data structures

and producing data reconstructions and generations [10], [41].

A new objective function was proposed in [37] for imple-

menting lifelong generative modeling, based on the VAE

[9], while learning disentangled representations for various

tasks/domains without forgetting. Ramapuram et al. [10] intro-

duces the Lifelong Generative Modeling (LGM) as a Teacher-

Student continual learning model, where both the Teacher

and Student are implemented by VAEs. During the training,

LGM exchanges information between the Teacher and Student

using successively GRMs. However, a VAE model usually

produces lower quality generative replay samples that degen-

erates model’s performance in continual learning. This issue

was relieved by employing Generative Adversarial Networks

(GANs) [11] as a generative replay network. A GAN can

generate high-quality image generation outputs and thus the

model trained on such pseudo-data can significantly relieve

network forgetting. Moreover, a VAE has been combined with

a GAN into a unified framework in the Lifelong VAEGAN

[36], which is able to perform semi-supervised, supervised,

unsupervised learning and disentangled representation learn-

ing. A dynamic expansion GAN mixture model was used as a

Teacher, automatically adding new GAN-based experts when

learning entirely different tasks, was explored in [42].

Compared to existing static models for lifelong generative

modeling, the proposed GMM framework is able to learn

a long sequence of tasks without forgetting. In addition,

compared to other DEMs for lifelong generative modeling,

our method can learn relevant and new data representations

from a series of tasks, benefiting image reconstruction and

interpolation.

D. Dynamic expansion and ensemble models

Dynamic expansion models grow their capacity by increas-

ing the number of parameters or by adding layers of hidden

units for learning an increasing number of tasks [42], [43],

[44]. Dirichlet processes have been used for expanding mixture

models in the context of continual learning in [25], [26],

[45]. Meanwhile, small memory buffers have been used for

storing past relevant data, thus avoiding expanding frequently

the network architecture in [14], while the Continual Un-

supervised Representation Learning (CURL) [13] alternates

dynamic model expansions with GRMs to avoid forgetting

during continual learning. CURL expands only the architecture

for the inference component while the decoder is continually

updated based on the generative replay samples and novel

data as well. Other methods, such as those from [44], [46],

consider a shared module, updated only when learning the

first task while afterwards is used as the backbone for other

newly created tasks-specific modules. Feature BoOSTing and

ComprEssion for class-incremental learning (FOSTER) [22]

is an advanced dynamic expansion model, which adds new

modules to fit the residuals between the target and the output

of the original model which introduces a new distillation ap-

proach to remove redundant parameters. The Memory-efficient

Expandable MOdel (MEMO) [23] was shown to achieve

good generalization performance while maintaining a compact

network backbone during continual learning. Recently, Large

Language Models (LLM) have been explored in continual

learning [47], where transformer block-based experts are con-

tinually added to mixture frameworks whenever learning new

tasks.

This paper considers that the task label is given, but we

do not know the total number of tasks, so we assume that an

endless succession of tasks is provided for learning. Moreover,

existing lifelong learning methods have not been analyzed

theoretically so far, which inspires us to propose a theoretical

framework for analyzing forgetting processes of continual

learning models. Furthermore, compared to most existing

dynamic expansion models [22], [23], which are specifically

designed for learning classification tasks, the proposed GMM

framework can support a variety of applications in continual

learning, including image reconstruction, generation, interpo-

lation and image-to-image translation among others.

III. THEORETICAL ANALYSIS FRAMEWORK

This section introduces the theoretical framework for ana-

lyzing the forgetting behavior of the GRM and how this can

be used for enabling the dynamic expansion mechanism under

the lifelong learning.
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A. Preliminaries

Learning setting. This paper mainly focuses on a popular

lifelong learning setting where task and boundaries informa-

tion are always provided during the training. Let X and Z
denote the input and feature space, respectively. Let T =
{T1, · · · , TN} denote a series of tasks, where each is asso-

ciated with a training set Di
S = {(xi, yi)}

Ni
S

i=1, and a testing

set Di
T = {(xi, yi)}

Ni
T

i=1. xi and yi are an observed variable

and its target variable, representing the class label. N i
S and N i

T

represent the total number of samples for Di
S and Di

T , respec-

tively. The lifelong learning goal is to train a model that only

accesses samples from the associated training set Di
S during

the i-th task learning, while it cannot access the data associated

with any of the previously learnt tasks {T1, · · · , Ti−1}. Once

the learning of all tasks is completed, we evaluate the trained

model on all testing sets {D1
T , · · · , D

N
T }.

Definition 1: (Model.) Let M(θ, ς, ϕ) be a single model

that consists of a classifier hς : X → Y and a generator

gθ : Z → X , where Y represents the space of label predic-

tions, represented by {1, 2, . . . , n′}, n′ > 2 for multi-class

classification and {−1, 1} for binary classification, where θ, ς
, ϕ, represent the model components’ parameters. For inferring

the task label for a given input, we introduce a task-inference

network Uϕ : X → T in M, where T is the task domain.

Definition 2: (Generative replay processes). Generative re-

play processes represent an approach for successfully relieving

forgetting when training a single model under multiple tasks

[7]. We suppose that a single model M(θt, ςt, ϕt), where θt,
ςt, ϕt, represent model components’ parameters at time t, was

trained on a sequence of training sets {D1
S , . . . , D

t
S} in which

the generator and classifier are represented by gθt and hςt ,

respectively. When learning a new task (Tt+1) using the model

M, the GRM first generates a set of pseudo-paired samples

through the following process :

{X′,Y′} = {x′
j ∼ Pθt , y′j = hςt(xj) | j = 1, . . . , n}, (1)

where n is the number of pseudo-paired samples. Pθt is

the distribution of generative replay samples produced by

gθt . Then we incorporate the pseudo set {X′,Y′} with the

new training set Dt+1
S in the Tt+1-th task learning. Let S̃t

represent the distribution of the pseudo set {X′,Y′}. We

assume that Uϕ in M(θt, ςt, ϕt) is an optimal task-inference

function which returns the exact task label for an input x′
j .

Then we can define the distribution S̃
(t−i)
i of the pseudo set

{{x′
j , y

′
j} | j = 1, . . . , n}, where each x′

j satisfies Uϕ(x
′
j) = i.

The superscript (t− i) in S̃
(t−i)
i denotes the number of GRM

processes required for the (i)-th task after learning the (t)-th
task. For instance, when the model is trained on the second

task (t = 2), the number of GRM processes for learning

the first task (i = 1) is t − i = 1. Therefore, we can

have several distributions {S̃0
i , S̃

1
i , . . . , S̃

t−i
i }, where S̃0

i = S̃i

represents the distribution of the training set Di
S . When the

number of tasks grows (t is increased), the distribution S̃t−i
i

gradually becomes more different from S̃0
i because repeated

GRM processes lead to gradually forgetting the information

about the original (i)-th task. We also consider S̃
(t−i)
i,X for

representing the marginal distribution of S̃
(t−i)
i .

Definition 3: (Data distribution). We define Si as the

statistical representation for the testing dataset Di
T from the

i-th task. Let Si,X represent the marginal distribution for Si

along X .

Assumption 1: We consider that L : Y ×Y → [0, 1] is sym-

metric and bounded, satisfying ∀(y, y′) ∈ Y2,L(y, y′) ≤ Q′,

where Q′ is a positive number. We also assume that L(·, ·) is

fulfilling the triangle inequality.

