
This is a repository copy of Tracking and Control of Multiple Objects during Non-
Prehensile Manipulation in Clutter.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227494/

Version: Accepted Version

Article:

Xu, Z., Papallas, R., Modisett, J. et al. (2 more authors) (Accepted: 2025) Tracking and
Control of Multiple Objects during Non-Prehensile Manipulation in Clutter. IEEE
Transactions on Robotics. ISSN 1552-3098 (In Press)

This is an author produced version of an article accepted for publication in IEEE
Transactions on Robotics, made available under the terms of the Creative Commons
Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction
in any medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/227494/
https://eprints.whiterose.ac.uk/

1

Tracking and Control of Multiple Objects

during Non-Prehensile Manipulation in Clutter

Zisong Xu1, Rafael Papallas1,2, Jaina Modisett1, Markus Billeter1, and Mehmet R. Dogar1

Abstract—This paper introduces a method for 6D pose tracking
and control of multiple objects during non-prehensile manipu-
lation by a robot. The tracking system estimates objects’ poses
by integrating physics predictions, derived from robotic joint
state information, with visual inputs from an RGB-D camera.
Specifically, the methodology is based on particle filtering, which
fuses control information from the robot as an input for each
particle movement and with real-time camera observations to
track the pose of objects. Comparative analyses reveal that
this physics-based approach substantially improves pose tracking
accuracy over baseline methods that rely solely on visual data,
particularly during manipulation in clutter, where occlusions
are a frequent problem. The tracking system is integrated
with a model predictive control approach which shows that
the probabilistic nature of our tracking system can help robust
manipulation planning and control of multiple objects in clutter,
even under heavy occlusions. Associated code and data available
at: https://github.com/ZisongXu/PBPF.

Index Terms—Non-Prehensile Manipulation, 6D Pose Track-
ing, Particle Filtering, Multi-Object Tracking and Manipulation.

I. INTRODUCTION

IN this paper, we propose a method for tracking and control

of objects during non-prehensile manipulation in clutter.

We present an example scene in Fig. 1, where a robot is

pushing an object (the yellow-green cylinder) to a goal area

(highlighted as a red circle) among other cluttering objects.

The controller uses estimated poses of the objects at each

time-step, in a model-predictive control setting, to decide on

the next robot controls. These object poses at each time-step

are estimated by our tracking method.

Our tracking method combines the information coming from

the robots joints (i.e., executed controls) with the information

coming from an RGB-D camera, to estimate the poses of the

objects. The past robot control information is used to perform

a physics-based prediction of the objects’ motion. We find that

using such a physics-based approach, even if computationally

expensive, improves the pose tracking performance signifi-

cantly when compared with using only the camera image.

The use of physics-based predictions also provides a crucial

advantage: We can continue tracking the pose of the objects

even when the camera is significantly obstructed from viewing

1School of Computer Science, University of Leeds, Leeds, LS2 9JT, UK.
E-mail: {sc19zx, r.papallas, sc22jm, m.billeter, m.r.dogar}@leeds.ac.uk

2Department of Computer Science, American University of Beirut -
Mediterraneo, Paphos, 8046, Cyprus. E-mail: rp00@aubmed.ac.cy

M. Dogar and R. Papallas were supported by the UK Engineering and
Physical Sciences Research Council [EP/V052659/1 and EP/R031193/1]. For
the purpose of open access, the author(s) has applied a Creative Commons
Attribution (CC BY) license to any Accepted Manuscript version arising.

certain objects (by other objects or by the robot hand). This is

an important, and frequently occurring, problem during object

manipulation, particularly in clutter. For example in Fig. 1, the

top row shows the actual images from the viewpoint of the

camera used. As can be seen, there is heavy occlusion of the

cylinder, which is the most important object for the task. In the

bottom row, the purple particles show our system’s estimation

of the possible poses of the objects. Even at the moments when

the cylinder is heavily occluded and the camera provides little

or no information about its pose, the purple cylinders provide

a good guess of where the object is, which is used by our

controller to push the object to the goal area. This is achieved,

not only because the physics-based predictions tell us how the

robot is moving the cylinder object, but also because the other

visible objects provide physical constraints to the pose of the

occluded object (i.e., good pose estimates of the visible objects

indirectly improve the pose estimate of the occluded ones).

Traditionally, estimating the pose of an object from a single

camera image has been the dominant approach in robotic

manipulation [3]–[6]. This is partly due to prehensile (i.e.,

grasping-based, pick-and-place) manipulation being the most

common mode investigated in the literature. In these systems,

object pose is estimated once at the beginning, after which

the robot makes a plan to reach and grasp the object. Since

the object is not contacted (and therefore does not change its

pose) until the moment of grasp, such a single pose estimate is

usually sufficient. Object pose can be estimated from a camera

image, e.g., using deep-learning-based methods [1], [2].

However, non-prehensile manipulation, such as pushing and

toppling [7]–[13], requires tracking the object continuously as

the object pose changes while it is being manipulated. Non-

prehensile manipulation in clutter is useful, for example when

a robot may need to reach into a fridge, or a supermarket

shelf, to retrieve an object, or grasp an item from a box

filled with objects in a warehouse, requiring the robot to push

other objects aside. One way to perform tracking under non-

prehensile manipulation is to keep using the same approach

with prehensile manipulation (i.e., estimating the object’s pose

from camera images only). The majority of existing non-

prehensile manipulation systems use this approach [8], [9],

[11], [12]. In the bottom row of Fig. 1, the blue particles

show the estimated poses of the objects using a camera-only

system [1]. As expected, while the pose estimates are good

when the objects are clearly visible to the camera, they degrade

significantly when there are occlusions (e.g., the blue cylinders

in the second and third snapshots). Fig. 2, top row, shows

another example where this is more clear. The images show

the estimated pose of a pushed box as an overlaid wireframe.

2

Fig. 1. An experimental scene where a robot is pushing an object (the yellow-green cylinder) to a goal area (red circle) among other cluttering objects. The
top row shows the camera image that is used for tracking the objects. Purple particles in the bottom row show the possible poses of the objects as estimated
by our method. The blue particles show the estimated pose from a camera-only pose estimation system, DOPE [1]. Please also see the attached videos.

The top row is from another camera-only pose tracking system

[2], which loses the object once it becomes occluded.

However, during manipulation, we often have access to

the controls executed by the robot. This provides information

about how the objects might move from one time-step to the

next. The bottom row in Fig. 2 shows the best guess (the

particle nearest to the mean of the particle set) of our method,

which is able to keep tracking the object using physics-based

predictions. Therefore, in this paper, we propose to use robot

control information, and to combine it with visual information,

to track the objects’ poses. We combine these two sources of

information in a particle filtering framework [14]. We then

use the estimates from the particle filter in a model-predictive-

controller to perform goal-directed manipulation in clutter.

Our particle filter uses different observation models for RGB

and depth. For depth, we render artificial depth images for

each particle and compare them with the real depth image

from the camera. For RGB, we find that rendering images is

less realistic and informative. Therefore we use a learning-

based RGB pose estimation system [1] to make instantaneous

estimates of the objects’ poses. We then fuse the RGB and

depth information into a combined observation model.

Physics-based predictions come at the expense of computa-

tional cost, especially when using a particle-based approach.

Still, we find that modern GPU and CPU parallelization

schemes enable us to run our method at around 4 Hz. While

this may not be fast enough for highly dynamic manipulation,

we find that it is sufficient for many non-prehensile manip-

ulation tasks. To achieve such rates, and to be able to run

our tracking system on a single computer, we parallelize our

depth-rendering method using modern GPU pipelines, while

we perform the physics predictions using a physics-engine [15]

that can be parallelized over multiple CPU cores.

During the development of our system, we realized that

while there are benchmark datasets for object pose estima-

tion [16], none are specific to pose estimation during non-

prehensile manipulation, and none include information such

as time-stamped robot joint states, which are required if one

would like to develop and evaluate object pose estimation sys-

tems that make use of robot interaction information. There are

datasets designed for robotic manipulation [17]–[20] including

robot joint state or control information and RGB images from

the workspace. However, they do not provide ground truth pose

of the manipulated objects over time, making it impossible to

evaluate the accuracy of tracking algorithms. We, therefore, re-

lease our dataset1 which includes 50 non-prehensile interaction

scenes with multiple YCB [21] and HOPE [22] objects, with

each scene including 8000+ timesteps, totaling to 400000+

data points, including robot state information, ground truth

object poses, RGB-D images, and timestamps at each data

point, along with robot and object 3D models.

Our method has certain assumptions and limitations:

• We assume all objects in a given scene are “known”,

with a 3D model available. Our method currently cannot

1The dataset will be released with the publication of this manuscript.

Fig. 2. The estimated pose of an object is overlaid as a wireframe onto the image, during a push by a robot. The Cheezit box is the target object to be
tracked, and Pringles is only a visual obstacle, not part of the tracked objects. Top row shows the estimated pose by a state-of-the-art camera-only RGB-D
pose estimation system, FoundationPose [2]. The bottom row shows the estimation of our system, which uses physics-based predictions in addition to the
RGB-D images. Please also see the multimedia attachment for video versions.

3

handle unknown objects appearing in the scene.

• Our method assumes all objects are visible at the very

beginning of the task (i.e., at t = 0).

• Our method assumes the robot is the only agent moving

objects. For example, if a human enters the scene and

moves the objects, our tracking can get lost.

• While our formulation and implementation is general

in terms of the number of objects that the robot can

simultaneously interact with, practically, our method has

computational limits, due to the increased cost of physics

simulation in scenes with more objects. In this paper, we

test our method in scenes where the robot simultaneously

interacts with up to five objects.

Since our method requires a physics model, the limitations of

the particular physics model/engine used (e.g., if the physics

model is less accurate for some type of interactions, but more

accurate for others) is also carried over into our method.

For example, as discussed in our results, we noticed that the

physics engine we use is less accurate with high-impact colli-

sions, which results in a degradation of tracking performance

of our method in such scenarios.

This work evolved from our previous work [23]. The

particular novelties in this version are listed below.

• The particle filtering formulation in our previous work

was limited to a single object. Here, we generalize it

to multiple objects. When compared to our conference

paper, novel aspects of our generalization to multiple

objects include (i) extending the particle state to multiple

objects, (ii) factorization of the joint observation model

into models for each object, (iii) computing visibility

between different objects in the same particle. Moreover,

our previous work was limited to using RGB images.

Here, we also use depth images, which significantly

improve our tracking performance. Our depth model,

which treats the multi-object scene as a whole, is novel.

• We present a completely new set of new experiments

including multiple physically interacting objects.

• The previous work was limited to tracking of object poses

during fixed robot motion. Here, we develop and use

a model-predictive-controller for goal-directed manipu-

lation, with accompanying experiments.

• Since our method has changed significantly, all experi-

ments in the current version are new. Additionally, we

use a more varied and up-to-date set of baseline methods

that we compare against.

• We release a new dataset, as described above.

The rest of this paper is structured as follow. Sec. II presents

the related work, and Sec. III formulates the general problem.

Sec. IV presents our particle-filtering based tracking approach.

Sec. V presents the model-predictive-control approach. We

present our main experiments and results in Sec. VI. In

Sec. VII we perform further experiments to analyze our

method’s limitations and robustness to parameters. Sec. VIII

concludes the paper.

II. RELATED WORK

Robotic manipulation systems often estimate object poses

(either in the 2D image or in the 3D world) from a single

camera snapshot, as opposed to tracking object poses over

time. For example, at the Amazon Robotics Challenge [3],

almost all teams used perception systems that estimate object

poses (or grip/suction points) from a single snapshot taken

before the robot contacts the objects. Similarly, Müller et al.

