
This is a repository copy of Continual Unsupervised Generative Modeling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227583/

Version: Accepted Version

Article:

Ye, Fei and Bors, Adrian Gheorghe orcid.org/0000-0001-7838-0021 (2025) Continual
Unsupervised Generative Modeling. IEEE Transactions on Pattern Analysis and Machine
Intelligence. pp. 1-18. ISSN 0162-8828

https://doi.org/10.1109/TPAMI.2025.3564188

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/TPAMI.2025.3564188
https://eprints.whiterose.ac.uk/id/eprint/227583/
https://eprints.whiterose.ac.uk/

1

Continual Unsupervised Generative Modelling

Fei Ye and Adrian G. Bors, IEEE Senior Member

Department of Computer Science, University of York, York YO10 5GH, UK

E-mail: fy689@york.ac.uk, adrian.bors@york.ac.uk

Abstract—Variational Autoencoders (VAEs), based on their capabilities, have achieved remarkable results in modelling individual

tasks, such as data representations, image generation and image-to-image translation. However, VAEs suffer from loss of information

when aiming to continuously learn a sequence of different data domains. Such losses are caused by the catastrophic forgetting, which

affects all machine learning methods, both classical as well as deep learning. This paper addresses the problem of catastrophic

forgetting by developing a new theoretical framework which derives an upper bound to the negative sample log-likelihood when

continuously learning sequences of tasks. This theoretical derivation provides new insights into the forgetting behaviour of networks,

showing that optimal performance is achieved when a dynamic mixture expansion model adds new components whenever learning

new tasks. In our approach we optimize the model size by introducing the Dynamic Expansion Graph Model (DEGM) that dynamically

builds a graph structure promoting the positive knowledge transfer when learning new tasks. In addition, we propose a Dynamic

Expansion Graph Adaptive Mechanism (DEGAM) that generates adaptive weights to regulate the graph structure, further improving the

positive knowledge transfer effectiveness. Experimental results show that the proposed methodology performs better than other

baselines in continual learning.

Index Terms—Variational Autoencoder, Continual learning, Unsupervised generative modelling, Dynamic expansion model, Graph

Neural Network

✦

1 INTRODUCTION

L Ifelong/Continual Learning (LLL/CL) is a fundamental
trait for living beings, either humans or animals, that

enables them to survive in a dynamically changing envi-
ronment. Lately, LLL has evolved into modern computer
models that can learn dynamically changing data distribu-
tions without forgetting. However, one obstacle in applying
these models to real applications is catastrophic forgetting
[1], which is associated with the degradation of the model’s
performance on previously learnt data whenever learning
new tasks. This is caused mostly by the re-writing of the
model’s parameters following new training leading to catas-
trophic forgetting.

A popular approach in LLL to counteract forgetting,
called Generative Replay Mechanism (GRM) [2], consists in
training a generator, implemented by a Variational Autoen-
coder (VAE) [3] or a Generative Adversarial Net (GAN) [4],
to generate previously learned samples. Catastrophic for-
getting in GRM is mitigated by re-training the model on its
own generated data in a self-supervising manner [5], [6], [7],
[8], [9]. However, the quality of generative replay samples
is critical to the model’s performance. In addition, most
GRM-based approaches still suffer from forgetting when
learning an increasing number of tasks due to the informa-
tion knowledge degradation following repeated generative
replay processes [10]. Moreover, GANs suffer from mode
collapse [11], resulting in hallucinations in data, and can
not provide reasonable past samples if it learns several
completely different data domains in a sequential manner
[12]. In recent years, several attempts have been focused on
the dynamic expansion mechanism [13] and the ensemble
structure [14], [15], [16], where a new module/component
is built onto a shared network backbone to learn given new
tasks. These approaches can relieve forgetting by freezing
the weights of all previously trained components while

Task 1 Task 2 Task 3

Fig. 1. The target risk for a single VAE model under the MNIST (Task 1),
Fashion (Rask 2), IFashion (Task 3) lifelong learning, when considering
that the model is trained on real samples from previous tasks (Single*)
and when using the data produced through GRMs (Single).

only updating the weights of the newly created component.
However, such approaches mainly focus on the classification
task and do not provide theoretical guarantees for LLL.

In this paper, we focus on unsupervised generative
modelling in the context of lifelong learning. We study the
data likelihood estimation under the LLL/CL as a measure
for capturing underlying data representations [17]. A VAE
[3] is made up of an encoder and a decoder whose main
objective function is to maximize the sample log-likelihood
log p(x) = log

∫

p(x | z)p(z)dz. The VAE objective function,
called the Evidence Lower Bound (ELBO) [3], employs a

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2

variational distribution q(z |x) which approximates the true
posterior. VAEs are popular likelihood models which have
acquired remarkable successes in learning unsupervised
tasks by inferring probabilistic data representations [18], for
image reconstruction tasks [19], [20], [21], [22], or for dis-
entangled representation learning [17], [22]. In order to ad-
dress catastrophic forgetting we consider Generative Replay
Mechanisms (GRM) for reproducing the data learnt in the
past. An empirical example of how lifelong learning works
in VAEs is provided in Fig. 1 where “Single” and “Single*”
represent a single VAE model trained using data produced
through GRMs and the same model which accesses the
real training samples from previous tasks, respectively. The
target risk is evaluated as the performance on real data from
three databases: MNIST, Fashion and Inverse Fashion. It can
be observed from Fig. 1, that the target risk for a single VAE
model trained through GRMs, when learning more tasks,
gradually loses its performance on real data distributions.

Inspired by the empirical results discussed above, this
paper aims to study the tightness between the data likeli-
hood log p(x) and the Evidence Lower Bound (ELBO) for a
single model LELBO(x

′), where x
′ is made up by combin-

ing generated data, associated with data learnt by the model
in the past and real data. We propose a new theoretical
framework that derives an upper bound on the negative
marginal log-likelihood, called Lifelong ELBO (LELBO). The
LELBO analysis considers the discrepancy distance [23]
between the target and evolved source distributions, the
accumulated errors caused by the task switch, as well as
other error terms. This analysis provides insights into how
a VAE model loses previously learned knowledge during
LLL. We also generalize the proposed theoretical analysis to
the Dynamic Expansion Models (DEMs). The DEM model
gradually adds a new component when a new task is
learned, while freezing all previously learnt components
to preserve the previously learnt information. DEM can
achieve optimal performance while it requires significant
computational resources. To address this problem, we in-
troduce the Dynamic Expansion Graph Model (DEGM),
which dynamically builds a graph structure which reuses
most of the parameters and the currently learnt information
by the previously trained components, when learning a
new task. Specifically, we consider two types of processing
components in DEGM : base and specific nodes. The for-
mer can be considered as an independent VAE component,
aiming to learn a completely different task. Meanwhile, the
latter has fewer independent parameters and relies on the
information from the base nodes. This is performed through
a graph structure which connects the specific node to all
existing base nodes. To regulate the knowledge transfer
when learning a new task, we propose a new knowledge
assessment approach which calculates the weight of each
base node with respect to the probabilistic representation
of the new task according to their respective knowledge
relevance. These weights are then used to regulate latent
representations during inference and decoding processes,
effectively reusing previously learned information for learn-
ing a new task. Moreover, to further explore the benefit
of knowledge transfer, we propose a dynamic expansion
adaptive mechanism that optimizes the weights to adapt
to the new task. The proposed mechanism dynamically

generates new weights when expanding the model while
freezing all previously learnt weights to preserve as much
as required from the existing structure. We evaluate the
performance of the proposed model on multiple datasets,
while the empirical results show that the proposed model
achieves the best performance with fewer parameters when
compared with other baselines.

Our contributions are as follows :

• We develop a novel theoretical framework for analyzing
VAE’s forgetting behaviour during LLL.

• We extend the proposed theoretical analysis to other gen-
erative models, providing new insights into the forgetting
behaviour.

• We develop a novel dynamic expansion model which
guarantees the trade-off between the optimal perfor-
mance for each task and the model’s complexity during
lifelong learning.

• We propose a dynamic expansion adaptive mechanism
to regulate the information flow from previously learnt
components when learning a new task, which maximizes
the benefit from knowledge transfer.

• We propose a new benchmark for the probability density
estimation task under the LLL setting.

• Experimental results when learning several density esti-
mation and image generation tasks show that the pro-
posed model achieves better performance than other
baselines while using an optimal network architecture.

The rest of the paper is organised as in the following. In
Section 2 we discuss other lifelong learning approaches. In
Section 3 we introduce a series of definitions and founda-
tional concepts for the proposed methodology. The theoreti-
cal framework is described in Section 4. Then, the proposed
methodology is detailed in Section 5. The experiments are
described in Section 6 and the conclusions in Section 7.

2 RELATED WORK

In the following after discussing the variational autoencoder
(VAE) we review the main approaches in LLL/CL learning.

2.1 The Variational Autoencoder

The objective function of a VAE, also called Evidence Lower
Bound (ELBO) [3], is defined as :

log pθ(x) ≥Eqω(z|x) [log pθ (x | z)] (1)

−KL [qω (z |x) || p (z)] := LELBO (x; {θ, ω}) ,
where pθ(x | z) and p(z) = N (0, I) are the decoding and
prior distribution, respectively. KL[·] denotes the Kull-
back–Leibler divergence and I is the identity matrix, while
ω and θ denote the parameters of the encoder and decoder,
respectively. The tightness of the VAE objective function
(ELBO) is crucial for improving the performance of a VAE.
One of the possible approaches is to use the Importance
Weighted Autoencoder (IWELBO) [24], which generates a
set of weighted samples for the given input and results in
a tighter ELBO, depending on how many samples are used.
Other approaches aim to use more informative approximate
posterior distributions, such as normalizing flows [25], [26],

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

3

implicit distributions [27] or hierarchical variational infer-
ence [28]. Moreover, these approaches can further improve
the performance by integrating IWELBO loss into their
primary objective function. In addition, online variation in-
ference [29] has been used in the VAE framework, requiring
to store a subset of training samples for computing the
approximate posterior, which is impractical when learning
an unlimited number of tasks. Moreover, the tightness of
ELBO under the lifelong learning (LLL) has not been inves-
tigated in any of these works. This paper provides the first
theoretical analysis for the forgetting behaviour in VAEs
under the LLL. In the following we present the two main
approaches for LLL/CL employing VAEs and other deep
learning models by using memory buffers and dynamic
architectures.

2.2 Memory-based Continual Learning

One goal in the LLL/CL is to enable a model to prevent
forgetting during the training. A natural approach to this
goal is to build a memory-based replay system, which can
be implemented by using either a memory buffer to store
past training samples or by training a Generative Replay
Mechanism (GRM) network. The former approach collects
a subset of training samples for each task and replays them
when learning a new task [30], [31]. The memory-based ap-
proaches can also be combined with regularisation methods
[32], [33], [34], [35], [36], [37], [38], [39], using memorized
samples to regularise the optimization of the model such
that the network parameters deemed important for the past
tasks are not changed much when learning a new task. In
[39] weights corresponding to past tasks are kept in the
memory using a hyper-network regularizer. However, such
approaches would suffer from an ever-increasing computa-
tional complexity burden as the number of tasks increases
[35]. Moreover, the memory buffer usually has a fixed
capacity, which is not scalable when learning an infinite
number of tasks [12]. The GRM-based approaches aim to
train a generative model such as a Generative Adversarial
Network (GAN) [4] or a Variational Autoencoder (VAE) [3]
which would then be used to reproduce data similar to those
from the training set. A GRM is used in a self-supervising
manner in which generative replay samples are employed to
relieve forgetting [2], [5], [6], [40]. In this paper, we mainly
focus on the GRMs as it does not require storing past data.