Definition 4: (Discrepancy distance [17]). Let Si and S̃
(t−i)
i

be two distributions over the space X ×Y . Let L : Y ×Y →
[0, 1] be a loss function that satisfies Assumption 1. Let

h, h′ ∈ H represent two classifiers, where H is the space of

all classifiers. The discrepancy distance Ld between the two

marginals S̃
(t−i)
i,X and Si,X is defined as :

Ld

(

S̃
(t−i)
i,X , Si,X

)

= sup
(h,h′)∈H2

∣
∣
∣ E

S̃
(t−i)
i,X

[L (h′ (x) , h (x))]

− E
Si,X

[L (h′ (x) , h(x))]
∣
∣
∣. (2)

Definition 5: (Measuring the loss for a given distribution

[17].) For a given loss function L : Y × Y → [0, 1] and a

joint distribution Si, we can measure the loss between two

classifiers {h, h′} using samples drawn from Si as :

LSi
(h, h′) = Ex ∼Si

[L(h(x), h′(x))] . (3)

B. Risk bounds for a model with a single component

The discrepancy distance, defined in Eq. (2), has been

successfully used for deriving generalization bounds in various

domain adaptation applications [17], [48], [49], as well as for

matching real and generated data distributions when training

GANs [50], [51], [52]. The main idea explored in this section

is that of using the risk bound for analyzing the forgetting

behavior, by defining the gap between the target risk and the

source risk evaluated by the model as a forgetting process.

As the model is trained on the dynamically changing source

data distributions, its generalization performance on the target

data is found to rely on the discrepancy distance between the

source and target domains. Firstly, we derive the risk bound

for analyzing the forgetting behavior of a model with a single

component, trained on a certain task.

Theorem 1: Let Si and S̃
(t−i)
i be two joint distributions over

the space X × Y . We define hSi
= argminh∈H LSi

(h, fSi
)

and h
S̃

(t−i)
i

= argminh∈H L
S̃

(t−i)
i

(h, f
S̃

(t−i)
i

) as the optimal

classifiers for Si and S̃
(t−i)
i , respectively, where fSi

and

f
S̃

(t−i)
i

are the target functions for Si and S̃
(t−i)
i , respectively.

By satisfying Definition 1 and considering Si and S̃
(t−i)
i be

the source and target distributions, we derive a risk bound

according to the domain adaptation theory [17], as :

LSi

(
h, fSi

)
≤ L

S̃
(t−i)
i

(
h, f

S̃
(t−i)
i

)
+ f ′

(
Si, S̃

(t−i)
i

)

+ Ld

(
Si,X , S̃

(t−i)
i,X

)
,

(4)
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where f ′
(
Si, S̃

(t−i)
i

)
is defined as :

f ′
(
Si, S̃

(t−i)
i

)
= L

S̃
(t−i)
i

(
h, h

S̃
(t−i)
i

)
− L

S̃
(t−i)
i

(
h, f

S̃
(t−i)
i

)

+ LSi
(fSi

, hSi
) + L

S̃
(t−i)
i

(hSi
, h

S̃
(t−i)
i

) , (5)

where fSi
is the true labelling function for Si.

The proof of Theorem 1 is provided in Appendix-A from

the supplemental material1. From Theorem 1, we can estimate

the gap on the risk bound of a certain task Ti, achieved by a

single model that is currently trained on the t-th task. However,

this bound cannot provide an explicit way of measuring how

the learning of each task can affect the performance of the

model. Next, we evaluate the errors that accumulate during

the continual learning.

Theorem 2: Let S̃
(t−i)
i represent the joint distribution over

the space X ×Y and L be a loss function satisfying Assump-

tion 1. The information loss of a single model on the task Ti
when learning a given (t)-th task is given by :

LSi

(
h, fSi

)
≤ L

S
(t−i)
i

(
h, f

S̃
(t−i)
i

)
(6)

+

t−i−1∑

k=−1

(

Ld(S̃
(k)
i,X , S̃

(k+1)
i,X ) + f ′(S̃

(k)
i , S̃

(k+1)
i )

)

,

where the last term of the right hand side (RHS) is :

f ′(S̃
(k)
i , S̃

(k+1)
i ) = L

S̃
(k+1)
i

(
h, h

S̃
(k+1)
i

)
− L

S̃
(k+1)
i

(
h, f

S̃
(k+1)
i

)

+ L
S̃

(k)
i

(f
S̃

(k)
i

, h
S̃

(k)
i

)

+ L
S̃

(k+1)
i

(h
S̃

(k)
i

, h
S̃

(k+1)
i

) , (7)

where we use S̃
(0)
i to represent Si.

The proof for Theorem 2 is provided in Appendix-B from

the supplemental material1.

Remarks. We have several observations from Theorem 2 :

• If a task was learnt during an early training

stage (i is small), then Eq. (7) indicates

that there are more accumulated errors
∑t−i−1

k=−1

(

Ld(S̃
(k)
i,X , S̃

(k+1)
i,X ) + f ′(S̃

(k)
i , S̃

(k+1)
i )

)

. These

accumulated errors are mainly caused by the repetitive

GRM processes. This also indicates that the model

M(θt, ςt, ϕt) would tend to forget more about the

earlier tasks than those learnt more recently.

• The discrepancy between the source and target distri-

butions when learning new tasks is crucial for a tight

risk bound. If the distance measure in Eq. (7) is small,

then the risk bound becomes tight, resulting in a better

performance on the target distribution.

• A robust generative replay network leads to a tight risk

bound in Eq. (7) since it can better approximate the target

distribution at each training step. This conclusion was

also theoretically and empirically proved in [36].

1The file ’Supplemental material.pdf’ in https://github.com/dtuzi123/GMM

Lemma 1: Based on the Assumption 1, we have the risk

bound of a single model on all its known tasks when learning

the (t)-th task, as :

t∑

i=1

{

LSi

(
h, fSi

)}

≤
t∑

i=1

{

L
S

(t−i)
i

(
h, f

S̃
(t−i)
i

)
(8)

+

t−i−1∑

k=−1

(

Ld(S̃
(k)
i,X , S̃

(k+1)
i,X ) + f ′(S̃

(k)
i , S̃

(k+1)
i )

)}

.

The proof of Lemma 1 is based on the results from

Theorem 2, where we sum the accumulated error terms

from Eq. (6) for learning (t) tasks leading to Eq. (8). It

follows from Lemma 1 that a GMM model with a single

component, by minimizing the discrepancy distance term

Ld(S̃i,X (k) , S̃i,X (k+1)) between the distribution approximated

by the model and the target distribution when learning each

task, can achieve optimal performance.

In practice, a model with a single component suffers a great

loss of information when learning an increasing number of

tasks on its own, especially when each task is associated with

an entirely different data probabilistic representation. This is

because by repeatedly using GRM processes leads to stacking

accumulated errors in the risk bound, as shown by Eq. (8).

C. Risk bounds for the dynamic expansion model

In the following we extend the theoretical analysis from

addressing a single static component to that of a dynamically

expanding model.

