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Two-stage lane-changing driving strategy based on

driving habits and vehicle dynamics for autonomous

electric vehicles
Peng Liao, Tao Wang, Tie-Qiao Tang, Ronghui Liu

Abstract—Lane-changing (LC) critically affects traffic effi-
ciency and safety, making it a key focus in autonomous driving
strategy development. In the human-machine co-driving phase,
assisted driving systems must integrate driver habits to enable
effective driver-vehicle collaboration. To this end, this paper
proposes an LC strategy for autonomous electric vehicles (EVs)
that integrates driver habits and vehicle dynamic characteristics.
It solves two crucial issues: (1) how to guarantee drivers’
LC habits in the proposed strategy, and (2) how to maximize
the utilization of electric vehicle (EV) dynamics on the LC
performance. In the lane-changing decision (LCD) stage, we
estimate the LC probability to obtain a range of LC starting
positions that align with driver habits, and we select one to
enhance the EV performance. In addition, in the lane-changing
implementation (LCI) stage, we propose an anthropomorphic EV
control to ensure the LC trajectory is consistent with driver
habits, while the EV dynamics are optimized with different
trajectory objectives. The simulation results show the driver’s
LCD is dependent on the longitudinal position difference between
the preceding vehicles in the original and target lanes, and
the LCD predicted accuracy reaches 95.2%. In addition, the
proposed LCI can meet the differentiated LC demands, as the
LCI strategies focusing on economy, comfort, and efficiency
can reduce the SOC consumption by 28.6%, the wheel angular
velocity by 94.4%, and the LC duration by 70.0%, respectively.
Besides, the robustness of the strategy is verified by the relatively
stable performance under SOCs and environment temperatures.
Thus, this paper has the potential to clarify the LC optimization
requirements for autonomous EVs and assist in the electrification
and intelligent development of transportation systems.

Index Terms—Lane-changing, driving habits, logit model, elec-
tric vehicle dynamics, two-degree-of-freedom vehicle model

I. INTRODUCTION

D
URING the driving process, drivers exhibit two typical

driving behaviors [1]–[3], namely car-following (CF) and

lane-changing (LC). Driver needs to determine the driving

behavior to be executed based on the obtained traffic informa-

tion (e.g., position, velocity, and acceleration). This decision-

making is influenced by the driver’s driving habits. Following

the decision-making process, the driver regulates the vehicle’s
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motion through the operation of the accelerator, brake, and

steering wheel to accomplish the intended driving behavior.

Drivers are required to continuously make and execute

decisions based on the surrounding environment, placing a

significant burden on them. Relevant statistics [4] indicate

that 96.2% of traffic accidents result from driver errors,

with cognitive errors, decision-making errors, and improper

operations accounting for 41%, 33%, and 11%, respectively.

Assisted driving can help alleviate driver stress by supporting

decision-making and execution, while also enhancing driving

safety.

This study focuses on the LC strategy in an assisted driving

system. Developing an effective LC strategy for electric vehi-

cles (EVs) in the assisted driving system is challenging. The

reasons that lead to the challenges are: (i) Compared to CF,

which involves only longitudinal control, LC requires coordi-

nated longitudinal and lateral movements. (ii) The widespread

adoption of EVs introduces new challenges to optimizing LC

behavior due to electric vehicle (EV) complex dynamics. (iii)

It is more important to obtain an LC strategy that is consistent

of (at least not deviate excessively from) driver’s intent, since

the deviation may induce great panic for drivers [5].

Existing research on EV LC has yet to comprehensively

harmonize trajectory optimization with driving habit adap-

tation. From the perspective of trajectory planning, studies

typically replicate driver trajectories to develop anthropo-

morphic strategies, aligning with driver habits but retaining

undesirable behaviors. Others optimize LC trajectories for an

“optimal path”, yet overlook driver expectations, potentially

discouraging the use of assisted driving systems. In addition,

EV LC strategies must fully account for vehicle dynamics

and internal system coordination, particularly the operational

characteristics of the battery.

To fill these gaps, this study develops a two-stage LC

strategy considering driving habits and EV properties for

autonomous vehicles. In the first stage, we develop a driver

intention model to ensure that drivers can quickly adapt to

the LC strategy of the assisted driving system. In the second

stage, we integrate the kinematics and battery characteristics

of EVs to enhance the economy, comfort, and safety of the

LC trajectory. Specifically, we utilize driver trajectory data

and vehicle motion characteristics to construct a logit-based

LCD model, reproducing the driver’s real-time LC intention

accurately. Then, we propose an LCI model to quickly gener-

ate the LC trajectory considering the EV operation properties.

Finally, we develop the final LC optimization strategy with



IEEE TITS 2

the consolidation between the LCI and LCD models.

The remainder of this paper is organized as follows: Section

II presents the literature review. Section III develops the LCD

model to align with driver habits. Section IV introduces the

LCI model to represent EV dynamics. Section V formulates

the LC strategy by integrating the LCD and LCI models.

Section VI provides a case study and discussion. Finally,

Section VII concludes the paper.

II. LITERATURE REVIEW

In recent years, research on EV LC strategies for au-

tonomous driving technology has attracted the attention of

scholars in mechanical engineering, systems engineering, man-

agement science, behavioral science, computer science, psy-

chology, and transportation science. And, the relevant research

involves three parts: LC behavior models, EV dynamics mod-

els, and LC strategies for autonomous driving.

A. LC behavior models

The LC behavior is the main lateral movement of the vehicle

to obtain a better driving environment or move to the expected

destination. As for the LC process, the driver first makes

a real-time decision on whether to change lanes based on

the obtained traffic information, known as the LCD. Then,

the LCI is executed, i.e., once the driver decides to change

lanes, he/she starts planning and tracking the LC trajectory

by controlling the vehicle’s accelerator pedal, brake pedal,

and steering wheel. In contrast, once the driver decides not

to change lanes, he/she performs CF behavior or travels at

the desired velocity. Thus, the LC behavior model exhibits

obvious two-stage characteristics, i.e., LCD and LCI.

The LCD model aims to reproduce the driver’s decision on

the choice between CF and LC, focusing on the expression of

the microscopic decision-making behavior and the calibration

of physical parameters. The relevant studies mainly include

rule-based models, learning-based models, etc. The rule-based

model is the most basic framework for modeling LCD, and

there is a clear causal relationship between explanatory vari-

ables (e.g., relative distance) and dependent variables (e.g.,

acceleration). The Gipps model [6] is the earliest rule-based

LCD model, which summarizes the LCD process as a decision

tree with a series of fixed conditions and ultimately outputs

a binary choice result, i.e., LC or no LC. After Gipps’

groundbreaking work, many scholars have extended and im-

proved this framework. Yang et al. [7] modeled mandatory

and discretionary LCD according to purposes and scenarios.

Jin et al. [8] proposed an LCD rule considering the longi-

tudinal distance, which poses a simple structure and strong

interpretability. Another mainstream LCD model is induced

from learning methods. Compared to the rule-based LCD

model, adequate data training qualifies the LCD model based

on learning methods with stronger generalization ability and

higher adaptation to complex situations. Xie et al. [9] proposed

a data-driven LC model based on deep learning models to

address the complexity and uncertainty of driving behavior.

Wang et al. [10] constructed a prediction method based on a

fuzzy inference system and a long short-term memory neural

network to comprehensively consider the relationship between

the driving environments and the drivers. Ali et al. [11] studied

an LCD model framework that explains the mandatory and

discretionary LC behaviors considering the game theory-based

approach.

The interaction between the driver’s LCI process and the

motion of surrounding vehicles can be revealed by the existing

LCI model from the micro level. For the sake of exploring this

interaction, as well as the correlation between this interaction

and various traffic phenomena, researchers have studied the

LCI process based on the theory of motion waves [12]. Laval

et al. [13] developed a motion wave hybrid model, in which

LCI vehicles are approximated as motion bottlenecks, and each

lane is modeled as a separate motion wave flow interrupted by

the LCI vehicles. In addition, cellular automata are applied in

the LCI to reproduce LC behavior with minimal microscopic

description. Das et al. [14] explored the microscopic and

macroscopic properties of LC activity using cellular automata.