[6], in their winning entry to the Robocup@Home compe-

tition, estimated poses of objects on tables from an initial

camera image, before using motion planning and grasping

pipelines. Sun et al. [5], in their review of robotic systems that

took part in recent robotic object manipulation competitions,

note that all systems treat perception as a “static” problem,

where object poses are estimated without consideration of

their dynamics/motion over time, which they identify as a

limitation of existing systems. Most existing systems that

specifically focus on robotic manipulation in cluttered, multi-

object, settings also use a similar approach. Wang and Hauser

[24] develop a system for dense packing of multiple objects,

which uses static pose estimates from a camera. Shome et

al. [25] also propose a system for tight packing of multiple

objects, using a similar pose estimation approach [26].

The above systems can afford to estimate the objects’

poses once, instead of continuously tracking the objects,

because they perform prehensile (i.e., pick-and-place) manip-

ulation. During non-prehensile manipulation, however, the ob-

jects’ pose continuously change. Therefore, model-predictive-

control approaches have been developed that continuously re-

optimize/re-plan robot motion, based on the estimated pose

of objects at each time-step during manipulation. Hogan and

Rodriguez [9] propose such a model-predictive-controller for

pushing of a single object, where the object is tracked using

residual markers. Similarly, Zhou et al. [8] present an approach

for non-prehensile pushing, where objects are tracked using

markers. Other systems for pushing in clutter [11], [12] also

adopt marker-based tracking. These reflect the challenges of

estimating the poses of objects during non-prehensile manip-

ulation in clutter, where not only the objects move and their

poses need to be continuously estimated, but also objects and

the robotic hand obstruct the view of the camera frequently.

Such non-prehensile manipulation, particularly in multi-object

settings, requires object pose tracking that can work under

significant occlusions, even if the estimates are probabilistic.

There have been significant advances in camera-based

RGB(-D) object pose estimation approaches, particularly with

the use of neural networks [27], [28]. Tremblay et al. [1] pro-

posed a system called Deep Object Pose Estimation (DOPE)

that, given an RGB image, can predict the poses of objects in

the image. DOPE requires a pre-training per object. Recently,

this system has been improved as Diff-DOPE [29], which

can use depth data to improve the DOPE pose estimates

significantly. Similarly, Xiang et al. [30] developed a system

based on convolutional neural networks that can output the

pose of an object in a given image.

While many of the systems above work in a single-snapshot

manner (i.e., the estimated object pose depends only on

the current input image, and not on any input or images

from previous timesteps), there are also methods that take a

tracking approach. These methods track the object pose over

time and use frames from previous time steps to refine the

4

pose of subsequent ones [31]–[33], including FoundationPose

[2], which can also track novel objects. Several vision-based

tracking systems employ a particle filtering approach similar to

ours [34]–[38]. These systems vary in their assumptions about

object and camera motion; some presume the object remains

stationary [39] while allowing for camera movement [36],

and make constant-velocity assumptions about motion between

consecutive frames. Stoiber et al. [40] proposed a method that

uses a multi-modality approach fusing visual appearance and

geometric data to track objects. Keypoint features capture local

texture details, while a region-based model segments object

surfaces for enhanced tracking. However, these systems all

use RGB(-D) images only, which, when there are significant

occlusions of the tracked object, naturally fail to track it. In

our work, we propose to also use the robot control information

to make physics-based predictions on how objects move, and

merge it with the information from a camera.

There have been other works that combine physics-based

models with object pose estimation. Mitash et al. [41] com-

bined visual data with physics-based reasoning for 6D pose es-

timation in environments with multiple objects. This approach,

however, is specifically tailored to static scenes, focusing on

scenarios where the physical stability of a pile of objects’

pose can be estimated. Schmidt et al. [42] present a depth-

based tracking method that also identifies the stable pose

of a tracked object given its contacts with the fingers of a

robot. Another work [43] focuses on tracking the 6D pose

of an object, however focusing on the specific case of when

the object makes an impact collision with a surface (e.g. a

box being thrown onto a surface). Kandukuri et al. [44] also

perform physics-based tracking of an object from RGB-D

video. However, the object’s movement is solely determined

by an initial momentum imparted manually. In contrast, our

method incorporates a motion model that integrates robotic

motion information continuously, enabling the non-prehensile

manipulation of objects by the robot, including collisions

and interactions between objects. A learning-based physics

prediction for object tracking method, as proposed by T.

Mörwald et al. [45], uses random pushes to learn the rela-

tionship between applied forces and object motion. Compared

to physics engines, it can offer faster computation. However,

it requires offline training for different objects, interactions,

and environments. For example, the method is presented for a

single object only. To make it work in scenes with interactions

between multiple objects, one would need to train the system

for each combination of different objects. Additionally each

interaction mode (e.g., pushing, poking, toppling), and envi-

ronment (e.g., static obstacles that change how objects move)

would require separate training. In contrast, physics engines

offer greater flexibility without the need for retraining.

There are also other works that use robot joint state in-

formation as constraints on object pose estimation. Martin et

al. [46] combine contact-constraints at multiple fingers with

a camera image to estimate the pose of an object grasped in

the hand. Wuthrich et al. [47] present a method where the

object is visually tracked while it is moved by a robot, and

the method integrates vision with robot controls, similar to

ours. However, this method assumes prehensile manipulation

(i.e. object is assumed to be rigidly grasped by the robot), and

therefore the object motion prediction is a kinematics-only

problem, and does not require physics-based reasoning.

Several works have used Kalman filter-based algorithms for

tracking with a variety of motion models such as constant

velocity/acceleration or random walk [48]–[51]. However, mis-

matches between the robot’s control inputs and the assumed

motion model, such as the non-smooth trajectories generated

when the robot pushes a target object, can lead to cumulative

prediction errors. In contrast, our method uses robot controls to

predict the real motion, instead of imposing a specific but unin-

formed motion model, such as constant velocity/acceleration.

To the best of our knowledge, ours is the first work that

integrates physics-based predictions with camera images to

perform robust multi-object tracking during non-prehensile

manipulation.

III. PROBLEM FORMULATION

We are interested in non-prehensile manipulation in clutter,

where a robot manipulates multiple objects simultaneously. To

successfully perform closed-loop control of the objects’ poses,

the robot requires robust 6D tracking of objects at all times.

We assume access to the sequence of joint-state inputs, ut,

(e.g., in this work, the joint states of a 7-DoF manipulator),

and visual observations (zt) from a camera, which can be RGB

images (RGBz) and/or depth images (Dz). We assume the

camera’s pose with respect to the robot is known. We also

assume 3D CAD models of the objects, the robot, and the

environment (e.g., the table, and static obstacles) are given.

The problem is defined as follows: at any given time-

step t, leveraging all prior control inputs u0, u1, . . . , ut and

visual observations z0, z1, . . . , zt, estimate the objects’ current

poses, denoted as {qit}i=1,...,n ∈ SE(3)n, where n is the

number of objects that the robot is interacting with/we want

to track, and qit represents the pose of object i at time step

t. Since inferring the exact poses of the objects is impossible

(especially when they are occluded), we estimate a probability

distribution over the object poses, instead of a single pose.

Specifically, the problem is to estimate/track and continu-

ously refine the probability distribution of the objects’ poses

p({qit}i=1,...,n|z0, z1, ..., zt, u0, u1, ..., ut), even when objects

are partially or fully occluded. This conditional probability

is commonly referred to as the belief state, which effectively

integrates all prior information to predict the current poses

of the objects. We describe a solution to the above tracking

problem in Section IV.

With robust object tracking, we can use the object pose

estimates as feedback for closed-loop simultaneous control

of multiple objects. Methods like Model Predictive Control

(MPC) depend on such continuous and reliable feedback. The

tracking solution we describe integrates well with an MPC

framework. We present such an MPC approach in Section V.

IV. PHYSICS-BASED PARTICLE FILTERING (PBPF)

Our method adopts a Bayesian filtering approach, particu-

larly particle filtering [14]. Fig. 3 shows the overall process

of our algorithm.

5

Fig. 3. Our system for objects’ pose estimation during robotic non-prehensile manipulation over two time steps, t−1 and t. At t−1, RGB and depth images
describe the scene, and particles represent possible objects’ poses. As the system advances to t, these particles are updated by robot control, ut, through
physics simulation. New RGB and depth images are obtained from the camera. The RGB image is used to estimate objects’ poses PE(RGBzt), and are

compared with poses of particles x̄
[m]
t

to get the difference. The depth image is compared with the rendered depth images (according to the poses of objects
in each particle in the simulation). Finally, particle resampling refines the objects poses estimations, and then gets a new particle set.

Particle filtering represents the belief state at any given time

t with a set of particles:

Xt := x
[1]
t , x

[2]
t , ..., x

[M]
t (1)

where each particle x
[m]
t := {qit}

[m]
i=1,...,n (1 ≤ m ≤ M)

is an instantiation of the pose state at time t and includes

the poses of the objects being tracked, where M is the

number of particles. In this paper, we also use the notation

q
i,[m]
t to refer to the pose of a particular object i in particle

[m] at time t. We emphasize that, in our formulation, each

particle contains all the tracked objects’ poses (not individual

separate objects), which enables the use of the physics-based

interactions/constraints between objects.

The process of particle filtering involves a dual-stage update

at each time step t: first, the motion update stage (discussed

in Sec. IV-A), where particles are moved based on the latest

robot control inputs ut, followed by the observation update

stage (discussed in Sec. IV-B), where the particles are updated

by the observational data zt.

A. Motion Model

In the first stage of the particle filtering process, the propa-

gation of each particle is addressed. Specifically, for a particle

x
[m]
t−1 derived in the previous time step, an intermediate pose

state x̄
[m]
t := {q̄it}

[m]
i=1,...,n is formulated for the current time

step, by the following probabilistic motion model:

x̄
[m]
t ∼ p(xt | x

[m]
t−1, ut) (2)

where p(xt | x
[m]
t−1, ut) represents the conditional probability

distribution. This distribution characterizes the evolution of

the system state from x
[m]
t−1 to xt, influenced by the robot

control ut. Direct analytical derivation of this motion model

is often impractical. We use a physics engine to approximate

this distribution. The physics engine is modelled as f :

xt = fθ(xt−1, ut) (3)

which includes a model of the robot, the environment, and

objects, and predicts the resulting poses of the objects xt given

their poses in the previous time step, xt−1, and robot control,

ut, by simulating the robot motion inside the engine and

finding the resulting motion of the objects. Here, θ represents

physics parameters that impact the motion in the physics

engine. Examples of such parameters include the friction

coefficient at the contacts, contact restitutions, and the mass

of the objects.

The physics engine is deterministic (i.e. outputs the same

resulting state, if given the same inputs and parameters). It

therefore cannot directly be used instead of the probabilistic

motion model in Eq. 2. However, we note that our uncertainty

about the object’s motion is due to (i) our uncertainty about the

6

exact physics parameters, θ; and (ii) the discrepancy between

the physics engine and the real-world physics.

To address point (i), we model these parameters for every

object in each particle as random variables sampled from a

known normal distribution. For example, for the mass of object

i in particle [m] at time t, we sample:

mass
i,[m]
t ∼ N (µmassi , σ

2
massi

) (4)

Similarly, we sample a value for each physics parameter of

each object in the particle, and θ
[m]
t represents the collection

of these sampled values.

