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Age-related changes in the patterns of local relatedness (kinship dynamics)

can be a significant selective force shaping the evolution of life history

and social behaviour. In humans and some species of toothed whales, average

female relatedness increases with age, which can select for a prolonged post-

reproductive lifespan in older females due to both costs of reproductive

conflict and benefits of late-life helping of kin. Killer whales (Orcinus orca)

provide a valuable system for exploring social dynamics related to such

costs and benefits in a mammal with an extended post-reproductive female

lifespan. We use more than 40 years of demographic and association data on

the mammal-eating Bigg’s killer whale to quantify how mother–offspring

social relationships change with offspring age and identify opportunities for

late-life helping and the potential for an intergenerational reproductive

conflict. Our results suggest a high degree of male philopatry and female-

biased budding dispersal in Bigg’s killer whales, with some variability in

the dispersal rate for both sexes. These patterns of dispersal provide opportu-

nities for late-life helping particularly between mothers and their adult sons,

while partly mitigating the costs of mother–daughter reproductive conflict.

Our results provide an important step towards understanding why and how

menopause has evolved in Bigg’s killer whales.

1. Introduction
Temporal changes in an individual’s social environment are probably a key driver

of age-based variation in life history and social behaviour [1–3]. Dispersal from

the natal group is a key factor driving temporal changes in social structure

[4,5], resulting in changes in an individual’s local relatedness over their lifetime

(kinship dynamics) [6]. Kinship dynamics can influence the indirect fitness

costs and benefits associated with performing social behaviours, which may

change systematically as a function of age [7]. In most mammals, dispersal is

male-biased [8] and, depending on the mating pattern, will lead to females
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having constant or decreasing average relatedness to their

group [7]. Under such conditions, selection for helping will

decrease with female age, as her inclusive fitness benefits of

helping will decline with decreasing relatedness to her group

[7]. In rare mammalian cases, however, including ancestral

humans and killer whales (Orcinus orca), temporal changes

shaped by dispersal and mating patterns (female-biased dis-

persal with local mating and bisexual philopatry with non-

local mating, respectively) create a scenario where females

become increasingly related to their group on average as they

age [7,9]. This pattern of kinship dynamics is linked to the evol-

ution of a long post-reproductive female lifespan [7,9]. An

increase in local relatedness with age is predicted to drive a

stronger selection for helping (behaviours that have a positive

impact on the fitness of members of the local group) in older

females and a stronger selection for competitive effort (e.g.

over reproduction) in younger females [7,9]. Thus, examining

how the temporal dynamics of social associations impact the

opportunities for helping and harming throughout an individ-

ual’s life is key to understanding how age-related changes in

the social environment influence the evolution of life history

and social behaviours [10].

Killer whales have been a key model system to investigate

the mechanisms underlying the evolution of menopause, with

particular emphasis on the fish-eating resident killer whales of

the northeastern Pacific Ocean [7,11–16]. In this killer whale

ecotype, dispersal of individual males or females is extremely

rare [17], and instead, dispersal occurs in the form of matrili-

neal splitting (females split from their natal group with their

descendants) [18], and mating typically occurs between

individuals of different groups [19,20]. From a female’s

perspective, life begins in a group where she has a relatively

high relatedness to other females, as they are her mother,

sisters and othermaternally related females.While her brothers

and other maternally related males are in her group,

her average relatedness to males is comparatively low as her

father is not in her group. As she starts having offspring

of her own, her sons and daughterswill stay in her group repla-

cing more distantly related males, and her average relatedness

to local males will increase [12]. In line with kinship dynamics

theory, older killer whale females are more likely to perform

behaviours that provide survival benefits to their close kin,

such as sharing prey with kin and leading the group [13,21]

with their presence in a group increasing the survival of their

offspring and grandoffspring [14,15]. Moreover, consistent

with the prediction that younger females should invest more

in competitive effort: in an intergenerational conflict over repro-

duction where female killer whales from two generations have

offspring at the same time, calves from the older-generation

female suffer from higher mortality risk [12]. The combination

of these inclusive fitness benefits and costs of reproductive over-

lap, can help explain why a long post-reproductive female

lifespan has evolved in resident killer whales [7].