However, all these LC behavior models are mainly focusing

on the accurate reproduction of LC behavior, neglecting the

adjustable content in driving behavior, thus unable to satisfy

the optimization demands of LC behavior.

B. EV dynamics models

With the continuous advancement of vehicle electrification,

EVs are bound to become the main type of vehicles in

future transportation systems. The study of their dynamic

characteristics, namely the relationship between force and

motion, has also received a lot of attention from researchers

[15], [16]. From the perspective of motion implementation,

the systems related to dynamics mainly include the powertrain

and the steering system. The driving force to overcome vehi-

cle driving resistance (e.g., wind resistance, slope resistance,

rolling resistance, and acceleration resistance) is provided and

decided by the powertrain. The driving force generation and

transmission involve chemical-to-electrical energy conversion

in the battery, electrical-to-mechanical energy conversion in

the motor, torque and speed adjustment in the transmission,

and subsequent transfer through other components. The EV’s

velocity direction is governed by both the steering system and

the powertrain. The steering system controls wheel rotation,

and in conjunction with the vehicle’s velocity, adjusts the

direction of motion. Manzetti et al. [17] provided a cradle-

to-grave analysis of the emerging technologies in the EV

battery, with an assessment of green chemistries as novel

green energy sources for the EV and microelectronics portable

energy landscape. Dai et al. [18] discussed and differentiated

conventional engines (e.g., gasoline and diesel-driven engines)

versus electromotor and hybrid engines. Ruan et al. [19]

estimated whether transmissions are worthwhile for the cus-

tomer considering the price/performance relationship of design

solutions. Zhang et al. [20] presented a control method to

improve the safety performance of the EV steering system, and

found that the EV steering system exhibits unstable chaotic

behaviors at certain speeds.

These existing studies clarify the relationship between the

control variables and EV driving performance (e.g., power,



IEEE TITS 3

economy, environmental protection, etc.), while ignoring the

limitations of real traffic conditions on EV motion status, thus

leading to the decrease in the realization of EV performance

in real driving.

C. LC strategies for autonomous driving

Autonomous driving technology has the potential to liberate

drivers from driving tasks, greatly improving traffic efficiency

and safety [21], [22]. The LC behavior is important to improve

traffic performance by replacing it with autonomous driving

technology. In manual driving, drivers rely on sensory inputs,

such as sight and hearing, to perceive the road environment

and make driving decisions based on traffic regulations and

personal experience. On the contrary, autonomous vehicles

rely on the decision-making layer to generate driving trajec-

tories and then utilize the implementation layer to achieve

the driving trajectories transmitted from the decision-making

layer. Therefore, the existing research on LC for autonomous

vehicles mainly includes trajectory planning corresponding to

the decision-making layer and trajectory tracking correspond-

ing to the implementation layer.

The trajectory planning is utilized to generate an opti-

mal driving trajectory with regard to surrounding environ-

ment, vehicle motion states, and driving time. The commonly

adopted methods for autonomous vehicle trajectory planning

mainly include the graph search method, the random sampling

method, the parameter curve method, the numerical optimiza-

tion method, etc [23], [24]. Graph search methods, like Dijk-

stra and A* algorithms, explore graph structures by retrieving

raster grids with obstacle information. They assign costs based

on grid states and iteratively search for the optimal path from

start to endpoint [25]–[27]. The random sampling method

searches a path that satisfies collision avoidance detection by

randomly selecting nodes that connect the starting point and

the target point [28]. The parameter curve method generates

the trajectory by curve-fitting, e.g., bezier curves, polynomial

curves, and B-spline curves [29], [30]. These curves possess

smooth curvature, controllable shapes, and excellent real-

time performance, making them capable of meeting the basic

requirements for trajectory tracking. The numerical optimiza-

tion method designs mathematical programming with different

objective functions related to driving safety and comfort for

optimal trajectory determination [31], [32].

Trajectory tracking is executed to calculate control variables

that enable the vehicle to accurately track the planned trajec-

tory, such as wheel steering angle, acceleration, and braking

commands [33], [34]. Based on the different dimensions of

vehicle motion, trajectory tracking technology can be divided

into longitudinal control and lateral control. Longitudinal

control calculates accelerator/brake pedal commands based on

the error input of the vehicle’s longitudinal velocity, enabling

the vehicle to track the desired longitudinal position. In

addition, lateral control outputs a reasonable wheel steering

angle to enable the vehicle to track the desired lateral position.

Trajectory tracking not only ensures the tracking accuracy of

the vehicle for the planned trajectory, but also focuses on the

comfort and safety of passengers. At present, commonly used

methods for trajectory tracking include proportion integration

differentiation (PID) control, sliding mode control (SMC),

model predictive control (MPC), etc. Chu et al. [35] presented

a trajectory planning and tracking framework, which applies

an artificial potential to obtain target trajectory and MPC with

PID feedback to effectively track planned trajectory. Hwang et

al. [36] proposed a hierarchically improved fuzzy dynamical

SMC to address the autonomous ground vehicle path-tracking

problem.

The above studies on autonomous driving strategies mostly

explore trajectory planning and trajectory tracking indepen-

dently, without synergistically optimizing the driver require-

ments for trajectory planning and the vehicle motion imple-

mentation capabilities for trajectory tracking.

III. LCD MODEL CONSISTENT WITH THE DRIVING HABITS

Drivers have the potential to perform the LCD according

to the obtained traffic information, such as the position, the

velocity, and the acceleration of themselves and the surround-

ing vehicles. To describe the complexity and randomness of

driver decision-making, we adopt LC trajectory data to analyze

the characteristics of LCD and construct the LCD models

considering different influencing factors.

A. Data preparation

This study examines drivers’ behavioral choices in the road

traffic system by analyzing the correlation between vehicle

motion data and LCD, leveraging vehicle trajectory data. We

employ the Next Generation Simulation (NGSIM) dataset to

capture LC characteristics [37], [38]. The NGSIM dataset were

collected along a 630m segment of the US-101 highway (Fig.

1), comprising five main lanes (Lanes 1–5) and an auxiliary

lane (Lane 6), during the morning peak (7:50–8:35 a.m.) on

June 15, 2005.

Fig. 1. Schematic coordinate axis diagram of US-101 highway inspection
section.

To fully explore the influencing factors on the LCD, we

select the dynamics of the six surrounding vehicles as the input

data to analyze the EV driver’s LCD, as shown in Fig. 2. The

dynamics include the longitudinal position, lateral position,

speed, and their difference with ego vehicle. m are utilized

as the m-th surrounding vehicle of the ego vehicle, where

m ∈ {0, 1, 2, 3, 4, 5, 6}. m = 0 . . . 6 represent the ego vehicle,

the front vehicle in the original lane, the rear vehicle in the

original lane, the front vehicle in the non-target lane, the rear

vehicle in the non-target lane, the front vehicle in the target

lane, and the rear vehicle in the target lane, respectively.
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Fig. 2. Movement diagram of the LC vehicle and its surrounding 6 vehicles.

B. Key Points Determination

The drivers in the road traffic system will conduct the LCD

based on the current road traffic information (such as position,

velocity, and acceleration of their own vehicles, as well as

the position, velocity, and acceleration differences with the

surrounding vehicles), and then drive the vehicle to complete

the corresponding driving tasks. When the driver decides to

follow the preceding vehicle, the main task is to maintain a

stable following state by adjusting the velocity. In contrast,

once the driver decides to perform LC behavior, the main task

is to select the appropriate time to drive the vehicle toward

the target lane.

Therefore, the LC key points, i.e., lane ID change point,

LC start point, and LC end point, can be recognized based

on the driving process [39], [40]. Considering the NGSIM

dataset, lane ID changes can be directly identified from the

dataset. The LC start point is defined as the last point before

the vehicle crosses the lane line, where lateral acceleration is

zero, and the preceding acceleration direction differs from the

LC direction(considering the continuous variation of lateral

acceleration). The LC end point is the first point after the

vehicle crosses the lane line, where lateral acceleration is again

zero, and the subsequent acceleration direction differs from the

LC direction(considering the continuous variation of lateral

acceleration). Fig. 3 presents the trajectory data of the 12th

LC vehicle and its six surrounding vehicles. It is noted that

the PV and the FV in this figure are the preceding vehicle and

the following vehicle, respectively.

