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Abstract: Accurate skin color reproduction under varying CCT remains a critical challenge
in the graphic arts, impacting applications such as face recognition, portrait photography,
and human–computer interaction. Traditional AWB methods like gray-world or max-RGB
often rely on statistical assumptions, which limit their accuracy under complex or extreme
lighting. We propose SCR-AWB, a novel algorithm that leverages real skin reflectance data
to estimate the scene illuminant’s SPD and CCT, enabling accurate skin tone reproduction.
The method integrates prior knowledge of human skin reflectance, basis vectors, and
camera sensitivity to perform pixel-wise spectral estimation. Experimental results on
difficult skin color reproduction task demonstrate that SCR-AWB significantly outperforms
traditional AWB algorithms. It achieves lower reproduction angle errors and more accurate
CCT predictions, with deviations below 300 K in most cases. These findings validate SCR-
AWB as an effective and computationally efficient solution for robust skin color correction.

Keywords: skin reflectance; auto white balance; color reproduction

1. Introduction
Skin color reproduction under different correlated color temperature (CCT) condi-

tions has long been a critical topic in color science. Accurate and reliable skin color
reproduction techniques have significant applications in portrait recognition [1], aesthetic
photography [2], and human-computer interaction [3]. One of the key factors influencing
skin color reproduction in digital photography is the accurate correction of white balance
(WB), especially when converting images from RAW formats to standard output formats
such as .JPG form. Under varying CCT conditions, changes in light sources can cause skin
tones to appear distorted and unnatural. WB adjusts the color temperature in an image to
eliminate color casts under different lighting conditions, making the image look more like
the original scene [4]. However, the AWB algorithm faces many challenges when used on
mobile devices, for example, smartphones, such as optical sensor performance limitations,
algorithm complexity brought by mixed light source scenes, and limited chip computing
resources [5]. Consequently, achieving precise white balance correction to ensure accurate
skin color reproduction in complex lighting environments, while also maintaining algo-
rithm simplicity and speed for seamless implementation on mobile devices, has become a
significant technical challenge for many smartphone manufacturers today.

Traditional AWB algorithms rely on statistical assumptions about the image’s light
source. One common assumption is that the average color of the image should be neutral
gray, as defined by the GreyWorld algorithm [6], Perfect Reflector algorithm [7], Shades
of Gray algorithm [8], and Grey-Edge algorithm [9]. Another assumption is that certain
objects in the scene reflect the maximum amount of light, reaching saturation in at least one
color channel, as in the Max-RGB algorithm [10] and Retinex algorithm [11]. These methods
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estimate AWB gain across the entire image using techniques like average grayscale or white
point estimation.

However, traditional algorithms relying on global image statistics often assume uni-
form lighting environments, where the light source can be predicted through calculated
gains. These assumptions frequently break down in complex scenarios, such as scenes with
large uniform color areas (e.g., grass or sky) or extreme CCT. In such cases, relying on global
color averages or edge-based information fails to achieve accurate white balance [12,13].
Similarly, brightness-focused methods or those using maximum value information perform
well in brightly lit scenes but struggle in low light, monochromatic areas, or when no clear
white reference points are available. Therefore, it is a good idea to consider the face as a
color reference in the scene for AWB.

Previous studies [14–16] have also considered using skin color clustering as a clue for
illuminant prediction. Traditional methods also face significant challenges in reproducing
accurate skin tones under these conditions, primarily due to their inability to account for
the complexity of real-world SPD. Moreover, the use of reflectance data and RGB data as
fundamental concepts has been widely adopted in various color science applications, such
as spectral image reconstruction [17,18]. Most of them have predominantly focused on light
or East Asian skin tones. In contrast, reproducing dark skin tones poses a greater challenge
due to their lower reflectivity and more complex spectral characteristics, especially under
extreme CCT conditions or mixed illumination.

To address this challenge and better evaluate the robustness of the proposed algorithm,
we specifically chose individuals with dark skin tones as the primary subjects in our
experiments. Darker skin reflects less light in the shorter wavelengths due to higher
melanin content, making it a stringent test case for white balance algorithms. Moreover,
our empirical observation indicates that dark skin tends to exhibit greater inter-individual
spectral variation than lighter skin tones, which further stresses the generalization capacity
of the model.

Although this study focuses on dark skin individuals for the aforementioned reasons,
our research team has already collected a comprehensive skin reflectance dataset across
a diverse population, including Caucasian, East Asian, South Asian, and Middle Eastern
groups [19]. Figure 1 demonstrates the spectral reflectance profiles of multiple ethnicities,
indicating substantial variation across the spectrum. While these profiles were not the
main focus of the experimental evaluation in this work, they were used during model
development and motivation.

For colorists and camera manufacturers, achieving accurate skin tone reproduction
requires overcoming the spectral differences among racial groups. However, conventional
color correction techniques often struggle to maintain consistent skin tone appearance
under varying lighting conditions, necessitating advanced computational models to en-
hance color fidelity. Moreover, AWB algorithms must be optimized to adaptively adjust
for skin reflectance variations, ensuring color accuracy across diverse illumination envi-
ronments. To address this, we propose incorporating actual skin reflectance data into the
SPD computation, integrating skin color characteristics into the fundamental formula. This
approach enhances the adaptability of traditional algorithms, enabling more precise skin
tone reproduction in complex lighting scenarios while improving visual consistency and
color fidelity.
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Figure 1. Facial skin reflectance data from [19]. (It across different ethnicties: CA (Caucasian),
CN (Chinese), SA (South Asian—Pakistani), AF (African), IQ (Middle Eastern—Iraqi), TH (Southeast
Asian—Thai), JP (Japanese), AB (Middle Easter— Arabian).

In recent years, deep learning-based AWB algorithms have gained attention for their
ability to handle complex lighting scenarios. For example, Bianco et al. [20] proposed a
CNN-based model for both single and multiple illuminant estimation using raw image
patches, achieving state-of-the-art accuracy. More recently, Choi [21] introduced DRANet,
a deep residual architecture designed to enhance illumination estimation while maintaining
a compact model size and strong generalization across varying lighting conditions and
devices. By leveraging neural networks, these methods model intricate interactions within
a scene to predict AWB gains [20,22–24]. However, most AI-based AWB models focus
on spatial characteristics [6] rather than directly analyzing the spectral properties of light
sources. Accurate skin tone reproduction, however, critically depends on interpreting the
spectral distribution of light—an aspect often overlooked by existing AI-AWB approaches.
Our work bridges this gap by emphasizing the spectral reflectance of skin tones, aiming to
improve both traditional and AI-based AWB methods.