Definition 6: (Dynamic expansion model.) Let M =
{M1, · · · ,MK} be a mixture model made up of K compo-

nents, where each Mj represents the j-th component consist-

ing of a generator gθj : Z → X and a classifier hςj : X → Y .

We also allow each component to be reused for learning new

tasks through GRM processes to relieve forgetting.

We propose a risk bound for an optimal mixture model

that dynamically builds new components when learning novel

information ensuring that the resulting mixture model would

not suffer from forgetting.

Lemma 2: Let us consider an optimal mixture model with K
components trained at the t-th task learning, where the number

of tasks is the same as that of components, K = t. We define

the risk bound of the optimal dynamic model as :

t∑

i=1

{

LSi
(hςi , fSi

)
}

≤
t∑

i=1

{

L
S̃

(0)
i

(
hςi , fS̃(0)

i

)

+ f ′
(
Si, S̃

(0)
i

)
+ Ld

(
Si,X , S̃

(0)
i,X

)}

.

(9)

The detailed proof is provided in Appendix-C from SM1.

Lemma 2 provides an optimal solution for a dynamic

expansion model in which lifelong learning can be seen as

the generalization model under multiple target-source domain

matching pairings. The prediction of a dynamic expansion

model is made by the output of a certain selected component

(classifier) from {hζi ∈ H | i = 1, . . . , t} in the mixture

system. Therefore, the performance of each target dataset

relies on the generalization ability of the associated classifier.
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In order to ensure an efficient data representation, with

minimal computational and memory resources, we aim to train

a dynamic expansion model by assuming that the number of

given tasks is eventually larger than the number of compo-

nents. In this case, a flexible risk bound, considering the in-

formation loss of a dynamic expansion model, under different

component configurations, is proposed in the following.

Definition 7: (Retraining through repeated GRM processes.)

Let B = {b1, . . . , bj} denote a set of labels where each bi
represents the task that is only trained once. The corresponding

distribution for bi is defined as S̃
(0)
bi

. Let B′ = {b′1, . . . , b
′
n}

represent a set of labels, where each b′j indicates that the

b′j-th task was used for re-training through repeated GRM

processes. We also define a set B̂ = {b̂1, . . . , b̂n}, where each

b̂i > 1 denotes that the b′i-th task was trained using GRM

processes for (b̂i) times S̃
(0)
b′
i

→ S̃
(b̂i)
b′
i

, where S̃
(b̂i)
b′
i

represents

the corresponding probabilistic representation.

Lemma 3: Let us consider the risk bounds for the dynamic

expansion model, when re-training with previously seen tasks.

Let ft(bi) be a function that receives the task ID/label and

returns the index of the component hζft(bi) which was trained

with the given task (the bi-th task) and ζ are the parameters.

The risk bound for a dynamic expansion model M training at

the (t)-th task can be derived by :

t∑

i=1

{

LSi
(hζi , Si)

}

≤

card(B)
∑

i=1

{

L
S̃

(0)
bi

(
hζft(bi) , fS̃(0)

bi

)

+ f ′
(
Sbi , S̃

(0)
bi

)
+ Ld

(
Sbi,X , S̃

(0)
bi,X

)}

+

card(B′)
∑

i=1

{

L
S̃

(t−b̂i)

b′
i

(hζft(b′i)
, f

S̃
(t−b̂i)

b′
i

)

+

b̂i−1∑

k=−1

(

Ld(S̃
k
b′
i
,X , S̃

(k+1)
b′
i
,X ) + f ′(S̃k

b′
i
, S̃

(k+1)
b′
i

)
)}

,

(10)

where ft(bi) in Eq. (10) ensures that the classifier after

learning bi tasks is selected to evaluate the risk bound for

Sbi in Eq. (10). We consider t > 1 to represent the number of

tasks to be learned and card(·) represents the cardinal number

in a set. We omit the component index in Eq. (10) for the

sake of simplification. We also know that 0 ≤ card(B) ≤ K,

0 ≤ card(B′) ≤ K, card(B) + card(B′) > K and

card(B′) = card(B̂), where K represents the total number

of mixture components that were built for learning M. The

risk for training a single component model M(θt, ωt, ψt) is

defined as Rsingle in Eq. (8), while Rmixture is the RHS of

Eq. (10), represents the risk for the dynamic expansion model :

Rsingle ≥ Rmixture . (11)

The proof of Lemma 3 is provided in Appendix-D from the

supplemental material1.

Remark. There are several observations from Lemma 3.

• Lemma 3 provides the risk-bound analysis for the dy-

namic expansion model in a realistic environment. We

consider a number of (K) components resulted after train-

ing the mixture model M according to certain conditions

such us memory constraints or task complexity.

• We observe that B′ = ∅ leads to Eq. (10) becoming

identical to Eq. (9), resulting in a tight risk bound while

also requiring additional network parameters. On the

other hand, when we have card(B) = 1 then B = {t},

the right-hand-side of Eq. (10) becomes as in Eq. (8),

implying a large gap in the risk bound. This happens

when the dynamic expansion model does not result in an

architecture expansion.

• The trade-off between generalization performance and

model complexity can be explained by considering the

ratio v = (K − card(B))/(K − card(B′)). When v
increases, the model adds more parameters while also

improving its generalization performance. Conversely,

when v decreases, the number of parameters is gradually

reduced.

D. Theoretical Analysis for the Memory-based Methods

In this section, we extend the proposed theoretical frame-

work to analyze the forgetting in various memory-based meth-

ods.

Definition 8: (The memory buffer). Let Ci be a fixed-size

memory buffer updated at the i-th task and SCi
its distribution.

The memory buffer Mi is used to relieve the forgetting at the

new task learning (Ti+1).

Theorem 3: Let S̃1 ⊗ · · · S̃i be a joint distribution of all

previously seen training datasets over X × Y at the i-th
task learning. Let S̃i ⊗ SMi−1

be a joint distribution of the

dataset that combines Mi−1 and Di
S . Let L be a loss function

satisfying Assumption 1. Then we can derive a generalization

bound to describe the performance of a single classifier trained

with the memory buffer Mi−1 at the i-th task learning :

LS̃1⊗···S̃i

(
h, fS̃1⊗···S̃i

)
≤ LS̃i⊗SMi−1

(
h, fS̃i⊗SMi−1

)

+ f ′
(
S̃1 ⊗ · · · S̃i, S̃i ⊗ SMi−1

)

+ Ld

(
S̃1,X ⊗ · · · S̃i,X , S̃i,X ⊗ SMi−1,X

)
,

(12)

where S̃1,X⊗· · · S̃i,X and S̃i,X⊗SMi−1,X
denote the marginal

distribution of S̃1 ⊗ · · · S̃i and S̃i ⊗ SMi−1
, respectively.

fS̃1⊗···S̃i
and fS̃i⊗SMi−1

are the true labeling function for

the data samples drawn from S̃1 ⊗ · · · S̃i and S̃i ⊗ SMi−1
,

respectively.

Remark. There are several observations from Theorem 3.

• Theorem 3 provides the risk-bound analysis for the

memory-based methods in continual learning. Specifi-

cally, the memory buffer Mi−1 stores data samples from

all previous tasks {T1, · · · , Ti−1} which are then replayed

during the i-th task learning.