Killer whales are an ecologically and behaviourally diverse

species,with various populations (ecotypes) showingvariation

in social organization [19,22–25]. Owing to this diversity, it was

unclear until recently whether a prolonged post-reproductive

lifespan is unique to resident killer whales, or is a general

trait that occurs in other killer whale ecotypes. A recent analy-

sis of long-term data has demonstrated that mammal-eating

Bigg’s killer whales (also known as transients), despite being

ecologically, socially and genetically distinct from resident

killer whales [17,19,26,27], have a comparable extended

post-reproductive lifespan where more than 30% of adult

female years are being lived by post-reproductive females

[28]. This is somewhat surprising given the difference in

social structure between the two ecotypes. The mammal-

eating Bigg’s killer whales have apparent partial dispersal of

males and females around the age of maturity with some

offspring remaining in their mother’s group while others dis-

perse. This dispersal pattern is likely driven by the ecological

constraints in group size linked to hunting and sharing of

marine mammal prey [22,29,30]. However, it remains unclear

how the social relationship between mother and offspring

changes over time, and by effect, the opportunity for mothers

to help their offspring with age.

Here, we quantify the temporal changes of social

relationships in Bigg’s killer whale mother–offspring dyads.

Specifically, we examine the opportunities for females to gain

inclusive fitness benefits from helping adult offspring, which

provides insight into the potential role of kin selection in driv-

ing the evolution of a prolonged post-reproductive female

lifespan in Bigg’s killer whales.

2. Material and methods

(a) Bigg’s killer whales
Bigg’s killer whales are a mammal-eating ecotype found in the

northeast Pacific Ocean. Here, we study a population of Bigg’s,

the West Coast transients, that range throughout coastal waters

from southeastern Alaska to northern California [22,31] and are

sympatric with populations of two other killer whale ecotypes:

resident and offshore killer whales [22,31]. Although the three eco-

types have overlapping ranges, they are distinguished by their

ranging patterns, where West Coast transient and resident killer

whales typically occur in near-coastal waters compared to offshore

killer whales that are a pelagic ecotype found mainly near the

shelf-break [17,32]. Despite their overlap in range, Bigg’s killer

whales are reproductively isolated from these two ecotypes and

genetic evidence indicates that they should be classified as a separ-

ate subspecies from resident and offshore killer whales [27].

Similar to resident killer whales, Bigg’s killer whales live in

groups of maternally related individuals, where females stop

reproducing when they are in their late 30s or early 40s and can

live for several decades following the onset of menopause

[11,28,33]. Temporary and sometimes permanent dispersal from

theirmaternal groups has been described for both sons anddaugh-

ters in Bigg’s killer whales, contrasting the stable social structure of

resident killer whales where dispersal is rare by comparison [29–

31,34–36]. The smaller group size of Bigg’s killer whales compared

to resident killer whales (resident group size of typicallymore than

eight individuals [18,37]) has been linked to their main prey, pinni-

peds and small cetaceans [30]. It should be noted that the average

group size in Bigg’s killerwhales has increased since the beginning

of the study period from 4.4 to 6.1 (mean minimum group size),

overlapping with factors such as increased prey availability, popu-

lation size increase and increased presence of the ecotype in the

study area [34,36].

(b) Data collection
The collection of photo-identification and life-history data on

Bigg’s killerwhaleswas carried out betweenAlaska andCalifornia

from 1972 to 2020. Bigg’s killer whales can be observed in this area

of their range during allmonths of theyear, butwith varying abun-

dance, as some family groups are more resident to specific regions

than others [22,36]. Identification photographs across the range

and years were collected by various research organizations with
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central data repositories at theCenter forWhale Research (CWR) in

the USA and Fisheries and Oceans Canada (DFO). Photographs of

the dorsal fin, saddle patches and eyepatches of the whales were

taken during encounters with individuals or social groups.