Purpose: To address these issues, this paper presents an SPD prediction AWB al-
gorithm based on skin reflectance (SCR-AWB) that predicts the SPD using skin color
information and real skin reflectance data. By directly tackling the challenges of spectral
and color restoration in lighting environments with different CCT, particularly in scenarios
involving dark skin color reproduction, SCR-AWB offers significant advancements over
existing AWB technologies. The proposed algorithm has several key advantages:

Unlike traditional white balance algorithms, which rely on assumptions such as
average grayscale or the brightest color channel in the image, SCR-AWB eliminates these
dependencies. It can be applied to a variety of scenes where skin color information exists
and establishes a connection with the skin color information in the image through the real
skin reflectance information, thereby providing more accurate color reproduction results.
In addition, more accurate SPD and CCT predictions can also be used in other key steps of
the image processing pipeline. Compared to AI-AWB models, this method imposes fewer
constraints on computational resources and model size, leading to improved computational
efficiency. This makes it particularly well-suited for deployment in mobile devices and
low-power environments, offering a practical solution with enhanced performance.

2. Materials and Methods
We propose a novel spectral prediction-based AWB algorithm, SCR-AWB, which

leverages known skin reflectance and sensor sensitivity to estimate the scene’s SPD as
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Figure 2 shows. The pipeline includes raw image preprocessing (black level compensation
and early demosaicing), followed by illuminant estimation based on segmented skin
regions. The predicted SPD is used to compute the CCT and derive RGB gain values for
global white balance correction.

Figure 2. Algorithm flow chart. In the figure, BLC refers to black compensation. Compared with the
traditional algorithm, our algorithm advances the demosaic interpolation first predicts the spectral
distribution and then calculates the white point based on the predicted spectrum to obtain AWB
Gain. This is completely different from the traditional algorithm that first obtains AWB Gain and
then estimates the light source information through gain and has stronger reliability.

The most important thing in the core of the algorithm is the prediction of the light
source spectrum, which requires some known information: 1. Nonlinear RGB values
representing skin color, obtained by segmenting and selecting skin color areas. 2. Skin
reflectance information that can represent the race. 3. Basis vector values that match
the light source type, including daylight and artificial light sources. 4. Sensor sensitivity
function. The light source spectrum SPD predicted by the core of the algorithm is used to
estimate CCT and calculate AWB gain and apply to the entire image for accurate white
balance correction.

Unlike gray-world-based methods that rely on RGB-level statistical assumptions (e.g.,
average scene reflectance being gray), our approach predicts the SPD of the illuminant in
the spectral domain. It explicitly models the physical interaction between the illuminant,
surface reflectance, and sensor response, using prior knowledge of human skin reflectance
and sensor sensitivity.

This spectral reflectance is then converted to an illuminant estimate through a physi-
cally grounded reflectance-illumination interaction model. Our method does not rely on
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the assumption of color constancy across the image or on the average reflectance being
gray. Instead, it uses domain knowledge about human skin reflectance and sensor response,
which is particularly beneficial in scenarios where skin regions are prominent in the scene.

2.1. Theoretical Basis of SCR-AWB Algorithm
2.1.1. Spectral Estimation of Unknown Light Sources

The essential parameters required for the SCR-AWB algorithm include the RGB values
of skin color pixels from the raw data, skin reflectance information, sensor sensitivity
function data, and the basis vectors used to calculate the spectral power distribution of
ambient light [25]. In the calculation, the skin reflectance information, sensor sensitivity
function data, and basis vector data for calculating the SPD of ambient light are all prior
information, while the RGB values of skin color pixels from the raw data are obtained from
the image, and the parameter to be calculated is the light source spectrum.

The underlying principle of the proposed algorithm is derived from fundamental color
equations, as outlined in Equations (1)–(3).

Assume that the image scene has the skin region (identified by segmentation tech-
niques). Thus, we have the basic equations for each pixel in the skin region:

R = κ
∫

E(λ)r(λ)Sr(λ) dλ (1)

G = κ
∫

E(λ)r(λ)Sg(λ) dλ (2)

B = κ
∫

E(λ)r(λ)Sb(λ) dλ (3)

Here, E(λ) denotes the unknown SPD of the light source, r(λ) is the skin reflectance
spectrum, and Sr(λ), Sg(λ), Sb(λ) represent the camera sensor’s spectral sensitivity func-
tions for the red, green, and blue channels, respectively. κ is a scalar representing the overall
scene irradiance, which does not affect chromaticity.

Furthermore, we assume E(λ) that need to be calculated can be a combination of three
basis vectors, i.e.,:

E(λ) = α1E1(λ) + α2E2(λ) + α3E3(λ) (4)

Thus, the solution of the unknown light source spectrum E(λ) is converted into the
solution of the α1,α2,α3 parameters. Let λi be the wavelength values sampled uniformly
at ∆λ intervals in the wavelength range. We can combine all the prior quantities on the
right side of the equal sign in Euaqtions (1)–(3) into mj,p and convert it into the form of
numerical integration.

mj,p = κ
n

∑
i=1

Ep(λi)r(λi)Sj(λi)∆λ, j = r, g, b, p = 1, 2, 3 (5)

Thus, let M be the 3*3 matrix formed by elements of the set of all prior quantities mj,p

defined by Equations (5). The discretized system of algebraic equations of Equations (1)–(4)
is given by Equations (6). R

G
B

 = M

α1

α2

α3

 (6)

Substituting all the raw RGB values and the set elements of the prior quantity calcu-
lated by Equation (5) into Equation (6), we can calculate α1, α2 and α3. Finally, the calculated
α1, α2 and α3 are substituted back into Equation (4) to obtain the predicted SPD of the
actual scene.
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While early works, such as Barnard et al. [26] have proposed color constancy al-
gorithms that incorporate both surface reflectance information and spatial illumination
variation, their methods rely on statistical constraints and assume that reflectance and
illumination can be simultaneously disentangled from RGB images through observed
variation. In contrast, our method does not estimate surface reflectance from RGBs. Instead,
it assumes the spectral reflectance of skin as a known prior and directly solves for the
SPD of the illuminant by leveraging sensor sensitivity and a learned basis. This physically
constrained inversion avoids the ambiguity typically associated with estimating both re-
flectance and illuminant from RGBs alone. Thus, although our approach shares the general
goal of spectral recovery, it diverges significantly in methodology—offering a deterministic,
prior-informed estimation pathway that avoids reliance on global statistical assumptions
or spatial reflectance variation.

2.1.2. From Predicted Spectra to CCT

To derive CCT, the predicted SPD is first converted to tristimulus values via
CIE 1931 color matching functions. Chromaticity coordinates are computed in the
CIE1960 uv space, and CCT is estimated using the Robertson method with Newton-
Raphson refinement [27,28].