Shin et al. in the first study considering GRMs for lifelong
learning classification [2], employed a GAN for produc-
ing generative replay samples, which are then integrated
with the newly given training samples in order to learn
the whole system. However, the main drawback of this
approach is that it can only be used for classification and
cannot learn underlying data representations due to lacking
an inference mechanism. The Variational Autoencoder with
Shared Embeddings (VASE) employs the Minimum Descrip-
tion Length (MDL) principle to induce disentangled repre-
sentations over time, [5]. Meanwhile, the VAE-based LLL
model was extended to a teacher-student framework in the
Lifelong Generative Modelling (LGM) [6], where a teacher
and a student network teach each other in turns in order
to progressively accumulate knowledge. Then, VAE-based
models were further enhanced by using a hybrid model

integrating the power generation ability of GANs and the
inference mechanisms of VAEs into a unified optimization
framework, called Lifelong VAEGAN [10]. The advantage
of this approach over LGM is that Lifelong VAEGAN
can produce better generative replay samples, through its
GAN component, empowered by a variational autoencoder,
which then can be used in more complex datasets reducing
forgetting. More recently, VAE-based models have been
applied in disentangled representation learning [5], [10],
which can learn meaningful latent variables across multiple
domains under the LLL. However, these models depend
on the generative capabilities of generators, which usually
produce fuzzy images when learning a long sequence of
tasks. Moreover, these models can not handle an unlimited
number of tasks due to the fixed model capacity while
employing repeated GRM processes.

2.3 Dynamic Architectures

Dynamic expansion LLL models aim to enhance the model’s
capacity by gradually increasing the number of parameters
or by adding layers of hidden units to adapt to a growing
number of tasks [13], [41], [42], [43], [44], [45], [46], [47],
[48], [49]. Lee et al. [13] employs Dirichlet processes as a
criterion for expanding the number of components in the
mixture model. However, this method also requires a small
memory buffer to prevent the frequent expansion of the net-
work architecture. Meanwhile, the Continual Unsupervised
Representation Learning (CURL) [40], integrates a GRM-
based approach with the dynamic expansion mechanisms
into a unified system. CURL only expands the network
architecture for the inference model while the decoder is
continually trained on the GRM’s samples together with the
training samples from the memory buffer. CURL still suffers
from forgetting due to the repeated decoder updating.

The Continual Adaptation Modules for Generative Ad-
versarial Networks (CAM-GAN) [50] employs dynamic
GANs to enable image generation under the lifelong learn-
ing. The main idea of this approach is to learn a set of
global and task-specific parameters in which the latter aims
to capture specific information for each task. Although the
model from [50] uses transfer learning by initializing param-
eters from a selected task-specific module, it can not fully
explore the positive knowledge transfer from all prior tasks.
In contrast, the approach proposed in this paper can account
for the information flow from all base nodes that have learnt
many tasks in the past and regulate it through a dynamic ex-
pansion adaptive mechanism, which can maximize the ben-
efit of information transfer learning. In addition, learning
global and task-specific parameters for GAN models have
also been discussed in [51], [52]. Different from [50], [51],
[52], which are based on the GAN framework, the proposed
approach aims to learn meaningful latent representations
for the data, which can implement image reconstruction and
density estimation tasks. Furthermore, this paper introduces
a new theoretical framework for analyzing the forgetting
behaviour of lifelong learning models, which is lacking in
other works [50], [51], [52].

Besides the dynamic expansion approaches, there are
other types of models, such as [14], [16], [20], [53], which
usually have multi-head network architectures where sev-
eral task-specific modules are built on top of a common

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

4

module. During training, the shared module is only updated
during the learning of the initial tasks and then serves as a
backbone for other additionally created task-specific mod-
ules. These approaches would guarantee full performance
on past tasks if the number of tasks is known [16]. However,
they are not scalable when there is an increasing number of
tasks to learn. This paper addresses a more general lifelong
learning situation where the task label is given during the
training, but where the total number of tasks is not known.

3 FOUNDATIONAL DEFINITIONS AND CONCEPTS

3.1 Problem Statement

In this paper, we study a general lifelong unsupervised
learning problem, where we know task boundaries, but we
consider that class labels are not available during training.
Let X ∈ R

d represent the data space, where d is the
dimension of the space. Let {T1, . . . , TN} be a set of tasks,
where each task Ti is associated with an unlabeled testing
set DT

i ∈ X and an unlabeled training set DS
i ∈ X . N

represents the total number of tasks. During the learning of
a certain task Ti, a model only accesses the samples from
DS

i while all previously seen tasks are not available. When
all tasks have been completed, we evaluate the model on all
testing sets {DT

1 , . . . , D
T
N}. In the following, we introduce

some necessary notations and definitions.

3.2 Notations

Since this study focuses on generative modelling tasks, we
introduce a loss function used to evaluate image reconstruc-
tion quality.

Definition 1. (Loss function.) Let consider a hypothesis func-
tion {h ∈ H | H : X → X}, where H is the space
of all hypotheses. Let L = ‖x − h(x)‖2 represent a
loss function implemented by the Square Loss (SL) such

that L =
∑d

i=1 (x[i]− h(x)[i])
2
, where [i] represents the

entry for the i-th dimension.

In the following, we define the probability representation
for each task’s training and testing sets.

Definition 2. (Probability representation.) Let P̃i and Pi be
the probability distributions for the training DS

i and
testing DT

i set, respectively.

Definition 3. (Single model.) Let A = {fω, gθ} represent a
single generative latent variable (VAE) model that has an
encoder fω : X → Z parameterized by ω and a decoder
gθ : Z → X parameterized by θ. fω and gθ are used to
model the encoding qω(z |x) and decoding distribution
pθ(x | z) of a VAE model, respectively. To ensure the dif-
ferentiable optimization during the encoding-decoding
process, we employ the reparameterization trick [3] for
the sampling procedure z = fµ

ω (x) + fδ
ω(x) ⊙ γ, γ ∼

N (0, I) where fµ
ω (x) and fδ

ω(x) are the mean and stan-
dard deviation vectors of a Gaussian distribution, im-
plemented by a neural network fω(x). We consider the
notation At for the model trained on t tasks and {ωt, θt}
are the associated parameters of At. Let gθ(fω) : X → X
denote the encoding-decoding procedure for A, and P

t

be the probability distribution formed by samples drawn
from the generator of the model At.

Based on this definition of the model we define the
model risk in the following.

Definition 4. (Model risk.) We consider implementing h
by the encoding-decoding process gθ(fω). Let L : X ×
X → R+ represent a loss function. We consider that
L is bounded, ∀(x,x′) ∈ X 2,L(x,x′) ≤ U for some
U > 0. We implement L as the Square Loss (SL) function
L(x,x′) = ‖x − x

′‖2, (x,x′) ∈ X . The risk for h(·) on
the target domain Pi of the i-th task is defined as :

EPi
(h, fPi

) = Ex∼Pi
L(h(x), fPi

(x)) . (2)

where fPi
(x) is an identity function for the sample x

drawn from Pi.

3.3 Evaluating Probabilistic Distances Between Distri-

butions

In the following, we define the discrepancy distance for
evaluating the similarity between two probabilistic repre-
sentations.

Definition 5. (Discrepancy distance [23].) Let Pi and Pi be
two distributions over X . We define the discrepancy
distance between Pi and Pi using the loss function L :

Ldisc (Pi,Pi) = sup
h,h′∈H

∣

∣Ex∼Pi
[L (h′ (x) , h (x))]

−Ex∼Pi
[L (h′ (x) , h (x))]

∣

∣,
(3)

where h and h′ are two different hypotheses.

Definition 6. (Rademacher complexity [23].) Let H represent
a hypothesis class. For a given unlabeled data batch S =
{xi}mi=1, the Rademacher complexity of H with respect
to S is defined as :

ReS (H)
∆
= E

H

[

sup
h∈H

2

m

m
∑

i=1

Hih (xi)

]

, (4)

where 〈i ∼ U [−1, 1] is a uniform random variable and
H = {H1, · · · ,Hm}. The Rademacher complexity for the
whole hypotheses space is defined as :

Rem (H)
∆
= ES∼(D)mReS (H) . (5)

where D is an underlying data distribution. Based on the
definition of the Rademacher complexity, we provide a
practical way to estimate the discrepancy distance from
a given finite sample set.

Definition 7. (Empirical discrepancy distance [23].) Let UPi

and UPi
be the sample populations of size mPi

and mPi

from the empirical distributions P̂i and P̂i, respectively.
Then, we can estimate the discrepancy distance by using
the finite samples :

Ldisc

(

Pi,Pi

)

≤ discL
(

P̂i, P̂i

)

+ 8
(

ReUPi
(H)

+ ReUPi
(H)

)

+ 3M

(

√

log
(

4
δ

)

2mP
+

√

log
(

4
δ

)

2mP

)

.

(6)

Eq. (6) holds with probability 1 − δ, δ ∈ (0, 1) and M ∈
R+ is a positive number.

In the following we use L⋆
disc(·) to represent the right-

hand side (RHS) of Eq. (6).

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

TABLE 1
The description of many important notations.

Notation Description

P̃i The probability distribution for the training dataset DS
i .

Pi The probability distribution for the testing dataset DS
i .

P
t The probability distribution of samples drawn from At.

At The single VAE model updated at the t-th task learning.

Ai The i-th component in the mixture model.

A = {A1, · · · ,AK} The dynamic expansion model with K components.

IT The true task-inference model.

L⋆
disc(·) The empirical discrepancy distance.

L The square loss function.

fPi
(x) The identity function for the sample x drawn from Pi.

4 THEORETICAL FRAMEWORK

In this section, we introduce a new theoretical framework
using the discrepancy distance between probabilistic repre-
sentations for assessing the novelty of the information when
compared with the current knowledge of the model. This
framework aims to analyze the forgetting behaviour of the
generative model while continuously learning for defining
the conditions for the model’s architecture expansion en-
suring the lifelong learning success. We list some of the
significant notations used in this paper in Table. 1.

4.1 Analysis for A Single Model

Let us consider a VAE model Ai to be trained on a sequence
of training sets {DS

1 , . . . , D
S
i }. The generator gθi(·) of Ai can

produce a large number of samples and let Pi be the prob-
abilistic representation distribution for the generated replay
samples. Let P̃i to represent the probabilistic representation
of DS

i . A single model Ai usually adopts GRM to relieve
forgetting when learning the (i + 1)-th task, in which the
past data samples represented by P

i is used to retrain the
model. Therefore, such a learning process can be formulated
as a recursive optimization problem :

Ai+1 = argmin
ω(i+1),θ(i+1)

L⋆
(

P
i+1,Pi ⊗ P̃i+1

)

, (7)

where L⋆(·) is the loss function used for training the model,
usually implemented by the negative ELBO. P

i ⊗ P̃i+1,
represents the mixing distribution formed by samples uni-
formly drawn from both P

i and P̃i+1, respectively. As i
increases in Eq. (7), the model learns more tasks and would
suffer from forgetting. The learning goal of Ai+1 at the
(i + 1)-th task learning is to approximate the distribution
P
i+1 ≈ P

i ⊗ P̃i+1 by minimizing the objective function
L⋆(·). During lifelong learning, the model accumulates more
errors caused by the generative replay procedure, leading
to a degenerated performance on its corresponding unseen
domain DT

i . One indicator for the generalization ability of
a model A is to predict its performance on a testing data set
by achieving a certain error rate on a training data set, [54].
In this paper, we provide, for the first time, the theoretical
analysis assessing the generalization of a model under LLL,
where the source distribution changes over time. Initially,
we introduce the Generalization Bound (GB) for the ELBO

for a single VAE model when learning a single task in
Theorem 1 and then extend this to learning several tasks
in Theorem 2.

Theorem 1. Let Pi and P̃i be two distributions over
X . Let h∗

Pi
= argminh∈HRPi

(h, fPi
) and h∗

P̃i
=

argminh∈HRP̃i
(h, fP̃i

) be the two optimal models,
where fPi

, fP̃i
∈ H denote the identity functions under

the encoding-decoding process for Pi and P̃i, respec-
tively. We define a GB between Pi and P̃i as :

EPi

(

h, fPi

)

≤ EP̃i

(

h, h∗
P̃i

)

+ L⋆
disc

(

Pi, P̃i

)

+ EPi

(

h∗
Pi
, fPi

)

+ EPi

(

h∗
Pi
, h∗

P̃i

)

,
(8)

where we consider the following notation :

ε(Pi, P̃i) = EPi

(

h∗
Pi
, fPi

)

+ EPi

(

h∗
Pi
, h∗

P̃i

)

, (9)

representing the optimal combined risk. We also have
the model risk :

EP̃i

(

h, h∗
P̃i

)

= E
x∼P̃i

L
(

h(x), h∗
P̃i
(x)

)

. (10)

The proof is provided in Appendix-A from the Supple-
mentary Material (SM). We use ER(Pi, P̃i) to represent
L⋆
disc(Pi, P̃i) + ε(Pi, P̃i). Theorem 1 explicitly evaluates the

generalization error of a single model A trained on the
source distribution P̃i. By using the conclusions of Theo-
rem 1, we can generalize this GB to all previously learnt
tasks in the following.