We then run the physics engine for that particle using the

sampled parameters:

x̄
[m]
t = f

θ
[m]
t

(x
[m]
t−1, ut) + ϵ (5)

with the addition of a small Gaussian noise ϵ ∼ N (0, σ2
f) to

address (ii) above. We assume that f
θ
[m]
t

(x
[m]
t−1, ut), i.e., the

output of the physics engine, is always physically feasible,

given a physically feasible input. When we add noise ϵ, if it

puts the state into a physically impossible configuration (i.e.,

penetration between bodies), we simply draw a new ϵ value. If

we cannot draw an ϵ that does not result in penetration, then

we set ϵ to zero for that particular timestep and particle.

In our implementation, we instantiate one physics engine

per particle and use them to perform the motion update.

Since each particle is independent of each other, these updates

are parallelizable, which we exploit to enhance computational

efficiency. As such, the set of intermediate particles, x̄
[m]
t (1 ≤

m ≤M), are computed.

In this work, we limit the physics parameters, θ, to the

coefficients of friction, the restitution parameters, and the ob-

jects’ mass2. However, uncertainty about other parameters (e.g.

object shape, robot hand shape, and ground imperfections) can

also be represented and integrated into this framework. In the

above, N (µ, σ2) represents a normal (Gaussian) distribution3.

The parameter µmassi represents our best guess about the mass

of object i, and σ2
massi

represents our uncertainty (variance).

These mean and variance values for mass, friction, and resti-

tution can be estimated offline beforehand for each object

type. The parameter σ2
f represents our estimated discrepancy

between the physics engine and real-world physics. In practice,

σf needs to be estimated per physics model, f , for example

by calibrating it using a dataset with ground truth object

poses (such as the one we release), and σf can then be fixed.

The mass and friction mean and variance values need to be

provided per object. In this work, we use our best guess

about these object values, but other methods can also be used,

such as using a vision-based neural network to predict physics

properties, or extending the particle filter to also estimate these

values.

2We assume the inertia tensor of an object to be diagonal and the object
to have uniform density within its given 3-D model.

3Later in Eq. 12, we will also use the notation N (x; µ, σ2), which
corresponds to the probability density at x, for mean µ and variance σ2.

B. Observation Model

During the second stage of the particle filtering process, for

each intermediate particle x̄
[m]
t , we calculate an importance

factor w
[m]
t using the observation zt:

w
[m]
t = p(zt | x̄

[m]
t) (6)

Upon calculating the weights for all intermediate particles,

these weights are used to re-sample a new set of particles Xt,

thus concluding the particle filter update. During re-sampling,

each intermediate particle x̄
[m]
t may be selected (potentially

multiple times) for inclusion in the new set Xt, with selection

probabilities proportional to w
[m]
t .

To calculate the weights in Eq. 6 we use the RGB and depth

images as observations:

w
[m]
t = p(RGBzt,

Dzt | x̄
[m]
t) (7)

We make the simplifying assumption that the RGB and

depth images captured by the camera are independent. Con-

sequently, the weight for a particle can be calculated as the

product of the conditional probabilities of observing specific

RGB and Depth images given the particle x̄
[m]
t :

w
[m]
t = p(RGBzt | x̄

[m]
t) · p(Dzt | x̄

[m]
t) (8)

C. RGB Images

The expression p(RGBzt | x̄
[m]
t) in Eq. 8 ideally represents

the probability of making the current observation (i.e. getting

the current camera RGB image) if objects were at pose x̄
[m]
t .

Since we do not have direct access to such a model, using the

Bayes Theorem, we first re-write the observation model:

p(RGBzt|x̄
[m]
t) =

p(x̄
[m]
t |

RGBzt) p(
RGBzt)

p(x̄
[m]
t)

(9)

Here, we note that p(RGBzt) is the same for every particle

since the current observation does not change between par-

ticles. Furthermore, we make a simplifying assumption that

p(x̄
[m]
t) are also similar for different particles. This enables us

to compute the importance factor using:

p(RGBzt|x̄
[m]
t) ≈ p(x̄

[m]
t |

RGBzt) (10)

Given that each particle contains the pose state of all the

objects x̄
[m]
t := {q̄it}

[m]
i=1,...,n, and assuming that the pose of

each object is independent of each other, we write:

p(x̄
[m]
t |

RGBzt) =

n
∏

i=1

p(q̄
i,[m]
t |RGBzt) (11)

Since our particles, x̄
[m]
t , are feasible (e.g., non-penetrating)

outputs of the motion model, none of the simplifications above

result in assigning probabilities to infeasible states.

We compute p(q̄
i,[m]
t |RGBzt) for each object, based on the

results of two computations: a Distance comparison and a

Visibility score.

Distance Comparison: We first use an off-the-shelf RGB-

based single-snapshot pose estimation (PE) system to predict

the pose of each object according to RGBzt and then use the

7

distance of q̄
i,[m]
t to the predicted object pose to compute a

probability value. Using PEi(RGBzt) to represent the output

of the pose estimation system for object i, i.e., the predicted

pose of the object i given the camera image RGBzt, we

compute a probability, pPE , for each object:

pPE(q̄
i,[m]
t |RGBzt) = N (q̄

i,[m]
t ; PEi(RGBzt), σ

2
PEi) (12)

where the parameter σ2
PEi represents the variance of PE

system errors for the object. The variance can be estimated

beforehand by collecting pose estimates for each object and

comparing them to the ground truth pose. In practice, we

use two normal distributions to compute the probability in

Eq. 12. One distribution accounts for the positional Euclidean

distance between q̄
i,[m]
t and PEi(RGBzt). The second distri-

bution represents the rotational distance between q̄
i,[m]
t and

PEi(RGBzt), computed as the minimum rotation around

a single axis required to align the two orientations. The

final probability in Eq. 12 is obtained by multiplying the

probabilities from these two normal distributions. We use

Normal distribution as the most generic model. Alternatively,

given a particular PE system, the distribution for that system

can be empirically modeled (either as a different parametric

distribution or as a statistical/learned model) for a given object.

While pPE(q̄
i,[m]
t |RGBzt) can be used as the value of

p(q̄
i,[m]
t |RGBzt) in Eq. 11, this requires that an output from the

PE system for each object, PEi(RGBzt), is present. However,

when the object is significantly occluded, a PE system may

fail to output any pose estimate at all, i.e., PEi(RGBzt) does

not exist. When this happens, in this paper, we say that the

PE system failed to “detect” the object. (Conversely, if the PE

system outputs an estimate, then we say that the PE system

“detected” the object.) To address these situations which occur

when the object is occluded, we evaluate the visibility of an

object in a particle.

Visibility Score: Note that, given an image RGBzt, the

absence of object detection is also useful information. It

often indicates that the object is either partially or completely

occluded, which can provide significant information about its

pose. To leverage this information, we use rendered artificial

images of each particle from the perspective of the camera,

which we call a “simulated camera” below. We then establish

the following four conditions:

1) If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is visible

to the simulated camera (i.e. camera’s view to the object

is not occluded by other objects in x̄
[m]
t , the robot, or the

environment), and the PE system detects it in the actual

image (i.e., PEi(RGBzt) exists) then p(q̄
i,[m]
t |RGBzt) is

equal to the probability estimated using the PE system,

pPE(q̄
i,[m]
t |RGBzt).

2) If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is visible

to the simulated camera, but the PE system does not

detect it in the actual image (i.e., PEi(RGBzt) does not

exist) then p(q̄
i,[m]
t |RGBzt) is given a low probability

value, αl ∈ [0, 1], which is a predefined parameter. It

represents the probability that the PE system cannot

detect a visible (non-occluded) object.

3) If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is

not visible to the simulated camera (i.e. camera’s view

to the object is mostly occluded by other objects in

x̄
[m]
t , the robot, or the environment), but the PE sys-

tem detects it in the actual image (i.e., PEi(RGBzt)

exists) then p(q̄
i,[m]
t |RGBzt) is given a low value,

pPE(q̄
i,[m]
t |RGBzt) · αw, where αw ranges between 0

and 1. In rare cases, even mostly occluded objects can

be detected by PE systems, and this probability reflects

that case.

4) If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is not

visible to the simulated camera, and the PE system also

does not detect it in the actual image (i.e., PEi(RGBzt)

does not exist(then p(q̄
i,[m]
t |RGBzt) is given a high

probability value αh ∈ [0, 1]. This represents the proba-

bility that the PE system does not detect an object when

it is mostly occluded, which is high.

Based on the conditions outlined above, the value of each

p(q̄
i,[m]
t |RGBzt) in Eq. 11 is determined.

The method we presented above requires deciding whether

an object is visible or occluded in a particle. We determine this

by computing a visibility score for each object in each particle

V isiblei(x
[m]
t), which represents the proportion of the part of

the object i in particle [m] that is not occluded.

To compute V isiblei(x
[m]
t) our system uses the simulated

camera to render one segmented image with all objects in

the particle, as well as individual segmented images for each

object separately. We show an example in Fig. 4 for a given

particle. The top-left image shows the rendered segmented

image for all objects in the particle (including the robot and

the environment). We count the number of pixels belonging

to each object in this image, as shown top-right in Fig. 4.

This count reflects the portion/footprint of the object that

is not occluded and thus visible to the camera. The bottom

three rows on the left show the individual segmented images

rendered for each object separately. We also count the number

of pixels belonging to the objects in these images, as shown

in the bottom three rows in the middle. These counts reflect

the total possible footprint of each object at that pose. We

define the visibility score of each object as V isiblei(x
[m]
t)

as the ratio of the unoccluded footprint to the total possible

footprint, as shown in the bottom three rows on the right of

Fig. 4. A visibility score of 1 indicates perfect visibility, where

the entire object is visible to the camera. Conversely, a score

of 0 indicates that the object is entirely occluded. To simulate

the camera, i.e., to render the segmented images above, and

to determine the pixel counts, we use GPU hardware queries

(Appendix A).

We decide whether an object in a particle is visible to the

camera, by comparing V isiblei(x
[m]
t) to a threshold, V , which

is a predefined parameter of our system. If V isiblei(x
[m]
t) is

higher than a V , then we consider the object in the particle to

be visible, in the four conditions listed above. If it is lower,

we consider it occluded in the particle. We determine V for

each object type beforehand, by increasingly occluding it with

an obstacle and identifying the degree of occlusion where the

PE system starts to fail.

8

Fig. 4. Visibility score calculation for three objects in an example particle. A
segmented/footprint image is rendered for each object jointly in the particle
(top-left) and individually (bottom-three-leftmost) at their corresponding poses
in the particle. The pixels belonging to each object are counted in each of
these images (top-right and bottom-three-middle). A visibility score for each
object is calculated as the ratio of the unoccluded footprint to the total possible
footprint (bottom-three-rightmost).

D. Depth Images

To compute p(Dzt | x̄
[m]
t) in Eq. 8, our approach again

involves using the simulated camera to render a depth image

for each particle at every time step. Specifically, after updating

each particle by motion model (Sec. IV-A), we render a depth

image based on the poses of objects inside the intermediate

particle x̄
[m]
t , and then compare the rendered depth image

D z̄
[m]
t with the real depth image Dzt captured by the camera.

Each particle needs to render only one depth image encapsu-

lating the pose state information of all objects. Again, we use

GPU parallelization to render the depth images (Appendix A),

which markedly improves efficiency.

An error score for each particle is obtained by comparing

the rendered depth images with the real depth image. We

use the error score, e
[m]
t , using a visible surface discrepancy

error function similar to the one proposed by Lee et al. [52].

