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Abstract. The recent development of a Bayesian stochastic subspace
identification (SSI) algorithm for OMA has provided a new system-
atic and principled way of recovering posterior distributions over desired
modal characteristics in an operational setting. Despite their many ad-
vantages, there is often a reluctance to adopt Bayesian methodologies in
engineering practice because of their higher computational requirements.
In the case of Bayesian SSI, this problem is even more relevant given the
inherent speed of the traditional SSI algorithm. This has highlighted
the need for a computationally efficient implementation of the Bayesian
SSI algorithm, required to make Bayesian SSI a more competitive choice
when considering multiple OMA approaches. This paper presents a novel
solution, based on stochastic variational inference, and develops upon ex-
isting methods to speed up the Bayesian SSI algorithm. This method is
evaluated using a simulated case study and subsequently compared to
that of classical SSI and the current Bayesian SSI implementation.

Keywords: Bayesian · Stochastic Variational Inference · Stochastic Sub-
space

1 Introduction

As demand for models and data become more strict, there is an increasing desire
in the engineering community to obtain a measure of uncertainty in order to bet-
ter assess the quality of any chosen methodology and ultimately evaluate the risk
of various outcomes. There has been growing interest in the OMA community
to explore uncertainty based methods in an effort to improve operational modal
identification and its derivatives. By their nature, OMA algorithms operate un-
der inherently stochastic input regimes, lending themselves to higher signal to
noise ratios and therefore, typically more difficult to identify datasets. Conse-
quently, engineers are developing methodologies that account for this stochas-
ticity and quantify some form of uncertainty on the learnt modal properties.
Stochastic subspace identification (SSI) has seen particular attention, given its
high performance in many OMA settings and suitability to this problem [13, 14,
4, 3].
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Recently the authors proposed a probabilistic interpretation of canonical
variate-weighted covariance-driven SSI (SSI-Cov) [12], realised using the theory
of probabilistic projections [1]. This alternative probabilistic representation con-
veniently lends itself to familiar hierarchical extensions, e.g. robust formulations
[12].

This was later followed by a Bayesian SSI algorithm for uncertainty quan-
tification [10, 11], where the inclusion of prior distributions over the defined
model parameters results in the recovery of a posterior on the observability ma-
trix and, by extension, posteriors on the modal parameters. This recovery was
demonstrated through two different inference schemes; Markov-chain Monte-
Carlo (MCMC), and variational inference (VI).

Despite their many advantages, there is often a reluctance to adopt Bayesian
methodologies in engineering practice because of their higher computational re-
quirements. In the case of Bayesian SSI, this problem is even more relevant given
the inherent speed of the singular value decomposition in the classic SSI algo-
rithm. Computational efficiency is important when considering the application
of Bayesian SSI as a suitable alternative to traditional techniques and as a com-
petitive choice for uncertainty quantification. This paper introduces a solution to
this problem, employing a batch stochastic variational inference (SVI) scheme,
known to improve the overall efficiency of VI [5]. It will then be shown how batch
SVI reduces the total number of operations required to reach convergence to the
posterior.

2 Covariance-Driven Stochastic Subspace Identification

Given standard derivations of canonical variate-weighted SSI-Cov [7, 15], it is
widely known that for a classically-defined, output-only state-space model, the
extended observability (O) and controllability (C) matrices can be computed
using the singular value decomposition (SVD),

Σ
−1/2
ff ΣfpΣ

−1/2
pp = V1ΛV2 ⋍ V̆1Λ̆V̆

T

2 (1)

where Σff and Σpp are block auto-covariances and Σfp is the block cross-
covariance between Hankel matrices of the future Yf and past Yp, constructed
using lags of the measured time series. Vectors V1 and V2 correspond to the left
and right singular vectors of the SVD respectively, and Λ̆ neglects small singular
values in Λ such that the resulting vector has dimension d = dim(Λ̆). This is
equivalent to the well known statistical concept, canonical correlation analysis
(CCA) [6]. The cross-covariance matrix, Σfp, can be then decomposed into a
product of the extended observability and controllability matrices Σfp = OC
such that,

O = Σ
1/2
ff V̆1Λ̆

1/2
, C = Λ̆

1/2
V̆

T

2Σ
T/2
pp (2)

where rank(O) = rank(C) = d. From this standard result, the state matrix and by
extension the modal properties can be recovered in the usual way for SSI-Cov [7].
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3 Probabilistic Stochastic Subspace Identification

In previous work by the authors [12], it was shown that SSI-Cov could be rewrit-
ten probabilistically, substituting CCA with its probabilistic equivalent, defined
by Bach and Jordan using a latent variable model [1]. This latent model assumes
two datasets x(1) and x

(2) originate from a shared latent space z, in which they
are maximally correlated, and are obtained through a linear transformation (or
weight) W, mean offset µ, and noise precision Ψ. The overall model is given by
Equations (3 - 5), where m = 1,2.

zn ∼ N (0, I) (3)

x
(m)
n |zn ∼ N (W(m)

zn + µ(m),Σ(m)) (4)

xn|zn ∼ N (Wzn + µ,Σ) (5)

In this probabilistic form, assuming x
(1) = Yf ∈ R

D1×N and x
(2) = Yp ∈

R
D2×N , the maximum likelihood estimates of the weight matrices was shown to

be equivalent to the observability matrix and controllability matrix transposed
[12].