2.1.3. From Predicted Spectra to Gain

After obtaining the predicted SPD of the light source, it can be substituted into the
fundamental Equations (1)–(3) to calculate the RGB values of the white point under the
given light source. Before adjusting the white balance, introduce a constant coefficient
k that will be eliminated during calculation to represent the light intensity. Set r(λ) = 1
as the white point reflectance, and then determine the RGB value of the white point by
numerically integrating the visible spectrum.

Based on the calculated RGB values of the white point, the gain coefficient is calculated
by the ratio between them, including RGain = G/R, GGain = G/G, BGain = G/B. These
gain values are subsequently applied to correct the color balance in the image, ensuring
accurate reproduction of white under the light source.

2.2. Parameter Acquisition
2.2.1. Prior Information Acquisition

In the algorithm process, the way of obtaining prior information and different parame-
ter choices can significantly impact on both the accuracy and computational efficiency of
the algorithm.

Regarding the acquisition of the spectral sensitivity function Sj(λ), j = r, g, b, we
recommend using a monochromatic light generator to obtain an accurate sensor sensitivity
function. However, even without a monochromatic light generator, there are other methods
to estimate the spectral sensitivity of mobile device sensors. For example, the sensor can be
characterized by capturing an image showing the colors on a display or using a color chart.
Zhu et al. proposed a method in Optics Express that uses an orthogonal test design and
window filtering, where colors are displayed on a screen and analyzed by camera capture
to predict sensor response [29]. Similarly, Huynh and Robles-Kelly in their ICPR conference
paper introduced a color chart-based approach (e.g., X-Rite ColorChecker) that uses an
optimization algorithm to estimate spectral sensitivity [30].

For skin reflectance data, using the average reflectance calculated for different races can
simplify the model and reduce the computational load. Measurements of skin reflectance
for different races, collected using the using a spectrophotometer (CM-700d, KONICA
MINOLTA, INC., Osaka, Japan), reveal that skin reflectance varies among individuals due
to a variety of factors. However, in most cases, the average reflectance calculated for each
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race effectively represents the overall skin color characteristics of that group. This approach
reduces the deviation caused by outliers from extreme individuals, ensuring the model
maintains broad applicability. Consequently, using average race-based skin reflectance can
significantly reduce computational complexity and data collection costs while maintaining
high algorithmic accuracy, making it particularly suitable for mobile device applications. It
is also worth noting that, when computational resources allow, skin reflectance data can
account for individual differences. This suggests that future algorithms could be further
improved by adopting more personalized approaches tailored to individual skin tones,
providing room for advancement in customized solutions.

To reduce computational costs, the basis vectors of the light source can be pre-
calculated and stored as fixed values. These basis vectors are obtained by performing
singular value decomposition (SVD) on large-scale datasets of similar light sources. For in-
stance, by collecting daylight spectrum data across different time periods and weather
conditions, the basis vectors that cover various daylight scenarios can be computed. Simi-
larly, for artificial light sources, basis vectors can be derived from comprehensive artificial
light source databases. We derive a set of basis functions for all artificial light sources,
from tungsten to daylight fluoresent, via every fluoresent combination, LED combina-
tion, high pressure mercury, etc. These pre-calculated vectors can be embedded into the
algorithm, significantly reducing the computational load during subsequent processes.

The SVD process can be described as follows: Assume that each piece of spectral
information of the spectral data of the light source is taken as a column vector to obtain the
spectral matrix A. By applying SVD, we decompose A into Eqaution (7).

A = UΣVT (7)

where U is an 81*81 orthogonal matrix (assuming the spectral range is set to 380–780 nm
with an interval of 5 nm), satisfying Equation (8).

UTU = UUT = I (8)

with I being the identity matrix. The column vectors of U, called left singular vectors, are
the eigenvectors of the matrix AAT . The singular value Σ, a diagonal matrix, contains the
singular values of A, which represent the importance of various features in the spectral
data of the light source.

In this algorithm, the basis vectors are composed of the first few column vectors of
matrix U, typically selecting the top three left singular vectors to capture the most significant
characteristics of the light source. These basis vectors represent the major variation trends
of the spectral data under different environmental conditions, eliminating the need for
real-time recalculations in each instance.This pre-computation step significantly reduces
computational overhead during algorithm execution.

It is worth noting that for specific lighting scenarios in AWB, one only needs to
collect the spectral data of the specific scene and calculate the relevant basis vectors using
SVD. This allows SCR-AWB to be quickly and accurately applied, ensuring precise color
reproduction in those environments.

2.2.2. Image Information Acquisition

Based on the determined prior parameters, the linear RGB information obtained from
the image will be a clue to calculate the light source spectrum. If the computing power is
sufficient, a light source spectrum can be calculated for each pixel in the facial area.

However, due to the computing power limitations of mobile devices, this article
recommends using the median for segmented or selected facial skin color areas when
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using the SCR-AWB algorithm on mobile devices. The reason for choosing the median
is its robustness, as it minimizes the influence of extreme values or outliers—such as
highlights or localized overexposure under different lighting conditions—on the algorithm.
Additionally, when certain areas of the skin are subjected to varying degrees of illumination,
leading to potential errors, the median helps reduce these errors and provides a more stable
representation of skin color. Finally, due to the inherent non-uniformity of skin color,
using the median avoids excessive smoothing of data, which would otherwise diminish
important skin tone details.

3. Experiments
3.1. Experiment 1: Color Chart White Point and Neutral Gray Evaluation Under Different CCT
Artificial Light Sources

This experiment aimed to test the white balance effect of SCR-AWB and other AWB
algorithms in the color card white point and neutral gray area under artificial light environ-
ments with different CCT, and evaluate the basic AWB effect of the algorithm by evaluating
whether the values of the R, G, and B channels in these areas are close to equal.

Experimental settings: The experimental location was located in the Lighting Lab,
School of Design, University of Leeds, Leeds, UK. The experiments were conducted using
the THOUSLITE LEDCube, an advanced spectrally tunable lighting system designed to
simulate a wide range of lighting environments. Key features of the LEDCube include its
ability to simulate CCT ranging from 2000 K to 20,000 K, offering precise control over the
color rendering index (CIE Ra) and Duv values. This flexibility allows for the reproduction
of lighting conditions from warm tungsten light to cool daylight, ensuring a controlled
and reproducible environment for testing. In our experiments, the LEDCube provided
stable, flicker-free lighting with adjustable intensity, ensuring consistency across all test
conditions. As Figure 3 shows, a variety of artificial light sources with common CCT values
were selected, including a total of 5 light environments from warm light to high color
temperature light. The specific CCT settings are: 2300 K, 3500 K, 4000 K, 5000 K, 6500 K.
The light environment includes common D50 and D65 light sources to ensure that the
spectral distribution of each light source is representative.