However, Lee et al. use depth information on a per object

basis and therefore require segmentation of the real depth

image. Instead, our joint multi-object treatment of the scene

enables us to render the full scene directly, instead of relying

on potentially inaccurate segmentation of individual objects.

Fig. 5. We subtract the pixel values at corresponding locations between
the two depth images. The absolute differences are then compared against
a predefined threshold, β. For each pixel, if the absolute difference is less
than β, the pixel in the resulting image is assigned a value of 0. Conversely,
if the difference exceeds β, the pixel is assigned a value of 1.

We define our error score as:

e
[m]
t = avg

p̄∈ D z̄
[m]
t

p∈ Dzt

{

0 if |D z̄
[m]
t (p̄)− Dzt(p)| < β

1 otherwise
(13)

where p̄ and p represent the pixels in D z̄
[m]
t and Dzt re-

spectively, β represents the threshold value used to assess

the degree of correspondence between pixel values. If the

absolute depth difference between corresponding pixels is

less than the threshold β, these pixels are assigned to 0.

Otherwise, the pixels are assigned 1, as shown in Fig. 5.

This binary classification of pixel distances results in a new

set of pixel values. Subsequently, these values are averaged

to calculate the e
[m]
t . Using this method, we compute error

scores, {e
[m]
t }m=1,...,M , for all particles at time step t. Upon

calculating the {e
[m]
t }m=1,...,M , a normalization operation is

performed to get p(Dzt | x̄
[m]
t):

p(Dzt | x̄
[m]
t) =

e
[m]
t −min(e

[1]
t , . . . , e

[M]
t)

M
∑

m=1

(

e
[m]
t −min(e

[1]
t , . . . , e

[M]
t)

) (14)

The motivation behind our model is to quickly compute a

probability value without performing object-level segmenta-

tion or reasoning on the cluttered real depth images. If object-

level segmentations/pose estimates are available on the real

depth image, then more informative, and more symmetric,

models can be built. However, object level segmentation/pose-

estimation on depth images (e.g., ICP-like schemes) are time-

consuming, and given our particular focus on highly occluded

scenes, are not reliable.

E. Resampling

Multinomial resampling[53] is performed based on the

weights of each particle to generate a new set of particles.

9

F. Computational Cost

To ensure efficient performance, the particle filter is updated

(i.e., motion and observation updates are performed) at fixed

time intervals, denoted as ∆t. The most computationally de-

manding part of this process is the motion update, which relies

on physics-based predictions. Consequently, ∆t is selected

based on the minimum time interval necessary to complete

the physics simulations for all particles within the system.

V. MODEL PREDICTIVE CONTROL (MPC) WITH PARTICLE

FILTERING FEEDBACK

In the previous section, we described a method for tracking

the 6-D pose of objects. Here, we propose a Model Predictive

Control (MPC) framework that uses feedback from the particle

filtering algorithm to push an object to a goal region. The

tracking system enables the MPC to control object poses even

when they are occluded. Figure 9 shows example manipulation

tasks, with varying number of objects.

A. MPC Framework

Alg. 1 presents a typical MPC framework. We start by

getting an initial state of the system, such as the robot joints

and the poses of objects, using a pose estimation system (line

2). In line 3, we generate a straight line trajectory from the

end-effector’s position to the goal region. We then repeatedly,

until successful or timeout (line 4), call the optimizer on line

5, passing in the current state (xcurrent) and a trajectory (τ). We

describe in detail how this optimizer works in Section V-B.

If the optimization was unsuccessful, we terminate the MPC

(lines 6 and 7). If optimization was successful, we execute nu

controls of the optimized trajectory in the real-world in line 8.

In line 9, we update the trajectory by removing the executed

controls. Finally, we update the simulator with feedback from

the real-world in line 10.

We select a particle from the PBPF algorithm to update the

simulation state in line 10. Recall that a particle represents the

poses of all the objects. We select x
[m∗]
t , the particle closest

to the mean of the particle set, as follows:

x
[m∗]
t := argmin

m
d(x

[m]
t , x

[µ]
t) (15)

where x
[µ]
t is the mean of the particle set (computed in SE(3)),

and d(x
[m]
t , x

[µ]
t) is the distance of a particle, x

[m]
t , to the

mean. We calculate the distance of a particle by summing

up the distances of all the object poses to their corresponding

mean pose. The distance for an object combines the Euclidean

positional distance (δp) and the rotational distance (δθ; mini-

mum angle between two orientations): wδp · δp +wδθ · δθ. We

call this MPC variant, MPC-PBPF.

A simple MPC baseline can use feedback from a pose esti-

mation system, like DOPE, in line 10 instead. We implement

such an MPC baseline and call it MPC-DOPE. We compare

MPC-PBPF, MPC-DOPE, and an open-loop system without

feedback in Section VI.

Algorithm 1 Model Predictive Control (MPC) Framework

1: procedure MPC

2: xcurrent ← initialise simulation state from real-world

3: τ ← initialise trajectory

4: while not successful and not timeout do

5: τ , optimizationSuccessful← OPTIMIZE(xcurrent, τ)

6: if not optimizationSuccessful then

7: return

8: execute nu controls from τ in the real-world

9: τ ← remove the nu executed controls from τ

10: xcurrent ← update simulation state from real-world

Algorithm 2 Stochastic Trajectory Optimization

1: function OPTIMIZE(xcurrent, τ)

2: S ← rollout τ from xcurrent

3: obtain the cost of rollout using C(S)
4: while not successful and not convergent do

5: sample k noisy trajectories from τ

6: rollout each noisy trajectory

7: obtain cost for each rollout using C
8: τ ← best trajectory among the k

9: return τ , optimizationSuccessful

B. Stochastic Trajectory Optimizer

Algorithm 2 presents the stochastic optimizer [11], [54] that

we use in Algorithm 1 and line 5. We start by rolling out

the trajectory, τ (controls in the joint-space), using a physics

simulator from the current state, xcurrent, to get a state sequence

S (line 2). We compute the cost over that state sequence using

a weighted cost function, C(S) : S → R, in line 3, as follows:

C =

|S|
∑

i=1

w1 · dg + w2 · do + w3 · dz + w4 · q̇ee + w5 · cs (16)

where dg is the Euclidean distance from the object to the goal

region, do is the Euclidean distance from the end-effector to

the object, dz is the deviation of the end-effector along the

z-axis from its initial state (keeping the robot gripper parallel

to the table), q̇ee is the end-effector’s linear velocity, and cs
is an indicator function for collision with static obstacles. If

successful, we just return the solution without any optimization

(line 9). If not, we start by sampling k trajectories from τ

by introducing Gaussian noise to the controls (i.e., adding

noise to each of the joints over the full trajectory horizon)

(line 5). Then, we rollout each of the k trajectories (line

6). We compute a cost for each rollout (line 7). Note that

we parallelise lines 5-7. In line 8, we pick the trajectory

with the lowest cost. We repeat until we find a successful

trajectory or converge to a local minimum. If we hit a local

minimum, the task is declared as a failure and we return

false for optimizationSuccessful. While susceptible

to local minima, local trajectory optimizers remain effective

for generating contact-based manipulation trajectories [11],

[54], balancing computational efficiency with the ability to

escape some local minima by carefully tuning noise injection.

10

TABLE I
EXAMPLE TASKS FOR MULTI-OBJECT 6D POSE TRACKING EXPERIMENTS

AND COMPARISON OF PERFORMANCE OF FOUNDATIONPOSE (FOUN) AND PBPF-RGBD METHODS

Method time →

One Object Push: Please see Fig. 2

T
w

o
o
b
je

ct
s

p
u
sh

F
O

U
N

P
B

P
F

-R
G

B
D

T
h
re

e
o
b
je

ct
s

p
u
sh

F
O

U
N

P
B

P
F

-R
G

B
D

TABLE II
OBJECTS USED IN TRACKING EXPERIMENTS

YCB Objects [21] HOPE Objects [22]

Cracker Soup Ketchup Mayo Milk SaladDressing Parmesan Mustard

Please note that the input trajectory, τ , can be an initial

rough trajectory (for example, from line 3 of Algorithm 1) or a

warm-start with a good trajectory from a previous optimization

process (as we interleave planning and execution during MPC).

VI. EXPERIMENTS & RESULTS

In this section, we present two sets of experiments evaluat-

ing the performance of our methods.

First, we evaluate the tracking performance. In these ex-

periments, the robot executes a pre-determined motion (i.e.,

without MPC) interacting with the objects. We evaluate how

accurate the estimated poses of the objects are (as compared

to ground truth poses) during the course of the robot motion.

These experiments evaluating the tracking performance are

presented in Sec. VI-A to Sec. VI-C.

Second, we evaluate the control performance, where an

MPC controller (as discussed in Sec. V) pushes an object

to a goal region. In these experiments, we evaluate how

successfully the object is pushed into a goal region when the

MPC controller uses our physics-based pose tracking methods

as opposed to other baseline pose estimation methods. These

experiments evaluating the control performance are presented

in Sec. VI-D to Sec. VI-F.

A. Tracking Tasks and Metrics

To verify the performance of tracking methods, we create

different non-prehensile manipulation scenes. In these scenes,

the robot performs an open-loop pre-defined motion. Examples

can be seen in Fig. 2 and Table I. We create 50 similar scenes:

• One-object-push: An example scene is shown in Fig. 2.

We create 20 similar scenes with different objects.

• Two-objects-push: An example scene is shown in Ta-

ble I. We create 20 similar scenes with different objects.

• Three-objects-push: An example scene is shown in the

bottom two rows of Table I. We create 10 similar scenes

with different objects.

The above experiments are configured such that, during the

manipulation, the objects can be partially or fully obscured by

the robotic arm, obstacles, or other objects. This creates signif-

icant challenges to the tracking accuracy and effectiveness. We

use a variety of objects from two datasets, YCB-dataset [21]

and HOPE-dataset [22], as shown in Table II. These objects

include symmetric objects, and of varying sizes, demonstrating

the applicability of our method to a wide range of objects. In

all scenes, tracked objects only interact with the robot and

other tracked objects. For the ground truth object poses, we

used the OptiTrack system [55], which uses reflective markers

placed on the objects for precise pose estimation, as shown in

Fig. 6. We use an ar-marker on the robot to find the pose of

11

Fig. 6. The OptiTrack system is used to determine the ground truth of the
target objects. As shown in the left image, multiple cameras are mounted on
the ceiling to track the reflective markers on the objects. The right image
shows the reflective markers attached to the target object.

the camera with respect to the robot, i.e., for extrinsic camera

calibration.

Each of our runs contain an average of 8630 time-steps, i.e.,

data points at which we have an RGB-D image, robot joint

information, and object pose ground truth information. Over

50 runs, we have a total of 431500 data points. The results

we present below are averaged over these data points.

To evaluate the accuracy of pose tracking, we employ two

metrics: the Average Distance of Discrepancy (ADD) [30]

and the Symmetric Average Distance of Discrepancy (ADD-

S). ADD measures the mean Euclidean distance between

corresponding points on the tracked object model and the

object model at the ground truth pose. ADD-S extends this

by considering the mean distance under the best permutation

of model points, making it robust to symmetrical objects where

orientation discrepancies might otherwise be misleading. We

specifically report the area under curve (AUC) [30] of ADD

and ADD-S. This is the metric most commonly used to eval-

uate pose estimation systems’ accuracy for varying accuracy

thresholds [1], [2], [29]–[31].