Fig. 3. The trajectory with the LC key points of the 12th LC vehicle and its
surrounding 6 vehicles.

C. Statistical properties

To intuitively reflect the driver’s differentiation of informa-

tion, this paper divides the data related to influencing factors

into basic information and observation information. The basic

information is the longitudinal and lateral position, velocity,

and acceleration of the LC vehicle and its surrounding 6

vehicles. The observation information includes the longitudinal

and lateral differences of position and velocity between the

surrounding 6 vehicles and the LC vehicle.

For a trajectory with LC behavior, we use p(t) to record

whether a vehicle is in the LC process in time slot t, i.e.,

p(t) = ✶{tlc,s≤t≤tlc,e}, tlc,s, tlc,e are the time when a vehicle

is at LC starting position and the LC ending position. To

calculate the correlation coefficient between influence factors

and the LCD, we normalize the dynamics (e.g., velocity,

position) of the surrounding vehicles. We use notation x to

represent the generic dynamic of surrounding vehicle. As such,

the normalization of the m-th surrounding vehicle’s dynamic

for vehicle n is formulated as,

x*
m(t) =

xm(t)−min (xm(t))

max (xm(t))−min (xm(t))
(1)

where x*
m(t) is the normalized variable of x(t). With it,

we define the correlation coefficient between variable x with

pLC(t), as in Eq. (2).

Note that: the subscript “n” denotes the n-th vehicle in the

NGSIM data, we omit the subscript in other equations when

we do not use the data to analyse the LC process. In addition,

the subscript in other equations always denotes the No. of the

surrounding vehicle, unless explicitly stated otherwise.

corx,p =

N
∑

n=1





1
N

∑NLC
n,m

i=1 (pn(ti)− pn)
(

x∗n,m(ti)− x∗n,m

)

√

∑NLC
n,m

i=1 (pn(ti)− pn)
2∑NLC

n,m

i=1

(

x∗n,m(ti)− x∗n,m

)2





(2)

where corx,d is the correlation coefficient between the m-

th dynamic variable and the LCD, N is the number of the

LC vehicles in NGSIM data, Nn,m records the number of

time slots of the m-th dynamic of vehicle n, x represents

the average value of variable x. The correlation between the

surrounding vehicle dynamics with the LCD under the NGSIM

data is illustrated in Fig. 4.

The correlation coefficients presented in Fig. 4 highlight

the influence of vehicle motion data on LCD. Specifically, the

LCD has strong correlations with the longitudinal position and

velocity of the ego vehicle and its six surrounding vehicles, as

well as with the lateral velocity of the ego vehicle. In addition,

some key factors include the longitudinal position difference

between the ego vehicle and the front vehicle in the target

lane, and the longitudinal velocity difference between the ego

vehicle and various vehicles, such as those in the original

and target lanes. Consequently, selecting different influential

factors from these 28 variables to construct LCD models can

provide deeper insights into the driver’s LCD behavior.
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(a)

(b)

Fig. 4. Correlation coefficient between information and LCD variables. (a)
basic dynamics; (b) relative dynamics.

D. Logistic choice model

The LCD variable is a typical 0-1 variable, so this paper

utilizes the logistic regression model to reproduce the driver’s

LCD. To explore the predictive accuracy of proposed models

considering different factors, this paper constructs logistic

LCD models considering different influencing factors accord-

ing to the correlation coefficient magnitude [41].

Lr(t) =
eγ0+γ1x1(t)+···+γrxr(t)

1 + eγ0+γ1x1(t)+···+γrxr(t)
(3)

where Lr(t) is the predictive LCD calculated by the Log-it

choice model with r factors vehicle; xr(t) is the value of the

r-th dynamic variable at time t; γr is the corresponding coef-

ficient of the r-th dynamic variable. We utilize least squares

method to calibrate the model parameters, the coefficients in

the Log-it model with 28 factors is concluded in Tab. I. We

also use a 4-factors and 2-factors models to predict the LCD,

the coefficients are recorded in Tab. II and Tab. III.

Since the LCD variable is binary, the accuracy of the LCD

model is defined as the average proportion of predicted values

before the initiation of LC that are lower than those at the start

of LC for each vehicle, as illustrated in Fig. 5. The accuracy

TABLE I
CALIBRATION COEFFICIENT OF LCD MODEL WITH 28 FACTORS

Factor Value Factor Value Factor Value

dlon
0

0.00 vlon
3

-1.10 ∆vlon
5

0.00

dlon
1

-13.01 vlon
4

-0.73 ∆vlon
6

0.00

dlon
2

0.00 vlon
5

6.43 ∆vlat
1

-1.41

dlon
3

-2.64 vlon
6

1.39 ∆vlat
2

-1.61

dlon
4

-2.15 vlat
0

-4.31 ∆vlat
3

1.92

dlon
5

16.40 ∆dlon
2

0.45 ∆vlat
4

0.92

dlon
6

2.01 ∆dlon
5

-2.36 ∆vlat
5

1.86

vlon
0

-2.82 ∆vlon
1

-2.98 ∆vlat
6

0.96

vlon
1

0.00 ∆vlon
3

0.00 γ0 2.14

vlon
2

-1.43 ∆vlon
4

0.00

Note: the superscript “lat” represents the “Lateral”; “lon” represents the
“Longitudinal”; d is vehicle’s position; v is vehicle’s velocity; ∆ means the
difference of a variable between the surrounding vehicle and the ego vehicle.

TABLE II
CALIBRATION COEFFICIENT OF LCD MODEL WITH 4 FACTORS

Factor Value Factor Value Factor Value

dlon
1

-6.57 vlon
5

2.26 γ0 2.14

dlon
5

7.13 vlat
0

-6.97

TABLE III
CALIBRATION COEFFICIENT OF LCD MODEL WITH 2 FACTORS

Factor Value Factor Value Factor Value

dlon
1

-5.29 dlon
5

6.21 γ0 -0.25

of LCD models considering 28 or 4 factors does not differ

significantly. However, when only 2 factors are considered,

the accuracy increases by 30.41% and 31.31%, respectively.

This suggests that reducing the number of factors improves

the accuracy of the LCD model, likely because including more

factors increases the model’s sensitivity to vehicle movements,

resulting in missed LC opportunities. The accuracy in recog-

nizing the LC opportunities is indeed improved as the number

of factors increases. But this is not consistent with the driver’s

habits, as the driver’s executed LCD requires an obvious LC

opportunity to prompt. Therefore, the LCD model considers

more factors poses high precision to LC opportunities that

meet the driver’s expectations, as well as the missed LC

opportunity before the driver performs the LC behavior, thus

leading to the inconsistency with the driver’s driving habit.

In order to reproduce the driver’s driving habits and ensure

the acceptance of the proposed strategy, the predicted value

of the ideal LCD model will reach its maximum value at the

actual LC starting point executed by drivers. And, the detailed

analysis is discussed in “VI. CASE STUDY AND DISCUS-

SION”. This finding indicates that drivers in a traffic system

primarily decide to change lanes based on the longitudinal

position difference between the lead vehicles in their current

and target lanes.

Through the correlation analysis between motion informa-

tion and LCD, the proposed model considers 2, 4, and 28

influencing factors, respectively, among which the situation of

28 influencing factors has complexity and overfitting. How-
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Fig. 5. Prediction accuracy of logistic-based LCD model considering 2, 4,
and 28 factors

ever, in the construction of the strategy, to ensure consistency

between LCD and driving habits, this paper adopts a LCD

model that considers 2 influencing factors, thereby avoiding

the complexity of multi-factor coupling and the overfitting

effect. It is worth noting that through the replacement and

iteration of the dataset, the factors considered will change, but

the model constructed according to the new factors will still

adapt to the new dataset.

IV. LCI MODEL ACCOUNTING FOR THE ELECTRIC

VEHICLE DYNAMICS

The driver’s control over the EV during the LC process

is reflected in real-time longitudinal and lateral displacement

changes. To clarify the quantitative relationships among acting

forces, motion state, energy consumption, and control vari-

ables, this paper proposes an LCI model based on the dynamic

characteristics of EVs, focusing on the powertrain and steering

systems.