• Ensuring the selection of high-quality data while preserv-

ing them into the memory buffer plays an important role

in achieving a good performance. For example, if the

memory buffer stores more important data, that can sta-

tistically represent all previous datasets {D1
S , · · · , D

i−1
S },

the distance term Ld

(
S̃1,X ⊗ · · · S̃i,X , S̃i,X ⊗ SMi−1,X

)

is reduced, leading to a smaller target risk.

• The results of Theorem 3 can be applied to describe the

performance for a board range of memory-based con-
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Shared encoder

z

Encoder1

EncoderK

Student encoder

z’

Shared decoder
Decoder1

DecoderK

Student decoder

Reconstruction

Input

Fig. 1. The Generative Mixture Model (GMM) diagram. A few components
(‘Encoder K’, ‘Student Encoder’, ‘Decoder K’, ‘Student Decoder’) update
their parameters during lifelong learning. We train the Student module when
learning each task by using the loss function from Eq. (25).

tinual learning methods, including the Dark Experience

Replay (DER) [53], CarM [54], and others.

IV. METHODOLOGY

Theorem 2 shows that a single VAE suffers from more

forgetting when learning an increasing number of tasks. In

order to address this drawback, the theoretical analysis from

Lemma 3 shows that a dynamic expansion mixture model

requires a trade-off between the resulting model complexity

and its performance. Inspired by this theoretical framework,

we develop a new Growing Mixture Model (GMM) that

satisfies two aspects. First, it addresses forgetting in lifelong

learning by preserving the learned knowledge in the frozen

network structure while dynamically adding new components

to a growing mixture, when learning new tasks. Then, in order

to reduce the complexity of the model while preserving its

performance on previously learnt data, it shares some of its

parameters between these components by employing a new

knowledge assessment mechanism.

A. The Growing Mixture Model (GMM)

In the following we detail the proposed GMM’s network

architecture. In order to reduce the whole model’s parameters,

we consider a shared module, represented by two networks

feωs
: X → Z ′ and fdθs : Z → X ′ for encoding and decoding

data, Z ′ and X ′ are the feature space and the reconstructed

data, respectively. {ωs, θs} are the parameters of the shared

module. During the GMM expansion, we also dynamically

build component-specific modules, each consisting of two

neural networks feω̃i
: Z ′ → Z and fd

θ̃i
: X ′ → X where i

is the component index. The encoder for the i-th compo-

nent is implemented by qωs,i
(z |x) = feωi

⊙ feω̃s
(x), where

⊙ indicates that the shared model function feωs
is nested

within the component-specific function feωi
. Similarly with the

encoder, we implement the decoder for the i-th component

as pθs,i(x | z) = feθi ⊙ fe
θ̃s
(z), where ⊙ indicates that the

specific subdecoder fe
θ̃i
(z) is built on top of the shared decoder

feθs . Since each component has an independent encoder and

decoder, the optimization for the i-th component corresponds

to maximizing the Evidence Lower Bound (ELBO) [9] :

Li
ELBO(x; θ, ω) := Ez∼qωs,i

(z |x)

[
log pθs,i(x | z)

]

−KL
[
qωs,i

(z |x) ‖ p(z)
]
.

(13)

Decoder 1

Expansion 
criterion

New task

Samples

Shared decoder

Decoder � Samples

Generate

Generate

Prior distribution

Knowledge 
measure

Measure

Measure

Fig. 2. Diagram illustrating the knowledge novelty decision approach used
for the mixture model expansion. The probabilistic representations of samples
generated by each component of M and that of real samples characterizing a
new task are used for checking the model expansion, according to Eq. (15).

The shared module is only updated at the first iteration. The

structure of the nested decoder and encoder is shown in Fig. 1.

B. Selection mechanism and expansion criterion

Lemma 3 shows that the optimal performance is achieved

when the number of components is equal to that of tasks.

In this case, the accumulated errors are minimal. However,

training a task-specific component for a mixture system would

require substantial memory budgets as the number of tasks

grows. To address this problem, we introduce a knowledge-

evaluation criterion that guides component selection and mix-

ture model expansion. The primary motivation lies in the ob-

servation from Lemma 3, which indicates that the accumulated

errors depend on the discrepancy distance between the target

and source distribution. To reduce the accumulated errors, a

reasonable solution is for a given component to learn multiple

tasks of a similar nature, indicated by a small discrepancy

distance between the data corresponding to these tasks.

First, we consider estimating the discrepancy distance be-

tween the new task and the data representation learnt by each

previously trained component. A high discrepancy distance

indicates that the new task is novel enough and in this case

we add a new component for learning this task. However, such

an approach requires a classifier that is assumed to be trained

on the labeled dataset, which is not available in unsupervised

learning. We assume that at the t-th task learning, we have

already trained K components. When a new task Tt+1 is

provided for training, we propose to compare the data log-

likelihood between the probabilistic representations of each

learned component and that corresponding to the new task :

FK(Mi, Tt+1) =
1

m

m∑

k=1

∣
∣
∣Li

ELBO(x
′
i,k; θ, ω)

− Li
ELBO(x(t+1,k); θ, ω)

∣
∣
∣,

(14)

for i = 1, · · · ,K, where m is the number of samples that are

used for the evaluation and Mi is the i-th trained component.

In practice, we set m = 5000 samples in all experiments.

Since we can not access all past samples, we use each

VAE component to generate pseudo samples x′
i,k, where i is

the component index, while x(t+i,k) represents the k-th real
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training sample drawn from the training set of Tt+1. Eq. (14)

measures the similarity of the probabilistic representation of

each component with that corresponding to the new task which

is used for component selection as :

K

min
i=1

FK(Mi, Tt+1) ≥ λ , (15)

where λ is a parameter defining the GMM size. The detailed

component expansion and selection process is illustrated in

Fig. 2. If the condition from Eq. (15) is satisfied, the GMM

will add and train a new component MK+1 to the mixture M;

otherwise, it selects a component according to the criterion :

s = arg
K

min
i=1

FK(Mi, Tt+1) , (16)

where s represents the selected component index, which is

then updated using the GRM.

The choice of λ in the expansion criterion from Eq. (15),

represents a trade-off between model complexity and perfor-

mance. For example, if λ is large, GMM tends to frequently

reuse its components for learning new tasks while accumu-

lating more errors due to repetitive GRM processes. On the

other hand, when λ is small, GMM tends to create more

components, increasing the complexity of the model while

reducing the accumulated errors.

C. The unsupervised algorithm implementation

In the following, we summarize the unsupervised GMM

algorithm implementation, while the pseudocode is provided

in Algorithm 1 from the Appendix-E of the SM1 :

• Step 1. Training phase : If the GMM has no components

yet, we create a new component for learning the first

task T1. Otherwise, we check whether to add or not a

new component, using Eq. (15). If GMM adds a new

component, then we only train the last component on

DS
i at the i-th task learning by using Eq. (13). If GMM

does not perform the expansion we use the s-th selected

component to generate a dataset denoted as D′ and form

a joint dataset DS
i = DS

i

⋃
D′ which is used to train that

s-th component.

• Step 2. The knowledge measure evaluation : After the

current task learning (Ti) is finished, we evaluate the

knowledge measure between each component and the

dataset DS
i+1 of the next task (Ti+1) by using Eq. (14).