We release this dataset of 50 experiments (431500 data

points) including time-stamped RGB-D data, robot joint val-

ues, object pose ground truth, and object/robot/environment

3D models, for others in the community to be able to use not

only the RGB-D information (which is often provided in other

similar datasets) but also physics-based inference (enabled by

timestamped robot joint values and 3D models).

B. Implementation of Tracking Methods

We evaluated four different methods for tracking objects4.

1) Diff-DOPE: Diff-DOPE [29] refines the object’s pose at

every time step, using prior estimates provided by DOPE [1],

a single-snapshot object pose estimation system. We used the

official Diff-DOPE implementation5.

4Experiments were performed on CPU: Intel(R) Xeon(R) W-2295
CPU@3.00GHz; GPU: NVIDIA GeForce RTX 3080; RAM: 192906 Mb

5https://github.com/NVlabs/diff-dope

2) Diff-DOPE (Tracking): We modified Diff-DOPE such

that it uses a different prior estimate at each time step. Instead

of using DOPE, we use the pose estimated by Diff-DOPE in

the previous time step as the prior estimate. This makes Diff-

DOPE capable of using information from previous time-steps,

similar to our methods. For the very first frame of a run, we

still use DOPE as the prior.

3) FoundationPose: FoundationPose [2] uses a combination

of deep learning and geometric optimization to track an object.

It is one of the leading methods listed on the worldwide BOP

leaderboard6 (at the time of writing). We used the official

FoundationPose implementation7.

4) PBPF: Our Method as explained in Sec. IV. Particularly,

we implemented three versions of our method: PBPF-RGB,

PBPF-D and PBPF-RGBD. The distinction among the three

versions lies solely in their observation model. Specifically,

PBPF-RGB uses only RGB images (Section IV-C), PBPF-D

relies only on depth images (Section IV-D)8, and PBPF-RGBD

integrates both RGB and depth images (Section IV-C and

IV-D) as its observation model. Implementation details: The

implementation details and the parameter values we used in all

PBPF versions are: (a) Motion model parameters. We used the

same coarse friction and restitution parameters for all objects:

µfriction = 0.1 and σfriction = 0.3, with the minimum sampled

value capped at 0.001. µrestitution = 0.9 and σrestitution = 0.2.

We used different mass estimates for objects: µmass of Cracker,

Soup, Milk, Parmesan and Mustard are 0.45 kg, 0.35 kg, 0.04

kg, 0.035 kg and 0.05 kg, respectively. µmass of Ketchup, Mayo

and SaladDressing are the same at 0.06 kg. The σmass for

Cracker and Soup is 0.5, and 0.1 for the remaining objects,

with a minimum sampled value capped at 0.02 kg. σf : For

position 0.005 m, for rotation 0.05 radians. We used the

PyBullet physics engine [15] as the physics model, fθ. We

employ a multi-processing approach to initialize and manage

each particle within individual PyBullet environments, using

all 18 (36 virtual) CPU cores available on the computer. (b)

Observation model parameters. As the PE system (used to

estimate pPE as explained in Sec. IV-C), we use DOPE since

it is a single-pass neural network that was fastest among the

ones we have tested, with relatively accurate pose estimation

for known objects. σPE : For position 0.1 m and rotation

0.2 radians. Visibility parameters: the threshold V used for

comparing V isiblei(x
[m]
t) to decide object visibility is set to

0.55 for all objects (except 0.45 for the large Cracker object)

when the PE system detects the object. If the PE system does

not detect the object, the threshold V is set to 0.6 for all objects

(0.5 for the Cracker); αw = 0.33, αh = 0.6, αl = 0.55 for all

objects (αh = 0.75, αl = 0.45 for Cracker). Depth parameters:

β = 0.03 m. (c) Update frequency. ∆t = 0.25s. (d) Number of

particles. Our tests with different numbers of particles showed

accuracy to plateau around 50 particles. On the other hand,

due to computational cost, the number of particles needs to

be reduced as more objects are tracked to allow the PBPF

algorithm to run at the same update frequency. We use the

6https://bop.felk.cvut.cz/leaderboards
7https://github.com/NVlabs/FoundationPose
8PBPF-D uses the RGB-based DOPE at t = 0 to initialize the objects’

poses.

12

TABLE III
OVERALL AVERAGE TRACKING ACCURACY FOR DIFFERENT METHODS

(↓ REPRESENTS LOWER IS BETTER, ↑ REPRESENTS HIGHER IS BETTER)

Method ADD ↓ AUC-ADD ↑ ADD-S ↓ AUC-ADDS ↑

Diff-DOPE 0.125 42.8 0.101 53.8
Diff-DOPE (Tracking) 0.187 30.9 0.153 39.9
FoundationPose 0.118 52.3 0.100 59.8
PBPF-D 0.065 58.8 0.049 70.0
PBPF-RGB 0.088 46.0 0.068 59.6
PBPF-RGBD 0.030 70.1 0.021 79.2

PBPF-RGBD (Best Particle) 0.016 83.7 0.012 87.6

Fig. 7. Accuracy versus Error threshold plots for different methods, used to
compute Area Under the Curve (AUC). The horizontal axis represents the
increasing threshold of error allowed, ranging from 0.00 to 0.10 meters, and
the vertical axis shows the accuracy of the methods, ranging from 0 to 1, for
that given threshold. (BP means Best Particle and T means Tracking.)

following particle counts: M = 70 for one object, M = 50 for

two objects, and M = 40 for three objects. (e) Initialization.

We initialize particles at t = 0 by sampling from a Gaussian

distribution. We use the pose from the PE system at t = 0 as

the mean pose, and the standard deviations for initialization

are 0.03 m and 0.2 radians. During initialization, if objects

are penetrating each other or the robot, we move them in the

direction of the contact normal until they are not penetrating.

C. Pose Tracking Results

Table III presents the overall average tracking performance

of different methods. We evaluated each method 100 times9

in each of the 50 runs (giving us 100 different estimates for

each of the 431500 data points) to accommodate the inherent

randomness in some of these methods (e.g., the probabilistic

nature of particle filtering). If a method failed to output a pose

estimation at a certain time-point, we used its most recent

output. PBPF outputs a set of particles, not a single pose

estimate. To compute the accuracy values, we used the particle

that is closest to the mean of the particles. We also present the

AUC curves in Fig. 7 (which show accuracy vs error threshold

and are used to compute the area under the curve)

The results presented in the table show that PBPF-RGBD

performs significantly better, compared to baselines. This is

9All robot/camera/ground truth data were recorded in a ROS bag file during
actual robot manipulation. These bag files were then replayed, respecting
timestamps, 100 times for each different method.

because our method uses the additional robot control, and the

physics-rollout, information while estimating objects’ poses.

Among our results, we also show the accuracy of the “best

particle” from the particle set (the last row of Table III). The

“best particle” is the particle that is closest to the ground

truth pose. While it is impossible to know which particle is

the best particle when one does not have access to ground

truth, we report this, since it can be useful to put a bound

on the expected error for conservative/worst-case manipulation

planning systems, i.e., systems that plan robust robot motion

that take into account all particles in the particle set.

Table IV presents a more detailed view, showing ADD and

ADD-S results for different objects, including data from all

our 50 scenes (i.e., including when these objects may be in the

scene together with multiple other objects). These results show

that the PBPF-RGBD algorithm performs better consistently

over all objects of various shapes and properties we have

tested.

It is also clear from the results that using both RGB and

depth information is useful and necessary to achieve the

best performance. Table III demonstrates that PBPF-RGBD

significantly outperforms PBPF-D (implying the value of RGB

information) and PBPF-RGB (implying the value of depth

information). We also note that PBPF-D outperforms PBPF-

RGB. We think there are two reasons for this. First, PBPF-D

in fact uses RGB information, even if only at initialization (at

t = 0), which puts it at an advantage when compared to PBPF-

RGB. Second, in our scenes, where significant occlusions

frequently occur, the accuracy of RGB-only pose estimation

systems, e.g., DOPE, suffers drastically.

However, RGB is particularly useful when objects have

similar shapes. For example, the error results of the Mustard

and SaladDressing objects in Table IV reveal that PBPF-

RGBD performs notably better than PBPF-D. This is due to

the method’s difficulty distinguishing between the similarly

sized Mustard and SaladDressing objects when only depth

images are used, leading to decreased accuracy. This also

applies to other target objects with similar size and shape.

We show some visual examples of tracking performance

in Fig. 2 and Table I. We use wireframes overlaid on the

images to show the estimated poses of different methods

(orange for FoundationPose and green for our method). (For

our method, we draw the wireframe at the pose of the particle

closest to the mean of the particles.) As can be seen in the

figures, when all objects are visible, both systems perform

Fig. 8. Estimation error (ADD) vs. visibility of ground truth object poses.

13

TABLE IV
OBJECT-SPECIFIC ACCURACY OF TRACKING FOR DIFFERENT METHODS

Method Cracker Soup Ketchup Mayo Milk Mustard Parmesan SaladDressing Mean

Metric ADD ↓ ADD-S ↓ ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

Diff-DOPE 0.152 0.109 0.075 0.052 0.076 0.061 0.155 0.137 0.118 0.092 0.177 0.152 0.118 0.100 0.093 0.075 0.125 0.101

Diff-DOPE (T) 0.170 0.105 0.162 0.133 0.207 0.176 0.191 0.167 0.150 0.117 0.191 0.162 0.178 0.151 0.299 0.268 0.187 0.153

FoundationPose 0.049 0.039 0.071 0.054 0.137 0.124 0.080 0.065 0.223 0.208 0.133 0.109 0.115 0.093 0.148 0.121 0.118 0.100

PBPF-D 0.070 0.055 0.030 0.018 0.037 0.026 0.070 0.051 0.037 0.025 0.132 0.104 0.042 0.028 0.122 0.107 0.065 0.049

PBPF-RGB 0.093 0.062 0.065 0.043 0.057 0.043 0.071 0.054 0.084 0.066 0.071 0.051 0.076 0.055 0.240 0.230 0.088 0.068

PBPF-RGBD 0.032 0.025 0.029 0.017 0.028 0.020 0.028 0.020 0.027 0.019 0.035 0.024 0.031 0.020 0.032 0.021 0.030 0.021

well in estimating object poses. However, when there are

occlusions (either behind other objects or behind the robot),

FoundationPose estimates diverge significantly, whereas PBPF

is able to estimate physically plausible poses for objects. Video

versions can be seen in the multimedia attachment.

An advantage of our method is that it provides consistent

tracking of objects even when there are heavy occlusions.

To analyze this better, in Fig. 8, we evaluate each method’s

performance when the target object is at different levels

of visibility to the camera. Here, the visibility values are

computed similar to the process shown in Fig. 4, but this time

using the ground truth poses of the objects. In Fig. 8, the solid

lines show the mean ADD scores for all methods, computed

over all objects at all time-steps in all of our 50 scenes. PBPF-

RGBD demonstrates impressive accuracy across all visibility

levels. Diff-DOPE’s performance improves as visibility of the

object improves, but stays well above PBPF-RGBD perfor-

mance. FoundationPose performs well when the object is fully

visible (i.e., visibility is 1.0), however suffers significantly,

performing even worse than Diff-DOPE, at visibility values

around 0.6. This is because, when FoundationPose loses track

of the object behind occlusion, its accuracy suffers drastically,

even after the object re-appears in the scene and becomes

visible. (This can also be observed in Fig. 2, Table I, and the

attached video.) To understand FoundationPose performance

when we remove the effects of such highly erroneous estimates

on the mean, in Fig. 8, we also present the median ADD

performance with the dashed line. The median performance of

FoundationPose improves as visibility improves, as expected.