A. Displacement analysis considering EV dynamics

The quantitative analysis of EV dynamics is a complex

multi-factor coupling problem, characterized by the interac-

tion among people, vehicles, roads, and environments. In the

driving process, the EV longitudinal and lateral displacement

changes are achieved by the driver’s operations on the accel-

erator pedal, the brake pedal, and the steering wheel.

Fig. 6. Vehicle motion based on a two-degree-of-freedom vehicle model

As illustrated in Fig. 6, by fully considering the effects of

driver operations on EV velocity, acceleration, and steering

angle, a 2-degree-of-freedom vehicle model [42], [43] is

employed to describe the relationship between these operations

and the real-time EV motion state, as defined by Eqs.(4),(5)

and (6).

dβ(t)

dt
= C

β
1 β(t) + C

β
2 ω(t) + C

β
3 δ

f (t) (4a)

dω(t)

dt
= Cω

1 β(t) + Cω
2 ω(t) + Cω

3 δ
f (t) (4b)

vlon(t) = v(t) cos(ψ(t) + β(t)) (4c)

alon(t) = a(t) cos(ψ(t) + β(t)) (4d)

Eq. (4a) formulate the dynamic of vehicle’s sideslip angle β;

Eq. (4b) is the dynamic of vehicle’s yaw velocity ω, where

δf (t) is the front wheel steering angle; in Eq. (4c) and Eq.

(4d), ψ(t) is EV yaw angle. Note that, the coefficients are

given by,

Cω
1 =

kf l
2
f + krl

2
r

Izvlon(t)
(5a)

Cω
2 =

kf l
2
f + krl

2
r

Izvlon(t)
(5b)

Cω
3 = −

kf lf

Iz
(5c)

C
β
1 =

kf + kr

Mvlon(t)
(5d)

C
β
2 =

kfIf + krIr

Mvlon(t)2
− 1 (5e)

C
β
3 = −

kf

Mvlon(t)
(5f)

The parameters in Eq. (5) is concluded in Tab. IV.

TABLE IV
THE PARAMETER MEANINGS IN EQUATION (5)

Notations Means

kf The front wheel equivalent lateral stiffness

kr The rear wheel equivalent lateral stiffness

M The EV mass

lf The distance from the EV mass center to the front axle

lr The distance from the EV mass center to the rear axle

Iz The inertia moment of EV revolves around the vertical axis

With the above formulation, notations, and parameters, we

formulate the real-time longitudinal and lateral displacement

changes, as

∆dlon(t) =
2 · vlon(t)

ω(t)
sin

(

ω(t)∆t

2

)

× cos

(

ω(t)∆t

2
+ β(t) + ψ(t)

) (6a)

∆dlat(t) =
2 · vlon(t)

ω(t)
sin

(

ω(t)∆t

2

)

× sin

(

ω(t)∆t

2
+ β(t) + ψ(t)

) (6b)
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where ∆t is the time step; ∆dlat(t) is the vehicle lateral

displacement changes between the time t and time t + ∆t;
∆dlon(t) is the vehicle longitudinal displacement changes

between the time t and time t+∆t.

B. Implementation effect of powertrain and steering system

The EV’s powertrain and the steering system are crucial for

achieving specific acceleration and steering angles. To achieve

a particular acceleration, the driving force transmitted from

the powertrain to the wheels must counterbalance the driving

resistances, including rolling resistance, slope resistance, air

resistance, acceleration resistance, and braking force (see Fig.

7).

Fig. 7. EV Energy transmission process and acting force

The EV’s rotational mechanical energy is generated by

the battery and the electromotor. The battery first converts

chemical energy into electrical energy, which is then trans-

mitted to the electromotor. The electromotor converts this

electrical energy into rotational mechanical energy, which is

subsequently transmitted to the transmission or other devices

to adjust torque and speed. In addition, EVs recover braking

energy during deceleration, with the energy transmission pro-

cess occurring in reverse. The relationship among acceleration,

velocity, forces, and the EV powertrain state is described

by Eq. (7) [16], [44]. Similarly, changes in the steering

wheel angle, resulting from the driver’s operation through the

steering system, can be described by Eq. (8).

Pbatηbatηemηtraηo

v
=Mgf +Mgθ + CAv

2 +Mδa+ Fb (7)

where Pbat is the battery power; ηbat is the battery efficiency;

ηem is the electromotor efficiency; ηtra is the transmission

efficiency; ηo is the other devices efficiency; M is the EV

mass; g is the gravitational acceleration; f is the rolling

resistance coefficient; θ is the road slope; CA is the air

resistance coefficient; δ is the acceleration coefficient; Fb is

the braking force, and it is directly determined by the driver’s

operation on the braking pedal.

δf = kswδ
w (8)

where ksw is the proportional coefficient of the steering

system; δw is the steering wheel angle.

Adequate energy is essential for the powertrain and steering

system to achieve the desired EV motion state. However, due

to the significant difference in energy requirements for steering

and acceleration, the energy cost of the steering system is

neglected in this paper. Consequently, the operating states

of the battery, electromotor, and transmission are determined

using Eqs. (9),(10) and (11), respectively.

Pbat = UI (9a)

U = fU (ET, SOC) (9b)

SOC(t+∆t) = SOC(t)−
I(t)∆t

Cbat

(9c)

ηbat =

{

Pbat−I2rdis

Pbat
, if a ≥ 0

Pbat

Pbat+I2rcha
, otherwise

(9d)

rdis = fr,dis (ET, SOC) (9e)

rcha = fr,cha (ET, SOC) (9f)

where U is the battery voltage; I is the battery current, and

it is directly determined by the driver’s operation on the

accelerator pedal; ET is the environment temperature; SOC

is the battery state of charge; Cbat is the battery capacity;

rdis is the battery discharge internal resistance; rcha is the

battery charge internal resistance; fU , fr,dis, and fr,cha are

the functions of battery voltage, battery discharge internal

resistance, and battery charge internal resistance, respectively.

It is noted that these 3 functions are calibrated by the load

characteristic experiment, and can be obtained by Ref. [45]–

[47].

ηem = fem(nem, Tem) (10a)

nem =
30itraiov

πrwhe

(10b)

v(t+∆t) = v(t) + a(t)∆t (10c)

where nem is the electromotor speed; Tem is the electromotor

torque; itra is the transmission speed ratio; io is the other device

speed ratio; rwhe is the wheel radius; fem is the function of

electromotor efficiency calibrated by the load characteristic

experiment, and can be obtained by Ref. [47], [48].

ηtra = ftra(itra, Tem) (11)

where ftra is the function of transmission efficiency calibrated

by the load characteristic experiment, and can be obtained by

Ref. [49], [50]. It is noted that the adopted transmission is the

continuously variable transmission (CVT).
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(a) (b)

(c) (d)

Fig. 8. Adopted acceleration functions in the acceleration stage and the
deceleration stage.(a) Acceleration under SOCs; (b) Acceleration under ETs;
(c) Deceleration under SOCs; (d) Deceleration under ETs.

C. Trajectory generation based on the LCI

Vehicle trajectory generation is a time-continuous dynamic

problem. The trajectory contains the real-time acceleration

and steering angle. To address this real-time optimization, this

paper proposes a modified form of acceleration and steering

angle based on LCI.

EV acceleration is influenced by the driver’s pedal oper-

ations and powertrain variables. Considering driving habits,

the acceleration pattern can be simplified to “acceleration-

uniform motion-deceleration”. In order to verify the consis-

tency between the proposed velocity variation form and driving

habits, this paper selects the LC trajectory of the dataset,

with a driver reaction time of 0.5s as the time window,

allowing for a 10% velocity fluctuation, to obtain the pattern

changes of acceleration, deceleration, and uniform speed, as

shown in the Fig. 9. From the perspective of all vehicles,

the time proportion of this mode is 66.49% ; From the

perspective of a single vehicle, the number of vehicles with a

proportion of more than 50% and 80% of the time occupied

by this mode is as high as 69.2% and 61.7%, respectively.