• Step 3. The expansion and selection process : We em-

ploy the knowledge measure to decide either the expan-

sion or the selection process, controlled by λ. If Eq. (15)

is satisfied, then we add a new component, otherwise,

we choose an appropriate component using Eq. (16) for

learning task Ti. We then proceed to learning the next

task Ti+1 (Step 1).

D. The supervised learning task

Although the proposed GMM is mainly used for unsu-

pervised generative modeling tasks, it can be extended to

supervised applications such as image-to-image translation and

image classification. Therefore, we only modify the individual

components to implement these applications, and the training

process is otherwise similar to that for unsupervised learning.

Image-to-Image Translation task (IoIT). The conditional VAE

(CVAE) is a well-known variant of VAEs [55], which is able

to make prediction tasks, defined by :

log pθi (y | x) ≥ Eqωi
(z|x,y) [log pθi(y | x, z)]

−DKL (qωi
(z | x,y) || pθi (z | x)) .

(17)

where pθi(z |x) represents the prior network which receives

x and returns z. pθi(y |x, z) is a recognition network, of

parameters θi, which is used for the prediction task. In this

paper, we consider a reduced version of the CVAE for imple-

menting each component in order to reduce the total number

of parameters. Firstly, we replace qωi
(z |x,y) by employing

an encoder qωi
(z |x), of parameters ωi, which processes each

image as input. A simple Gaussian distribution N (0, I) can

be used for replacing the prior pθi(z |x) reducing the model’s

size. Eq. (17) is reformulated as the main objective function

for the Image-to-Image translation task, LIoIT(x,y;ωi, θi) :

LIoIT(x,y;ωi, θi) = Eqωi
(z |y) [log pθi(y | x, z)]

−DKL(qωct
(z |y) || pθi(z)),

(18)

where y in Eq. (18) belongs to the image domain and i
is the component index. We can also use an efficient infer-

ence procedure at the testing phase, y ∼ pθi(y |x, z) and

z ∼ pθi(z) since each component is a reduced version of the

CVAE. As we do not attempt to generate past samples by

using pθi(y |x, z), ∀i = 1, . . . , t− 1 after the task switch, the

model adds a new component when seeing a new task in order

to avoid forgetting.

Classification task. For the classification task, we allow y

as a discrete variable (one-hot vector), representing the class

label. Therefore, we implement pςi(y |x, z) as a classifier. The

inference model pςi(z |x) is replaced by using a simple normal

distribution p(z) = N (0, I) in Eq. (17), and then we have the

following loss function for training the classifier :

LC(x,y;ωi, ςi) = Eqωi
(z|x,y) [log pςi(y | x, z)]

−DKL(qωi
(z | x,y) || p(z)).

(19)

Eq. (19) still requires training the generato in order to imple-

ment GRMs. We employ the following objective function for

the generator :

LGen(x,y;ωi, θi) = Eqωi
(z|x,y) [log pθi(x |y, z)]

−DKL(qωi
(z | x,y) || p(z)).

(20)

In practice, we optimize LGen and LC by using data mini-

batches. In addition, the loss function LGen is also used during

the testing phase for selecting the suitable component.

E. Training a compressed Student module

We also propose a Teacher-Student architecture [11], for

mapping multiple tasks into a unique latent space, where the

expanding nested encoder-decoder model, described above,

is considered as a Teacher which is used for training a

compressed Student model [42] under unsupervised learning.

The advantage of training a Student is that of being able
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TABLE I
CLASSIFICATION RESULTS BY VARIOUS MODELS FOR MSFIR LEARNING.

MSE SSMI PSNR

Datasets LGM CURL BE GMM Stud LGM CURL BE GMM Stud LGM CURL BE GMM Stud

MNIST 129.93 211.21 19.24 26.64 176.82 0.45 0.46 0.92 0.88 0.42 14.52 13.27 22.57 21.02 13.72

Fashion 89.28 110.60 38.81 33.67 178.04 0.51 0.44 0.61 0.75 0.37 15.82 14.89 14.46 19.68 8.81

SVHN 169.55 102.06 39.57 30.27 146.70 0.24 0.26 0.66 0.64 0.47 8.11 10.86 18.90 15.55 13.58

IFashion 432.90 115.29 36.52 35.03 158.18 0.26 0.54 0.75 0.77 0.43 9.04 15.51 19.32 19.47 14.17

RMNIST 130.28 279.47 25.41 22.97 157.55 0.45 0.29 0.88 0.90 0.43 14.51 10.84 21.31 21.71 14.18

Average 190.38 163.72 31.91 29.71 163.45 0.38 0.39 0.76 0.78 0.42 12.40 13.07 19.31 19.48 12.89

to compress the information learnt by a complex GMM

Teacher module, implemented by an expanding VAE model as

described in Section IV-A, by transferring the essence of its

knowledge into a lightweight model which can be used for fast

inference during the testing phase. Furthermore, the Student

module enables many applications, including image recon-

struction and image interpolation across multiple domains. The

Teacher-Student framework structure is shown in Fig. 1, where

the GMM is used as the Teacher module, and the Student

module is based on a shared encoder and a shared decoder. We

propose a new Knowledge Distillation (KD) loss based on the

Kullback-Leibler (KL) divergence between the probabilistic

representation of the Student and that of the Teacher, while

also considering the information from the new task, in the

context of lifelong learning. The training enables the Student

to acquire knowledge from both the new task as well as from

the data generated by the Teacher module :

DKL (Pθ1 ,Pθ2 , . . . ,PθK || Pθstu) , (21)

where each Pθi is the distribution approximated by the gen-

erator of the i-th component of the Teacher. Pθstu is the

distribution representing the data generated by the Student.

However, directly optimizing Eq. (21) is intractable because

the first KL component from Eq. (21) involves multiple

distributions. Then we approximate Eq. (21) by :

DKL (Pθ1 ,Pθ2 , . . . ,PθK || Pθstu) ≈
K∑

i=1

DKL (Pθi || Pθstu),

(22)

where each DKL(Pθi || Pθstu) can be expressed as :

DKL (Pθi || Pθstu) = EPθi
[log pθi (x)− log pθstu (x)] ,

(23)

where pθi(x) and pθstu(x) represent the functions for Pθi

and Pθstu . The first term in Eq. (23) can be omitted during

the optimization because we are only required to update the

parameters θstu of the Student module during the knowledge

distillation procedure.

Then, the knowledge distillation loss for training the Stu-

dent module, after considering the optimization problem from

Eq. (23) for all components in the Teacher, is represented as

a maximization problem :

max

{
K∑

i=1

EPθi
[log pθstu (x)]

}

. (24)

By considering the (t)-th task learning, we construct a loss

function for the Student :

Lstu = Ex∼St,X
[log pθstu (x)] +

K∑

i=1

{

EPθi
[log pθstu (x)]

}

,

(25)

where St,X is the distribution of the training dataset DS
t .

log pθstu(x) = log
∫
pθstu(x | z) p(z)dz is intractable due to

having to integrate over all latent variables z. Then we estimate

each log-likelihood function using ELBO :

EqωStu
(z|x) [log pθStu

(x | z)]−DKL [qωStu
(z | x) || p(z)]

︸ ︷︷ ︸

ELBO on the t-th task

+
K∑

i=1

Ex′∼Pθi

(

EqωStu
(z |x) [log pθStu

(x | z)]−D′
KL

)

︸ ︷︷ ︸

Knowledge distillation optimization

,

(26)

where D′
KL is defined as :

DKL [qωStu
(z | x) || p(z)] . (27)

In Fig. 1, we illustrate the Teacher-Student network archi-

tecture, where a GMM is the Teacher while the Student is

characterized by the specific parameters {θstu, ωstu} while

sharing the other parameters with the joint network. This

approach reduces the complexity of the whole system while

enabling the training of a lightweight Student module in

the testing phase. Furthermore, during training, the Student

module is always activated to compress the knowledge from

the new task as well as from all trained GMM components. We

provide the pseudo-code of the teacher-student framework in

Algorithm 2 of Appendix-E from the supplemental material1.