PBPF-RGBD’s mean and median performances are almost

identical, showing robustness, due to the stabilizing effect of

the physics constraints.

D. Control Tasks and Metrics

In addition to the experiments above, we also performed

experiments to show how the tracking of objects can be

used for goal-directed manipulation in clutter. To evaluate the

effectiveness of our method in manipulation tasks using MPC

(Sec.V), we designed four different tasks as shown in Fig. 9:

• 1-Object: The robot pushes an object to a target area.

Two different target areas are used for different instances

of this task.

• 2-Objects: The robot pushes an object to a target area,

while there is a second object in the way. Two different

target areas are used for different instances of this task.

• 3-Objects: The robot pushes an object to a target area,

while there are two other objects in the way. Two different

target areas are used for different instances of this task.

• Object-Object: The robot pushes an object to a target

area, but indirectly, by pushing another object.

We ran each method 3 times for the same task and the

same target area; i.e., in total we ran each method 21 times (6

times on 1-Object tasks, 6 times on 2-Objects tasks, 6 times

on 3-Objects tasks, and 3 times on Object-Object tasks).

In executing control tasks, our primary consideration is

whether the target object has reached the target area. The

target area is defined as a circle with a radius of 5 cm. Upon

completion of a run, we assess success by measuring whether

the object’s centroid lies within this predefined target area. We

run each control method for a maximum of 1000 controls,

and if the target area is not reached by then, the method

reports failure. The parameters for our MPC algorithm are:

wδp = 0.7, wδθ = 0.3, nu = 100. The parameters for the

stochastic trajectory optimiser are: |τ | = 1000, w1 = 60000,

w2 = 20000, w3 = 45000, w4 = 3000, w5 = 10000,

k = 40, we sample noise for each of the 7-DOF from a Normal

distribution with mean 0 and σ = 0.3.

E. Control Methods

We use three different methods to perform the tasks:

• OPENLOOP: This method operates without any feed-

back during the manipulation task except the initial

time-step. At the initial time-step, the object poses are

estimated using DOPE, and Alg. 2 is used to optimize

one trajectory to the goal. This trajectory is then executed

open-loop, without any feedback.

• MPC-DOPE: This method uses Alg. 1. As state feed-

back, it uses the pose estimate of the objects provided by

the DOPE algorithm at each time-step.

• MPC-PBPF: This method uses Alg. 1. As state feedback,

it uses the pose estimate of the objects provided by the

PBPF-RGBD algorithm at each time-step.

F. Results of Control Experiments

Table V shows the success rates of different methods in

different tasks. In all 21 experiments, MPC-PBPF successfully

moved the target object to the target area, even when there

were significant occlusions of the target and other objects.

While OPENLOOP and MPC-DOPE were also successful for

14

Fig. 9. Examples of four different manipulation tasks, where an MPC controller aims to push a target object to a target area among other objects, either
directly (first three tasks on the left), or indirectly by pushing another object (rightmost task).

Fig. 10. Example MPC-PBPF execution, where the task is to push the cylindrical Parmesan object to the target area (shown as a red circle), while there is
another object in the way (Cheezit object). In the second row, the particles of PBPF-RGBD are shown in purple at each timestep. The blue particles show
the poses reported by DOPE at those time-steps.

TABLE V
SUCCESS RATES OF CONTROLLERS ON DIFFERENT MANIPULATION TASKS

OPENLOOP ↑ MPC-DOPE ↑ MPC-PBPF ↑

1-Object 6/6 6/6 6/6

2-Objects 2/6 1/6 6/6

3-Objects 1/6 0/6 6/6

Object-Object 0/3 0/3 3/3

Total 9/21 7/21 21/21

the easier 1-Object task, they had significantly lower success

rates for tasks with more objects, where the lack of accurate

knowledge of object poses was detrimental.

Fig. 10 shows MPC-PBPF performance in an instance of

2-Objects task. The second row shows the particles in purple,

while it also shows the DOPE detections of the objects in blue.

The red circle shows the target region. Even when the target

object (Parmesan) is completely occluded, MPC-PBPF can

still accurately push the object to the target area. In contrast,

when the DOPE method is employed, occlusion of the object

leads to incorrect predictions, resulting in manipulation task

failures. Similarly, Fig. 1 shows MPC-PBPF performance in

an instance of 3-Objects task. Corresponding videos of these

experiments can be seen in the multimedia attachment.

VII. FURTHER ANALYSIS & LIMITATIONS

In this section, we perform additional experiments and

analysis to understand the limitations of our approach.

A. Robustness to uncertainty in object friction and mass

Our method requires mean and variance values for the mass

(µmass and σ2
mass) and friction (µfriction and σ2

friction) pa-

rameters of the objects. We performed experiments, analyzing

how sensitive our method’s performance is to the accuracy

and uncertainty of these physics parameters of objects. We

present these results in Table VI, where the top sub-table (the

first three rows of the table) shows the results of experiments

where we varied only the µmass of objects and measured the

performance of our method PBPF-RGBD. As shown in the

table, for these experiments, as µmass we used the values

0.01, TM, 0.5, 1.00, and 5.00. (TM stands for the “true mass”

of an object, as reported in Sec. VI-B.) Since our complete

dataset includes scenes with objects of a wide range of true

mass values (some ten times heavier than the others), to make

the effect of varying mass values clear, in these experiments

we only used the subset of the dataset that includes scenes

with objects of similar true mass between 0.03 kg and 0.06

kg, corresponding to Parmesan, Mustard, Ketchup, Mayo,

SaladDressing. (Hence, the TM results are slightly different

than the results we report for our method in Table III using

the complete dataset). The results show that, while the method

with the true mass, TM, performs best, other µmass values did

not result in drastic drops in the performance. We hypothesize

that there are two reasons for this. (1) Our method is capable

15

of showing some robustness due to the intentional uncertainty

introduced into the system using the sampling variances. To

test this, we ran our method again with different µmass values,

but this time with the three variance parameters set to zero

(σfriction, σmass, σf = 0), as shown in the second sub-table.

As expected, the overall performance significantly suffered,

but also the difference between the TM performance and other

mass values was more significant, confirming our intuition. (2)

Mass of an object is less consequential in slower interaction

tasks, and our dataset heavily includes slower pushing tasks.

This agrees with quasi-static analysis of sliding/pushing [56],

where it is shown that, when object accelerations are negligi-

ble, (i.e., when the energy induced into the object through the

robot finger is small enough that it is immediately dissipated

by the object-ground frictional forces, and hence the pushed

object does not lose contact with the finger during pushing)

the mass of the object can mostly be ignored in predicting its

motion. To test this, we performed new experiments with the

robot, where we poked an object with high impact, so that the

object accelerates and keeps sliding after contact. (We present

more details about this experiment in Sec. VII-D.) The third

sub-table (µmass(Poking)) shows the results, where the effects

of mass are more significant, again confirming our insight.

Similarly, we performed experiments using different values

for the µfriction parameter of our method. While measuring

the correct coefficient of friction is more difficult than mea-

suring mass, we estimate it to be between 0.1 and 0.25 for

our objects, estimated using a protractor and sloped surface.

The results in the sub-tables show that the method per-

forms best with correct friction values, and again that setting

(σfriction, σmass, σf = 0) makes this more pronounced.

We also measured the performance under varying vari-

ances of the physics parameters, shown in sub-table

“σfriction/mass(σf = 0)”. For these experiments, we set

σf = 0, since it would interfere with assessing the impact

of variance values for friction and mass. In this sub-table, a

value of 0.1× indicates scaling the original values reported

in Sec. VI-B by 0.1, and similarly for other columns. As

expected, setting the variance values too low or too high

degraded performance, since too low values make the filter-

ing less robust to uncertainty, but too high variance values

diminishes the information provided by the physics model.

B. Effect of motion noise, σf

As shown in the bottom sub-table of Table VI, we varied

the positional and rotational motion noise, σf , to investigate

the effect of this parameters on the performance of our system.

The results show that tuning this parameter is important,

as the performance of the system is significantly effected.

Note, however, that the motion model noise σf reflects the

discrepancy between the physics model and the real-world

physics, and therefore should be estimated only once for the

physics model (e.g., physics engine) and can then be fixed.

Therefore, given a dataset with a ground truth (such as the

dataset we are providing), if a new physics engine is used with

our method, σf should be calibrated to the best performing

value, and can then be fixed for later use of the method.

TABLE VI
TRACKING ACCURACY FOR DIFFERENT PARAMETRIZATIONS

µmass 0.01 TM 0.50 1.00 5.00

ADD ↓ 0.028 0.025 0.028 0.029 0.029
AUC-ADD ↑ 71.9 74.2 71.6 71.1 71.0

µmass(σfri, σmass, σf = 0) 0.01 TM 0.50 1.00 5.00

ADD ↓ 0.093 0.069 0.101 0.094 0.103
AUC-ADD ↑ 37.5 46.1 35.8 34.2 32.4

µmass(Poking) 0.01 TM 0.50 1.00 5.00

ADD ↓ 0.058 0.046 0.065 0.060 0.060
AUC-ADD ↑ 51.8 55.7 50.1 48.9 48.8

µfriction 0.01 0.10 0.25 0.75 1.00

ADD ↓ 0.043 0.028 0.031 0.041 0.052
AUC-ADD ↑ 63.4 72.2 69.8 65.7 63.2

µfriction(σfri, σmass, σf = 0) 0.01 0.10 0.25 0.75 1.00

ADD ↓ 0.087 0.067 0.069 0.088 0.119
AUC-ADD ↑ 41.3 56.2 50.0 41.5 32.5

σfriction/mass(σf = 0) 0.1× 1.0× 2.0× 5.0× 10×

ADD ↓ 0.138 0.053 0.057 0.056 0.069
AUC-ADD ↑ 31.7 54.2 52.6 51.2 48.6

σf pos: 0.000 0.005 0.010 0.020 0.050
σf rot: 0.00 0.05 0.10 0.20 0.50

ADD ↓ 0.063 0.028 0.080 0.170 0.693
AUC-ADD ↑ 53.8 72.2 50.0 34.6 9.70

TABLE VII
OVERALL TRACKING ACCURACY FOR OTHER SCENES

1-Object Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.132 0.126 0.029
AUC-ADD ↑ 43.4 52.1 71.1

2-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.098 0.191 0.029
AUC-ADD ↑ 46.3 41.5 70.7

3-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.147 0.043 0.031
AUC-ADD ↑ 38.9 63.0 69.0

4-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.218 0.054 0.038
AUC-ADD ↑ 25.0 52.7 61.9

5-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.195 0.055 0.049
AUC-ADD ↑ 23.2 49.2 59.7

Poking (object always visible) Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.029 0.028 0.048
AUC-ADD ↑ 71.4 72.3 56.2

Poking (object with occlusion) Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.090 0.191 0.049
AUC-ADD ↑ 40.9 22.4 52.9

Identical Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.137 0.037 0.026
AUC-ADD ↑ 25.4 63.1 72.9

C. Effect of number of objects

An important limitation of our system is the computational

cost of physics simulations, which increase with the number

of physically interacting objects. In our original dataset, in

Sec. VI-A), our experiments were limited to 3 simultaneously

interacting objects. Up to three objects, our system did not

show a degradation in performance (the first three sub-tables

of Table VII). Performing experiments involving four or more

objects presented significant challenges, particularly in acquir-

ing accurate ground truth pose information. Furthermore, as

16

TABLE VIII
TIME (S) CONSUMED BY EACH COMPONENT

1-obj 2-obj 3-obj 4-obj 5-obj

M=70 M=50 M=40 M=40 M=40

Physics Update 0.102 0.096 0.106 0.141 0.167

Depth Update 0.101 0.073 0.073 0.089 0.092

RGB Update 0.031 0.029 0.040 0.051 0.055

Total Time 0.239 0.204 0.227 0.295 0.329

more objects are tracked, the update time increases, making

it difficult to update our filter frequently. However, we still

wanted to evaluate the performance of our method when the

number of objects are increased. Therefore, we set up a scene

with 4 objects and another with 5 objects, and performed push-

ing on these objects, carefully making sure that we still have

ground truth readings (i.e., objects are visible to the OptiTrack

cameras). We show one of these scenes in Fig. 12-top-left

and also in the attached video. We show the performances of

our method and baselines in the “4-Objects” and “5-Objects”

sub-tables of Table VII. For these two scenes, we used only

40 particles, similar to our 3-object scenes. As expected, our

method’s performance is significantly degraded compared to

its performance on our original dataset. Still, PBPF-RGBD

performs better compared to baselines, since occlusions (which

happen frequently in such crowded scenes) are much more of

an issue for the baseline methods. In Table VIII we present the

computational time each component of our method takes for

scenes with different number of objects, and when different

number of particles, M , is used. These results are averaged

over all runs with those number of objects in them. (Standard

deviations are not shown, but are negligible.) As shown, the

main bottleneck is clearly the physics update.