To optimize the powertrain’s operating characteristics and

improve computational efficiency, the acceleration value is

pre-calculated based on current velocity. Consequently, the

real-time acceleration control shifts from determining control

variables for the powertrain to managing the duration of

acceleration, uniform motion, and deceleration phases. The

acceleration can then be determined as

a(t) = aa(v(t)) · ✶{t<ta,e} + ad(v(t)) · ✶{tu,e<t≤td,e} (12)

where ta,e, tu,e, td,e are the ending times of the acceleration

process, uniform process and deceleration process.The value

of aa(v(t)) and ad(v(t)) can be derived and calculated with

vehicle powertrain and steering system (Eqs. (4), (7), (8), (9),

(10)), by solving the following optimization problems.

Fig. 9. Distribution of the number of vehicles with velocity patterns.

And, a numerical result for the functions of aa(v) and ad(v)
is shown in Fig. 8, with the EV parameters in the Ref. [47].

aa(v) = arg max
0≤a≤amax

(ηbatηemηtra) (13a)

ad(v) = arg max
amin≤a<0

(ηbatηemηtra) (13b)

In the two-degree-of-freedom vehicle model, the wheel

steering angle is a key input variable directly controlled by the

driver through the steering wheel, with its value being propor-

tional to the steering wheel angle. Considering the driver’s

specific steering actions, this paper simplifies its variation

pattern as “0-increase-constant-decrease-constant-increase-0”,

where the angular velocity remains constant and each stage

has the same duration. To verify the consistency between the

proposed angle change form and driving habits, similar to the

verification of the veloctity change form, this paper selects the

LC trajectory of the dataset, takes a driver reaction time of 0.5s

as the time window, allows 10% angular velocity fluctuation,

and obtains the pattern changes of 0, increase, constant speed,

and decrease, as shown in the Fig. 10. From the perspective of

all vehicles, the time proportion of this mode is 69.56%; From

the perspective of a single vehicle, the number of vehicles with

a proportion of more than 50% and 80% of the time occupied

by this mode is as high as 79.1% and 37.6%, respectively.

Consequently, determining the front wheel steering angle in

real-time is reduced to calculating the angular velocity, the

duration of angle increase, the duration of constant angle, and

the duration of angle decrease. The calculation of the front

wheel steering angle is then as follows:

Fig. 10. Distribution of the number of vehicles with angle patterns.
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dδf (t)

dt
=



































kδ, t < tang,a,1

0, tang,a,1 ≤ t < tang,u,1

−kδ, tang,u,1 ≤ t < tang,d

0, tang,d ≤ t < tang,u,2

kδ, tang,u,2 ≤ t < tang,a,2

(14)

where kδ is the angular velocity; tang,a,1 is the start time of

the 1st angle acceleration stage; tang,u,1 is the start time of

the 1st angle unchanged stage; tang,d is the start time of the

angle deceleration stage; tang,u,2 is the start time of the 2nd

angle unchanged stage; tang,a,2 is the start time of the 2nd

angle acceleration stage. And the start time of each stage

should satisfy the constraints induced from the preceding

assumptions, i.e.,











tang,a,1 = tang,a,2 − tang,u,2

tang,u,1 − tang,a,1 = tang,u,2 − tang,d

δf (tang,a,2) = 0

(15)

V. LC STRATEGY

A. Strategy framework

To achieve optimal driving outcomes, drivers integrate their

driving habits with real-time traffic information, including their

own vehicle’s movement and the movements of surrounding

vehicles, to form behavioral intentions such as CF or LC.

When traffic conditions meet the criteria for a lane change,

the driver forms an LC intention and looks for suitable oppor-

tunities to execute the LC by manipulating the accelerator,

brake, and steering wheel. It is important to note that the

LC implementation is a real-time feedback process, where

the autonomous EVs continuously perceive changes in the EV

states and adjust operations based on the degree to which the

desired driving outcome has been achieved.

Thus, the LC process can be understood as a hierarchical

structure, consisting of LCD and LCI. Given the adaptability of

driving habits to complex traffic conditions and the limitations

of EV dynamics during LC, this paper proposes a layered EV

driving strategy that optimizes both the LC initiation point in

the LCD stage and the control variables in the LCI stage. The

strategy framework is illustrated schematically in Fig. 11.

B. Optimization of LCD

LCD optimization is employed to replicate the driver’s

decision-making process in choosing between LC or CF,

ensuring alignment between the proposed strategy and typical

driving habits. Although drivers adapt to specific and com-

plex traffic situations by choosing LC or CF based on their

habits, they often make sub-optimal decisions during execution

due to limited rationality and unclear perception of vehicle

movement. Therefore, instead of immediately executing LCI,

this paper uses the LCD model to determine the optimal LC

starting point, serving as the trigger for the proposed strategy.

The Logit-based LCD model, which considers two factors,

is utilized due to its high prediction accuracy of 95.2%,

effectively capturing the characteristics of driver LC intentions.

Fig. 11. The Schematic diagram of the strategy framework

L2(i, j) =
e−0.25−5.29dlon

i +6.21dlon
j

1 + e−0.25−5.29dlon
i
+6.21dlon

j

(16)

where i, j are the i-th and j-th surrounding vehicles of ego

vehicle. Based on the above model, this paper designates the

adjacent lanes as target lanes to calculate the real-time LCD

values for both. The triggering conditions for the proposed

strategy can then be defined as follows:

L∗ =✶{(L2(1,5)>Lc)∧(L2(1,3)<Lc)}

− ✶{(L2(1,5)<Lc)∧(L2(1,3)>Lc)}

(17)

where Lc =
∑Nlc

0

m=1
L
2(tlc,s

m )
N lc

0

is a critical value which denotes

the lane changing intention preference. In the formulation of

Lc, N lc
0 is the number of recorded LC processes of the ego

vehicle, tlc,s
m is the m-th LC starting time for ego vehicle.

C. Optimization of LCI

LCI optimization focuses on determining the optimal LC

starting point and EV control variables that achieve desired LC

performance metrics, such as consistency, economy, comfort,

and efficiency. It is important to note that variations in LC

start time alter the EV’s motion state, impacting the available

space and time for LC, and consequently affecting overall LC

performance.

The objective function of the LCI process is Eq. (18), where

this paper considered the consistency, economy, comfort, and

efficiency of the LC process. Consistency is measured by the
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absolute distance difference between the intended LC point

and the actual LC start point. Economy is assessed by the

change in SOC per unit of longitudinal distance. Comfort

is evaluated using the angular velocity of the front wheel,

which closely relates to the EV’s motion stability. Efficiency

is indicated by the LC duration time. Based on these criteria,

we should optimize the objective function as follows:

min ξcon

∣

∣

∣dlon
0 (tdec

0 )− dlon,s
0

∣

∣

∣+ ξeco

∆SOC

∆dlon

+ ξcomk
δ + ξeff∆T

lc

(18)

where tdec
0 is the time when the LC EV triggering LCD value

is not 0; dlon,s
n,0 is the LC start longitudinal place of the LC

EV; ∆SOC is the SOC change during the LC process; ∆dlon

is the longitudinal distance change during the LC process;

∆T LC is the duration of the LC process; ξcon is the consistency

coefficient with driving habits; ξeco is the economy coefficient;

ξcom is the comfort coefficient; ξeff is the efficiency coefficient.

Next, we outline the constraints related to LCI optimization.

Based on the analysis of LCD and LCI, we explore various

LC start points and variables related to acceleration and

steering, such as acceleration duration, uniform speed dura-

tion, deceleration duration, angular velocity, angle increase

duration, constant angle duration, and angle decrease duration.

These variables are used to generate multiple LC trajectories

with different LCD values, energy consumption rates, wheel

angular velocities, and LC times. The optimal LCI trajectory

is then selected according to the objective function.

We reduce the feasible solution region with the following

constraints.






















dlc,lon
1,0 ≥ d

lc,lon,s
n,0 + C

tlc,max ≥ tv,a + tv,u + tv,d

tlc,max ≥ tang,a,1 + tang,u,1 + tang,d + tang,u,2 + tang,a,2

kδ,max ≥
∣

∣kδ
∣

∣

(19)

where C is an integrated parameter such that C = lf + lr +
2rwhe; tlc,max is the maximum LC time; kδ,max is the maximum

angular velocity.

Considering the safe operation of the powertrain and steer-

ing system, corresponding safety constraints need to be intro-

duced, i.e.,

{

vmin
n,0 ≤ v0 ≤ v

max
0

δf,min ≤ δf ≤ δf,max
(20)

where vlc,min
n,0 and vlc,max

n,0 are the minimum and maximum LC

EV velocity, respectively; δf,min and δf,max are the minimum

and maximum front wheel steering angle, respectively.