Figure 3. The laboratory light environment settings for Experiments 1 and 2: Experiment 1 only uses
color card data shot at 2300 K, 3500 K, 4000 K, 5000 K, and 6500 K. In Experiment 2, the subjects will
be shot in a total of seven different CCT scenes, and the illumination of the shooting position in the
scene is set to 500 lux.

The color chart used in this experiment is the Dark Skin Tone Chart, developed by
the University of Leeds for Shenzhen Transsion Holdings Co., Ltd. (Shenzhen, China)
While the full chart contains multiple patches representing dark skin tones, only achro-
matic patches (white and neutral gray) were used in this study due to patent and
copyright restrictions.

Under standard D65 lighting conditions, the spectral reflectance properties of the white
and gray patches on the chart were measured using a calibrated spectrophotometer(CM-
700d, KONICA MINOLTA, INC., Osaka, Japan) to match the reflectance values of an X-Rite
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ColorChecker, and the reflectance uniformity and calibration accuracy of the achromatic
patches were verified in a controlled laboratory environment. The white and gray areas
exhibit minimal color differences across the entire visible spectrum, ensuring their reliability
as white balance references.

Images of the colour chart were captured under different CCT conditions using the
smartphone Tecno AD9. During the experiment, the shooting parameters of the device were
kept constant (aperture f/1.8, International Organization for Standardization sensitivity
(ISO) 203, exposure time 1/100 s, focal length 7 mm) to ensure consistency and minimize
external factors such as exposure variations or sensor noise. In our experiments, we used a
single device, and the sensor sensitivity function was specifically matched to the device, so
manufacturing tolerances did not affect our experimental results. The images were collected
under strictly controlled shooting angles and lighting environments to ensure consistency
across all test scenes. Each set of images was initially recorded as Raw (.tiff form) files,
without any white balance correction. As Figure 4 shows, Black Level Correction (BLC)
will be performed during the algorithm processing, and AWB and demosaic interpolation
steps will be performed to obtain basic three-channel AWB output.

Figure 4. Pipeline of color chart white point and neutral gray evaluation under different CCT artificial
light sources.

The parameter configuration for the SCR-AWB algorithm in this experiment is as fol-
lows: The three-channel sensitivity function of the sensor was derived using measurements
obtained with a monochromatic light generator.The skin reflectance used in the SCR-AWB
algorithm was obtained through direct spectral measurements of the 4J skin color patch
on the physical color chart, using a calibrated spectrophotometer (CM-700d, KONICA
MINOLTA, INC., Osaka, Japan) under built-in standardized D65 illumination. This patch
was selected for its close match to real dark skin tones and serves as a reliable prior in the
spectral prediction process.

Building on the framework proposed by van de Weijer, which utilizes different param-
eter configurations (Minkowski norm p and standard deviation σ [9], the commonly used
traditional AWB algorithms and their parameter settings, recommended by researchers for
control experiments based on low-level image statistics, are summarized as follows [31–33]:

Grey World (GW): p =1, σ = 0
White Point (Max-RGB): p = ∞, σ = 0
Shades of Grey (SoG): p = 4, σ = 0
General Grey World (GGW): p = 9, σ = 9
1st order Grey Edge (GE1): p = 1, σ = 6
2nd order Grey Edge (GE2): p = 1, σ = 1
In addition to comparing our approach with traditional methods, we incorporated an

AWB model that leverages skin color cues. Specifically, Bianco et al. proposed an adaptive
color constancy algorithm that utilizes skin color histograms to identify facial regions [20],
followed by a Von Kries transform to estimate and correct scene illumination [34]. Further-
more, we included the deep learning-based sRGB color reproduction model introduced by
Afifi et al. for comparison [35]. Since this model operates on sRGB images, it was applied
to JPG images generated with RGain = 1 and BGain = 1. In contrast, other models were
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evaluated using the original Raw images. As a result, the comparison at the IRAW image
level in Table 1 does not include this model.

Table 1. Comparison of white point reproduction angle errors of IRAW using different AWB algorithm
in experiment 1. IRAW represents images captured after AWB and demosaic interpolation but without
further steps. The asterisk next to the algorithm name represents the p-value of the paired t-test of
SCR-AWB (* represents p < 0.05, ** represents p < 0.01).

Algorithm Mean Median Best 25% Worst 25% Maximum
GW ** 3.20 ± 1.10 3.14 2.58 3.98 4.19
Max-RGB 4.79 ± 4.07 3.75 2.70 6.14 9.82
SoG * 2.41 ± 1.03 2.59 2.17 3.03 3.16
GGW * 1.96 ± 0.50 1.92 1.70 2.00 2.60
GE1 ** 10.45 ± 2.92 10.58 9.27 12.04 13.01
GE2 ** 10.86 ± 3.15 10.87 8.95 11.36 14.99
Bianco’s [20] 3.45 ± 3.99 2.31 1.73 3.57 8.90
SCR-AWB 0.88 ± 0.55 0.87 0.50 0.98 1.57

The evaluation of the experimental results consists of two parts. First, following the
methodology proposed by Zapryanov et al. [4], the tonal consistency of the AWB algorithm
was assessed using different grayscale regions. Second, based on the studies by Li et al. [36]
and Tan et al. [37], the recovery angle error and reproduction angle error were calculated
using the gray area error and white point error.

The tonal consistency evaluation of the AWB algorithm was to compare the three-
channel differences of color blocks with five different grayscale regions (from white to
darker gray) in the color chart. For these color blocks, the absolute values of the deviations
between the R channel and the G channel, and between the B channel and the G channel
were calculated respectively, taking their G channel as the reference, so as to quantitatively
obtain the influence of different algorithms on the color reproduction of the B channel and
the R channel under different CCT conditions.

In addition to assessing the tonal consistency of the AWB algorithm, this study will
calculate angle errors across different color regions to evaluate the color accuracy and repro-
duction quality of various AWB algorithms. The image data selection includes both linear
RGB data (denoted as IRAW), captured after AWB and demosaic interpolation but without
further steps like CCM and Gamma correction, and the final nonlinear sRGB color data
(denoted as IJPG), which represents the output after the complete image processing pipeline.