Whales were identified based on the shape of the dorsal fin as

well as their saddle patch, unique markings, and/or scarring

[22]. The sex of an individual was determined either genetically

or visually based on morphological differences between the

sexes as well as genital pigmentation on their posterior ventral sur-

face [22]. Year of birth was determined based on the body size on

the first observation for calves born between 1972 and 2020 and as

the mean of potential years of birth for juveniles and young adults

where there were missing observations of their mother for con-

secutive years overlapping their birth [22]. Birth year estimates

for individuals born before the start of the study are conservative

and are estimated for males from the year the dorsal fin began to

sprout (rapid growth from age approx. eight to sexual maturity

at age approx. 15) or was fully developed (physical maturity at

age approx. 21) or for females using the year of the first known

calf [22,38]. The year of death was either determined by strandings

or if individuals were not sighted, either alone or in a group, on

several occasions while their regular associates were sighted over

several months or years [22]. The maternal relationship was deter-

mined based on observed mother–calf interactions, with genetic

verification in some cases [22]. As the maternal pedigrees are not

complete, we only determined the maternal relationships between

individuals to a relatedness of r > 0.25. Encounters were filtered to

include those marked as ‘full encounters’ (high confidence in

having identified all individuals present) in the database for

2005–2020. In years before 2005, the ‘full encounters’ field was

not yet implemented in the database, and therefore encounters

carried out by researchers associated with DFO or CWR were

included if the minimum estimated number of whales present

was less or equal to the number of identified whales from the

encounter. This filtering resulted in the inclusion of 1019 out of

1742 encounters before 2005 and 4080 out of 5693 encounters

from 2005 to 2020 from the data collected by DFO. Combined

with the additional data fromCWR (645 encounters), this provides

a total of 5744 encounters spanning 48 years for the analyses intro-

duced below (for yearly distribution of observations, see electronic

supplementary material, figure S2).

(c) Temporal stability of mother–offspring associations
Across the 48 years of encounters, we calculated the annual simple

ratio association indices (SRI), describing the probability of observ-

ing a pair of individuals together when at least one of them was

observed. Specifically, for each pair of individuals, yearly SRIs

were calculated as the number of days the pair was identified

during the same encounter out of the number of days where it

would be possible to encounter the pair together (both individuals

were alive and either both or one of them were identified) [39].

The SRI is appropriate for associations defined based on group

membership [40] and when it is not possible to calibrate for

detection biases before calculation [41].

To examine the stability of associations between observed

mother–offspring dyads over time we calculated the lagged

association rate (probability of two previously associating

individuals being observed re-associated at different time lags)

[42–44]. Associations among dyads of individuals can be based

on spatial proximity, behavioural interactions or other criteria

[45], and the thresholds used to define associations can have

important impacts on the interpretation of social systems [46].

Owing to a lack of fine-scale resolution of social interactions

for most of the encounters in our dataset and a general small

group size of four to six individuals [36,47], whales observed

together during the same encounter were defined as being part

of the same group, and all individuals identified in the same

group were assumed as associating equally. Potential dyads

between individuals were only included in the analysis if both

individuals were known to be alive in a given year. The lagged

association rate was used to examine the temporal trends and

persistence of associations over time [43,44]. The full dataset

was used to analyse the lagged association to avoid a bias

towards more stable and prevalent associations. Associations

between mother and offspring were divided into juvenile and

adult offspring based on age (adult female: more than 12 years,

adult male: more than 14 years). The precision of the lagged

association rates was evaluated using jackknife resampling [48].

(d) Association categories
The core social unit inBigg’s killerwhales consists of amotherandher

offspring (maternal group) [22,29–31]. Maternal groups are cohesive

over longperiodsbutwill associatewithother relatedandnon-related

maternal groups. The overall structure of observed association

suggests that the social relationships fall into three types of associ-

ations: Constant companions (matriline/social unit members),

casual acquaintances (preferred associates outside the core social

unit), and weak associations (all other possible dyads in the popu-

lation). We used a binomial mixture model approach [49,50] to

investigate the number of social relationship categories in the associ-

ation indices, which estimates the probability of a specific dyad

beingclassified ineachof the indicatedassociationcategories (seeelec-

tronic supplementary material for full method description) [49,50]. A

preliminary exploration of patterns in the associations using a bino-

mial mixture model indicated that the distribution of social

relationships falls into two to five relationship categories ranging

from weak/absent to strong/constant. The qualitative pattern of

especially the weakest and strongest social bonds identified by these

models did not change substantially depending on the number of

social relationship categories applied (electronic supplementary

material, table S1 and figures S3 and S4). Using the information on

social relationships from this preliminary examination as well as

knowledge of the observed social organization of Bigg’s killer

whales, we applied a binomial mixture model using the socmix pack-

age in R [49–51] to categorize the observed association indices into

three clusters representing three typesof association in thepopulation:

constant companions, casual acquaintances and weak associations.