Theorem 2. Let {T1, . . . , Tt} be a sequence of tasks that have
already been trained. We derive a GB for a single model
between the target distribution and the evolved source
distribution during the t-th task learning :

1

t

t
∑

i=1

EPi

(

h, fPi

)

≤ E
Pt−1⊗P̃t

(

h, h∗
Pt−1⊗P̃t

)

+ ER
(

P(1:t),P
t−1 ⊗ P̃t

)

,

(11)

where P(1:t) is the mixture distribution {P1 ⊗
P2, . . . ,⊗Pt}.

The proof for Theorem 2 is provided in Appendix-B from
SM.
Remark. Theorem 2 has the following observations:

• The generalization performance on the target distribu-
tions relies on the discrepancy distance term. Therefore,
minimizing the source risk can not guarantee a tight GB
for Eq. (11).

• When using GRM, P
t−1 is gradually degenerated as t

increases due to the repeated retraining on generated data
[10], which enlarges the discrepancy distance term. This
explains the forgetting process of a single model when
learning a long sequence of tasks.

In Appendix-J from SM, we show that Theorem 2 can
be generalized to other generative models, such as for ex-
ample GANs, demonstrating that the discrepancy distance
between the target and the generator’s distribution is key
to the generalization performance of GANs under lifelong
learning, exhibiting similar forgetting behaviour to VAEs. In
the following, we generalize this GB to the negative ELBO
L⋆.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6

Lemma 1. Let us consider the random samples x
T
i ∼

Pi, for i = 1, . . . , t. The sample log-likelihood and
its ELBO for all {P1, . . . ,Pt} can be represented by
∑t

i=1 log pθ(x
T
i) and

∑t
i=1 LELBO(h,x

T
i). Let x̃t repre-

sent the random sample drawn from P
t−1⊗P̃t. We know

that KL(qωt(z |xT
i) || p(z)) 6= KL(qωt(z | x̃t) || p(z)) if

qωt(z |xT
i) 6= qωt(z | x̃t), and we have :

1

t

t
∑

i=1

EPi
KL

(

qωt(z | xT
i) || p(z)

)

≤

E
Pt−1⊗P̃t

KL
(

qωt(z | x̃t) || p(z)
)

+
∣

∣KL1 −KL2

∣

∣ ,

(12)

where qωt(·) represents the inference model for At. KL1

and KL2 represent the Left-Hand Side (LHS) term and
the first term of the RHS of Eq. (12), respectively. We also
know that ELBO contains a negative reconstruction error
term, a KL divergence term and a constant (− 1

2 log π)
[55], if the decoder in VAEs is to model a Gaussian distri-
bution with a diagonal covariance matrix (the diagonal
element is 1/

√
2). We then derive a GB on -ELBO by

combining Eq. (11) and Eq. (12) :

1

t

t
∑

i=1

EPi

[

− LELBO

(

x
T
i ;h

)

]

≤ ER
(

P(1:t),P
t−1 ⊗ P̃t

)

+ E
Pt−1⊗P̃t

[

− LELBO

(

x̃
t;h

)

]

+
∣

∣KL1 −KL2

∣

∣ , (13)

where x
T
i ∼ Pi and x̃

t ∼ P
t−1 ⊗ P̃t.

The proof is provided in Appendix-C from SM. We call the
RHS of Eq. (13) as the Lifelong ELBO (LELBO), denoted
as LLELBO , which can measure the information loss of a
single model in an infinite number of tasks (t → ∞). As the
number of tasks (t) increases, the discrepancy distance term
in Eq. (13) becomes larger due to the repeated GRM pro-
cesses, leading to a degenerated performance on the target
distributions. We also can show that LLELBO is an upper
bound to the data log-likelihood −∑t

i=1 EPi

[

log p(xT
i)

]

/t,
estimated by At.

We also extend the GB from Eq. (13) when considering
the Importance Weighted VAE (IWELBO), whose objective
function is defined as :

LELBOK′ (x;A) = Ez1,..,zK′∼q(z|x)

log
1

K ′

K′

∑

i=1

wi

 , (14)

where wi is defined as :

wi =
p (x̃t, zi)

q (zi | x)
, (15)

where K ′ represents the number of importance weighted
samples {z1, . . . , zK′} [56]. LELBOK′ (x;A) is tighter
than LELBO(x;A) and we have LELBOK′ (x;A) ≥
LELBO(x;A), where K ′ > 1, [56]. Then we generalize the
IWELBO bounds to the LLL setting as:

1

t

t
∑

i=1

ExT
i ∼Pi

[

−log p
(

x
T
i

)]

≤

E
x̃t∼Pt−1⊗P̃t

−Ez1...,zK′∼q(z|x)

log
1

K ′

K′

∑

i=1

wi

+ |KL1 −KL2|+ ER
(

P(1:t),P
t−1 ⊗ P̃t

)

. (16)

The derivation is provided in Appendix-G from SM. We
omit the subscript for q(·). We call the RHS of Eq. (16) as
LLELBOK′ , and LLELBOK′=1

= LLELBO .
Remark. We have several conclusions from Lemma 1 :

• If |KL1 − KL2| = 0 and P
t−1 is fixed, then we have

LLELBOK′+1
≤ LLELBOK′ .

• A large ELBO on the source distribution P
t−1 ⊗ P̃t (the

second term of RHS from Eq. (16)) can not guarantee a
tight bound on the testing data log-likelihood since the
RHS of Eq. (16) contains the discrepancy distance term
and other error terms.

When considering Lemma 1, we note that a tight GB is
mainly based on the minimum discrepancy distance term,
which can be obtained by training a powerful generator that
accurately approximates the target domains, e.g. by using
the Autoencoding VAE [57] or a GAN [4]. However, these
approaches would fail when learning multiple completely
different tasks and cannot handle an infinite number of
tasks due to their limited capacity and the mode collapse
problem [11]. The following section shows that this issue can
be addressed by increasing the model’s capacity through an
architecture expansion mechanism.

4.2 Analysis for the Dynamic Expansion Model

In this section, we extend the theoretical analysis to the
dynamic expansion model.

Definition 8. (Dynamic expansion model.) Let A =
{A1, . . . ,AK} be a dynamic expansion model, where
each component Ai is trained by means of Generative
Replay Mechanisms (GRMs) for learning new tasks.

Definition 9. (Probabilistic representations for tasks.) Let us
define P

(i,s) as the distribution of the samples generated
by the s-th component (As) after it was trained on a
number of i tasks. We assume that a certain j-th task
was learnt by As. We can define an approximation dis-

tribution P
(m,s)
j for the j-th task following the sampling

x ∼ P
(i,s), if IT (x) = j, where IT : X → T is the task-

inference function that returns the true task label for the
sample x. We use m in P

(m,s)
j to represent that GRM was

used m times on As for learning the j-th task. For the
sake of simplifying the notation, we omit the component

index s for P
(m,s)
j . Let P0

t represent P̃t.

Based on the above notations and definitions, we inves-
tigate the forgetting behaviour of the dynamic expansion
model A by developing a new GB that allows A to have
any number of components K .

Theorem 3. Let C = {c1, . . . , cm} represent a set, where
each item ci indicates that the ci-th component (A1

ci
) is

only trained once during LLL. We use A = {a1, . . . , am}
to represent the task label set for C , where ai is associ-
ated to ci. Let C ′ = {c′1, . . . , c′k} represent a set where
c′i indicates that the c′i-th component Ac′i

is trained
more than once and is associated with a task label set
A′

c′i
= {a(i, 1), . . . , a(i, n)}. Let C̃ = {c(i, 1), . . . , c(i, n)}

be a set where c(i, j) denotes the number of times Mc′i
was used for a(i, j)-th task. We have |C| + |C ′| = K ,
|A′

c′i
| > 1, where K is the number of components in the

mixture model and | · | is the cardinality of a set. Let

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

7

Ã = {ã1, . . . , ãk} represent a set where each ãi denotes
the number of tasks modelled by the probabilistic repre-
sentations of the c′i-th component ãi = |A′

c′i
|. We derive

the bound for A during the t-th task learning :

1

t

∑|C′|

i=1

{

∑ãi

j=1

{

EPa(i,j)

(

hc′i
, fPa(i,j)

)}}

+

1

t

∑|C|

i=1

{

REai

(

hci , fPai

)}

≤ 1

t
EC +

1

t
ER′ ,

(17)

where each hci ∈ H and hc′i
∈ H represent the hy-

pothesis of the ci-th and c′i-th component in the mixture,
respectively. EC is the error evaluated by the components
that are trained only once :

EC =
∑|C|

i=1

{

EP̃ai

(

hci , h
∗
P̃ai

)

+ ER
(

Pai
, P̃ai

)}

, (18)

and ER′ is the accumulated error evaluated by the com-
ponents that are trained more than once :

ER′ =
∑|C′|

i=1

{

∑ãi

j=1
{E

P
c(i,j)

a(i,j)

(

hc′i
, h∗

P
c(i,j)

a(i,j)

)

+ ER
(

Pa(i,j),P
c(i,j)
a(i,j)

)}

},
(19)

and after decomposing the last term it becomes

ER′ =
∑|C′|

i=1

{

∑ãi

j=1

{

E
P
c(i,j)

a(i,j)

(

hc′i
, h∗

P
c(i,j)

a(i,j)

)

+
∑c(i,j)−1

k=−1

{

ER
(

P
k
a(i,j),P

k+1
a(i,j)

)

}}}

.

(20)

The proof is provided in Appendix-D from SM.

Remark. We have several observations from Theorem 3 :

• The dynamic expansion model has only a single compo-
nent if and only if |C ′| = 1 and |C| = 0. Then the RHS of
Eq. (17) does not include the term EC while ER′ becomes
large, leading to more accumulated error terms according
to Eq. (20).

• The dynamic expansion model leads to a large network
where the number of components is equal to the number
of tasks if |C| = t. Then RHS of Eq. (17) becomes 1

t
EC ,

which has no accumulated error terms and leads to a tight
GB.

• As |C| increases, the model improves its generalization
performance. We show that |C| is related to the number of
components K , according to the accumulated error term
|C ′| = K − |C| in Eq. (20), which decreases while K
increases.

• Suppose that we only have learnt a single component for
learning multiple tasks (|C ′| = 1). The GB of a single
component for the initial tasks (a(i, j) is small), tends
to accumulate more errors when compared to the GB of
a single component for the latest given tasks (a(i, j) is
large), demonstrated by the number of accumulated error
terms ER(·, ·) in Eq. (20), controlled by c(i, j) = t−a(i, j).

In the following, we extend GB from the square loss
function L to the empirical discrepancy distance L⋆.

New task

Node 1

Node K

Measure

Measure

Criterion

Build a base
node

Build a
specific node

Yes

No

Fig. 2. The dynamic expansion process of the proposed DEGM. When
seeing a new task, each node estimates its corresponding sample
log-likelihood and compares the previous sample log-likelihood using
Eq. (24), which is used to check the model expansion. If Eq. (25) is
stratified, we then build a base node, otherwise, we build a specific node.