For the grayscale region, due to minimal color difference without brightness adjust-
ments, IRAW only uses the white point to calculate the reproduction angle error. For IJPG,
grayscale region errors will be calculated using five gradient grayscale values, with the
average recorded as the recovery angle error, and the reproduction angle error calculated
from the white point. The angle error measurement formula is as follows:

∆θ = arccos

(
ej · ee

∥ej∥∥ee∥

)
(9)

With ee as the mean RGB value of the estimated light source and ej as the RGB target
AWB value, where the G channel serves as the reference and ej is set to R = G = B. To
evaluate performance, this study uses the mean angle error, median angle error, first
quartile (Q1), third quartile (Q3), and maximum angle error—metrics considered suitable
for algorithm assessment. Here, the first and third quartiles, Q1 and Q3, represent the 25%
and 75% distribution points of the angle error, respectively.



Technologies 2025, 13, 232 11 of 19

3.2. Experiment 2: Skin Color Reproduction Under Different CCT Artificial Light Sources

The purpose of this experiment is to test the skin color reproduction effect of SCR-AWB
under artificial light environments with different CCT and compare it with the mature
low-level statistic-based AWB algorithms. The experimental design is as follows:

Experimental settings: The setting of basic experimental environment is the same as
that of Experiment 1 expect CCT settings. The specific CCT settings are: 2300 K, 3500 K,
4000 K, 5000 K, 6000 K, 6500 K, 8000 K. A lower color temperature (2300 K) and an extremely
high color temperature (8000 K) than the A light source are set to cover the common color
temperature range under different lighting conditions. The illuminance of the facial area of
the subjects was adjusted to 500 lux, and the light level in this area was measured using a
(CS-2000, KONICA MINOLTA, INC., Osaka, Japan) spectroradiometer to ensure that the
lighting conditions met the experimental requirements.

Image Acquisition: The image acquisition for this experiment was approved by the
AHC Faculty Research Ethics Committee of the University of Leeds (Ethics Approval:
LTDESN-189). All collected images containing human faces and skin color data are strictly
managed in accordance with ethical standards, and all participants provided written
informed consent. A total of 14 participants (3 males and 11 females) with varying skin
color characteristics were selected to ensure the generalizability of the experimental results.
The subjects were photographed in front of a white wall or a colored curtain. Prior to
capturing facial skin color images, it was ensured that the participant’s facial texture
is carefully controlled by eliminating potential influencing factors such as makeup and
perspiration. This helped to ensure the accuracy of both skin color and skin reflectance
measurements. Images of the participants were captured under different CCT conditions
using the smartphone Tecno AD9. During the experiment, the shooting parameters of
the equipment were the same as those in Experiment 1. Each set of images was initially
recorded as Raw (.tiff form) files, without any white balance correction.

In this experiment, the parameters of the SCR-AWB algorithm were set as follows:
the RGB information input for predicting the light source comes from the entire facial
area of the subject. The facial area was selected by a rectangular box and the median
was taken through a Matlab program to avoid the influence of local highlights. For other
parameters of the algorithm input, please refer to the parameter setting part in the Method
above. The artificial spectral basis vector data used in this study was derived from the
SPD dataset collected by KV Houser in 2012, which comprises 401 unique SPD profiles of
various light sources [38]. The sensor sensitivity function of Tecno AD9 was used in the
experiment. The skin reflectance data came from the real dark skin color data collected at
the University of Dar es Salaam, Tanzania using a spectrophotometer (CM-700d, KONICA
MINOLTA, INC., Osaka, Japan) spectrophotometer. A five-point sampling method was
used for the facial skin color area according to the research of [39,40]: the forehead, right
cheek, left cheek, chin, and neck, were collected, which contained a total of 1419 skin
reflectance spectra and L*a*b* data. The three-dimensional L*a*b* data is divided into a*b*
and L*a* according to the research of [41], and the two-dimensional scatter plot of L*b* is
shown in Figure 5. The distribution of these data explains why we use dark skin data for
algorithm verification.

The main reason for choosing dark skin people as experimental subjects is that the
reflectivity of dark skin is lower, and its color correction task is more challenging than other
skin colors. In addition, since the algorithm uses the average skin reflectivity of a specific
race, the individual differences of dark skin people are greater than those of other races, so
it can be used as an effective test scenario to evaluate the robustness and applicability of
the algorithm.
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Figure 5. Skin data collected from 1419 dark-skinned individuals in Tanzania. (a) Skin reflectance
data: the horizontal axis represents the wavelength range of 400–700 nm, while the vertical axis
denotes the corresponding skin reflectance values. (b–d) show the distribution of forehead L*a*b*
data in two-dimensional space using a*b*, L*a*, and L*b* scatter plots, respectively. The color of each
scatter point represents the collected skin color data, converted to the RGB color space.

The evaluation of skin color reproduction involves both CCT prediction accuracy
and image quality assessment, providing a comprehensive analysis of the algorithm’s
capability to deliver accurate and visually pleasing results under diverse lighting conditions.
The evaluation is divided into two main components:

1. Comparison of SCR-AWB Algorithm Predicted CCT with Calibrated Laboratory CCT:
As outlined in the methodology, the SCR-AWB algorithm predicts the SPD, which
is then converted to CCT. White balance accuracy is assessed by calculating the dif-
ference, ∆CCT, between the algorithm-predicted CCT and the actual calibrated CCT,
measured using a spectroradiometer (CS-2000, KONICA MINOLTA, INC., Osaka,
Japan) . A smaller ∆CCT indicates a closer match between the predicted ambient light
and actual lighting conditions, thereby enhancing white balance performance.

2. Evaluation of AWB Results on sRGB Output for DCI-P3 Display: The SCR-AWB
algorithm outputs both CCT and gain values for the R and B channels. These gain
values are applied in the image processing pipeline to adjust white balance, resulting
in the final output in sRGB format (JPEG). Other AWB algorithms used for comparison
also modify only the R and B channel gains, ensuring that BLC, CCM, Gamma
correction, and other processing steps are kept consistent across all algorithms for an
accurate evaluation of white balance adjustments.

This dual approach provides a robust evaluation framework for assessing both the
technical and visual performance of the SCR-AWB algorithm in reproducing skin color
across varied lighting conditions.

We do not employ image similarity metrics such as PSNR, SSIM, or ∆E, as our method
operates on RAW data and outputs color-corrected images via a controlled spectral recon-
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struction process. In contrast, reference JPEGs captured by consumer devices undergo mul-
tiple proprietary ISP steps, making fair and reproducible pixel-level comparisons infeasible.

The verification experiment of the SCR-AWB algorithm proposed in this paper was run
on a laptop with Matlab 2023a and an AMD Ryzen 7 5800H CPU. The proposed algorithm
runs at 0.0718 s per image and uses only 8.36 MB of memory in MATLAB, demonstrating
a highly efficient balance between computational cost and correction performance. This
suggests feasibility for real-time or near real-time deployment on resource-constrained
devices after appropriate optimization.