This is supportedby thedistributionof the observed simple ratio indi-

ces into three distinct peaks matching the estimated beta-binomial

distributions from the mixture model (figure 1).

(e) Temporal dynamics of mother–offspring social

relationships
To estimate the probability of each association belonging to any of

the three components, the mixture model was applied for each

year in the study period. For each association, the relationship

bond was assigned based on the maternal pedigree (either through

direct observations of mother–calf associations or genetic evidence).

We explored the effect of the offspring’s age and sex on the prob-

ability of an association being classified in each of the three types

of associations (weak association, casual acquaintance or constant

companion). We did this using a Bayesian generalized additive

mixed effects model with a categorical response variable, Ri, for

each year the mother–offspring pair was encountered, i, with a

probability of pi of being in one of the three association categories

(K= 1:3):

Ri ≏ categorical( pi,K¼1:3),

logit( pi,K) ¼ bso,K þ fso,K (ai,K)þ 1i,K,

1i,K ≏ N(0,s1),

s1 ≏ t(0,2,3),

bso,K ≏ N(0,2),

and sf ≏ t(0,2,3):
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Here, bso,K is an intercept specific to the sex of the offspring,

while the term 1i,K is the individual-level random effect of the

dyad. The term fso,K (ai,K) represents the offspring sex and associ-

ation category-specific smooth function over offspring age [52].

For the individual offspring where sex was unknown (N = 175),

100 imputations were performed to include uncertainty of sex

for those individuals. The model was then run for all imputed

datasets. The priors defined for intercept, error term, standard

deviation and smooth function standard deviation were chosen

to be weakly informative and were examined in prior predictive

checks [53]. The model was fitted using an extended Hamil-

tonian Monte Carlo sampler (NUTS) [54] using the brms

package in R via STAN [55]. We ran the model with four inde-

pendent chains, 1500 warm-up iterations and 3000 iterations of

sampling and evaluated that this produced an acceptable

effective sample size to minimize uncertainty in estimates. The

convergence of chains was checked by ensuring that R̂ was less

than 1.05 and by checking the trace plots for all runs. In an initial

run of the model, there were divergent transitions and setting the

delta step size to 0.99 eliminated those.

3. Results

(a) Temporal stability of mother–offspring associations
The lagged association rate for mothers and their offspring

remained consistently higher than for all other dyad types in

the population (figure 2; electronic supplementary material,

figure S1). Within mother–offspring associations, the associ-

ation between mothers and their adult sons remained

consistently higher than between mothers and their adult

daughters, independent of the reproductive status of the

mother (figure 2).

(b) Association categories
The three-component mixture model for Bigg’s killer whales

included 478 individuals, 81 991 unique observed association

pairs, and a total of 491 909 pairwise associations over 48

years. The bulk of these pairwise associations (467 005 or

95%) were classified as weak associations and typically

occurred between maternally unrelated individuals

(figure 3) with a mean ± s.d. association probability of 0.01 ±

0.06 (figure 4). A total of 18 622 (4%) were classified as a

casual acquaintance with a mean ± s.d. association probability

of 0.2 ± 0.1 (figure 4) and included associations between both

related and maternally unrelated individuals (figure 3). Finally,

6282 associations (1.0%) were classified as a constant compa-

nion with a mean ± s.d. association probability of 0.9 ± 0.1

(figure 4), which were typically associations between mother

and offspring (figures 3 and 4). Each year, a Bigg’s killer

whale has a mean ± s.d. of 3 ± 2 associations classified as a con-

stant companion, 12 ± 12 as a casual acquaintance and 178 ± 74

as weak associations (note that weak association covers all

possible associations in the population, including those that

never occur). The majority of the potential dyads were non-

relatives (47 625 dyads or 58%) or individuals of unknown

maternal kinship (32 436 dyads or 40%). Maternal kinship to

the second degree was known for 1930 (2%) of the possible

annual dyads. As dyads were often observed in more than a

single year there were a total of 12 139 associations between

individuals of known relatedness to the second or first

degree (e.g. mother–offspring, grandmother–grandoffspring).