Lemma 2. We derive a GB for the marginal log-likelihood
during the t-th task learning for the expanded model :

1

t

∑t

i=1
EPi

[

− log p
(

x
T
i

)

]

≤ 1

t

(

RII
R′ +RII

C +D⋆
diff

)

+

1

t

∑|C′|

i=1

{

∑ãi

j=1

{

E
P
c(i,j)

a(i,j)

[

− LELBO

(

x
t
a(i,j);hc′i

)]

}

+
∑|C|

i=1

{

EP̃ai

[

− LELBO

(

x
S
ai
;hci

)

]

}}

, (21)

where Ddiff∗ and Ddiff are defined as :

Ddiff∗ =

|C|
∑

i=1

{

Ddiff

(

x
T
ai
,xS

ai

)}

+

|C′|
∑

i=1

ãi
∑

j=1

{

Ddiff

(

x
T
a(i,j),x

t
a(i,j)

)}

,

(22)

Ddiff (x
T
ai
,xS

ai
) =

∣

∣

∣EPai
KL(qωci

(z | xT
i) || p(z))

− EP̃ai
KL(qωci

(z | xS
i) || p(z))

∣

∣

∣ .
(23)

RII
R′ and RII

C are the second terms in the RHS of Eq. (18)
and Eq. (19), respectively. We omit the component’s
index for each log p(xT

i) for the sake of simplification.
Each variable x

S
ai

is drawn from the distribution P̃ai
and

each x
t
a(i,j) is drawn from P

c(i,j)
a(i,j) modelled by the c′i-th

component of A. LELBO(x
S
ai
;hci) is the ELBO estimated

by the ci-th component.

Lemma 2 is proved in Appendix-E from SM. As a con-
sequence of Lemma 2, we can measure the gap between the
ELBO and the model’s likelihood across all target distribu-
tions using the dynamic expansion model. Eq. (21) can be
tight if and only if |C| = 1, D⋆

diff = 0 and the discrepancy

L⋆
disc(Pai

,P0
ai
) is very small. In addition, we extend the

proposed theoretical framework to analyze the forgetting
behaviour of other deep generative models in Appendix-J
from SM.

5 THE DYNAMIC EXPANSION GRAPH MODEL

Following the analysis provided by Theorem 3, an optimal
GB can be achieved by employing a mixture model and
enabling the training of each mixture component with a
certain task. However, this learning procedure would lead to

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

8

����(1) ��’(�+1)
����(�) ��’(�+1)

�(�)�1
��

�

Input layer

Variational distribution

����(1)
����(�)

�1
��

� = �=1� ���� ��’(�+1)

Real samples

Reconstruction

Encoding process

Decoding process

Fig. 3. The graph structure when building a specific node in the Dynamic Expansion Graph Model (DEGM). First, we use the sub-encoders from
all base nodes to connect the sub-encoder of the newly created specific node. During the inference procedure, we take an image as the input to
these combined modules which form a variational distribution Q(z). The latent variable z is drawn from Q(z) and then fed into the input layer. At the
decoding process, we take the output of the input layer as the input to the sub-decoder of all base nodes, resulting in the variables {x̃1, · · · , x̃K} .
Then these, weighted by πi, i = 1, . . . ,K are summed up, resulting in x̃, which is fed to the sub-decoder of the newly created specific node for the
reconstruction.

an ever-increasing memory and computation requirements
as the number of tasks increases. Instead, we propose the
Dynamic Expansion Graph Model (DEGM), which dynam-
ically addresses memory requirements, when learning a
long sequence of tasks. A variety of tasks, would have
representation variables in common and can be modelled
by using sub-modules with fewer parameters while sharing
most parameters. Given that most images have features
in common, especially those representing basic levels of
information such as textures, edges or flat surfaces, such
a graph structure can benefit knowledge transfer by reusing
previously learnt information when learning a new task.
We also derive a novel mixture expansion mechanism that
regulates the construction of the graph structure during
training. Specifically, if a new task shares similar semantic
information with respect to the already learnt knowledge,
it is reasonable to reuse previously learnt information and
parameters to promote the new task learning.

In this section, we present the detailed structure of the
proposed DEGM. We derive a knowledge transfer mecha-
nism in order to minimize the size of the model and promote
future task learning. The proposed DEGM contains two
types of modules : base and specific nodes/components,
where the former is implemented by an independent VAE
component while the latter is implemented by sub-models
with fewer independent parameters. A base node is mainly
used to learn an entirely different task, while a specific node
is built upon the known information while being connected
to the base nodes. The specific nodes aim to learn different
details of the tasks which share some similar information
by means of the base nodes to which they are connected. In
the following sections, we describe the DEGM structure and
expansion mechanism in detail.

5.1 Base and Specific Nodes/Components

The base nodes/components have independent inference
and generation processes. Therefore, we implement them
as VAEs, having encoding qωi

(z |x) and decoding pθi(x | z)
mechanisms, trained by ELBO, as in Eq. (1). For the encod-
ing distribution qωi

(z |x), we introduce two sub-inference
models, fω̃i

: X → Z̃ and fω′
i
: Z̃ → Z for modelling

qωi
(z |x), expressed by fω̃i

⊙ fω′
i
: X → Z , where Z̃ is an

intermediate latent representation space with the dimension
|Z̃| > |Z|. For the decoding distribution pθi(x | z), we
introduce two networks, gθ̃i : X → X̃ and gθ′

i
: X̃ → X ,

which form the decoder gθ̃i ⊙ gθ′
i
: Z → X , where X̃ is

an intermediate representation space and |X̃ | represents the
dimension of X̃ and we have |X̃ | < |X |. Since the inference
model or decoder in a base node has two connectable sub-
models {fω̃i

, gθ̃i}, we can easily build a specific node (j-th
node) by only building two separate sub-models {fω′

j
, gθ′

j
}

connecting with the sub-models {fω̃i
, gθ̃i} from all base

nodes, forming a graph structure. In the following, we in-
troduce a novel dynamic expansion mechanism to regulate
model building during lifelong learning.

5.2 The Dynamic Expansion Mechanism

We assume that the proposed model has learnt t tasks
using t processing nodes, where we have K < t base
nodes G = {B1, . . . , BK} and (t − K) specific nodes
S = {S1, . . . , S(t−K)}. Let GI(·) and SI(·) represent the in-
dex functions that return the node index for G and S . We use
the index function to represent a certain base node (Bi ∈ G)
which consists of four sub-models {fω̃i∗

, fω′
i∗
, gθ̃i∗ , gθ

′
i∗
},

two for encoding and another two for decoding, where
i∗ = GI(i). A certain specific node (Si ∈ S) consists of two

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

9

sub-models {fω′

i′
, gθ′

i′
}, where i′ = SI(i). Let V ∈ R

t×t

denote an adjacency edge matrix that describes the directed
graph edges from S to G. The importance of the node i to
the node j is represented by the directed edge V(i, j) which
is used for the knowledge transfer when learning a new task
while reusing the known information from the base nodes.

In the following, we introduce an expansion criterion
that builds either a base node or a specific node for learning
a new task. When the model sees a new task Tt+1, character-
ized by the training set DS

t+1, it evaluates the novelty of the
new task by calculating LELBO(xj ;Bi) on {x1,x2, · · · ,xn}
from the dataset DS

t+1, (n = 1000 in experiments) :

h(i) =
∣

∣LELBO(Bi)− E
x∼P̃t+1

LELBO(x;Bi)
∣

∣, (24)

where i = 1, . . . ,K and LELBO(Bi) preserves the best
data log-likelihood estimated by the base node Bi on the
previously assigned task. P̃t+1 is the distribution of DS

t+1. A
similar sample log-likelihood estimation approach has been
used for expanding the number of components in mixture
systems [40], [58]. However, these approaches do not utilize
the entire previously learnt information when learning a
new task, which prevents them from using the positive
knowledge transfer. We employ Eq. (24) to determine the
importance of each base node with respect to the new task,
which is then used to regulate the knowledge transfer by
weighting the information flow in a graph structure. In the
following, we show how this is used for building both base
and specific nodes and such a dynamic expansion process is
illustrated in Fig.2.

Building a Base node. A base node is built if the incoming
task Tt+1 is novel enough, by considering a set of measures
H = {h(1), . . . , h(K)}, each defined by Eq. (24) :

min(H) > τ , (25)

where the threshold τ is used to decide whether we build
a base node for learning the Tt+1-th task, based on the
statistical difference between the learned knowledge and the
information provided by the new task. Then we expand V

to R
(t+1,t+1) and assign the edge value V(t+1,GI(i)) = 0,

i = 1, . . . ,K and build a new base node into G. At the
(t+ 1)-th task learning, we only train the (t+ 1)-th compo-
nent (node) on the given task dataset by using the objective
function from Eq. (1).

Building a Specific node. We create a specific node if Eq. (25)
is not satisfied at the Tt+1-th task learning. Then we update
the edge matrix V by evaluating the importance weight,
expressed as :

V(t+ 1,GI(i)) = w∗ − h(i)
∑K

j=1(w
∗ − h(j))

,

w∗ =
∑K

j=1
h(j) , i = 1, · · · ,K ,

(26)

where we denote πi = V(t + 1,GI(i)) for simplification
and h(j) is calculated as in Eq. (24). According to the
updated V, we built a new sub-inference model fω′

(t+1)
,

using a set of sub-models {fω̃i∗
| i∗ = GI(i), i = 1, . . . ,K},

as
∑K

i=1 πifω̃i∗
⊙ fω′

(t+1)
(x), which forms a mixture distri-

bution Q(z) =
∑K

i=1 πiQω̃GI(i) ⊙ω′
(t+1)

(z |x). Notice that

Algorithm 1: The training algorithm for DEGM

Input: All training databases
Output: The model’s parameters

1 for i < N do
2 if i == 1 then
3 Build a base node B1 which is added to G ;
4 isBase = True;
5 end
6 for index < batchCount do
7 xbatch ∼ DS

i ;
8 if isBase == True then
9 Update {ωi, θi} by LELBO(xbatch;Mi);

10 end
11 else
12 Update {ω′

i, θ
′
i} by LMELBO(xbatch;Mi);

13 end
14 end
15 Expansion mechanism;
16 xnew ∼ DS

i+1 ;
17 Calculate the importance of each base node;
18 for k < K do
19 h(k) = |LELBO(Bk)− Ex∼xnewLELBO(x;Bk)|;
20 end
21 H = {h(1), . . . , h(K)};
22 if min{H} ≤ τ then
23 The construction of the base node;
24 V(i+ 1,GI(j)) = 0, j = 1, . . . ,K;
25 Build a base component B(K+1) and add to G ;
26 isBase = True;
27 K = K + 1;
28 end
29 else
30 The construction of the sub-graph structure;
31 V(i+1,GI(i)) = (w∗−ks(i))/

∑K

j=1(w
∗−ks(j)),

w∗ =
∑K

j=1 h(j), i = 1, . . . ,K;

32
∑K

j=1 πifω̃GI(j)
◦ fω′

(i+1)
(x) ;

33 Form the latent distribution;
34 Q(z) =

∑K

i=1 πiQω̃GI(i) ⊙ω′
(t+1)

(z |x) ;
35 Obtain the intermediate representations ;
36 x̃ =

∑K

j=1 πjgθ̃GI(j)
(z) ;

37 Build a sub-decoder gθ′
(i+1)

(x̃) ;

38 Add Mi+1 in S;
39 isBase = False;
40 end
41 end

each Qω̃GI(i) ⊙ω′
(t+1)

(z |x) is a variational distribution im-
plemented by fω̃GI(i)

⊙ fω′
(t+1)

(x). A latent variable z is
drawn from the distribution Q(z). In Fig. 3, we show
the structure of the decoder, where an identity function
implemented by the input layer distributes the latent vari-
able z to each gθ̃i∗ (z), i

∗ = GI(1), . . . ,GI(K), leading to

x̃ =
∑K

i=1 πigθ̃i∗ (z), where the intermediate feature infor-
mation from G is weighted by πi. Then we create a new
sub-decoder gθ′

(t+1)
(x̃), that takes x̃ as input and returns

the reconstruction result of x. We add this specific node
S(t+1) = {fω′

(t+1)
, gθ′

(t+1)
} into S .

The procedure for building a specific node that connects
with all base nodes G to form a graph structure in the
proposed model is shown in Fig. 3. A similar procedure
for determining the importance node in a neural network
was considered in [59], [60]. However, the proposed DEGM
is the first model where this mechanism aims to form a

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

TABLE 2
Sample log-likelihood estimation results for five independent runs for

the Split MNIST setting.