4. Results
The results of Experiment 1 and Experiment 2 are as follows:
In this study, an analysis of R-G and B-G deviation values across various CCT as shown

in Figure 6 demonstrated that the SCR-AWB algorithm significantly outperforms other
methods in color reproduction accuracy. SCR-AWB consistently exhibited deviation values
near zero between R-G and B-G channel under all tested color temperatures, showcasing
superior stability and precision in white balance adaptation. In contrast, other algorithms,
including GW, Max-RGB, and SoG, display comparatively larger deviations and greater
fluctuation across color temperatures, indicating lower reliability in color correction perfor-
mance. Although some algorithms show slight improvements at higher CCT 5000 K and
6500 K, their overall performance remains suboptimal compared to SCR-AWB. Therefore,
SCR-AWB’s adaptability and accuracy across varying color temperatures highlight its
suitability as the preferred method for white balance correction.

Figure 6. R-G and B-G deviation across different CCT and AWB algorithm. The smaller the deviation,
the closer the two color channels are, and the better the color reproduction.

Table 1 shows the reproduced angular errors of different AWB algorithms applied to
IRAW in experiment 1, using the same original image and BLC, with only RGain and BGain
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vary. The asterisk next to the algorithm name represents the p-value of the paired t-test
of SCR-AWB (* represents p < 0.05, ** represents p < 0.01) The Mean with 95% confidence
interval and Median values indicate the general accuracy of each algorithm. SCR-AWB
achieves the lowest mean (0.88°) and median (0.87°) errors, confirming its precise estimation
of white points across diverse lighting conditions. To assess stability, we examine the Worst
25% and Maximum error values. SCR-AWB again outperforms all other methods, with a
maximum error of only 1.57°, and worst-case error under 1°, which is significantly lower
than all baseline methods. This suggests that SCR-AWB not only performs well on average
but also maintains consistent performance under the most challenging CCTs. In contrast,
methods like Max-RGB and Bianco’s model, despite acceptable median values, show
large maximum errors (up to 9.82° and 8.90° respectively), implying greater performance
fluctuation across scenes. GE1 and GE2, with high means and large error spread, clearly
struggle with extreme lighting conditions.

Table 2 shows the recovery angle error and reproduced angle error of different AWB
algorithms applied to IJPG in experiment1, while the asterisk next to the algorithm name
represents the p-value of the paired t-test of SCR-AWB (* represents p < 0.05, ** represents
p < 0.01). In the entire image processing pipeline, the same color temperature group uses the
same original image, and the process parameters such as BLC, CCM and Gamma correction
are set the same, and only RGain and BGain are different. According to the evaluation results
on JPG images under CCT conditions in Table 2, GW, SoG and Bianco’s method can also
show moderate errors on JPG images, while the larger Q3 and Maximum data indicate that
Max-RGB algorithms are greatly affected by CCT and are limited in scene use. The deep
learning-based method of Afifi et al. showed instability in low color temperature areas such
as 2300 K, but showed good results at 6000 K or 6500 K. From the table, SCR-AWB achieves
the lowest mean with 95% confidence interval and median angle errors in both recovery
and reproduction metrics, clearly indicating its high accuracy across scenes. Furthermore,
the SCR-AWB algorithm also exhibits the smallest maximum errors and lowest worst-25%
errors among all tested methods, demonstrating strong stability even under challenging
CCT conditions. The low spread and minimal peak errors of SCR-AWB shows both its
robust generalization across lighting conditions.

Table 2. Comparison of Recovery and Reproduction Angle Errors on IJPG in experiment 1. IJPG means
the final nonlinear sRGB color data. The asterisk next to the algorithm name represents the p-value of
the paired t-test of SCR-AWB (* represents p < 0.05, ** represents p < 0.01).

Algorithm Recovery Angle Error Algorithm Reproduction Angle Error

Mean Median Best 25% Worst 25% Maximum Mean Median Best 25% Worst 25% Maximum

GW ** 2.76 ± 0.65 2.39 1.66 3.18 8.15 GW 1.89 ± 0.89 1.73 1.30 2.39 2.86
Max-RGB ** 3.84 ± 1.48 2.65 0.92 5.40 11.77 Max-RGB 3.81 ± 4.95 2.52 0.76 5.40 9.98
SoG ** 1.97 ± 0.42 1.76 1.39 2.54 4.63 SoG * 1.62 ± 0.85 1.43 1.35 1.89 2.63
GGW ** 1.98 ± 0.50 1.38 1.10 2.53 5.68 GGW 1.85 ± 0.50 1.86 1.27 2.48 2.48
GE1 ** 11.07 ± 1.61 10.49 8.38 13.66 19.08 GE1 ** 9.73 ± 4.62 8.52 6.61 13.66 13.71
GE2 ** 10.94 ± 1.68 10.51 7.13 12.44 18.05 GE2 * 10.21 ± 5.80 10.51 6.18 11.41 17.24
Bianco’s [20] ** 1.73 ± 0.40 1.58 1.01 2.31 4.36 Bianco’s [20] 1.93 ± 1.20 1.87 1.84 1.91 3.39
Afifi’s [35] ** 8.13 ± 2.99 5.59 2.47 13.66 22.71 Afifi’s [35] 8.84 ± 10.68 5.19 2.47 15.23 20.52
SCR-AWB 1.16 ± 0.23 1.08 0.83 1.29 3.01 SCR-AWB 0.91 ± 0.43 0.95 0.63 1.12 1.35

In addition, the SCR-AWB algorithm is designed to process images containing scenes
with skin tones. Table 3 highlights the differences between the CCT prediction results of the
SCR-AWB algorithm across various artificial light source scenes and the actual calibrated
scene CCT. For most scenes with CCT below 6500 K, the SCR-AWB algorithm demonstrates
high accuracy, with ∆CCT values remaining below 300 K. In general, smaller ∆CCT values
indicate better color fidelity, with images exhibiting colors that align closely with real-world
conditions. This ensures that skin tones appear natural to the majority of ordinary viewers.

In scenes with 8000 K CCT, the algorithm still achieves a satisfactory median ∆CCT,
though some extreme cases exhibit significant deviations (∆CCTMax = 1326). The impact
of these extreme deviations does not cause particularly obvious color differences when
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observed by the naked eye, as illustrated in Figure 7. This discrepancy is primarily due to
the algorithm’s use of the mean reflectance of dark skin tones as a general model for all skin
color scenes. Consequently, the prediction does not account for extreme variations in an
individual’s skin tone, resulting in very dark skin being reproduced as a chocolate-like color.
At present, the implementation focuses solely on accurately estimating the light source
spectrum of the primary scene and does not incorporate factors such as color preference or
chromatic adaptation.