We also provide the theoretical analysis of the knowledge

assimilation by the Student module in Appendix-F from SM1.

V. EXPERIMENTS

In the following, we provide the experiments and discuss

the results of the proposed methodology.

A. Implementation settings

We use TensorFlow for the implementation of all mod-

els and adopt Adam optimization algorithm [56], where we

consider a learning rate of 2 · 10−4 and β is 0.5. We

implement the shared encoder by using a CNN with four

layers of {128, 256, 512, 1024} units. We implement each sub-

encoder ω̃i by two fully-connected layers {1024, 100}. For the
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TABLE II
RESULTS AFTER THE CONTINUAL LEARNING OF CCCOS DATASETS.

MSE SSMI PSNR

Datasets LGM CURL BE GMM Stud LGM CURL BE GMM Stud LGM CURL BE GMM Stud

CelebA 1536.06 1446.86 209.93 214.55 646.95 0.33 0.34 0.69 0.69 0.49 15.14 15.42 23.61 23.52 18.71

CACD 2348.35 2202.88 459.93 363.17 1394.11 0.26 0.27 0.55 0.62 0.38 13.16 13.40 20.21 21.28 15.38

3D-Chair 1430.87 1258.02 629.55 483.29 1527.70 0.43 0.47 0.73 0.80 0.47 15.68 16.18 19.26 20.72 15.60

Omniglot 3356.40 2464.04 753.30 361.33 4258.15 0.20 0.26 0.78 0.89 0.28 11.76 13.13 18.55 21.99 10.75

Sub-IM 1147.64 1336.58 773.89 783.21 1064.51 0.30 0.32 0.37 0.37 0.32 15.80 16.07 18.47 18.44 17.06

Average 1963.86 1741.68 565.30 441.11 1778.29 0.30 0.33 0.62 0.67 0.39 14.31 14.84 20.02 21.19 15.50

Threshold
Add expert

Add expert

Add expert

(a) Knowledge evaluation (top) and the number of components
(bottom).

(b) No. of components (top) and the performance vs threshold
λ (bottom).

Fig. 3. Evaluating the model’s complexity considering its number of components for the MSFIR’s lifelong learning.

decoding process, we implement the shared part θS by using

a CNN that has 3 fully connected layers with {256, 8, 8} units

and 2 layers with {256, 256} units. Then we implement the

sub-encoder θ̃i by using a CNN that consists of three layers of

{256, 256, 3} units. For an input image of size of 64×64×3,

the shared encoder ωS is implemented by a CNN with 3 layers

with {64, 128, 256} units. We also implement the sub-encoder

ω̃i by using a network that consists of a convolution layer with

256 units and two fully connected layers of {1024, 256} units.

For the decoding process, we implement the shared decoder

θS by using a network that consists of three convolution

layers {256, 256, 256} and then three layers of {256, 8, 8}
fully connected units. We then implement the sub-decoder θ̃i
by using a CNN that consists of {256, 128, 3} processing units.

B. Datasets and evaluation criteria

This section provides information about the datasets used

for training and the evaluation criteria.

• For unsupervised learning, we consider a sequence of

tasks, where we resize all images to 32×32×3 pixels. The

datasets used for experiments are MNIST [57], SVHN

[58], Fashion [59], InverseFashion (IFashion) and Rotated

MNIST (RMNIST), which contains images which are

rotations of those from MNIST (MSFIR sequence).

• For supervised classification, we incorporate CIFAR10

[60] after MSFIR, resulting in the MSFIRC sequence.

Evaluation criteria: For supervised learning, we evaluate the

average classification accuracy on all tasks as the performance

criterion. Meanwhile, for the unsupervised learning, we con-

sider the structural similarity index measure (SSIM) [61], the

MSE and PSNR [61] in order to evaluate the reconstruction

quality.

Baselines: We compare the results of the proposed method-

ology with those from three popular continual learning

models : Continual Unsupervised Representation Learning

(CURL) [13], Lifelong Generative Modeling (LGM) [10] and

BatchEnsemble (BE) [15]. BE was originally used in super-

vised learning while here is used for unsupervised learning

after being implemented as a mixture model where each

component is a VAE having some trainable vectors onto a

joint network. We only update this joint neural network at the

first task learning while freezing it afterwards in order to avoid

forgetting.

C. Generative modeling tasks

We provide the classification results for the lifelong learning

of MSFIR, with 20 epochs for learning each task, in Table I,

where ‘Stud’ represents the results for the Student model

which accesses the generated information from the GMM

considered as a Teacher within a Student-Teacher architecture.

From Table I, we observe that the proposed GMM outperforms

the baseline in each task, demonstrating the advantage of the

proposed approach.

D. Continual learning of datasets containing complex images

GMM is evaluated when considering tasks involving the

learning of databases consisting of complex images, described



11

TABLE III
CLASSIFICATION ACCURACY ACHIEVED BY VARIOUS MODELS AFTER THE

CONTINUAL LEARNING OF MSFIRC.

Dataset LGM [10] CURL [13] BE[15] GMM MRGANs [66]

MNIST 90.54% 91.30% 99.40% 99.44% 91.24%

SVHN 22.56% 62.05% 74.46% 85.13% 64.12%

Fashion 68.29% 79.18% 88.95% 91.49% 80.10%

IFashion 73.70% 82.51% 86.45% 68.75% 82.19%

RMNIST 90.52% 98.56% 99.10% 98.50% 98.30%

CIFAR10 57.43% 67.34% 52.48% 65.27% 67.19%

Average 67.17% 80.16% 83.47% 84.76% 80.52%

TABLE IV
CLASSIFICATION RESULTS FOR THE LIFELONG LEARNING OF MSFIRRC.

Dataset GMM BE [15]

MNIST 86.01% 99.28%

SVHN 86.91% 74.84%

Fashion 90.68% 87.60%

IFashion 91.02% 86.03%

RMNIST 99.01% 98.77%

RFashion 91.43% 86.60%

CIFAR10 64.61% 54.79%

Average 87.10% 83.99%

in the following :

Sub-ImageNet (Sub-IM). This is a subset of ImageNet where

the number of images associated with each task is balanced by

randomly collecting 60,000 samples from the ImageNet [62].

CelebA is a large-scale face attributes dataset which has more

than 200K face images of celebrities [63].

CACD is another human face dataset consisting of 163,446

images from 2,000 persons collected from the internet [64].

3D-Chair contains rendered images of around 1,000 different

three-dimensional chair models [65].