(c) Temporal dynamics of mother–offspring social

relationships
In the 48 years of data, 390 unique mother–offspring dyads

were observed, including 136 mothers, 115 sons, 132 daugh-

ters and 143 offspring of unknown sex. This sums up to 3747

association years, where a dyad observed associating in 10

different years equals 10 association years. Sons had a

mean ± s.d. age of 17 ± 11 years, daughters had a mean

age of 16 ± 10 years and individuals of unknown sex had a

mean age of 5 ± 4 years. The pattern of change in associ-

ations between mother and offspring was dependent on

both the sex and age of the offspring (figure 5). Sons had

a gradual decline in the probability of having their mother

as a constant companion with increasing age of the son

but the mean remained high (greater than 0.75) even for

older ages (figure 5b), while daughters, on the other hand,

had a pronounced change in their bond to their mother

with age—the probability of having their mother as a con-

stant companion declined with increasing daughter age

until age approximately 38 (figure 5a). For daughters, this

change in association pattern is related to an increase in

the probability of having a weak association with their

mother, as well as the probability of having a casual

acquaintance association with their mother (figure 5a).

Sons on the other hand had a slight increase in the

probability of having a weak association with their mother

over time, while the probability of being a casual

acquaintance remained low (figure 5b).

4. Discussion
Understanding the temporal dynamics of social associations

is key to unlocking how age-related changes in the social

environment influence selection for life-history traits and

social behaviours. Here we show that social associations

between mother and offspring in a long-lived social

mammal are dynamic across the life of the offspring, likely

influencing the opportunity for mothers and offspring to
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help or compete with close kin as a function of age. Specifi-

cally, social relationships between mothers and their

offspring depend on the age and sex of the offspring, leading

to mothers maintaining a stronger bond with sons compared

to daughters in adulthood (figure 5). For Bigg’s killer whales,

the probability of having the strongest social bond with their

reproductive mother and adult son

reproductive mother and adult daughter

post-reproductive mother and adult daughter

post-reproductive mother and adult son

time lag in days
100 1000 3000300

la
g
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Figure 2. Lagged association rates over a maximum time lag of 10 years for associations between adult sons or daughters and their reproductive or post-repro-

ductive mothers, including jackknife error bars. Note the limits of the y-axis.
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Figure 3. Stacked bar plot representing how many associations fall into each of the three relationship categories (weak association, casual acquaintances, and

constant companion) for each type of dyad.
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mother decreases with the age for daughters but remains

stable and high between mothers and their sons. Indeed,

strong and stable bonds with sons are likely to provide the

opportunity for mothers to perform helping behaviours that

increase the survival of their sons and thus provide inclusive

fitness benefits for the mother.

(a) Temporal stability of mother–offspring associations
Killer whales are a highly social species. In the resident killer

whale populations, both sons and daughters remain in their

mother’s group their entire lives leading to groups consisting

of several generations of maternally related kin [19,23,56].

However, other killer whale populations appear to have a
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Figure 4. Boxplot representing the median (midline), 25th and 75th percentiles (lower and upper limits of the box, respectively), maximum and minimum of

1.5*inter-quartile range (upper and lower end of vertical lines, respectively) and outliers (black points) of the association probability from the binomial mixture

model for the three components (weak association, casual acquaintance and constant companion) across the data period. Raw data is included for each boxplot as

points.
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Figure 5. The probability of a mother–offspring association being classified in each of the three components (weak association, purple; casual acquaintance, rust;

constant companion, yellow) with offspring age for (a) daughters and (b) sons. Lines represent the mean of the posterior distribution at each age and the shaded

areas represents from darker to lighter the 50, 80 and 95% credible intervals, respectively. Vertical dotted lines in the plot (a) represent the ages at which 5, 50 and

95% of the female reproductive lifespan is estimated to have occurred [28].
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more fluid fission–fusion social structure [19,22,24,25].