Methods Run 1 Run 2 Run 3 Run 4 Run 5 Average

ELBO-GR -97.97 -98.16 -98.70 -97.91 -98.39 -98.23 ± (0.28)

IWELBO-GR-50 -93.61 -93.69 -93.66 -93.64 -93.27 -93.57 ± (0.15)

IWELBO-GR-5 -95.96 -95.68 -95.95 -95.68 -95.73 -95.80 ± (0.12)

ELBO-GR* -97.92 -98.79 -97.55 -98.45 -99.11 -98.36 ± (0.56)

IWELBO-GR*-50 -91.15 -91.33 -91.24 -91.23 -91.18 -91.23 ± (0.06)

CN-DPM*-IWELBO-50 -95.94 -96.35 -95.90 -95.74 -95.63 -95.91 ± (0.24)

LIMix-IWELBO-50 -95.57 -95.80 -95.84 -95.84 -95.63 -95.74 ± (0.11)

DEGM-ELBO -93.85 -87.03 -93.15 -93.71 -93.51 -92.25 ± (2.62)

DEGM-IWELBO-50 -89.41 -89.58 -89.60 -85.78 -85.83 -88.04 ± (1.82)

DEGM-IWELBO-50 -89.61 -85.89 -89.60 -85.79 -85.75 -87.33 ± (1.86)

graph structure that fully explores the benefits of knowledge
transfer. To train this graph structure, we propose a new
objective function that guarantees a lower bound to the
marginal log-likelihood.

Theorem 4. Suppose that we have already learnt K base
nodes at the t-th task learning (Tt). Then, if we build a
specific node at the (t+1)-th task learning, we can form
a sub-graph structure which is optimized by using a
valid lower bound (ELBO) (See details in the Appendix-
H from SM) :

LMELBO(x;M(t+1)) =:

EQ(z)

[

log pθ′
(t+1)

⊙{θ̃GI(1),...,θ̃GI(K)}
(x | z)

]

−
∑K

i=1
πiKL

(

Qω̃GI(i) ⊙ω′
(t+1)

(z | x) || p (zi)
)

,

(27)

where qω̃GI(i)
⊙qω′

(t+1)
(z |x) is the density function form of

Qω̃GI(i) ⊙ω′
(t+1)

(z |x). Q(z) is the variational distribution

implemented by
∑K

i=1 πiQω̃GI(i) ⊙ω′
(t+1)

(z |x) which is a
mixture inference model. Different from qω(z |x) in Eq. (1),
the variational distribution Q(z) in Eq. (27) has continu-
ously learnt the information of all given succession of tasks
and thus would learn a new task fast by means of the
positive knowledge transfer. Moreover, to relieve forgetting
and ensure computational efficiency, we propose to update
the current component {ω′

(t+1), θ
′
(t+1)} only when learning

the (t + 1)-th task. The first term in the RHS of Eq. (27)
is implemented by the negative reconstruction error while
the second term in Eq. (27) involves the sum of all KL
divergence terms regularized by their associated weights πi.

Model selection at the testing phase. The proposed
DEGAM model does not require accessing the task
information at the inference phase. Let us consider the
DEGAM model with t trained nodes after LLL. We
introduce the cluster assignment u in the DEGAM and the
probability density of the output for DEGAM on n samples
is represented by :

p (x) =
∏n

i=1

∑t

j=1
p
(

xi | u(i,j)

)

p
(

u(i,j)

)

,

u(i,j) ∈ {0, 1} .
(28)

We particularly focus on the posterior p(u(i,j) |xi) which
can be rewritten by the Bayes’ theorem :

p
(

u(i,j) |xi

)

=
p
(

xi |u(i,j)

)

p
(

u(i,j)

)

p (xi)

=
p
(

xi |u(i,j)

)

p
(

u(i,j)

)

∑t
k=1 p

(

u(i,k)

)

p
(

xi |u(i,k)

) ,

(29)

where the prior is p(u(i,j)) = 1/t. Since loga is a
function monotonic increasing if a > 1, we can re-
place each p(xi |u(i,j)) by log p(xi |u(i,j)) estimated by
LELBO(,xi;Mj) for the elements of G on the sample x,
and by LMELBO(xi;Mj) from Eq. (27) for the elements of
S . This selection process allows DEGAM to infer a related
component without having task labels.

5.3 The Dynamic Expansion Adaptive Mechanism

In Section 5.2, we have shown that the edge matrix V is up-
dated according to the importance of each base node when
using a newly created specific node for learning a new task.
However, using a fixed V would not allow to exploit the
full potential of the knowledge transfer during the training.
In this section, we propose the Dynamic Expansion Graph
Adaptive Mechanism (DEGAM) algorithm which optimizes
the edge matrix V so that the entire previously learnt
knowledge is selectively used for learning the incoming
task. Suppose that we have learnt K base nodes after the t-
th task learning and built a new specific node for a new task
Tt+1. Then we calculate H = {h(1), · · · , h(K)} by using
Eq. (24) and update the edge matrix V by using Eq. (26).
In order to continually update V during the (t + 1)-th
task learning, we introduce a group of adaptive parameters
{π′

1,t+1, · · · , π′
K,t+1} where π′

j,t+1 represents the weight of
the j-th base node when learning a newly created specific
node at the (t+ 1)-th task learning. These adaptive weights
are normalized by using the softmax function :

πj,t+1 =
exp(π′

j,t+1)
∑K

c exp(π′
c,t+1)

. (30)

Then we set V(t + 1,GI(i)) = πj,t+1, j = 1, · · · ,K and
update the adaptive parameters by :

π′
j,t+1 = π′

j,t+1 + l1∇π′
j,t+1

{−LMELBO(x;Mt+1)} . (31)

In practice, we update Eq. (31) along with the objective
function from Eq. (27) during the (t + 1)-th task learning.
Moreover, if a new specific node is built for Tt+2, we freeze
previously learnt adaptive parameters {π′

1,t+1, · · · , π′
K,t+1}

to preserve the learnt graph structure and dynamically build
a new group of adaptive parameters {π′

1,t+2, · · · , π′
K,t+2}

regulating the information flow from all base nodes at the
(t + 2)-th task learning. This mechanism avoids forgetting
while efficiently reusing previously learnt knowledge and
parameters when learning new tasks. The new model is
named as the Dynamic Expansion Graph Adaptive Model
(DEGAM).

5.4 Algorithm

We provide the pseudocode in Algorithm 1, which can be
summarised in four steps :

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

11

TABLE 3
Sample log-likelihood estimation results for five independent runs for

the Split Fashion setting.

Methods Run 1 Run 2 Run 3 Run 4 Run 5 Average

ELBO-GR -241.00 -240.38 -240.26 -240.82 -240.44 -240.58 ± (0.28)

IWELBO-GR-50 -236.48 -236.65 -236.98 -236.70 -236.49 -236.66 ± (0.18)

IWELBO-GR-5 -237.86 -238.19 -238.31 -238.00 -238.00 -238.08 ± (0.15)

ELBO-GR* -242.54 -242.27 -244.76 -242.38 -247.61 -243.91 ± (2.06)

IWELBO-GR*-50 -236.71 -236.77 -237.04 -236.88 -237.08 -236.90 ± (0.14)

CN-DPM*-IWELBO-50 -237.60 -237.13 -237.81 -237.38 -237.43 -237.47± (0.22)

LIMix -237.28 -237.50 -237.39 -237.37 -237.87 -237.48± (0.20)

DEGM-ELBO -240.59 -237.68 -239.45 -237.60 -237.39 -238.54 ± (1.26)

DEGM-IWELBO-50 -236.32 -234.42 -236.66 -235.05 -234.66 -235.42 ± (0.89)

DEGM-IWELBO-50 -234.74 -232.97 -234.71 -233.32 -235.10 -234.17 ± (0.85)

Step 1 (First task learning) To start learning the first task, we
create a base node (component) B1 and insert it into G. We
train B1 on DS

1 using Eq. (1).

Step 2 (Training the component) If we have a base node,
then we update the current base node on DS

1 using Eq. (1),
otherwise, we update the current specific node on DS

1 using
Eq. (27).

Step 3 (Checking the expansion criterion) Once the learning
of a particular task (i-th task) is finished, we see a new task
Ti+1. We collect 10,000 training samples from DS

i+1, denoted
as xnew, and then calculate H using Eq. (24). Then H is used
for the next step.

Step 4 (Build either a base or a particular node) If Eq. (25)
is satisfied, we build a base node, otherwise, we build a
specific node creating a graph structure for the model. We
then update only the current base or specific node on the
training set DS

i+1 using the appropriate loss function. Once
the (i+ 1)-th task is finished, we go back to step 2.

Step 4 (Model evaluation) After all tasks are completed, we
perform the component selection procedure for a given sam-
ple, by selecting the most suitable component for evaluation
according to Eq. (29).

6 EXPERIMENTS

In this section, we investigate the effectiveness of the pro-
posed model when using density estimation and unsu-
pervised generative modelling tasks. We also perform a
detailed ablation study to analyze the performance of the
proposed model under different configurations.

6.1 Density Estimation Task

Setting. We introduce a new benchmark for the density
estimation task under lifelong learning. First, we consider
learning several tasks within a single data domain. Fol-
lowing from the setting [61], we create Split MNIST by
dividing MNIST [62], which contains data from 10 classes,
into five tasks, with each task containing training images
belonging to two successive classes. We repeat this for
Fashion [63], resulting in the Split Fashion. Second, we

TABLE 4
The estimation of the sample log-likelihood under COFMI lifelong

learning, where “D1”, “D2”, “D3”, “D4” and “D5” represent the Caltech
101, OMNIGLOT, Fashion, MNIST and IFashion, respectively.

Methods D1 D2 D3 D4 D5 Average

ELBO-GR -163.68 -136.97 -247,91 -101.75 -237,03 -177,47

IWELBO-GR-50 -153.65 -131.37 -243.62 -97,29 -234.58 -172.10

IWELBO-GR-5 -166.05 -134.07 -245.78 -99.43 -235.73 -176.21

ELBO-GR* -175.10 -140.05 -247.54 -102.73 -237.06 -180.50

IWELBO-GR*-50 -215.16 -144.42 -246.35 -102.82 -236.12 -188.97

CN-DPM*-IWELBO-50 -136.22 -150.31 -259.12 -131.34 -243.97 -184.19

LIMix-IWELBO-50 -137.32 -150.79 258.69 -131.25 -243.50 -184.32

DEGM-ELBO -137.72 -116.07 -233.32 -122.33 -234.62 -168.81

DEGM-IWELBO-50 -133.72 -112.12 -230.46 -127.17 -232.21 -167.14

DEGM-IWELBO-50 -137.08 -113.29 -231.83 -115.10 -233.47 -166.15

consider the learning of five different tasks, where each
task is associated with a different data domain : Caltech
101 [64], OMNIGLOT [65], Fashion, MNIST, InverseFashion
(IFashion). The IFashion database is formed by creating new
images with their pixels resulting by subtracting from 255
all pixel values of the images from Fashion. We name the
resulting sequence of databases as COFMI. All images in
each dataset are binarized according to the setting from [24].

Network architecture and hyperparameter setting. The in-
ference and generator for the VAEs are implemented by
two fully connected networks. Each network contains two
layers, each with 200 hidden units. We also extend VAEs by
using two stochastic layers where the latent dimension for
the first and second stochastic layers is of 100 and 50, respec-
tively. The VAE with two stochastic layers, trained with a
classical ELBO, Eq. (1), is named as ELBO-GR*. If VAE uses
only a single stochastic layer, then the latent dimension is
100. When importance sampling is used in VAEs, as defined
by Eq. (14), we call the network as IWELBO-GR-K ′ where
K ′ represents the number of weighted samples used in the
objective function during training. For the experiments, we
use the GeForce GTX 1080 GPU, and the operating system
Linux Ubuntu 18.04.5.

The inference model and the generator in DEGM are
implemented by four sub-models, and each sub-model has
only one layer with 200 units. Therefore, the inference and
generator model in each specific node consists of two sub-
models built upon all base component units. Similarly, with
a single VAE model, DEGM can be extended by consid-
ering the importance sampling framework, using Eq. (14)
for training base components. We also adapt the IWELBO
bound from Eq. (14) for training specific nodes using the
following objective function :

LMELBOK′ (x;M) = Ez1,..,zK′∼Q(z)

log
1

K ′

K′

∑

i=1

p (x, zi)

Q (zi)

 .

(32)

Baselines. When DEGM uses ELBO or IWELBO bounds,
we call it as DEGM-ELBO and DEGM-IWELBO-K ′, respec-
tively. From the setting in [24], we use the same network

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

12

TABLE 5
Unsupervised generation results after the lifelong learning of MSFIR. The results of other models, used for comparison, are cited from [12].