For Sub-IM we consider 50,000 samples as the training

set while the other 10,000 are the testing set. For CelebA,

CACD and 3D-Chair, we randomly select ninety percent of all

data from each dataset as the training set while all remaining

samples are used for testing. We build a sequence of tasks

for learning complex images from CelebA, CADS, 3D-Chair,

Omniglot and Sub-IM databases, namely CCCOS, where we

resize all images to 64 × 64 × 3. Various models are trained

under CCCOS and we report the results in Table II. We

can observe that GMM outperforms other baselines in both

CCCOS and MSFIR settings.

E. Classification tasks

In the following we compare GMM with the state-of-the-

art in image classification. LGM [10] is designed for the

unsupervised learning, but it can be adapted for supervised

classification, by training a classifier on the joint dataset

consisting of real samples and the generated samples from

LGM. We report the classification accuracy in Table III, which

shows that the proposed GMM outperforms other models.

Meanwhile, BE also achieves good performance, where we

consider the same number of components as that of tasks,

ensuring optimal performance (further detail in Lemma 3).

TABLE V
RESULTS FOR SPLIT CIFAR WHERE ‘C’ DENOTES THE NUMBER OF

COMPONENTS FOR THE PROPOSED GMM MODEL.

Methods Split CIFAR

FROMP-L2 [67] 75.6% ± 0.4

FROMP [67] 76.2% ± 0.4

SI [68] 73.5% ± 0.5

VCL + random coreset [31] 67.4% ± 1.4

EWC [28] 71.6% ± 0.9

GMM 76.40% ± 0.3 (6 C)

GMM 65.70% (5 C)

TABLE VI
RESULTS FOR THE CONTINUOUS LEARNING BENCHMARK WHERE ‘C’
DENOTES THE NUMBER OF COMPONENTS FOR THE PROPOSED GMM.

Methods Permuted MNIST Split MNIST

Improved VCL* [69] 93.1% ± 1 98.4% ± 0.4

EWC* [28] 84% 63.1%

DLP* [70] 82% 61.2%

SI* [68] 86% 98.9%

FROMP* [67] 94.9% ± 0.1 99.0% ± 0.1

FRCL-TR* [71] 94.3% ± 0.2 97.8% ± 0.7

FRCL-RND* [71] 94.2% ± 0.1 97.1% ± 0.7

GMM 96.46%±0.03 (10 C) 99.21%±0.04 (5 C)

GMM 88.78% (7 C) 96.77% (4 C)

GMM 95.25% (8 C) 91.37% (3 C)

We also test various models when learning many tasks, by

considering a sequence consisting of MNIST, SVHN, Fashion,

IFashion, RMNIST, rotated Fashion (RFashion) and CIFAR10

(MSFIRRC). We consider λ = 180 in Eq. (15) for the

proposed GMM. After all tasks are learnt, GMM has five

components, reusing the first component which learns MNIST

and learning afterwards a similar task (RMNIST), and also

reusing the third component which firstly learns Fashion and

then RFashion. According to the classification results from

Table IV GMM outperforms BE in terms of the average

classification accuracy as well as on each dataset, except for

MNIST.

Despite the fact that the GMM is used for task-incremental

learning, we also investigate its performance in the class-

incremental setting. Following the setting from [67], we create

a new dataset, namely Permuted MNIST, where MNIST is

divided into ten tasks, and each task would process images

created following a certain pixel permutation in the images

from MNIST. Split MNIST [68] splits MNIST into five tasks,

where each of these contains samples belonging to two succes-

sive classes of digits. For Permuted MNIST, the classifier in

each expert is implemented by using a Multilayer Perceptron

(MLP) with 2 hidden layers with 100 units each. The classifier

of each expert is a neural network comprised of 2 layers with

256 units on each layer when training on Split MNIST. We

vary the threshold λ from Eq. (15), between 80 to 120 for

Permuted MNIST and between 30 and 60 for Split MNIST.

We also consider a more challenging dataset, Split CIFAR

[68] using the same procedure as in [67], where CIFAR10 is

considered as the initial task followed by five tasks, where

the training samples for each task are selected from 10 data
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TABLE VII
CLASSIFICATION RESULTS, WHERE THE RESULTS FOR ALL OTHER

METHDSO THAN GMM ARE CITED FROM [72].

Methods Split CIFAR10 R-MNIST

DER [53] 70.51% ± 1.67 97.57% ± 1.47

ER [73] 57.74% ± 0.27 94.89% ± 0.95

DER++ [53] 72.70% ± 1.36 97.54% ± 0.43

iCaRL [74] 47.55% ± 3.95 -

A-GEM [75] 22.67% ± 0.57 89.04% ± 7.01

HAL [76] 41.79% ± 4.46 92.35% ± 0.81

GEM [33] 26.20% ± 1.26 92.55% ± 0.85

FDR [77] 28.71% ± 3.23 95.48% ± 0.68

GSS [34] 49.73% ± 4.78 89.38% ± 3.12

Co2L [72] 74.26% ± 0.77 98.65% ± 0.31

GMM 76.12% ± 1.35 (4C) 98.78% ± 1.12 (18C)

categories in their class order from CIFAR100. Following

from [67], we adopt a network architecture that consists of

four convolution layers and two fully connected layers. The

shared classifier is implemented by four convolution layers

and we build a sub-classifier during the expansion process

by using two fully connected layers added on the top layer

of the shared classifier. Therefore, each sub-classifier reuses

parameters from this shared classifier, thus reducing model’s

size. The parameters of the shared classifier are only updated

when learning the first task to relieve forgetting. We vary the

threshold λ from 80 to 100 and perform five independent runs

for GMM. The average classification accuracy for GMM in

Permuted MNIST, Split MNIST and Split CIFAR, are provided

in Tables V and VI, with all other results cited from [67]. The

comparison models Functional Regularisation of Memorable

Past (FROMP) and FROMP-L2 models were proposed in [67],

while Synaptic Intelligence (SI) was proposed in [68]. We

denote by ‘6 C’ that GMM trains six components. These

results show that optimal performance is ensured when GMM

has a number of components equal to that of the learnt tasks,

which is consistent with Lemma 2.

We also compare with several recently proposed continual

learning models on Split CIFAR10 and R-MNIST dataset [33]

that consists of 20 tasks, where each task is constructed by

rotating MNIST images by a random angle between [0, 180).
The classification results on Split CIFAR10 and R-MNIST are

reported in Table VII, which shows that the proposed GMM

outperforms other baselines.

F. Comparison with State-of-the-Art

We compare the proposed framework with the state-of-the-

art. Given that the proposed GMM framework has a flexible

network design, we can implement the shared model for all

experts using a large-size pre-trained vision transformer [78].

Each new expert is then implemented using a simple fully

connected layer reducing the overall model size. In the class-

incremental learning setting, each task usually contains non-

overlapped category information. As a result, we dynamically

build a new expert when seeing a new task. At the testing

phase, we consider the VAE of each expert to evaluate the

sample log-likelihood in order to choose the appropriate expert

for the prediction of the given testing samples. We compare

with the following recent and popular continual learning

methods :

• Dark Experience Replay (DER) [53] is a popular

memory-based approach, which employs a reservoir sam-

pling to update the memory buffer. DER++ is an ad-

vanced verson of the DER, which adds an additional loss

term to enforce the higher conditional likelihood with

respect to the ground truth labels [53].