A realistic manipulation scenario is unlikely to involve tens

of interacting objects that needs to be tracked. Therefore, in

realistic settings, our system can still be beneficial.

D. High-impact interactions

Through our experiments, we also discovered that our

system’s performance degrades with highly dynamic motion

of the objects, for example when an object drops down to the

table, as shown in Fig. 11. In such cases where objects went

through high-impact contact interactions, the inaccuracy of the

physics predictions and the fast motion of the objects degraded

the performance. While it proved difficult to collect ground

pose truth information in scenes such as Fig. 11, to explore

this issue further, we conducted experiments where the robot

performs a fast planar hit on the object to create an impact

interaction, resulting in the object sliding away from the hand,

as shown in Fig. 12 bottom-two rows, and in the attached

video. We call this “Poking”. The performance of different

methods for Poking is shown in Table VII. When the poked

object is completely visible, our method performs significantly

worse. Here, the inaccurate physics predictions hinder, rather

than help, tracking. Still, when we experimented with a scene

where the poked object was occluded for part of its slide on

Fig. 11. An example with a high-impact drop of an object, where our system’s
tracking performance is degraded.

the table (bottom row of 12), PBPF-RGBD performed better

than the baselines, as shown in the table.

We point out that our system is not limited to planar

motion. In Fig. 13, we show an example tracking result of

our system, we the robot lifts an object up and then down.

The results from the experiment, which involved vertical

movements, demonstrated that the system can effectively track

such motions, as long as they are not highly dynamic.

E. Tracking scenes with identical objects

We also tested whether PBPF-RGBD can track scenes with

identical objects. A scene with two identical objects can be

seen in Fig. 12-top-right, and the attached video. The results

are presented in the bottom rows of Table VII, which again

shows better performance for PBPF-RGBD. To work under

this setting, given multiple PE system estimates of the same

type of object at the same time-point, PBPF-RGBD needs to

identify which particular object (of that type) in a particle these

different estimates belong to. To do this, we simply assign the

nearest object of the correct type in a particle to the first PE

estimate. If an object has already been assigned to a previous

PE estimate, we assign the next nearest one.

VIII. CONCLUSION

This work addresses the critical challenge of tracking multi-

objects during robotic non-prehensile manipulation under oc-

clusions — scenes where conventional vision-based tracking

methods often fail. By combining physics-based predictions

within a filtering framework, we perform relatively robust

multi-object tracking even when targets are significantly oc-

cluded by obstacles, robot arms, or other target objects. Our

key contribution is integrating physical prediction (robot joint

states) with vision and depth information to resolve problems

caused by occlusions. Moreover, we demonstrated the practical

utility of our method by integrating it with a Model Predictive

Control (MPC) framework. This integration facilitates tasks

17

Fig. 12. Other interesting scenes. 1. The top-left shows robot manipulat-
ing 4 objects simultaneously. 2. Top-right shows robot manipulating two
identical objects simultaneously. 3. The second row images show the robot
poking/hitting an object to slide it away. 4. The bottom row also shows the
robot poking/hitting an object to slide it away, but with occlusions to the
camera. (Please also see attached video for video versions.)

such as pushing objects to target areas; a key capability for

applications where robots need to retrieve items from cluttered

environments like baskets or shelves. While our experiments

confirm the effectiveness of the proposed method, several

limitations remain. Notably, the current implementation re-

quires an initial estimate of the objects’ 6D poses for particle

initialization. The reliance on a physics engine introduces

considerable computational costs, which pose challenges in

maintaining both high tracking accuracy and speed when

scaling to a large number of objects or dealing with high-

impact scenarios. Future work will focus on eliminating the de-

pendency on precise initial pose estimates. We also investigate

the use of faster physics engines (e.g., [57], [58]) to improve

real-time performance without decreasing tracking precision.

APPENDIX

GPU-BASED RENDERING PIPELINE

In this section we give the details of the GPU-based ren-

dering pipeline that we used to compute the Visibility scores

for objects in the particle (described in Sec. IV-C) and to

Fig. 13. Robot lifting and object up and then down. Top row: FoundationPose.
Bottom row: PBPF-RGBD.

render the simulated depth images per particle (described in

Sec. IV-D).

We compute error scores e
[m]
t and visibility scores

V isiblei(x
[m]
t) on the GPU, using the Vulkan cross-platform

API [59]. We utilize both graphics and compute capabilities.

The implementation uses four different steps: we first compute

the per-object footprints (illustrated in the top right image

in Fig. 4). Next, we render the depth image D z̄
[m]
t , which

is required to compute both the pixel counts (as illustrated

in the right in Fig. 4) and the error score e
[m]
t . The order

enables reuse of GPU framebuffer resources, reducing memory

requirements.

We use a standard projective graphics pipeline with a single

32-bit floating point depth target. This depth attachment is

required for hidden surface removal (“depth testing”) during

rendering and ultimately holds information equivalent to the

depth images D z̄
[m]
t . We use a Reverse-Z projection [60], [61]

to maximize precision in the computed depth.

To count pixels, we utilize occlusion queries [62]. Occlusion

queries enable us to count, in GPU hardware, the number of

drawn pixels for a specific set of draw commands. Samples

discarded due to hidden surface removal, i.e., samples that

fail a depth test, are not counted. To count the number

of pixels for each object individually (bottom three middle

images in Fig. 4), we draw object q̄
i,[m]
t with the standard

projection, but change the depth of the drawn pixels to a

constant di,[m] < 1 in the vertex processing stage. We set the

the depth test to only accept samples with a strictly smaller

depth (COMPARE_OP_LESS). Depth is initialized to 1. The

first sample to be drawn in a certain pixel location will pass

the depth test, causing the result of the occlusion query to

be incremented, and update the depth to di,[m]. A following

sample in the same location will be discarded by the depth

test, leaving the occlusion query unchanged. We draw each

object in turn, but with smaller depth values (dj,[m] < di,[m]

for j > i). This avoids having to clear the depth buffer for

each object.

For counting the pixels of the objects in the joint image (top-

left and top-right in Fig. 4), we first draw the particle’s objects

into a single image. This gives us D z̄
[m]
t . Next, each object is

drawn a second time, with an occlusion query and with the

depth test configured to accept samples with equal depth. The

occlusion query thus returns the number of visible pixels. In

practice, we use COMPARE_OP_GREATER_OR_EQUAL; with

this we do not have to change the graphics pipeline between

drawing D z̄
[m]
t and performing the occlusion queries.

Finally, we calculate e
[m]
t with a set of compute shaders.

The shaders take D z̄
[m]
t and a reference image Dzt as input.

We evaluate Equation 13’s comparison per pixel and perform

a parallel reduction with cooperating work groups [63], [64]

to sum the values.

Only query results and the sums from the parallel reductions

need to be returned to the CPU-side processing. We specifi-

cally avoid copying images from GPU VRAM to CPU RAM,

as a PCIe bus is very limited when compared to available

VRAM bandwidth.

18

REFERENCES

[1] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D.

Fox, and S. Birchfield, “Deep object pose estimation

for semantic robotic grasping of household objects,” in

Conference on Robot Learning, PMLR, 2018.

[2] B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foun-

dationpose: Unified 6d pose estimation and tracking of

novel objects,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2024.

[3] N. Correll, K. E. Bekris, D. Berenson, et al., “Analysis

and observations from the first amazon picking chal-

lenge,” IEEE Transactions on Automation Science and

Engineering, vol. 15, no. 1, pp. 172–188, 2016.

[4] C. Eppner, S. Höfer, R. Jonschkowski, et al., “Lessons

from the amazon picking challenge: Four aspects of

building robotic systems.,” in Robotics: science and

systems, vol. 12, 2016.

[5] Y. Sun, J. Falco, M. A. Roa, and B. Calli, “Research

challenges and progress in robotic grasping and ma-

nipulation competitions,” IEEE robotics and automation

letters, vol. 7, no. 2, pp. 874–881, 2021.

[6] D. Müller, N. Y. Wettengel, and D. Paulus, “Homer@

unikoblenz: Winning team of the robocup virtual@

home open platform league 2021,” in Robot World Cup,

Springer, 2021, pp. 283–290.

[7] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonpre-

hensile dynamic manipulation: A survey,” RA-L, 2018.

[8] J. Zhou, Y. Hou, and M. T. Mason, “Pushing revisited:

Differential flatness, trajectory planning, and stabiliza-

tion,” The International Journal of Robotics Research,

vol. 38, no. 12-13, pp. 1477–1489, 2019.

[9] F. R. Hogan and A. Rodriguez, “Reactive planar non-

prehensile manipulation with hybrid model predictive

control,” The International Journal of Robotics Re-

search, vol. 39, no. 7, pp. 755–773, 2020.

[10] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel,

“Physics-based trajectory optimization for grasping in

cluttered environments,” in ICRA, 2015.

[11] R. Papallas, A. G. Cohn, and M. R. Dogar, “Online

replanning with human-in-the-loop for non-prehensile

manipulation in clutter—a trajectory optimization based

approach,” IEEE Robotics and Automation Letters,

vol. 5, no. 4, pp. 5377–5384, 2020.

[12] A. Pasricha, Y.-S. Tung, B. Hayes, and A. Roncone,

“Pokerrt: Poking as a skill and failure recovery tactic

for planar non-prehensile manipulation,” IEEE Robotics

and Automation Letters, vol. 7, no. 2, 2022.

[13] B. Huang, S. D. Han, J. Yu, and A. Boularias, “Visual

foresight trees for object retrieval from clutter with

nonprehensile rearrangement,” RA-L, 2021.

[14] S. Thrun, W. Burgard, and D. Fox, “Probabilistic

robotics,” 2005.

[15] E. Coumans and Y. Bai, “Pybullet, a python module

for physics simulation for games, robotics and machine

learning (2016–2019),” URL http://pybullet. org,

[16] T. Hodan, M. Sundermeyer, Y. Labbe, et al., “Bop

challenge 2023 on detection segmentation and pose esti-

mation of seen and unseen rigid objects,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2024, pp. 5610–5619.