W
(1) = Σ

1/2
ff V1P

1/2
R = O, W

(2) = Σ
1/2
pp V2P

1/2
R = CT (6)

where P1/2 is the square root of the canonical correlations (singular values) and
R is an abritrary rotation to be recovered.

4 Bayesian Stochastic Subspace Identification

Klami and Kaski [8], and Wang [16], extended probabilistic CCA to a Bayesian
form through inclusion of prior distributions on the model parameters, as de-
fined in Equations (7 - 9). The resulting Bayesian model is shown graphically in
Figure 1.
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Fig. 1. Graphical model of Bayesian CCA

wi ∼ N (µwi
,Σwi

) (7)

Ψ ∼ W(K0, ν0) (8)

µ ∼ N (µµ,Σµ) (9)
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wherewi denotes the ith column of the full weight matrixW, where each column
is considered independent with its own prior of the same form, W is a Wishart
distribution, and the priors over the mean µ and block precision matrix Ψ are
conventional conjugate priors.

Replacing CCA for Bayesian CCA, the authors redefined SSI-Cov as a prob-
lem in Bayesian inference, such that the posterior estimates for the weightsW(1),
W

(2) — analogous to posteriors on the observability matrix and controllability
matrix — from which, posteriors on the modal properties are obtainable. There
are multiple inference schemes available to compute the posteriors for this type
of Bayesian problem. In this paper, the authors compare VI, and batch SVI.

5 Inference Schemes

5.1 Variational Inference

Variational inference (VI) is a common inference scheme used to approximate
intractable posterior distributions with variational (surrogate) posteriors. This is
achieved by minimising the Kullback-Leibler (KL) divergence from the surrogate
to the true posterior distribution: Maximising the evidence lower bound (ELBO),
which is equal to the negative KL divergence up to an additive constant. The
ELBO is defined as the sum of the expected log of the joint and the entropy of
the variational distribution [9, 2].

L(φ, λ) = Eq(z,θ) [log p(x, z,θ)− log qφ,λ(z,θ)] (10)

Using a mean-field variational family, in which each latent variable is inde-
pendent and governed by their own parameters, the surrogate posteriors take
the factorised form in Equation (11) [16]

q(z,µ,Ψ,W) =

N
∏

n=1

q(zn)

d
∏

i=1

q(wi)q(µ)q(Ψ) (11)

with the following definitions for Bayesian SSI

q(zn) = N
(

zn|µ̆zn
, Σ̆zn

)

(12)

q(Ψ) = W
(

Ψ|K̆ , ν̆
)

(13)

q(wi) = N
(

wi|µ̆wi
, Σ̆wi

)

(14)

q(µ) = N
(

µ|µ̆µ , Σ̆µ

)

(15)

where ϕn = {µ̆
zn
, Σ̆zn

} are local variational parameters and λ = {µ̆
wi

, Σ̆wi
, µ̆µ,

Σ̆µ, K̆
−1

, ν̆} are global variational parameters. This allows the local and global
parameters of the surrogate posteriors to be determined which, for mean-field
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VI, is achieved using coordinate ascent on the gradient of the ELBO [9]. The
algorithm first optimises the local parameters for all datapoints, and then re-
estimates the global parameters, iterating until convergence of the ELBO.

5.2 Batch Stochastic Variational Inference

Stochastic variational inference (SVI), developed by Hoffman et.al. [5], is de-
signed to remove the dependency of coordinate ascent VI on optimising the full
set of local parameters using the entire dataset before re-estimating the global
parameters. This is particularly useful when analysing larger datasets. SVI uses
stochastic optimisation to form noisy estimates of the natural gradients of the
ELBO. The method proceeds by first subsampling the dataset and finding the
local variational parameters at a single point, xi. A set of intermediate global
parameters λ̂ are then computed as though xi were repeated N times. This inter-
mediatory is then used to update the current estimate of the global parameters
λ(t−1) according to, λ(t) = (1− ρt)λ