Although previous research suggests that Bigg’s killer whales

have a similar fluid social structure [29], we show that across

all associations between Bigg’s mothers and their juvenile or

adult offspring, the probability of re-associating remain very

stable over a period of 10 years (figure 2 and electronic sup-

plementary material, figure S1B). In other words, if offspring

are associated with their mother into adulthood, they are

likely to maintain the association for many years, potentially

for life.

Although lagged association rates between a mother

and a daughter and a mother and a son are both high and

stable, there is a clear difference between associations with

daughters compared to sons (figure 2). There is a higher

probability of a mother re-associating with an adult son

compared to an adult daughter, suggesting different patterns

of associations depending on the sex of the offspring. Sex-

biased associations could indicate that a daughter is more

likely to become socially separate from their mother in adult-

hood compared with sons and that mothers may focus on

opportunities to invest in adult sons. Mothers are likely to

allocate more time and energy into the sex with the highest

reproductive value, which can change given the age and

sex of the offspring [57]. In resident killer whales, for

example, adult sons have a higher reproductive potential,

and offspring fathered by sons will likely be born outside

of the group—thereby not introducing increased compe-

tition—making adult sons a favourable investment to

increase inclusive fitness benefits for older mothers [7].

Indeed, resident killer whale mothers primarily share food

with their adult sons [21] and if they lose their mother sons

have an increased mortality risk [15]. This highlights the

importance for resident mothers investing in the success of

their sons, even when it is a substantial cost for herself [58].

Although it is not yet clear if similar benefits are present in

Bigg’s killer whales the stability of associations between

mothers and sons suggests that Bigg’s mothers could gain

similar benefits. However, the lagged association rates are

based on the observed association indices, which may be

missing or underestimating important patterns of interactions

between mother and offspring [59]. While future research is

needed to quantify the fine-scale patterns of interaction

between mothers and their offspring to determine the differ-

ence in maternal investment in sons versus daughters, our

results show that daughters have a lower probability of

remaining associated on a broader scale with their mother,

supporting a sex-biased dispersal in this ecotype [29].

(b) Temporal dynamics of mother–offspring social

relationships
While mother–offspring associations remain stable for adult

offspring over time independent of the sex of the offspring,

there are clear differences in how social bonds between

mother and offspring change depending on the age and sex

of the offspring (figure 5). Mother–daughter dyads experi-

ence a gradual decrease in the probability of being in a

constant companion association from the age of sexual

maturity of the daughter, while mother–son dyads maintain

an effectively constant probability of this strong relationship

(figure 5). Thus, this pattern further supports a female-

biased dispersal pattern with sons being fully or partially

philopatric, as proposed by Baird & Whitehead [29].

The changes in mother–son associations, suggest that

brothers may maintain stronger associations compared to

sister–sister or sister–brother relationships (figure 3). This

could be an effect of sons staying in close association with

their mother and by exstension in close association with their

brothers, while their sisters are more likely to disperse out of

the group. Alternatively, this could be an effect of the subset

of males that have been observed travelling outside of their

mother’s group, termed ‘roving’ males, that might associate

with a higher degree with their adult brothers, in comparison

to their adult sisters. However, only eightmales have been cate-

gorized as permanently ‘roving’ while their mother was still

alive, with the majority, therefore, having a high probability

of maintaining a close association with their mother and by

extension their brothers (electronic supplementary material,

figure S5). More observations of male associations are needed

to further investigate the dynamics of these relationships. As

offspring reach ages above 40 years old, the credible intervals

become very large, likely due to the sparsity of mother–

offspring associations available in the data for offspring of

greater than 40 years old.

(i) Group size and ecology
Offspring dispersal may help to maintain the foraging effi-

ciency of the group [30,36]. Ecological considerations may

therefore affect the dispersal of Bigg’s killer whales as smaller

groups could benefit from the increased energy efficiency

from prey shared among group members, and increased hunt-

ing success due to a lower probability of alerting prey to their

presence [30]. Within smaller family groups, cooperation and

division of roles have been described, particularly for females

[45]. Additionally, although observations of males actively

taking part in hunts appear to be rare [60–62], the fact that

they are likely to stay with their mother’s group, suggests

they also have the potential to provide a contribution to the

group. Given the larger size of adult males, for example, they

could benefit the group by taking extended dives preventing

prey to escape [47] as well as during attacks of larger prey,

such as sea lions or larger cetaceans [60–62]. With the advance-

ments of observational methods, such as unmanned aerial

systems, future studies should focus on the sex-specific div-

ision of roles during foraging to better understand the

drivers of group composition in mammal-eating killer whales.