Table 3. The CCT prediction results of the SCR-AWB algorithm on real subject images in artificial
light environments with different CCT in experiment 2. ∆CCT represents the difference between the
predicted value and the calibrated value.

Scene Mean Median Best 25% Worst 25% Maximum

2300 K 97 93 51 101 252
3500 K 63 60 15 109 132
4000 K 52 35 24 75 114
5000 K 149 147 141 169 215
6000 K 231 138 65 383 560
6500 K 264 213 170 288 542
8000 K 381 299 208 435 1326

Figure 7. Comparison of different AWB algorithms of dark skin tone. Only the AWB Gain parameter
is changed. The image is processed by BLC, AWB, Demosaic, CCM, and γ correction.

As demonstrated in Figures 7 and 8, for subjects with substantial differences in skin
tone, the SCR-AWB algorithm still delivers visually acceptable skin color reproduction.
In contrast, algorithms based on the brightest white point assumption, led by Max-RGB,
produce greenish results under high CCT conditions. This issue arises because, in well-
illuminated scenes, the maximum values of the green channel, the red and the blue channels
are close to 65,535 (16 bit Raw Iamge). Consequently, the algorithm applies lower RGain and
BGain values and even in extreme cases they approach 1, resulting in green-dominant output.
Additionally, in traditional white balance algorithms such as GreyEdge, the parameter
p significantly influences overall color reproduction. However, further investigation is
required to fully understand the impact of p variations on color accuracy.The skin color
reproduction algorithm proposed by Bianco et al. demonstrates limited robustness across
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varying color temperature conditions [20]. In general, it tends to render skin tones as
brighter, without adequate accounting for the characteristics of individuals with darker
skin. In contrast, the deep learning-based algorithm by Afifi et al. [35]. produces more
stable results, but the images exhibit a slight greenish tint.

Figure 8. Comparison of different AWB algorithms of brown skin tone. Only the AWB Gain parameter
is changed. The image is processed by BLC, AWB, Demosaic, CCM, and γ correction.

5. Discussion and Conclusion
Using skin color information as the basis for image AWB has been considered an

effective approach in previous studies, but the simple use of skin color clustering statis-
tics [14–16] cannot account for the complexity of real-world SPD. In contrast, we developed
the SCR-AWB algorithm, which leverages real measured skin reflectance data. Together
with a sensor sensitivity function that matches the device, the spectral characteristics of the
light source are accurately captured through basic formulas, providing accurate SPD and
CCT predictions. By integrating real skin reflectance data, it achieves more realistic and
faithful skin color reproduction.

Experimental results demonstrate that the SCR-AWB algorithm delivers robust color
reproduction performance across various CCT scenes, owing to its reliance on measured
skin reflectance rather than extensive statistical analyses. Consequently, the algorithm does
not require large-scale image databases for training, making it highly adaptable. By simply
updating the sensor sensitivity functions, it can be directly transferred to new sensor models
without additional training. Compared to other algorithms, SCR-AWB provides additional
data beyond the standard RGain and BGain values, including predictions of scene SPD and
CCT. These predictions can support other stages of the image processing pipeline, such
as more accurate CCM applications. However, this aspect of the algorithm’s capabilities
falls outside the scope of this article and is not discussed in detail. To be concerned, our
input RGB assumption aligns with the parameters in standard ISP pipeline in industrial
applications. Our proposed method is based on the assumption of linear RGB responses,
which corresponds to white balance processing on raw images. If the RGB responses
are nonlinear, the direct correspondence between RGB values, illuminant spectra, skin
reflectance, and sensor sensitivity functions (as described in Equations (1)–(3)) no longer
holds. Consequently, our method would not be applicable in such cases. Nonlinear RGB
responses often indicate that white balance is being performed on JPEG images rather than
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raw images. While using JPEG images as datasets provides the advantage of large sample
sizes, it introduces a more complex mapping between RGB values and illuminant spectra.
Many deep learning-based AWB methods adopt this approach; however, they impose
significant computational demands, making them challenging to deploy on mobile devices.

In contrast, the SCR-AWB algorithm is computationally lightweight, as it avoids the
use of deep neural networks or large-scale iterative optimization. The core computation
involves spectral caculation using pre-measured reflectance and sensor sensitivity data,
followed by solving a constrained linear system, which can be efficiently implemented on
mobile processors. As such, the algorithm is well suited for deployment on edge devices
or embedded systems where memory and processing resources are limited. In contrast
to deep learning-based AWB methods, which often require substantial computation and
memory overhead for inference, SCR-AWB offers a practical and efficient alternative for
real-time white balance correction on resource-constrained platforms.

While our evaluation includes several conventional AWB methods and one learning-
based baseline, we acknowledge that more extensive comparisons with modern deep
learning-based AWB approaches would further contextualize our results. However, many
recent deep learning methods operate in the RGB domain and rely on private training
datasets, limiting reproducibility and fair benchmarking. Our future work will aim to
incorporate such comparisons as reproducible benchmarks become more accessible.

Based on previous research in our laboratory, we have collected skin reflectance data
for multiple different ethnic groups, including blacks, whites, white skin, East Asians,
Chinese, Saudis, etc. [19]. We acknowledge that the current experiments do not yet include
extensive quantitative evaluations across all skin types. In future work, We plan to further
expand the dataset and recruit more subjects in future research. And then conduct broader
testing with a balanced representation of different ethnicities to more rigorously assess the
algorithm’s generalizability across skin tones.

While the proposed method is designed to work under various lighting conditions,
the current evaluation focuses on laboratory environments with precisely controlled il-
lumination and known spectral distributions. This allows for rigorous validation of the
spectral-based white balance framework. Real-world, uncontrolled scenes (e.g., outdoor
daylight, mixed lighting) present additional challenges due to environmental variability
and unknown scene content. Extending our evaluation to such scenarios is part of our
ongoing research and will be addressed in a future publication.

However, the limitations of the SCR-AWB algorithm are also evident. Its performance
depends on the presence of skin color regions in the scene, and it is specifically designed to
process images containing human skin tones. For images featuring only natural landscapes
or scenes without human skin, the algorithm cannot deliver optimal color reproduction,
as its design is fundamentally based on skin reflectance data. Furthermore, while the
algorithm ensures authenticity in skin color reproduction, it does not consider subjective
color preferences.