(t−1) + ρtλ̂, where ρ is a decreasing step size
[5]. It can be seen that this approach is equivalent to a stochastic optimisation
scheme for λ. These steps are then repeated, uniformly sampling the dataset un-
til convergence. Hoffman also showed how this can be extended to a ‘mini-batch’
algorithm to improve the algorithm’s stability, reducing the variance in the esti-
mates λ̂. Instead, a batch of S random points are subsampled at each iteration.
The local variational parameters are once again computed for each data point
and intermediate global parameters are computed in the same way λ̂s. However,
before updating, the intermediate global estimates are averaged over the batch,
such that

λ(t) = (1− ρt)λ
(t−1) +

ρt

S

S
∑

s=1

λ̂s (16)

This has significant benefits, such as amortising any computational expense as-
sociated with updating the global parameters (as is true in the case of Bayesian
SSI, incurring this cost less frequently) and helping the algorithm find a better
variational posterior.

6 Results and Discussion

To compare the performance of the two inference schemes response data from a
three-degree of freedom linear dynamic system, described by the modal proper-
ties ω = {10.54, 16.35, 24.34} and ζ = {0.0051, 0.0076, 0.0033}, were generated
given a simple white noise excitation. The system was simulated at a sample
rate of 1000Hz, generating 16384 datapoints. SSI-Cov, VI and batch SVI were
then applied assuming a larger than true model order of 20 (10 unique modes).
A simulated system was used to allow comparison to a known ground truth.

The following weakly informative, proper priors were chosen, wi ∼ N (0 , I),
µ ∼ N

(

0 , I× 10−3
)

, Ψ ∼ W
(

I× 101 , D + 1
)

, providing the model with suffi-
cient flexibility. The priors on the mean and variance were lightly constrained
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given assumed prior knowledge of a zero mean and low measurement noise. His-
tograms of the prior modal properties, using samples drawn and propagated
from the prior observability matrix, are presented in Figure 2.

Fig. 2. Approximate prior distributions on the modal properties as histograms, prop-
agated from samples of the prior distribution on the observability matrix. (top to
bottom: natural frequency, damping ratio, normalised mode shape)

Rather than evaluating both algorithms using compute time, instead the re-
quired number of necessary repeats (i.e. the number of times the entire dataset
was analysed) to reach convergence of the evidence lower-bound (ELBO) was
used. Considering the number of updates on each parameter, avoids inconsisten-
cies in implementation compared to “wall-time” comparison. For the batch SVI
analysis, a batch size of S = 1024 was chosen, equivalent to 16 batches, with the
common step size function ρ = s−k where s is the current batch number and
k is the forgetting rate, chosen as k = 0.95. Both methods were then applied,
with VI converging after 5 iterations (5 full sweeps of the data) and batch SVI
converging after 48 batches, equivalent to 3 full sweeps of the data. As can be
seen from Figure 3, the approximate posteriors of both algorithms are in rel-
atively good agreement with one another, and with SSI-Cov. This is expected
as the posterior mean should converge to the maximum-a-posteriori estimate.
Furthermore, the posteriors from batch SVI demonstrate lower overall variance,
despite two fewer full sweeps of the data. This is believed to be a result of the
stochastic nature of batch SVI, which is often hypothesised to reduce possible
stagnation at saddle points.

The reader may also notice the possibility for unrealistic estimates of the
damping ratio, which for real mechanical systems should be bounded ζ = [0, 1],
given the quantified uncertainty. Nevertheless, the authors note that classic
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Fig. 3. Posterior distributions on the modal properties as histograms, made up of
samples drawn from the closed form surrogate posterior on the observability matrix
found using CAVI and Batch SVI. These samples are then propagated onto the modal
properties. (top to bottom: natural frequency, damping ratio, normalised mode shape)

SSI-Cov algorithm is not mathematically constructed to enforce such a restric-
tion and that negative damping estimates can occur. However, this does pose an
interesting research problem which is discussed briefly in the concluding remarks.

7 Concluding Remarks

This paper presented a new efficient implementation of Bayesian SSI by replacing
variational inference (VI), with batch stochastic variational inference (SVI). The
two inference schemes were applied to a simulated three degree-of-freedom lin-
ear dynamic system, demonstrating comparable performance in the recovery of
posterior distributions on the modal properties. Notably, batch SVI was able to
achieve convergence to a reasonable posterior in fewer full sweeps of the dataset
(3 repeats) than traditional VI (5 repeats). It is believed that this improved
version of Bayesian SSI makes it a competitive choice for Bayesian uncertainty
quantification in industrial and research applications. Following this body of
work, other future work will aim to address the issue of recovering physically
meaningful posterior estimates to the modal properties. This may include the
exploration and development of a novel approach to embedding physical under-
standing into the priors in this practical context. Other important points for
consideration will be studying the effect of hyperparameters, such as batch size
and forgetting rate, and considering how model order selection could be achieved
efficiently in this framework.
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