Across the 50 years of data, the observed average group

size of Bigg’s killer whales in the Salish Sea has increased

from 4.4 to 6.1 individuals [35,36,47], coinciding with several

factors: an increase in the availability of Bigg’s prey [63–66], a

rapid increase in the population size in the last approximately

30 years [34,67] and an increased presence of the Bigg’s eco-

type in the Salish Sea [36]. These factors appear to be related

in that recovering prey populations correspond with an

increase in available energy intake per individual, which sub-

sequently drives increased group size, reproduction rates,

overall abundance, and range use in Bigg’s killer whales. It

is likely that the advantages or costs of different dispersal tac-

tics are dynamic and can change in response to ecological

factors such as prey availability and a subsequent increase

in population abundance. Additionally, factors relating to

the individual offspring and the composition of the group,

including birth order, number of siblings in the group and

the reproductive state of the mother could all influence the

balance of whether to stay or leave [18]. For example,
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depending on the age of the mother at the birth of the off-

spring, she may have reached menopause when the

offspring becomes sexually mature, which could impact

the benefits of staying or dispersing in comparison to an

older sibling. From our results, there is a clear indication

that daughters are more likely to disperse compared to sons

and that this is true regardless of birth order (electronic sup-

plementary material, figures S6 and S7). Future research

should focus on teasing apart potential factors influencing

the timing of dispersal to better understand how changes in

the environment and group composition might impact the

social structure of this ecotype.

(ii) Mothers, daughters and menopause
By maintaining a close relationship to their mother, adult

females have the opportunity to benefit from the help of their

mother and their siblings in the social group, probably receiv-

ing help via food sharing and alloparental care [21,68,69], while

their mother may simultaneously benefit from help from adult

offspring [70]. Additionally, a close association with their

mother is also likely to be key for both sons and daughters to

establish social bonds with kin and in gaining important

skills via social learning from both mother and older siblings

[71–73]. However, reproductive mothers and adult daughters

that are in close association may compete over resources for

reproduction. A mounting body of research has now shown

that the age-linked changes in relatedness to group-mates—

kinship dynamics—are integral in understanding the changes

in selection for intergenerational helping and harming

in females through their life [7,9]. In menopausal species,

demographic patterns cause an asymmetry in the average relat-

edness to the group with age for females of different ages—

leading to weaker selection for investment in reproductive

competition in older females as intergenerational reproductive

conflictwould bemore costly for older comparedwith younger

females [7]. For example, when dispersal is female-biased or

both sexes are philpatric and mating occurs outside of the

group, females become increasingly related to their group as

they age [7,9]. As a consequence, older females are under stron-

ger selection for helping, while younger females are predicted

to invest more in competitive effort compared to older females

[7,12]. In resident killer whales, for instance, where both sexes

are philopatric, the cost of conflict over reproduction is higher

for older-generation females with a 1.7-time increase in off-

spring mortality risk for calves of older-generation mothers

born into conflict [12]. Similarly in humans, reproductive con-

flict between different generation females have been shown to

intensify the cost of reproduction for older females, selecting

for females stopping reproduction early [9,74,75]. Even given

the female-biased dispersal in Bigg’s killer whales, for mothers

and daughters the opportunity for a reproductive overlap

remains as the decrease in the probability of being in the stron-

gest association is gradual from the time daughters become

sexually mature (the age when 5% of fecundity is expected to

have occurred [28]) (figure 5a). More specifically, at the age

when 50% of a Bigg’s killer whale female fecundity is expected

to have occurred the probability of being in the strongest

relationship with their mother is greater than 0.25 [28]