To ensure that the LC trajectory aligns with the driver’s

habits and fully utilizes the vehicle’s performance, this paper

introduces constraints on the change forms of acceleration

and front wheel steering angle in the LCI, as defined in Eqs.

(12) and (14). In addition, by incorporating the pre-solved

acceleration and deceleration processes (as shown in Fig. 8),

these constraints significantly reduce the complexity of solving

the optimization problem.

The constraints related to the LCI’s end are derived from the

LC objectives. The EV not only achieve the desired headway

relative to the front vehicle in the target lane but also match

its longitudinal velocity and reach the desired lateral velocity.

Additionally, the equation assumes the EV is changing lanes

to the left, the constraints for the end of the LC are as follows:











































dlon
5 (te0) = dlon

0 (t0) + lf + lr + 2rwhe

+max

(

0,
(v0 (t

e
0))

2
− (v5 (t

e
0))

2

2gµ

)

dlat
n,0 (t

e
0) = dlat

n,5 (t
e
0)

vlon
n,0 (t

e
0) = vlon

n,5 (t0)

vlat
n,0 (t

e
0) = 0

(21)

where µ is the EV sliding resistance coefficient.

Additionally, to address the collision risk posed by the

unpredictable movements of surrounding vehicles, this paper

introduces constraints for suspending the LC process. If these

constraints are satisfied, the LC process will be terminated, and

the vehicle will adopt the preceding vehicle in the original lane

as the target vehicle. The constraints for terminating the LC

process are defined as follows:

∣

∣dlat
1 − d

lat
0

∣

∣ < lw ⇒ dlon
1 −d

lon
0 ≥ C+

(

vlon
0

)2
−
(

vlon
1

)2

2gµ
(22a)

∣

∣dlat
5 − d

lat
0

∣

∣ < lw ⇒ dlon
5 −d

lon
0 ≥ C+

(

vlon
0

)2
−
(

vlon
5

)2

2gµ
(22b)

where lw is the vehicle’s width.

D. Strategy solving algorithm

The potential LC process can be defined by varying the LC

start position, acceleration duration, uniform motion duration,

deceleration duration, angular velocity of the front wheel

angle, and the duration of angle increase, constant angle,

and angle decrease. By applying the constraints and objective

function, the optimal LC trajectory is selected from all feasible

trajectories. The corresponding EV powertrain and steering

system control variables are then determined based on the pre-

processed acceleration and deceleration phases. The strategy-

solving algorithm is outlined in Algorithm 1.

VI. CASE STUDY AND DISCUSSION

The two-stage LC strategy proposed in this paper comprises

two main components: LCD, which replicates the driver’s LC

habits, and LCI, which leverages the EV’s dynamic character-

istics. The paper first examines the sensitivities of both LCD

and LCI, including the effects of factor number and LCI on

LCD, as well as the influence of trajectory objectives and LCD

on LCI. Subsequently, to verify the robustness of the proposed

strategy, and highlight the essential differences between EVs

and fuel vehicles in the LC process, its performance under

varying states of charge and environmental temperatures is

analyzed. In order to better compare the performance of the

proposed strategies, this paper compares the proposed LCD
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Algorithm 1 Two-stage LC strategy solving algorithm

Parameter initialization: Initialize t = 0, and initialize the state variable values dlon1 (t), dlon3 (t), dlon5 (t) for LCD; the initial

state variable values β(t), ψ(t), v0(t), SOC(t) for LCI model; initialize the time step ∆t and time horizon tmax.

while t < tmax do

Step 1 (LCD). Judge the LCD according to Eq. (17): if L∗n = 1, go to Step 2; otherwise, go to Step 7.

Step 2 (LC ending point). Determine the place and velocity at the end of LC according to Eq. (21).

Step 3 (Feasible LCI). Feasible LCI trajectory generation with the following sub-steps.

Step 3.1. Discretize the variables to be optimized with Eq. (19);

Step 3.2. Calculate the acceleration and deceleration processes used in the LC process according to Eqs. (7)- (10);

Step 3.3. Use dynamic programming algorithms to obtain the feasible LC trajectories according to Eqs. (4)-(6), (13)-(15)

and the corresponding performance in Eq. (18).

Step 4 (Trajectory selection). Select the optimal LC trajectory from all feasible trajectories and determine the

corresponding optimized variables.

Step 5 (Condition Check). Determine whether to execute optimized control variables for the powertrain and steering

systems according to Eq. (22).

Step 6 (Update). Update the state variables and time step based on the optimized variables executed at time t according

to Eqs. (4)-(10).

Step 7 (Time increasing). t← t+∆t
end while

TABLE V
THE PARAMETERS INVOLVED IN THE CASE STUDIES

Parameter Value Parameter Value

kf (N/rad) -62618 kr(N/rad) -110185

lf (m) 1.463 lr(m) 1.585

Iz(kg ∗m2) 3885 rwhe(m) 0.307

tlc,max(s) 10 kδ,max(rad/s) π/6

vlc,min
n,0 (m/s) 0 vlc,max

n,0 (m/s) 45

δf,min(rad) −π/4 δf,max(rad) π/4

µ 0.7

model with the MOBIL model [51], [52], and compares the

proposed LCI model with the polynomial trajectory [53], [54].

The parameters involved in the case studies are shown in the

Tab. V. Additionally, To explore the performance of strategies

from a holistic perspective, this paper constructs the cases

according to the extracted motion differences before and after

LC from the dataset. Meanwhile, in order to better illustrate the

specific situation of the strategy, the 12th set of LC trajectory

data is employed to illustrate the strategy’s performance. The

trajectories of the 12th LC vehicle and its surrounding six

vehicles are depicted in Fig. 12.

Fig. 12. The trajectories of the 12th LC vehicle and its surrounding 6 vehicles

A. LCD sensitivity analysis

1) Number of considering factors: The number of factors

considered is critical in constructing the LCD model, as

different factor selections result in varied model properties.

In order to comprehensively explore the performance of the

proposed LCD model, this paper incorporates all LC data from

the dataset into the model and obtains corresponding LCD

data, as shown in Fig. ??. The normalized LCD prediction

values considering 2, 4, and 28 influencing factors and the

MOBIL model are presented. Due to the selection of data 10s

before the LC start point, the vehicle changed lanes at the

10th second. It can be seen from this that with the increase of

consideration factors, there are increasingly obvious maximum

points in the first 10 seconds, while the MOBIL model

does not exhibit this property. This conclusion can be well

supported by the average LCD prediction value (see Fig. 14),

as the LCD models considering 4 and 28 influencing factors

have the peak values around 1.6s. That means driver’s executed

LC decision requires an obvious LC opportunity to prompt,

and can be a strong proof of accuracy shown in Fig. 5.

TABLE VI
THE MEANS OF PREDICTED VALUES AND 95% CONFIDENCE INTERVALS

Factor number
Data before LC LC start point

Mean Interval Mean Interval

2 0.53 [0.531, 0.532] 0.55 [0.546, 0.559]

4 0.53 [0.530, 0.533] 0.60 [0.581, 0.611]

28 0.53 [0.530, 0.533] 0.63 [0.614, 0.648]

The effectiveness of the LC key point identification is

further demonstrated in Table VI, which presents statistical

graphs of the LCD model’s predicted values before LC and

at the LC start point, along with the corresponding mean

predicted values and 95% confidence intervals. There is a

significant difference between the predicted values before LC

and at the LC start point. The average predicted value before



IEEE TITS 12

(a) (b)

(c) (d)

Fig. 13. The normalized predicted value of LCD models in the dataset. (a)
2 factors; (b) 4 factors; (c) 28 factors; (d) MOBIL.

Fig. 14. The average normalized predicted value of LCD models in the
dataset.

LC is 0.53, while at the LC start point, the average predicted

values for LCD models considering 2, 4, and 28 factors are

0.55, 0.60, and 0.63, respectively, with no overlap in their

95% confidence intervals. This demonstrates that the proposed

method for identifying LC key points effectively recognizes

the LC start point.