MSE SSMI PSNR

Datasets LGM CURL BE LIMix DEGAM DEGM LGM CURL BE LIMix DEGAM DEGM LGM CURL BE LIMix DEGAM DEGM

MNIST 129.93 211.21 19.24 26.66 20.42 21.15 0.45 0.46 0.92 0.88 0.91 0.91 14.52 13.27 22.57 21.09 22.27 22.09

Fashion 89.28 110.60 38.81 30.19 26.48 28.81 0.51 0.44 0.61 0.76 0.80 0.79 15.82 14.89 14.46 21.25 20.88 20.51

SVHN 169.55 102.06 39.57 35.07 31.78 29.50 0.24 0.26 0.66 0.65 0.64 0.68 8.11 10.86 18.90 14.92 15.44 15.74

IFashion 432.90 115.29 36.52 30.14 27.34 28.59 0.26 0.54 0.75 0.79 0.81 0.80 9.04 15.51 19.32 20.26 20.73 20.53

RMNIST 130.28 279.47 25.41 22.80 23.23 25.81 0.45 0.29 0.88 0.90 0.90 0.89 14.51 10.84 21.31 21.81 21.66 21.26

Average 190.38 163.72 31.91 28.97 25.85 26.77 0.38 0.39 0.76 0.79 0.81 0.81 12.40 13.07 19.31 19.86 20.20 20.02

architecture for the implementation of DEGM and consider
several baselines for comparison. First, a single VAE model
with the generative replay mechanism is called ELBO-GR.
When such a VAE model uses IWEBLO bound, we call
it as IWELBO-GR-K ′. In addition to the single VAE net-
work architecture, we consider LIMix [12] and CN-DPM
[13], which are dynamic expansion models. CN-DPM is
primarily used in task-free continual learning. In order to
adopt it to our task, we implement a variant of CN-DPM,
namely CN-DPM*, where the Dirichlet-based expansion
mechanism is replaced by dynamically building a new com-
ponent for learning a new task. Thus CN-DPM creates new
components while ensuring its optimal performance on all
previously learnt tasks. Furthermore, we implement LIMix
[12] using an optimal configuration where the number of
components matches the number of tasks.

We use the Adam optimization algorithm for training all
models, with a learning rate of 0.0001. We consider Bernoulli
decoders, while we use the binary cross-entropy as the
reconstruction error term in ELBO. The batch size and the
number of training epochs for each training task are of 64
and 500, respectively. We search for the threshold τ for the
expansion criterion from Eq. (25) within the interval 35-40
for split MNIST/Fashion.

Results. We perform five independent runs for the Split
MNIST setting. We estimate the log-likelihood for the testing
samples using the IWEBLO bound with K ′ = 5000 samples
and we report the results in Table 2, where “*” indicates
that the model uses two stochastic layers. We can observe
that IWELBO-GR*-50 achieves better results than a single
VAE employing a single stochastic layer. In the following,
we perform five independent runs on the Split Fashion, and
we report the results in Table 3. The proposed DEGM-based
method learns four base nodes and one specific node after
the lifelong learning of Split MNIST and Split Fashion.

In the following, we evaluate the effectiveness of various
models in a more challenging learning setting. COFMI set-
ting includes five different tasks and the model can only
access training samples from the dataset associated with
the current task learning. First, we train various models
under COFMI lifelong learning, while searching for the best
threshold τ from Eq. (25) within the range 80-100. Then,
we report the results in Table 4 and the edge matrix V

of DEGM-IWELBO-50 when learning COFMI is shown in
Fig. 4. After all tasks have been completed, the proposed

models have trained four base and one specific node, re-
spectively. The empirical results for COFMI from Table 4
show that ELBO-GR* and IWELBO-GR*-50 significantly
drop their performance on the earlier tasks when consid-
ering the cross-domain learning setting when compared
with the VAEs that do not use stochastic layers. According
to all these results, the proposed models achieve better
performance than other baselines.

6.2 Unsupervised Generative Modelling

Baselines. We consider a baseline that dynamically creates
a new base node whenever learning a new task, called
DEGM-2, ensuring optimal performance for all past tasks.
We also consider the Batch Ensemble (BE) [16] which is
mainly applied in classification tasks. In order to adapt
BE to be used for unsupervised generative modelling, we
implement each ensemble member of the BE as a VAE.
All models are trained by using ELBO. We also consider a
baseline that trains DEGM considering only five epochs for
training, when the newly created component is a specific
node, namely DEGM-1. The number of parameters required
by various models is provided in Section 6.5.

Performance criterion. In unsupervised image reconstruc-
tion, we adapt the Structural Similarity Index Measure
(SSIM) [66], the Mean Squared Error (MSE) and the Peak-
Signal-to-Noise Ratio (PSNR) [66], in order to evaluate the
image reconstruction quality. The calculation for MSE, SSIM
and PSNR is provided in Appendix-I from SM.

Datasets. First, we consider the learning of a long sequence
of tasks, including MNIST [62], SVHN [67], Fashion [63], In-
verseFashion (IFashion), Rotated MNIST (RMNIST) namely
MSFIRC. RMNIST is obtained by rotating each image from
MNIST by 180 degrees. In the following, we also consider
the learning of a sequence of more complex tasks (character-
ized by databases containing images of higher complexity),
including CelebA [68], CACD [69], 3D-Chair [70], Ommiglot
[65], ImageNet* [71], Car [72], Zappos [73], CUB [74], named
CCCOSCZC. For CelebA, CACD, we randomly choose
10,000 samples as the testing set while the other samples are
used for training. For 3D-chair, we randomly choose 1000
samples as the testing set and the remaining samples as the
training set. For ImageNet, we randomly choose 10,000 and
50,000 samples as the testing and training set, respectively.
For CUB, we randomly choose 1000 samples as the testing
set and the other samples as the training set.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

13

TABLE 6
The performance of various models after the lifelong learning of CCCOSCZC.

Criteria
MSE SSMI PSNR

BE LGM DEGM DEGM-2 CN-DPM* BE LGM DEGM DEGM-2 CN-DPM* BE LGM DEGM DEGM-2 CN-DPM*

CelebA 213.9 535.6 229.2 217.0 215.4 0.69 0.48 0.66 0.69 0.69 23.5 19.3 23.2 23.4 23.5

CACD 414.9 814.3 368.3 281.95 347.3 0.57 0.47 0.62 0.68 0.63 20.6 17.33 21.2 22.4 21.4

3D-Chair 649.1 2705.9 324.0 291.46 513.8 0.73 0.42 0.84 0.86 0.79 19.0 13.54 22.4 23.1 20.5

Omniglot 875.1 5958.9 225.6 195.7 343.2 0.73 0.22 0.92 0.93 0.89 17.9 9.2 24.0 24.6 22.1

Sub-ImageNet 758.4 683.1 689.6 652.8 769.1 0.37 0.42 0.41 0.43 0.37 18.5 18.9 19.0 19.2 18.5

Car 745.1 583.7 588.8 565.9 709.8 0.39 0.48 0.47 0.49 0.42 18.0 19.0 19.0 19.2 18.2

Zappos 451.1 431.2 263.4 275.8 280.7 0.68 0.60 0.75 0.74 0.73 20.0 20.2 22.4 22.3 22.1

CUB 492.0 330.2 461.3 569.6 638.6 0.35 0.48 0.45 0.43 0.35 19.0 20.9 19.3 18.6 18.0

Average 575.0 1505.4 393.8 381.3 477.2 0.60 0.45 0.64 0.66 0.61 19.6 17.3 21.3 21.6 20.5

C1 C2 C3 C4 C5

C
1

C
2

C
3

C
4

C
5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.06 0.46 0.48 0 0

0 0 0 0 0

0.00

0.08

0.16

0.24

0.32

0.40

0.48

(a) V of DEGM-IWVAE-50 under COFMI
lifelong learning.

C1 C2 C3 C4 C5

C
1

C
2

C
3

C
4

C
5

0 0 0 0 0

0 0 0 0 0

0.87 0.13 0 0 0

0 0 0 0 0

0.08 0.19 0 0.73 0

0.00

0.15

0.30

0.45

0.60

0.75

(b) V of DEGM after the MSFIR lifelong
learning.

C1

C2

C3

C4

C5

C6

C7

C8

C1 C2 C3 C4 C5 C6 C7 C8

(c) V of DEGM after the CCCOSCZC life-
long learning.

Fig. 4. Illustration of the Graph adjacency matrix V, characterizing the connections between different DEGM’s nodes after lifelong learning. In (a)
“C1” represents the first component and “C4” is a specific node that connects the previously trained three base nodes (“C1”, “C2”, “C3”).

Hyperparameters. For the CCCOSCZC setting, the number
of training epochs for learning each task is set to 20. We train
various models by using the Adam optimization algorithm
[75] with a learning rate of 0.0002 while other hyperparam-
eters are considered as the default values. The threshold
τ from Eq. (25) for DEGM on MSFIR and CCCOSCZC is
considered as 400 and 600, respectively. To evaluate the
performance of various models under the generative mod-
elling task, we consider the Square Loss (SL), the Structural
Similarity Index Measure (SSIM) [66] and the Peak-Signal-
to-Noise Ratio (PSNR) [66]. After the lifelong learning, we
evaluate the performance of various models on all testing
samples and the empirical results are reported in Tables 5
and 6, respectively. We can observe that BE and CN-DPM*
result in significant performance degradation on the last
task, which indicates that these two models suffer from the
interference between data associated with different tasks.
Meanwhile, the proposed DEGM is not affected by such
interferences because it dynamically builds a base node for
learning Cifar10 data.

Results. The adjacency matrix showing the connections be-
tween the nodes within the graph structure V of DEGM
after MSFIR lifelong learning is provided in Fig. 4b where
“C1” represents the first component node. We can observe
that DEGM has learnt three base nodes and two specific
nodes, respectively. These two specific nodes are built upon

��
��
��

��
��

(a) DEGM after MSFIR life-
long learning.

��
��
��

��
��

��
��
��

(b) DEGM after CCCOSCZC
lifelong learning.

Fig. 5. Edge information for DEGM after lifelong learning. Darker and
lighter colours are used for the base and specific nodes, respectively.

the information associated with the three base nodes. In
Fig. 4 we illustrate V for DEGM after the CCCOSCZC
lifelong learning. DEGM learns to build the base nodes for
the first, third, fourth, and fifth tasks. The edge information
between the members of S and those of G is provided in
Fig. 5, where the base and specific nodes are drawn with
different colours.

In addition, we also compare the proposed DEGAM and

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

14

TABLE 7
The performance of the proposed DEGM and DEGAM when compared to other methods after the lifelong learning of MSFIR.

MSE SSMI PSNR

Datasets GNR DDGR CAM-GAN DEGAM DEGM GNR DDGR CAM-GAN DEGAM DEGM GNR DDGR CAM-GAN DEGAM DEGM

MNIST 22.15 21.56 20.16 20.42 21.15 0.88 0.89 0.91 0.91 0.91 21.92 22.01 22.28 22.27 22.09

Fashion 257.49 78.26 31.61 26.48 28.81 0.36 0.62 0.75 0.80 0.79 11.21 16.72 19.99 20.88 20.51

SVHN 107.83 68.18 28.41 31.78 29.50 0.18 0.48 0.65 0.64 0.68 11.92 13.16 15.84 15.44 15.74

IFashion 94.69 59.06 32.81 27.34 28.59 0.55 0.51 0.78 0.81 0.80 16.05 17.41 19.83 20.73 20.53

RMNIST 22.19 21.37 22.99 22.80 23.23 0.88 0.89 0.90 0.90 0.90 21.92 21.96 21.70 21.66 21.26

Average 100.87 49.68 27.20 25.85 26.77 0.57 0.67 0.80 0.81 0.81 16.61 18.25 19.93 20.20 20.02

TABLE 8
The performance of several variations of the proposed model for the MSFIR lifelong learning.