Due to intellectual property restrictions and confidentiality agreements with our
industrial partner, we are unable to release the full sensor sensitivity data, pre-processing
code, or model implementation at this time. However, to support academic exchange,
we are willing to share limited portions of the code and data upon reasonable request.
Interested researchers may contact the corresponding author via email, and access may be
granted on a case-by-case basis, subject to approval.
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22. Ershov, E.; Savchik, A.; Semenkov, I.; Banić, N.; Koščević, K.; Subašić, M.; Belokopytov, A.; Terekhin, A.; Senshina, D.; Nikonorov,
A.; et al. Illumination estimation challenge: The experience of the first 2 years. Color Res. Appl. 2021, 46, 705–718. [CrossRef]

23. Li, B.; Qin, H.; Xiong, W.; Li, Y.; Feng, S.; Hu, W.; Maybank, S. Ranking-based color constancy with limited training samples. IEEE
Trans. Pattern Anal. Mach. Intell. 2023, 45, 12304–12320. [CrossRef]

24. Zhang, H.Y.; Fang, Y.; Wu, J.H.; Wang, W.Z.; Zou, N.Y. Deep learning of color constancy based on object recognition. In
Proceedings of the 2023 15th International Conference on Computer Research and Development (ICCRD), Hangzhou, China,
10–12 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 215–219.

25. Liang, J.; Xiao, K.; Pointer, M.R.; Wan, X.; Li, C. Spectra estimation from raw camera responses based on adaptive local-weighted
linear regression. Opt. Express 2019, 27, 5165–5180. [CrossRef]

26. Barnard, K.; Finlayson, G.; Funt, B. Color constancy for scenes with varying illumination. Comput. Vis. Image Underst. 1997, 65,
311–321. [CrossRef]

27. Li, C.; Cui, G.; Melgosa, M.; Ruan, X.; Zhang, Y.; Ma, L.; Xiao, K.; Luo, M.R. Accurate method for computing correlated color
temperature. Opt. Express 2016, 24, 14066–14078. [CrossRef]

28. Robertson, A.R. Computation of correlated color temperature and distribution temperature. JOSA 1968, 58, 1528–1535. [CrossRef]
29. Zhu, J.; Xie, X.; Liao, N.; Zhang, Z.; Wu, W.; Lv, L. Spectral sensitivity estimation of trichromatic camera based on orthogonal test

and window filtering. Opt. Express 2020, 28, 28085–28100. [CrossRef]
30. Huynh, C.P.; Robles-Kelly, A. Recovery of spectral sensitivity functions from a colour chart image under unknown spectrally

smooth illumination. In Proceedings of the 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28
August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 708–713.

31. Bianco, S.; Cusano, C.; Schettini, R. Color constancy using CNNs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 81–89.

32. Buzzelli, M.; Zini, S.; Bianco, S.; Ciocca, G.; Schettini, R.; Tchobanou, M.K. Analysis of biases in automatic white balance datasets
and methods. Color Res. Appl. 2023, 48, 40–62. [CrossRef]

33. Akbarinia, A.; Rodríguez, R.G.; Parraga, C.A. Colour constancy: Biologically-inspired contrast variant pooling mechanism. arXiv
2017, arXiv:1711.10968.

34. Gao, C.; Wang, Z.; Xu, Y.; Melgosa, M.; Xiao, K.; Brill, M.H.; Li, C. The von Kries chromatic adaptation transform and its
generalization. Chin. Opt. Lett. 2020, 18, 033301. [CrossRef]

35. Afifi, M.; Brown, M.S. Deep white-balance editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1397–1406.

36. Li, Y.Y.; Lee, H.C. Auto white balance by surface reflection decomposition. JOSA A 2017, 34, 1800–1809. [CrossRef]
37. Tan, X.; Lai, S.; Wang, B.; Zhang, M.; Xiong, Z. A simple gray-edge automatic white balance method with FPGA implementation.

J. Real-Time Image Process. 2015, 10, 207–217. [CrossRef]
38. Houser, K.W.; Wei, M.; David, A.; Krames, M.R.; Shen, X.S. Review of measures for light-source color rendition and considerations

for a two-measure system for characterizing color rendition. Opt. Express 2013, 21, 10393–10411. [CrossRef]
39. Xiao, K.; Yates, J.M.; Zardawi, F.; Sueeprasan, S.; Liao, N.; Gill, L.; Li, C.; Wuerger, S. Characterising the variations in ethnic skin

colours: A new calibrated database for human skin. Skin Res. Technol. 2017, 23, 21–29. [CrossRef]
40. He, R.; Xiao, K.; Pointer, M.; Bressler, Y.; Liu, Z.; Lu, Y. Development of an image-based measurement system for human facial

skin colour. Color Res. Appl. 2022, 47, 288–300. [CrossRef]
41. Wang, M.; Xiao, K.; Wuerger, S.; Cheung, V.; Luo, M.R. Measuring human skin colour. In Proceedings of the 23rd

Color and Imaging Conference, Darmstadt, Germany, 19–23 October 2015; Society for Imaging Science and Technology:
Springfield, VA, USA, 2015; pp. 230–234.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/sym17020286
http://dx.doi.org/10.3390/photonics10091018
http://dx.doi.org/10.1038/s41597-025-04857-5
http://www.ncbi.nlm.nih.gov/pubmed/40122935
http://dx.doi.org/10.1109/TIP.2017.2713044
http://www.ncbi.nlm.nih.gov/pubmed/28600246
http://dx.doi.org/10.1109/ACCESS.2025.3545633
http://dx.doi.org/10.1002/col.22675
http://dx.doi.org/10.1109/TPAMI.2023.3278832
http://dx.doi.org/10.1364/OE.27.005165
http://dx.doi.org/10.1006/cviu.1996.0567
http://dx.doi.org/10.1364/OE.24.014066
http://dx.doi.org/10.1364/JOSA.58.001528
http://dx.doi.org/10.1364/OE.401496
http://dx.doi.org/10.1002/col.22822
http://dx.doi.org/10.3788/COL202018.033301
http://dx.doi.org/10.1364/JOSAA.34.001800
http://dx.doi.org/10.1007/s11554-012-0318-x
http://dx.doi.org/10.1364/OE.21.010393
http://dx.doi.org/10.1111/srt.12295
http://dx.doi.org/10.1002/col.22737

	Introduction
	Materials and Methods
	Theoretical Basis of SCR-AWB Algorithm
	Spectral Estimation of Unknown Light Sources
	From Predicted Spectra to CCT
	From Predicted Spectra to Gain

	Parameter Acquisition
	Prior Information Acquisition
	Image Information Acquisition


	Experiments
	Experiment 1: Color Chart White Point and Neutral Gray Evaluation Under Different CCT Artificial Light Sources
	Experiment 2: Skin Color Reproduction Under Different CCT Artificial Light Sources

	Results
	Discussion and Conclusion
	References