• Gradient Episodic Memory (GEM) [33] is a memory-

based approach, which calculates the gradient informa-

tion to guide the model’s optimization. Averaged-GEM

(AGEM) [75] is an advanced version of the GEM, which

reduces computational costs.

• ICL w Pure-MM [79] is a recent continual learning

approach consisting of two systems, relying on a Visual

Transformer (ViT) [80], which cooperatively deals with

network forgetting in continual learning.

• Incremental Mixture of Experts (IMOE) [47] is a new

dynamic expansion model, which is built based on the

CLIP framework [81]. For a fair comparison with the

proposed GMM framework, we employ the pre-trained

ViT as the backbone for IMOE instead of CLIP. In

addition, we employ the same network architecture for

implementing both GMM and IMOE, respectively.

The results for Split CIFAR10, Split CIFAR100 and Split

TinyImageNet are reported in Table VIII. The proposed

GMM framework outperforms most baselines by a large

margin on these datasets. In addition, by dynamically building

lightweight experts, when learning new tasks, onto the pre-

trained ViT as the backbone leads to significant performance

improvements, as shown by the results of ICL w Pure-

MM and IMOE. In addition, the proposed GMM frame-

work outperforms the current state-of-the-art method IMOE,

demonstrating its effectiveness. We also provide the number of

parameters and the training times for the baselines in Table IX.

We observe that the dynamic expansion models such as IMOE

and GMM have more parameters than other baselines. This is

because both IMOE and GMM dynamically create new experts

based on the large-scale pre-trained ViT backbone. In addition,

compared to the static model, dynamic expansion models only

update the parameters of one expert, when learning each task.

Furthermore, the proposed GMM framework requires fewer

parameters and enjoys a faster training process than the current

state-of-the-art, IMOE.

G. Ablation study

We investigate the significance of each module from the

proposed GMM. In Fig. 3a we evaluate the knowledge in

the mixture model, showing the evaluation of Eq. (15) in

the top plot while the bottom one evaluates the number of

components, where GMM expands with four more compo-

nents through the lifelong learning of the MSFIR sequence.

The first component which initially has learnt MNIST, is

afterwards trained on a similar dataset, namely RMNIST,

which consists of rotated images from MNIST. The proposed
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TABLE VIII
THE AVERAGE ACCURACY EVALUATED ON STANDARD CONTINUAL

LEARNING BENCHMARKS, CONSIDERING 10 RUNS. THE RESULTS OF

BASELINES ARE TAKEN FROM [53] AND [82], [79].

Methods Split CIFAR10 Split TinyImageNet Split CIFAR100

ER [73] 93.61 ± 0.27 48.64 ± 0.46 73.37 ± 0.43

GEM [33] 92.16 ± 0.69 - -

A-GEM [75] 89.48 ± 1.45 25.33 ± 0.49 48.06 ± 0.57

iCaRL [74] 88.22 ± 2.62 31.55 ± 3.27 -

FDR [77] 93.29 ± 0.59 49.88 ± 0.71 -

GSS [34] 91.02 ± 1.57 - 57.50 ± 1.93

HAL [76] 84.54 ± 2.36 - 42.94 ± 1.80

DER [53] 93.40 ± 0.39 51.78 ± 0.88 -

DER++ [53] 93.88 ± 0.50 51.91 ± 0.68 75.64 ± 0.60

DER+++refresh [82] 94.64 ± 0.38 54.06 ± 0.79 77.71 ± 0.85

ICL w Pure-MM [79] 99.68 - 96.35

IMOE [47] 96.27 ± 0.51 90.02 ± 0.65 94.52 ± 0.85

GMM 98.65 ± 0.46 91.62 ± 0.86 96.56 ± 0.73

TABLE IX
THE NUMBER OF PARAMETERS AND THE TRAINING TIMES OF VARIOUS

MODELS. ’PARAMS’ AND ’TIMES’ DENOTE THE NUMBER OF PARAMETERS

AND THE TRAINING TIMES (HOURS), RESPECTIVELY.

Split CIFAR10 Split TinyImageNet Split CIFAR100

Methods Params Times Params Times Params Times

DER++ [53] 11M 3.10 11M 26.23 11M 5.35

DER+++refresh [82] 11M 10.25 11M 30.62 11M 12.98

IMOE [47] 108M 10.42 114M 24.26 135M 13.62

GMM 98M 8.62 107M 20.82 116M 10.58

GMM is tested by changing λ from Eq. (15), and the results

are shown in Fig. 3b. A large λ allows for the GMM to reuse

existing components more frequently, resulting in a lower

performance. In contrast, a small λ leads to GMM expanding

with more components during the training, increasing the

model’s complexity while improving its performance. We

provide additional ablation results in Appendix-G from SM1.

VI. CONCLUSIONS AND FUTURE WORK

This paper develops a theoretical analysis framework for

lifelong learning models by assessing their forgetfulness when

learning multiple tasks. This analysis results in the deriva-

tion of risk bounds for evaluating the ability to learn new

information by considering the already assimilated knowl-

edge. A Growing Mixture Model (GMM) is then proposed

based on a knowledge measure that evaluates the information

novelty during the lifelong learning. The analysis shows that

by dynamically adding and training new components in a

mixture model, we can significantly relieve forgetting and

improve the generalization performance. This approach allows

the proposed GMM to gradually increase its capacity while

reusing existing components when learning related tasks. The

experimental results indicate that GMM outperforms other

baselines in both supervised and unsupervised lifelong learn-

ing.

In the following we discuss some limitations and develop-

ments for future work. The primary limitation of the proposed

GMM framework is its incompatibility with the deployment on

extremely resource-limited devices while attempting to learn

an infinite array of tasks, as the GMM framework dynamically

expands its size throughout the training phase. To mitigate

this challenge, one viable solution is to establish a knowledge

distillation method that effectively consolidates multiple akin

teacher components into a single one, thereby facilitating a

reduction in the overall model size. This strategy allows the

GMM framework to progressively accumulate its knowledge

while retaining a constant model size. Alternatively, compo-

nent pruning, by systematically identifying and eliminating

knowledge-redundant components from the GMM framework,

can be adopted. Furthermore, an additional challenge con-

fronting the proposed GMM framework is the degradation

of the model’s performance when addressing limited data

scenarios, such as in the continual few-shot learning [83],

where the number of data instances per task is minimal. This

issue can be addressed by using a generative model for each

expert.

In our proposed GMM framework, we incorporate a shared

backbone network to streamline model complexity. A signif-

icant challenge arises as the shared backbone network only

updates its parameters during the initial task and remains static

for subsequent tasks. The results indicate that the proposed

GMM framework consistently delivers superior performance

across various data domains, despite the shared backbone

being static after learning the first task. Conversely, when

experts possess independent parameters and are not reliant

on a shared backbone, the GMM framework’s performance

is enhanced due to the increased number of trainable param-

eters. However, parameter sharing among experts can result

in performance instability with changing task sequences, as

shown in the results from Fig. 3 from the Appendix-G in

the supplementary material. The reason behind this result

is that the shared backbone captures and learns different

information for different learning orders of tasks. In a future

study we will aim to develop a novel regularization method

that incrementally optimizes the shared backbone network,

facilitating future task learning while preserving the entire

previously acquired knowledge.
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