MSE

Datasets DEGM-4 DEGM-5 DEGM-6 DEGM-7 DEGAM DEGM DEGM-2 DEGM-3 CN-DPM*-1 CN-DPM*-2

MNIST 20.99 20.92 21.52 21.25 20.42 21.15 20.59 20.84 21.24 20.19

Fashion 39.18 36.51 36.27 36.24 26.48 28.8 26.84 28.08 33.07 31.93

SVHN 24.41 23.77 23.48 24.43 31.78 29.50 24.00 31.98 30.38 28.11

IFashion 35.61 37.64 36.31 37.48 27.34 28.59 27.06 27.86 34.48 32.89

RMNIST 23.42 23.01 22.85 23.65 23.23 25.81 20.70 26.79 22.88 22.20

Average 28.72 28.37 28.09 28.61 25.85 26.77 23.84 27.11 28.41 27.06

10 50 100 200 300 400

2

3

4

5

N
um

be
r o

f b
as

e
no

de
s

10 50 100 200 300 400
Thresholds

0

10

20

30

M
SE

Fig. 6. The performance and the number of base nodes for DEGAM
under MSFIR lifelong learning when changing threshold τ in Eq. (25).

DEGM with other state-of-the-art methods, including CAM-
GAN [50], [52], Generative Negative Replay (GNR) [76] and
the Deep Diffusion-based Generative Replay (DDGR) [77].
To enable CAM-GAN [50], [52] to perform the image recon-
struction task, we implement each sub-model of CAM-GAN
using a VAE. In addition, to enable Deep Diffusion-based
Generative Replay (DDGR) [77] and Generative Negative
Replay (GNR) [76] to perform the image reconstruction task,
we treat DDGR and GNR as the teacher module and train
an additional VAE model as the student module that learns
cumulated information from the teacher module as well as

from the new task. The results are provided in Tab. 7.

6.3 Ablation Study

The effects of threshold τ : In the following, we evaluate
the performance of the proposed DEGAM under different
threshold τ values for the architecture expansion criterion
from Eq. (25). The empirical results obtained after the
LLL training of DEGAM on MSFIR datasets are provided
in Fig. 6. When the threshold τ decreases, the proposed
DEGAM tends to use more base components while also
improving its performance. A trade-off between the perfor-
mance and the model size can be observed for τ = 300.

In the following, we consider several variants of the
DEGM model in order to investigate the effectiveness of the
proposed methodology.

DEGM-3: We consider employing fewer training epochs
(10 epochs) for the training of specific nodes.

DEGM-4: This baseline generates information flows from
all trained components to a new component. For instance,
if a new component receives the information flow from
the processing units members of S , we will sum up the
latent codes and intermediate representations from the sub-
inference and sub-decoders of these components. DEGM-4
does not use the adaptive weights.

DEGM-5: We implement this baseline by creating edges
without using adaptive weights. The training process for
this baseline is described as follows: after finishing the t-
th task learning we have a set of K probabilistic distance
evaluations, denoted by H = {h(1), . . . , h(K)}, calculated
according to Eq. (24), which can be used to build the edges
from a new node to the processing units members of G.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

15

(a) The target risk according to Eq. (16).

Task 1 Task 2 Task 3

(b) Evaluation of the Generalization Bound (GB)
on -ELBO from Eq. (13).

Task 1 Task 2 Task 3

(c) Target risk on a single and mixture model.

Fig. 7. The estimation of the target and source risks.

T1 T2 T3 T4 T5 T6

(a) DEGM

T1 T2 T3 T4 T5 T6

(b) Single VAE

T1 T2 T3 T4 T5 T6

(c) CN-DPM*

Fig. 8. Accumulated target risks when changing the learning order for the tasks during LLL, calculated as the square loss during the training.

We then set a threshold τ which is used to update V such
that if each h(i) < τ , then V(t + 1,GI(i)) = 1, otherwise
V(t + 1,GI(i)) = 0. This means that if g(i) > τ , then
the construction of a new component does not reuse the
information and parameters from the i-th component in
DEGM.

DEGM-6: For this baseline, we consider that the adaptive
weight for each edge is equal. This means that the impor-
tance of all base components is treated the same for a new
task.

DEGM-7: We implement this baseline by creating only
a single edge for a new component to a certain base com-
ponent that has the maximum sample log-likelihood for the
data associated with the new task.

CN-DPM*-1; This baseline builds new components and
creates connections with previously learned components,
similar to DEGM-4.

CN-DPM*-2: We implement this baseline by using the
large model which contains 1.3× 109 parameters.

We train all baselines with the same hyperparameter
configuration and the empirical results are given in Table 8.
These results indicate that when the adaptive weighting is
combined with the dynamic extension mechanism improves
the performance of DEGM. It also shows that the proposed
DEGM performs better than CN-DPM*-2, which uses many
more parameters. This indicates that the proposed DEGM
can reuse the previously learned knowledge for learning
new tasks while also reducing the overall model size.

6.4 Empirical Analysis of the Theoretical Results

In this section, we provide the results of empirical tests for
the theoretical analysis provided in this paper. First, we train
a single VAE model on the binarized Caltech 101 database.
Then we use this VAE model to produce generative replay
samples corresponding to the learnt database. We then train
ELBO-GR and IWELBO-GR-K ′ on a joint dataset consisting
of the generated data by the model combined with data
sampled from the Fashion dataset, where K ′ ∈ {5, 50} is
the number of important samples used in Eq. (14). Finally,
we calculate the average target risk (LHS of Eq. (16)) for
these models in order to investigate the tightness between
IWELBO and the negative log-likelihood (NLL). We know
that Lemma 1 is only applied for the Gaussian decoder.
However, the conclusion of Lemma 1 is also observed when
the VAE model uses the Bernoulli decoder. The results
from Fig. 7a, indicate that IWELBO-GR-50 achieves a tighter
bound when compared to IWELBO-GR-5 and ELBO-GR,
which empirically proves that LLELBO50

≤ LLELBO5
when

the generator distribution is fixed and |KL1 −KL2| = 0, as
discussed in Lemma 1.

In the following we train a single VAE model that
uses the Gaussian decoder with the identity matrix as the
covariance, on the lifelong learning of MNIST, Fashion
and IFashion, where all images are greyscale, with pixels
values within [0, 255]. To estimate the reconstruction error,
according to the ELBO, we normalize each image such that
each pixel value is divided by the image size (28× 28), as in
[78]. We estimate the risk and the discrepancy distance for

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

16

TABLE 9
Model size (number of parameters) for various models when lifelong

learning the task sequences CCCOSCZC and MSFIR.

LGM BE DEGM DEGM-2 CN-DPM* LIMix

CCCOSCZC 1.9 × 109 3.9 × 109 3.2 × 108 1.3 × 109 9.4 × 109 9.4 × 109

MSFIR 1.5 × 108 9.4 × 108 1.6 × 108 8.7 × 108 4.2 × 108 -

each training epoch according to Eq. (13) from Lemma 1.
We provide the results in Fig. 7b, where the source risk
(the first term in RHS of Eq. (13)) remains stable and the
discrepancy distance term L⋆

ELBO(·), Eq. (3), represented in
RA(·), increases while more tasks are learned. We observe
that ‘KL divergence’, calculated as |KL1 − KL2|, shown
in Fig. 7b, increases slowly. This demonstrates that the
discrepancy distance term is key for reducing the GB gap.

We also provide empirical results for Lemma 2. We
learn a dynamic expansion model M = {M1,M2} when
learning the sequence of MNIST, Fashion, IFashion (MFI)
databases, where the learning model has two components
after lifelong learning. First, we freeze M1 when the first
task learning is finished, while M2 is trained to learn
Fashion and IFashion, respectively. We also train a single
VAE model M with the generative replay mechanism under
the MFI setting, which is used for comparison. We calculate
the average target risk (NLL estimated by ELBO) in each
training epoch and we report the results in Fig. 7c, where
“single” and “mixture” represent M and M, respectively.
These results show that the dynamic expansion model
obtains a tighter GB when compared with the case when
considering a single VAE model, as discussed in Lemma 2.

We also investigate whether the proposed DEGM is
robust to changing the order in which the tasks are learnt.
First, we randomly generate three different orders as : Ci-
far10, IMNIST, Fashion, MNIST, SVHN, IFashion (CIFMSI);
Fashion, SVHN, MNIST, Cifar10, IMNIST, IFashion (FSM-
CII); IFashion, IMNIST, Cifar10, Fashion, SVHN, MNIST
(IICFSM). We then calculate the cumulative target risk for
all tasks, under each ordering of the learning tasks, and
report the results in Fig. 8a, b and c, for DEGM, single VAE
and CN-DPM*, respectively, where “Order1”, “Order2” and
“Order3” denote CIFMSI, FSMCII and IICFSM, respectively.
It can be observed that a single VAE model tends to have
a different average target risk when the order of tasks is
changed. A similar phenomenon is observed in CN-DPM*,
which produces different results when trained under “Or-
der1” and “Order2”. This is because CN-DPM* can only use
the knowledge of the first task when learning future tasks.
In contrast, the proposed DEGM tends to achieve similar
performance for whatever order of learning tasks is chosen.

6.5 Lifelong Model Size

We calculate the number of parameters required by various
lifelong learning methods when learning the task sequences
CCCOSCZC and MSFIR and provide them in Table 9. We
can observe that the proposed DEGM architecture requires
fewer parameters than other baselines.

7 CONCLUSION

In this paper, we propose a new theoretical framework
for analyzing the forgetting behaviour of deep genera-
tive models in lifelong learning. The proposed theoretical
analysis provides new insights into how previously learnt
knowledge is lost when learning new tasks. Inspired by
the theoretical analysis, we propose the Dynamic Expansion
Graph Model (DEGM) which dynamically expands a graph
structure consisting of base and specific nodes. Such nodes,
representing entire neural networks, are added to the graph
according to the novelty of the information being learnt.
New base nodes are added when learning a completely
different task. Meanwhile, specific nodes are added when
a task related to the knowledge already known to DEGM, is
identified. To effectively use the previously learned knowl-
edge when learning a new task, we enable adaptive weights
that regulate the information flow, within the graph struc-
ture. Moreover, we propose a Dynamic Expansion Graph
Adaptive Mechanism (DEGAM) that dynamically updates
the weights when integrating a new task into the exist-
ing knowledge of the model. The proposed mechanism is
empowered by the benefits of knowledge transfer when
learning new tasks. The theoretical and empirical results
show that both DEGAM as well as DEGM can significantly
reduce the number of parameters while maintaining optimal
performance for all tasks during the lifelong learning.

REFERENCES

[1] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,”
Neural Networks, vol. 113, pp. 54–71, 2019.

[2] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with
deep generative replay,” in Advances in Neural Information Proc.
Systems (NIPS), 2017, pp. 2990–2999.

[3] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” in Advances in Neural Inf. Proc. Systems (NIPS), 2014,
pp. 2672–2680.

[5] A. Achille, T. Eccles, L. Matthey, C. Burgess, N. Watters, A. Lerch-
ner, and I. Higgins, “Life-long disentangled representation learn-
ing with cross-domain latent homologies,” in Advances in Neural
Inf. Proc. Systems (NeurIPS), 2018, pp. 9873–9883.

[6] J. Ramapuram, M. Gregorova, and A. Kalousis, “Lifelong genera-
tive modeling,” Neurocomputing, vol. 404, pp. 381–400, 2020.

[7] M. Rostami, S. Kolouri, P. K. Pilly, and J. McClelland, “Genera-
tive continual concept learning,” in Proc. AAAI Conf. on Artificial
Intelligence, 2020, pp. 5545–5552.

[8] C. Wu, L. Herranz, X. Liu, J. van de Weijer, and B. Raducanu,
“Memory replay GANs: Learning to generate new categories with-
out forgetting,” in Advances In Neural Inf. Proc. Systems (NeurIPS),
2018, pp. 5962–5972.

[9] F. Ye and A. G. Bors, “Lifelong teacher-student network learn-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 10, pp. 6280–6296, 2022.

[10] ——, “Learning latent representations across multiple data do-
mains using lifelong VAEGAN,” in Proc. of European Conference
on Computer Vision (ECCV), vol. LNCS 12365, 2020, pp. 777–795.

[11] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton,
“VEEGAN: Reducing mode collapse in gans using implicit vari-
ational learning,” in Advances in Neural Inf. Proc. Systems (NIPS),
2017, pp. 3308–3318.