(figure 5a). However, unlike the resident killer whales, where

daughters stay with their mother for their entire life,

dispersal may have evolved in Bigg’s killer whales as an

additional mechanism to reduce reproductive overlap. Thus,

the combination of female-biased dispersal and menopause

likely results in a female reproductive overlap that is as small

in Bigg’s killer whales as it is in humans [9,74]. In other

words, a daughter likely remains with her mother past the

birth of at least her first offspring meaning that some level of

intergenerational conflict (when mothers and the daughters

co-breed) could occur. This pattern of kinship dynamics

alone, however, is not sufficient to explain the presence of

menopause. For example, females of both chimpanzees (Pan

troglodytes) and banded mongoose (Mungos mungo) experience

a similar increase in local relatedness with age, in addition to

having overlapping reproduction between female generations

[76]. Yet, neither have evolved menopause. A likely key differ-

ence between these species and those that have evolved

menopause is the extent of the inclusive fitness effects of both

late-life helping and intergenerational reproductive conflict

[77]. Thus, quantifying such effects of late-life benefits of help-

ing or costs of co-breeding between mother and daughter in

Bigg’s killer whales will provide valuable insight into the

evolution of menopause in this killer whale ecotype.

Unlike other female-biased dispersers, such as chimpan-

zees, Bigg’s killer whale females decrease the strength of

association to their mother gradually from age of maturity

and typically disperse after having at least their first off-

spring. This leads to a budding-event dispersal of a female

and her offspring rather than individual dispersal prior to

first reproduction [78,79]. Previous theoretical models of the

kinship dynamics of dispersal by budding (concomitant

dispersal of related individuals) have tended to focus on

group-level rather than individual-level changes to average

relatedness [6]. Additionally, dispersal has been modelled

as individuals of the same cohort dispersing and establishing

a new group [80,81], rather than a form of matrilineal budding

of a female and her dependent offspring. In the latter case, a

female would likely increase her average relatedness to her

group at the time of dispersal, as she establishes a new group

consisting of her and her exsisting offspring, thereby increasing

her average relatedness to the group across her reproductively

active period. Although the birth of grandoffspring will lower

her average relatedness to her group, it may again increase

following a budding event of a daughter and the daughter’s

offspring (grandoffspring). Thus, budding dispersal will

impact the average relatedness of both the female that dis-

perses as well as individuals in the group she dispersed

from, including her mother. Future modelling should focus

on exploring the individual-level changes to female average

relatedness under such dispersal patterns to better understand

the selection for intergenerational helping and competion

under such social conditions.

Themating strategy of Bigg’s killer whales is still unknown

[67]. Yet, the high relatedness between group members

suggests that mating occurs with individuals outside of the

group perhaps as a mechanism of inbreeding avoidance, simi-

lar to resident killer whales [82], although bothwithin-pod and

within-matriline mating occurs in the southern resident killer

whale population [20]. Despite the decrease in the probability

of a mother and daughter being constant companions as the

daughter matures, our results clearly show that Bigg’s females

have the opportunity to help kin, and especially sons, poten-

tially through means of experience, ecological knowledge,

leadership and food sharing, as seen in other mammals with

long-lasting social relationships [13,21,83–85]. In addition, the

gradual decline in the probability of being in a constant
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companion association with a daughter allows for a repro-

ductive overlap between mother and daughter that could

potentially lead to a comparable reproductive conflict as in

other mammals with a long post-reproductive female lifespan

[9,16]. Both of these mechanisms have been shown to influence

the evolution of menopause in resident killer whales and

could help to explain why it is also observed in Bigg’s killer

whales [12].

Here we have shown that social relationships between a

Bigg’s killer whale mother and her offspring depend on

both the age and sex of the offspring, reflecting different

changes in the social environment for males and females

across their lifespan. In particular, for Bigg’s females, the

social environment changes throughout their lives, likely

altering their average relatedness to their group and thus

their inclusive fitness benefits and costs of performing both

helping behaviours and competitive efforts. Specifically,

Bigg’s killer whale females experience an extended period

of close association with adult offspring, particularly adult

sons. During this period, they have the opportunity to gain

the inclusive fitness benefits of helping, while also being in

reproductive conflict with adult daughters, both of which

could support the evolution of a long post-reproductive

period in female Bigg’s killer whales.
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