After completing the overall statistical analysis, this paper

takes the 12th vehicle as an example to analyze the specific

changes in LCD model values. As illustrated in Fig. 15, the

predicted value proportions of LCD models considering 2, 4,

and 28 factors are shown using the 12th LC vehicle as an

example, which was randomly selected for this study, as well

as the MOBIL model. The sensitivity of the LCD models

to vehicle motion information increases with the number of

factors considered. When only 2 factors are considered, the

change in predicted values is relatively smooth, and the model

accurately identifies the LC starting point, where the predicted

value reaches its maximum. However, with 4 factors, slight

fluctuations occur, with three instances where the predicted

value exceeds that at the LC starting point before the LC.

(a) (b)

(c) (d)

Fig. 15. The predicted value of LCD models for the 12th LC vehicle.(a) 2
factors; (b) 4 factors; (c) 28 factors; (d) MOBIL.

When 28 factors are considered, the model becomes extremely

sensitive to changes in the vehicle’s motion state. But the

MOBIL model failes to leverage its advantages in interaction

and dynamic changes, due to the lack of interaction between

vehicles.

2) The impacts of LCI on LCD: The impact of the LCI

stage on the LCD stage is primarily reflected in the influence

of longitudinal space on the LCD predicted value. A larger

longitudinal space at the LC start point allows more LC

trajectories for vehicles to execute. However, differences in

longitudinal space result in varying LCD predicted values,

indicating changes in the consistency between the LCD model

and driving habits. The positive correlation between longitudi-

nal LC space and LCD prediction values is widely present in

the models constructed considering different influencing fac-

tors. However, the MOBIL model cannot reflect this because

it mainly focuses on the acceleration gain after switching.

As shown in Fig.16, the map displays the longitudinal

position of the front vehicle in the original lane, the longi-

tudinal position of the front vehicle in the target lane, and

the LCD predicted values considering 2, 4, and 28 influencing

factors. It is evident that, regardless of the number of factors

considered, the predicted value decreases with the increase

in the longitudinal position of the front vehicle in the original

lane and increases with the increase in the longitudinal position

of the front vehicle in the target lane.

Furthermore, Fig.17 presents a map showing the longitu-

dinal position of the LC vehicle, the longitudinal position of

the front vehicle in the original lane, the longitudinal position

of the front vehicle in the target lane, and the predicted

value considering 28 influencing factors. From this, it can

be observed that the predicted value is independent of the

longitudinal position of the LC vehicle, negatively correlated

with the longitudinal position of the front vehicle in the

original lane, and positively correlated with the longitudinal

position of the front vehicle in the target lane. Therefore, the
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(a) (b)

(c)

Fig. 16. The LCD predicted value sensitivity to LC longitudinal space. (a) 2
factors; (b) 4 factors; (c) 28 factors.

(a) (b)

Fig. 17. The LCD predicted value sensitivity to preceding longitudinal space
under 28 factors. (a) Original lane; (b) Target lane.

greater the longitudinal position difference between the front

vehicle in the target lane and the front vehicle in the original

lane, the higher the LCD predicted value, and the stronger the

driver’s willingness to change lanes.

B. LCI Sensitivity Analysis

1) Multi-objective LCI trajectory: The LCI stage opti-

mization considers consistency, economy, comfort, and effi-

ciency in the LC process. It is important to note that when

only considering consistency, the proposed LCI optimization

strategy cannot obtain a complete trajectory and can only

determine the LC starting point. Therefore, this paper sets

the weight coefficients of the objective function to [0,1,0,0],

[0,0,1,0], and [0,0,0,1], respectively. Additionally, the SOC

and environmental temperature are set to 70% and 27°C,

respectively.

During the LCI phase, drivers achieve lateral displacement

changes through driving operation, resulting in significant

differences before and after implementation. By comparing

the dataset before and after this stage, it can be found that

the average lateral displacement is 1.7m, the average velocity

change is 0.9m/s, and the average starting velocity is 11.2m/s.

Therefore, in order to explore the sensitivity of the proposed

strategy, this paper divides cases based on the differences

(a)

(b)

(c)

Fig. 18. Comparison of trajectories for achieving specific lateral displacement
under different velocity changes. (a) 5 m/s to 5.5 m/s; (b) 10 m/s to 11 m/s;
(c) 15 m/s to 16.5 m/s.

before and after this stage in the dataset, and combines them

with fifth degree polynomial trajectories to explore the uni-

versal performance of LCI. The Fig, ?? shows the economic,

comfortable, efficient, and fifth degree polynomial trajectory of

LC vehicles performing different lateral displacement changes

under different motion states. At this time, the starting velociyt

of the LC vehicle is set to 5m/s, 10m/s, and 15m/s, respec-

tively, with corresponding velocity changes of 0.5m/s, 1m/s,

and 1.5m/s, and lateral displacements of 0.5m, 1m, and 2m,

respectively. As the starting velocity increases, the economic

trajectory and comfort trajectory gradually overlap, while the

efficient trajectory is always limited by the velocity changes

adopted by the strategy, which fails to fully utilize the dynamic

characteristics of EVs to achieve fast steering. Polynomial tra-

jectory can achieve the same trajectory motion effect well, but

it requires sacrificing additional motion, especially the efficient

trajectory at low velocity, resulting in reverse situations.

Uses data from the 12th LC vehicle to obtain the corre-

sponding optimized trajectory.And, the performance related

to economic, comfortable, and efficient can be seen in Tab.

VII. The dynamics of EV, including position, acceleration,

and wheel angle, in the multi-objective LCI trajectory are

presented in Fig. 19. From Fig. 19(a), it can be observed that

the required longitudinal spaces for the economical, comfort-
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TABLE VII
THE LCI PERFORMANCE CONSIDERING ECONOMIC, COMFORTABLE, AND

EFFICIENT

Trajectory Angular velocity SOC consumption LC time

type (rad/s) (%/m) (s)

Economic 0.105 0.000678 4.41

Comfortable 0.0176 0.000686 4.21

Efficient 0.314 0.000949 1.71

able, and efficient trajectories are 3.1%, 16.2%, and 203.8%

larger than those for the original trajectory, respectively. The

economical and comfortable trajectories almost overlap, mak-

ing full use of the longitudinal space to ensure a smooth

LC trajectory, while the efficient trajectory completes the LC

process within a shorter longitudinal displacement. From Figs.

19(b) and (c), it is evident that the optimized trajectories have

selected the same economical acceleration, and the changes in

acceleration and wheel angle follow the preset patterns. The

angular velocities for the economical, comfortable, and effi-

cient trajectories are 0.105 rad/s, 0.0176 rad/s, and 0.314 rad/s,

respectively. The comfortable trajectory demonstrates 83.2%

and 94.4% better performance than the economical and effi-

cient trajectories, respectively. The completion times for lateral

displacement in the efficient, comfortable, economical, and

original trajectories are 1.71 s, 4.21 s, 4.41 s, and 5.7 s,

respectively. As a result, the required lane change times for the

economical, comfortable, and efficient trajectories are 70.0%,

26.1%, and 22.6% shorter than those for the original trajectory,

respectively. Thus, the proposed optimization strategy achieves

significant performance improvements in both space and time.

(a) (b)

(c)

Fig. 19. EV dynamics in multi-objective LCI trajectory for the 12th LC
vehicle. (a) Position; (b) Acceleration; (c) Wheel angle.

In Fig. 20, the states of the LC EV powertrain in the

multi-objective LCI trajectory are illustrated. Under simulation

conditions of 70% SOC and an environmental temperature

of 27°C, the operating state of the EV powertrain is closely

related to the power required by the LC vehicle. Based on

(a) (b)

(c)

Fig. 20. EV powertrain states in multi-objective LCI trajectory under different
SOCs for the 12th LC vehicle. (a) Battery; (b) Electromotor; (c) CVT.

Fig. 20, Fig. 19(a), and Eq. (7), it can be observed that

when the LC vehicle accelerates, the powertrain needs to

output higher power, which leads to decreased efficiency in the

battery, electromotor, and continuously variable transmission.

After acceleration, the LC EV transitions to a uniform motion

state, where the required power decreases and the powertrain

reaches a more optimal operating state. Furthermore, the

SOC changes per meter for the economic, comfortable, and

efficient trajectories are 0.000678%/m, 0.000686%/m, and

0.000949%/m, respectively. The energy consumption of the

economic trajectory is 28.6% lower than that of the efficient

trajectory.