[12] F. Ye and A. G. Bors, “Lifelong infinite mixture model based
on knowledge-driven dirichlet process,” in Proc. of the IEEE/CVF
International Conference on Computer Vision (ICCV), Oct. 2021, pp.
10 695–10 704.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

17

[13] S. Lee, J. Ha, D. Zhang, and G. Kim, “A neural Dirichlet process
mixture model for task-free continual learning,” in Int. Conf. on
Learning Representations (ICLR), arXiv preprint arXiv:2001.00689,
2020.

[14] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach,
“Adversarial continual learning,” in Proc. European Conference on
Computer Vision (ECCV), vol. LNCS 12356), 2020, pp. 386–402.

[15] G. Jerfel, E. Grant, T. Griffiths, and K. A. Heller, “Reconciling meta-
learning and continual learning with online mixtures of tasks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2019,
pp. 9122–9133.

[16] Y. Wen, D. Tran, and J. Ba, “BatchEnsemble: an alterna-
tive approach to efficient ensemble and lifelong learning,” in
Proc. Int. Conf. on Learning Representations (ICLR), arXiv preprint
arXiv:2002.06715, 2020.

[17] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “β-VAE: Learning basic visual
concepts with a constrained variational framework,” in Proc. Int.
Conf. on Learning Representations (ICLR), 2017, pp. 1–13.

[18] L. Chen, S. Dai, Y. Pu, C. Li, Q. Su, and L. Carin, “Symmetric
variational autoencoder and connections to adversarial learning,”
in Proc. Int. Conf. on Artificial Intel. and Statistics (AISTATS), vol.
PMLR 84, 2018, pp. 661–669.

[19] F. Ye and A. G. Bors, “Mixtures of variational autoencoders,” in
Proc. Int. Conf. on Image Processing Theory, Tools and Applications
(IPTA), 2020, pp. 1–6.

[20] ——, “Deep mixture generative autoencoders,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5789–
5803, 2022.

[21] ——, “InfoVAEGAN: Learning joint interpretable representations
by information maximization and maximum likelihood,” in Proc.
IEEE Int. Conf. on Image Processing (ICIP), 2021, pp. 749–753.

[22] ——, “Learning joint latent representations based on information
maximization,” Information Sciences, vol. 567, pp. 216–236, 2021.

[23] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain adapta-
tion: Learning bounds and algorithms,” in Proc. of 22nd Conf. on
Learning Theory (COLT), arXiv preprint arXiv:0902.3430, 2009.

[24] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted
autoencoders,” in Proc. Int. Cont. of Learning Representations (ICLR),
arXiv preprint arXiv:1509.00519, 2015.

[25] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, J. Sutskever,
and M. Welling, “Improved variational inference with inverse
autoregressive flow,” in Proc. Advances in Neural Inf. Proc. Systems
(NIPS), 2016, pp. 4743–4751.

[26] D. J. Rezende and S. Mohamed, “Variational inference with nor-
malizing flows,” in Proc. Int. Conf. on Machine Learning (ICML), vol.
PMLR 37, 2015, pp. 1530–1538.

[27] L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational
Bayes: Unifying variational autoencoders and generative adver-
sarial networks,” in Proc. Int. Conf. on Machine Learning (ICML),
vol. PMLR 70, 2017, pp. 2391–2400.

[28] C.-W. Huang, K. Sankaran, E. Dhekane, A. Lacoste, and
A. Courville, “Hierarchical importance weighted autoencoders,”
in Int. Conf. on Machine Learning (ICML), vol. PMLR 97, 2019, pp.
2869–2878.

[29] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational
continual learning,” in Proc. Int. Conf. on Learning Representations
(ICLR), arXiv preprint arXiv:1710.10628, 2017.

[30] J. Bang, H. Kim, Y. Yoo, J.-W. Ha, and J. Choi, “Rainbow memory:
Continual learning with a memory of diverse samples,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 8218–8227.

[31] J. Bang, H. Koh, S. Park, H. Song, J.-W. Ha, and J. Choi, “Online
continual learning on a contaminated data stream with blurry task
boundaries,” in Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 9275–9284.

[32] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based
sample selection for online continual learning,” in Advances in
Neural Information Processing Systems (NeurIPS), 2019, pp. 11 817–
11 826.

[33] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Doka-
nia, P. H. S. Torr, and M. Ranzato, “On tiny episodic memories in
continual learning,” in arXiv preprint arXiv:1902.10486, 2019.

[34] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Effi-
cient lifelong learning with A-GEM,” in Proc. Int. Conf. on Learning
Representations (ICLR), arXiv preprint arXiv:1812.00420, 2019.

[35] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for
continual learning,” in Advances in Neural Information Processing
Systems (NIPS), 2017, pp. 6467–6476.

[36] M. M. Derakhshani, X. Zhen, L. Shao, and C. Snoek, “Kernel
continual learning,” in Proc. Int. Conf. on Machine Learning (ICML),
vol. PMLR 139, 2021, pp. 2621–2631.

[37] Y. Shi, L. Yuan, Y. Chen, and J. Feng, “Continual learning via
bit-level information preserving,” in Proc. of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2021, pp.
16 674–16 683.

[38] S. Wang, X. Li, J. Sun, and Z. Xu, “Training networks in null space
of feature covariance for continual learning,” in Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 184–193.

[39] J. Von Oswald, C. Henning, B. F. Grewe, and J. Sacramento, “Con-
tinual learning with hypernetworks,” in International Conference
on Learning Representations (ICLR) arXiv preprint arXiv:1906.00695,
2020.

[40] D. Rao, F. Visin, A. A. Rusu, Y. W. Teh, R. Pascanu, and R. Hadsell,
“Continual unsupervised representation learning,” in Advances in
Neural Information Processing Systems (NeurIPS), vol. 32, 2019, pp.
7645–7655.

[41] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang,
“Adanet: Adaptive structural learning of artificial neural net-
works,” in Proc. of Int. Conf. on Machine Learning (ICML), vol. PMLR
70, 2017, pp. 874–883.

[42] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,”
IEEE Trans. on Systems Man and Cybernetics, Part C, vol. 31, no. 4,
pp. 497–508, 2001.

[43] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirk-
patrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive
neural networks,” arXiv preprint arXiv:1606.04671, 2016.

[44] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-driven
incremental learning in deep convolutional neural network for
large-scale image classification,” in Proc. of ACM Int. Conf. on
Multimedia, 2014, pp. 177–186.

[45] G. Zhou, K. Sohn, and H. Lee, “Online incremental feature learn-
ing with denoising autoencoders,” in Proc. Int. Conf. on Artificial
Intelligence and Statistics (AISTATS), vol. PMLR 22, 2012, pp. 1453–
1461.

[46] F. Ye and A. G. Bors, “Lifelong generative modelling using dy-
namic expansion graph model,” in Proc. of AAAI on Artificial
Intelligence, 2022, pp. 8857–8865.

[47] A. Douillard, A. Ramé, G. Couairon, and M. Cord, “Dytox: Trans-
formers for continual learning with dynamic token expansion,”
in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

[48] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su,
V. Perot, J. Dy, and T. Pfister, “Learning to prompt for continual
learning,” in Proc. of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022, pp. 139–149.

[49] T. Doan, S. I. Mirzadeh, J. Pineau, and M. Farajtabar, “Efficient
continual learning ensembles in neural network subspaces,” arXiv
preprint arXiv:2202.09826, 2022.

[50] S. Varshney, V. K. Verma, P. Srijith, L. Carin, and P. Rai, “Cam-
gan: Continual adaptation modules for generative adversarial net-
works,” Advances in Neural Information Processing Systems, vol. 34,
pp. 15 175–15 187, 2021.

[51] C. P. Le, J. Dong, A. Aloui, and V. Tarokh, “Few-shot continual
learning for conditional generative adversarial networks,” arXiv
preprint arXiv:2305.11400, 2023.

[52] Y. Cong, M. Zhao, J. Li, S. Wang, and L. Carin, “Gan memory with
no forgetting,” Advances in Neural Information Processing Systems,
vol. 33, pp. 16 481–16 494, 2020.

[53] F. Ye and A. G. Bors, “Lifelong mixture of variational autoen-
coders,” IEEE Trans. on Neural Networks and Learning Systems,
vol. 34, no. 1, pp. 461–474, 2023.

[54] S. Kuroki, N. Charoenphakdee, H. Bao, J. Honda, I. Sato, and
M. Sugiyama, “Unsupervised domain adaptation based on source-
guided discrepancy,” in Proc. AAAI Conf. on Artificial Intelligence,
vol. 33, 2019, pp. 4122–4129.

[55] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[56] J. Domke and D. R. Sheldon, “Importance weighting and vari-
ational inference,” in Advances in Neural Information Processing
Systems (NeurIPS), 2018, pp. 4470–4479.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

18

[57] T. Cemgil, S. Ghaisas, K. Dvijotham, S. Gowal, and P. Kohli,
“The autoencoding variational autoencoder,” in Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, 2020, pp. 15 077–
15 087.

[58] S. Lee, J. Ha, D. Zhang, and G. Kim, “A neural Dirichlet process
mixture model for task-free continual learning,” in Proc. Int. Conf.
on Learning Representations (ICLR), arXiv preprint arXiv:2001.00689,
2020.

[59] R. Aljundi, K. Kelchtermans, and T. Tuytelaars, “Task-free contin-
ual learning,” in Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 11 254–11 263.

[60] S. Jung, H. Ahn, S. Cha, and T. Moon, “Continual learning with
node-importance based adaptive group sparse regularization,” in
Advances in Neural Information Processing Systems (NeurIPS), vol. 33,
2020, pp. 3647–3658.

[61] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through
synaptic intelligence,” in Proc. of Int. Conf. on Machine Learning
(ICML), vol. PLMR 70, 2017, pp. 3987–3995.

[62] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[63] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[64] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual
models from few training examples: An incremental Bayesian
approach tested on 101 object categories,” Computer Vision and
Image Understanding, vol. 106, pp. 59–70, 2007.

[65] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-
level concept learning through probabilistic program induction,”
Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[66] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in
Proc. Int. Conf. on Pattern Recognition (ICPR), 2010, pp. 2366–2369.

[67] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised feature
learning,” in Proc. NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning, 2011.

[68] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proc. of IEEE Int. Conf. on Computer Vision (ICCV),
2015, pp. 3730–3738.

[69] B.-C. Chen, C.-S. Chen, and W. H. Hsu, “Cross-age reference
coding for age-invariant face recognition and retrieval,” in Proc.
European Conf on Computer Vision (ECCV), vol. LNCS 8694, 2014,
pp. 768–783.

[70] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic,
“Seeing 3D chairs: exemplar part-based 2D-3D alignment using a
large dataset of CAD models,” in Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2014, pp. 3762–3769.

[71] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet clas-
sification with deep convolutional neural networks,” in Proc.
Advances in Neural Inf. Proc. Systems (NIPS), 2012, pp. 1097–1105.

[72] L. Yang, P. Luo, C. Change Loy, and X. Tang, “A large-scale car
dataset for fine-grained categorization and verification,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 3973–3981.

[73] A. Yu and K. Grauman, “Semantic jitter: Dense supervision for
visual comparisons via synthetic images,” in Proc. IEEE Int. Conf.
on Computer Vision (ICCV), 2017, pp. 5571–5580.

[74] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD birds-200 dataset,” California Institute of Technol-
ogy, Tech. Rep. CNS-TR-2010-001, 2010.

[75] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. Int. Conf. on Learning Representations (ICLR), arXiv
preprint arXiv:1412.6980, 2015.

[76] G. Graffieti, D. Maltoni, L. Pellegrini, and V. Lomonaco, “Genera-
tive negative replay for continual learning,” Neural Networks, vol.
162, pp. 369–383, 2023.

[77] R. Gao and W. Liu, “DDGR: continual learning with deep
diffusion-based generative replay,” in Proc. International Conference
on Machine Learning, vol. PMLR 202, 2023, pp. 10 744–10 763.

[78] Y. Park, C. Kim, and G. Kim, “Variational Laplace autoencoders,”
in Proc. Int. Conf. on Machine Learning (ICML), vol. PMLR 97, 2019,
pp. 5032–5041.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3564188

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