2) The impacts of LCD on LCI: The impact of the LCD

stage on the LCI stage is primarily reflected in how the

available longitudinal space for LC influences the LCI process.

TABLE VIII
THE TRAJECTORY PERFORMANCE UNDER VARIOUS LIMITED

LONGITUDINAL SPACES

Limited Economic Comfortable Efficient

longitudinal trajectory SOC trajectory angular trajectory LC

space (m) change (%) velocity (rad/s) time (s)

35 0.000925 0.227 1.71

60 0.00075 0.0670 1.71

85 0.000678 0.0176 1.71

110 0.000678 0.0176 1.71

Fig. 21 and Tab. VIII illustrate the trajectory differences

under various limited longitudinal spaces, specifically the

longitudinal position difference between the LC EV and the

vehicle ahead in the target lane. In Fig. 21(a), it can be

observed that as the longitudinal space increases, the energy

consumption of the economic trajectory decreases, although

this trend diminishes progressively. By increasing the lon-

gitudinal space, the SOC change per meter can be reduced

from 0.000925%/m to 0.000678%/m, representing a 26.7%

decrease.



IEEE TITS 15

(a) (b)

(c)

Fig. 21. Multi-objective LCI performance under different maximum longitu-
dinal space. (a) Economic; (b) Comfortable; (c) Efficient.

Similarly, in Fig. 21(b), the performance of the comfort

trajectory follows a pattern comparable to the economic tra-

jectory. Increasing the longitudinal space reduces the steering

wheel angular velocity of the comfortable trajectory from

0.524 rad/s to 0.0176 rad/s, a significant reduction of 96.6%.

However, it is important to note that the performance improve-

ment of the comfort trajectory is constrained by the degree

of dispersion and the maximum value of the steering wheel

angular velocity. From Figs. 21(c) and 19(a), it is evident that

there is a minimum longitudinal space required for efficient

trajectories, which is determined by the maximum angular

velocity of the steering wheel, as indicated in Eq.14.

C. The robustness of the LC strategy

(a) (b)

(c)

Fig. 22. EV battery performance fitting results. (a) Battery voltage; (b) Charge
internal resistance; (c) Discharge internal resistance.

Unlike the relatively stable performance of fuel vehicles, the

performance of EVs is closely related to the SOC and environ-

mental temperature, as described in Eq.(22). In this equation,

the internal resistance and voltage of the battery are functions

of SOC and environmental temperature. And, the fitting curves

of battery voltage, discharge resistance, and charging internal

resistance are shown in the Fig.22, according to Eqs. (9b), (9c),

and (9f). Therefore, the superior performance of the proposed

strategy across a wide range of SOCs and environmental

temperatures under realistic conditions ensures its adaptability.

This paper constructs a simulation environment based on

data from the 12th LC vehicle to explore the adaptability

of the proposed strategy using economic trajectories. First,

the robustness to different SOCs is examined by setting the

environmental temperature to 27°C and testing SOCs at 70%,

30%, and 10%, respectively. In addition, to study robustness

to varying environmental temperatures, the SOC is fixed at

70%, and the temperatures are set to -27°C, -17°C, 27°C, and

37°C, respectively.

(a) (b)

(c) (d)

(e) (f)

Fig. 23. EV powertrain states in economical driving strategy under different
SOCs and environment temperatures. (a) and (b) are the battery states; (c)
and (d) are the electromotor states; (e) and (f) are the CVT states.

The performance differences of the proposed strategies

under different SOCs and environmental temperatures can be

examined through battery efficiency, electromotor efficiency,

and CVT efficiency, as shown in Fig.23. By combining Eq.

(7) with Fig. 8, it is evident that the influence of SOC and

environmental temperature on the proposed strategy is primar-

ily due to variations in battery internal resistance and battery

voltage under different conditions. Regarding SOC, as SOC
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decreases from 70% to 10%, the internal resistance and voltage

of the battery initially remain stable, followed by an increase

in internal resistance and a decrease in voltage, leading to

a reduction in battery efficiency. Consequently, the operating

status of the electromotor and CVT is not only dependent

on EV velocity but is also strongly influenced by lower SOC

levels. When SOC drops to 10%, the operating states of the

battery, electromotor, and CVT continuously adjust to compen-

sate for the decreasing battery efficiency during acceleration.

However, during uniform motion, the power required by the

EV is minimal and constant, resulting in stable powertrain

operation. In contrast, when the environmental temperature

drops from 37°C to -17°C, the changes in battery internal

resistance and voltage are relatively minor, allowing the battery

efficiency to remain high. Therefore, the operating status of

the electromotor and CVT in this case is primarily related to

the EV velocity. It is worth noting that when the temperature

drops to -27, the efficiency of the battery rapidly decreases

from 96.2% to 86.3% during the acceleration process This is

because during the acceleration process, the battery needs to

provide a higher current to complete the acceleration process.

When the temperature drops to a certain value, as shown in

the Fig. 22, as the temperature decreases, the voltage of the

battery decreases and the resistance increases, resulting in a

decrease in efficiency at low temperatures.

Thus, it can be inferred that the fundamental difference

between EVs and fuel vehicles during LC strategies is the

difference in velocity variation performance caused by power-

train. The powertrain of an electric vehicle includes a battery

and an electromotor. The battery is used to convert chemical

and electrical energy, while the electromotor is used to convert

electrical and mechanical energy. During this process, the

voltage and resistance of the battery are highly sensitive

to environmental temperature and SOC (as shown in the

Fig.??), resulting in complex spatiotemporal characteristics of

the EV dynamic characteristic. The powetrain of fuel vehicles

mainly includes internal combustion engines, which are used

to achieve the conversion of chemical energy and machinery.

This process is relatively smooth and generally not affected

by the external environment (except for atmospheric pressure

differences caused by large altitude differences). Therefore,

the LC strategy for EVs needs to be closely linked to the

state of the EV (e.g., SOC) and driving conditions (e.g.,

environment temperature). However, considering the initial

velocity and stable operating range of battery performance, the

performance difference between EVs and fuel vehicles during

LC is positively correlated with the magnitude of velocity

changes. In this context, the proposed strategy can not only

utilize autonomous driving technology to achieve differenti-

ated LC processes for EVs, but also dynamically introduce LC

optimization variables for EVs based on autonomous driving

computing power, to assist in the electrification and intelligent

development of transportation systems.

VII. CONCLUSION

With the rapid advancement of vehicle automation and

electrification, it is important to use intelligent assisted driving

to enhance the EV driving efficiency; while the assisted driving

strategy should ensure the driver feels comfortable. This paper

presents a two-stage LC strategy for optimizing both LCD and

LCI considering driving habit and EV dynamics. First, a set

of trajectory data of the LC vehicle and its six surrounding

vehicles were analyzed to identify key LC points, calculate the

correlation between LCD and vehicle motion information, and

construct a logit-based LCD model. Next, the paper examines

EV displacement changes considering dynamic characteristics,

explores the effects of LCI on the powertrain and steering

system, and proposes a trajectory generation method based on

different LC starting position. Then, the overall LC strategy

framework was developed, which integrately optimizes the

LCD and LCI stages based on driving habits and vehicle

dynamics.

In the numerical tests, we conduct some sensitivity analyses

on the LCD model with different factor combinations and on

the LCI model with different parameters. We also analyze

the driving performance with the proposed LCI model with

different objective functions. The results indicate that opti-

mizing the LC starting point by adjusting longitudinal space

can synergistically improve both the LCD and LCI stages,

which verifies the effectiveness of the proposed strategy. In

addition, the results also indicate that the proposed strategy is

robust in different scenarios with different initial SOCs and

environmental temperatures.

The existing research correlates the driving habits and the

EV dynamic characteristics, and proposes autonomous LC

strategies that meet differentiated objectives. However, existing

research has overlooked the dynamic evolution characteristics

of driving habits and the optimization requirements for specific

scenarios. Therefore, future work will expand the forms of op-

timization variables to adapt to the dynamic evolution process

of driving habits, and explore implantable LC strategies for

specific and realistic driving scenarios.
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