[17] B. Liu, Y. Zhu, C. Gao, et al., “Libero: Benchmarking

knowledge transfer for lifelong robot learning,” arXiv

preprint arXiv:2306.03310, 2023.

[18] A. Mandlekar, D. Xu, J. Wong, et al., “What mat-

ters in learning from offline human demonstrations for

robot manipulation,” in Conference on Robot Learning

(CoRL), 2021.

[19] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard,

“Calvin: A benchmark for language-conditioned policy

learning for long-horizon robot manipulation tasks,”

IEEE Robotics and Automation Letters (RA-L), vol. 7,

no. 3, pp. 7327–7334, 2022.

[20] A. Mandlekar, S. Nasiriany, B. Wen, et al., “Mimicgen:

A data generation system for scalable robot learning

using human demonstrations,” in 7th Annual Conference

on Robot Learning, 2023.

[21] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel,

and A. M. Dollar, “Benchmarking in manipulation

research: Using the yale-cmu-berkeley object and model

set,” IEEE Robotics & Automation Magazine, vol. 22,

no. 3, pp. 36–52, 2015.

[22] S. Tyree, J. Tremblay, T. To, et al., “6-dof pose estima-

tion of household objects for robotic manipulation: An

accessible dataset and benchmark,” in 2022 IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems (IROS), IEEE, 2022, pp. 13 081–13 088.

[23] Z. Xu, R. Papallas, and M. R. Dogar, “Physics-based

object 6d-pose estimation during non-prehensile manip-

ulation,” in International Symposium on Experimental

Robotics, Springer, 2023, pp. 181–191.

[24] F. Wang and K. Hauser, “Dense robotic packing of

irregular and novel 3d objects,” IEEE Transactions on

Robotics, vol. 38, no. 2, pp. 1160–1173, 2022.

[25] R. Shome, W. N. Tang, C. Song, et al., “Tight robot

packing in the real world: A complete manipula-

tion pipeline with robust primitives,” arXiv preprint

arXiv:1903.00984, 2019.

[26] C. Mitash, A. Boularias, and K. E. Bekris, “Robust 6d

object pose estimation with stochastic congruent sets,”

in 29th British Machine Vision Conference, 2019.

[27] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N.

Navab, “Ssd-6d: Making rgb-based 3d detection and

6d pose estimation great again,” in IEEE international

conference on computer vision, 2017.

[28] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim:

Deep iterative matching for 6d pose estimation,” in

Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 683–698.

[29] J. Tremblay, B. Wen, V. Blukis, B. Sundaralingam,

S. Tyree, and S. Birchfield, “Diff-dope: Differen-

tiable deep object pose estimation,” arXiv preprint

arXiv:2310.00463, 2023.

[30] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox,

“Posecnn: A convolutional neural network for 6d object

19

pose estimation in cluttered scenes,” Robotics: Science

and Systems XIV, 2018.

[31] B. Wen, C. Mitash, B. Ren, and K. E. Bekris, “Se (3)-

tracknet: Data-driven 6d pose tracking by calibrating

image residuals in synthetic domains,” in IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems, IEEE, 2020.

[32] B. Wen and K. Bekris, “Bundletrack: 6d pose tracking

for novel objects without instance or category-level 3d

models,” in 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), IEEE, 2021.

[33] L. Naik, T. M. Iversen, A. Kramberger, J. Wilm, and

N. Krüger, “Multi-view object pose distribution tracking

for pre-grasp planning on mobile robots,” in Interna-

tional Conference on Robotics and Automation, 2022.

[34] K. Pauwels and D. Kragic, “Simtrack: A simulation-

based framework for scalable real-time object pose

detection and tracking,” in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, 2015.

[35] K. Pauwels, V. Ivan, E. Ros, and S. Vijayakumar,

“Real-time object pose recognition and tracking with

an imprecisely calibrated moving rgb-d camera,” in

2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IEEE, 2014, pp. 2733–2740.

[36] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl,

and D. Fox, “Poserbpf: A rao–blackwellized particle

filter for 6-d object pose tracking,” IEEE Transactions

on Robotics, vol. 37, no. 5, pp. 1328–1342, 2021.

[37] R. Ge and G. Loianno, “Vipose: Real-time visual-

inertial 6d object pose tracking,” in IEEE/RSJ Interna-

tional Conf. on Intelligent Robots and Systems, 2021.

[38] S. Lu, R. Wang, Y. Miao, C. Mitash, and K. Bekris,

“Online object model reconstruction and reuse for life-

long improvement of robot manipulation,” in Interna-

tional Conference on Robotics and Automation, 2022.

[39] C. Choi and H. I. Christensen, “Rgb-d object tracking:

A particle filter approach on gpu,” in IEEE/RSJ Inter-

national Conf. on Intelligent Robots and Systems, 2013.

[40] M. Stoiber, M. Elsayed, A. E. Reichert, F. Steidle,

D. Lee, and R. Triebel, “Fusing visual appearance

and geometry for multi-modality 6dof object tracking,”

in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2023, pp. 1170–1177.

[41] C. Mitash, A. Boularias, and K. Bekris, “Physics-based

scene-level reasoning for object pose estimation in clut-

ter,” The International Journal of Robotics Research,

vol. 41, no. 6, pp. 615–636, 2022.

[42] T. Schmidt, K. Hertkorn, R. Newcombe, Z. Marton,

M. Suppa, and D. Fox, “Depth-based tracking with

physical constraints for robot manipulation,” in 2015

IEEE International Conference on Robotics and Au-

tomation (ICRA), IEEE, 2015, pp. 119–126.

[43] M. Jongeneel, A. Bernardino, N. van de Wouw, and

A. Saccon, “Model-based 6d visual object tracking with

impact collision models,” in 2022 American Control

Conference (ACC), IEEE, 2022, pp. 3850–3856.

[44] R. K. Kandukuri, M. Strecke, and J. Stueckler, “Physics-

based rigid body object tracking and friction filtering

from rgb-d videos,” in 2024 International Conference

on 3D Vision (3DV), IEEE, 2024, pp. 1259–1269.

[45] T. Mörwald, M. Kopicki, R. Stolkin, et al., “Predicting

the unobservable visual 3d tracking with a probabilistic

motion model,” in IEEE International Conference on

Robotics and Automation, 2011.

[46] M. Pfanne, M. Chalon, F. Stulp, and A. Albu-Schäffer,

“Fusing joint measurements and visual features for

in-hand object pose estimation,” IEEE Robotics and

Automation Letters, vol. 3, no. 4, pp. 3497–3504, 2018.

[47] M. Wüthrich, P. Pastor, M. Kalakrishnan, J. Bohg, and

S. Schaal, “Probabilistic object tracking using a range

camera,” in IROS, 2013.

[48] K. Eckenhoff, P. Geneva, N. Merrill, and G. Huang,

“Schmidt-ekf-based visual-inertial moving object track-

ing,” in IEEE International Conference on Robotics and

Automation, 2020.

[49] J. Wang and Y. He, “Motion prediction in visual object

tracking,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2020.

[50] D. T.-H. Nguyen and V.-H. Nguyen, “Application of

visual servo in tracking and grasping moving target,”

in 2022 International Conference on Control, Robotics

and Informatics (ICCRI), IEEE, 2022, pp. 83–87.

[51] A. J. Davison, “Active search for real-time vision,”

in Tenth IEEE International Conference on Computer

Vision (ICCV’05) Volume 1, vol. 1, 2005, pp. 66–73.

[52] G. Lee, J.-S. Kim, S. Kim, and K. Kim, “6d object

pose estimation using a particle filter with better ini-

tialization,” IEEE Access, vol. 11, 2023.

[53] R. Douc and O. Cappé, “Comparison of resampling

schemes for particle filtering,” in 4th Intl. Symposium

on Image and Signal Processing and Analysis, 2005.

[54] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka,

T. Erez, and Y. Tassa, “Predictive sampling: Real-

time behaviour synthesis with mujoco,” arXiv preprint

arXiv:2212.00541, 2022.

[55] “Motion capture systems.” (1996), [Online]. Available:

https://optitrack.com (visited on 08/06/2024).

[56] R. D. Howe and M. R. Cutkosky, “Practical force-

motion models for sliding manipulation,” The Interna-

tional Journal of Robotics Research, vol. 15, no. 6,

pp. 557–572, 1996.

[57] V. Makoviychuk, L. Wawrzyniak, Y. Guo, et al., “Isaac

gym: High performance gpu-based physics simulation

for robot learning,” arXiv preprint arXiv:2108.10470,

2021.

[58] Genesis: A universal and generative physics engine for

robotics and beyond, Dec. 2024. [Online]. Available:

https://github.com/Genesis-Embodied-AI/Genesis.

[59] “Vulkan®.” (2024), [Online]. Available: https://vulkan.

org (visited on 08/14/2024).

[60] E. Lapidous and G. Jiao, “Optimal depth buffer

for low-cost graphics hardware,” in ACM SIG-

GRAPH/EUROGRAPHICS Workshop on Graphics

Hardware, 1999.

20

[61] “Visualizing depth precision.” (2024), [Online]. Avail-

able: https : / / developer. nvidia . com / blog / visualizing -

depth-precision/ (visited on 08/14/2024).

[62] “Vulkan® 1.3.292 - a specification.” (2024), [Online].

Available: https://registry.khronos.org/vulkan/specs/1.3-

extensions /html /vkspec .html%5C#queries - occlusion

(visited on 08/14/2024).

[63] W. D. Hillis and G. L. Steele Jr, “Data parallel algo-

rithms,” Communications of the ACM, vol. 29, no. 12,

pp. 1170–1183, 1986.

[64] M. Billeter, O. Olsson, and U. Assarsson, “Efficient

stream compaction on wide simd many-core archi-

tectures,” in Proceedings of the conference on high

performance graphics 2009, 2009, pp. 159–166.

Zisong Xu received the B.Eng. degree from the
China University of Petroleum (Huadong), Qingdao,
China in 2019, and M.Eng. degree from the Univer-
sity of Leeds, Leeds, U.K. in 2020. He is currently
working toward the Ph.D. degree in robotic manip-
ulation with the University of Leeds, Leeds, U.K.
His research interests include robotic manipulation,
robotic perception, and computer vision.

Rafael Papallas received his Ph.D. in Robotics and
AI from the School of Computer Science at the Uni-
versity of Leeds in 2021. He is currently an Assistant
Professor in Computer Science at the American
University of Beirut — Mediterraneo in Paphos,
Cyprus, and a Visiting Research Fellow at the School
of Computer Science, University of Leeds. He works
on intelligent robotics and particularly focuses on
motion planning for robot arm manipulators. His
research interests include motion planning, motion
control, perception and human-robot interaction.

Jaina Modisett is a Ph.D. candidate at the Uni-
versity of Leeds, where she received her Master of
Science in High-Performance Graphics and Games
Engineering in 2023. She is currently working on
high-resolution voxel geometry techniques, focus-
ing on the real-time rendering of and interaction
with surface representations. Her research interests
include real-time rendering, voxel geometry repre-
sentations, and data structures and algorithms.

Markus Billeter received his Ph.D. in computer
science and engineering (computer graphics) from
the Chalmers University of Technology (Gothen-
burg, Sweden) in 2014 after completing a MSc in
Engineering Physics (Complex Adaptive Systems)
in 2008. He is a lecturer at the School of Computer
Science (University of Leeds, UK) and specializes in
real-time rendering and efficient GPU data structures
and methods.

Mehmet R. Dogar received his PhD from the
Robotics Institute at the Carnegie Mellon University
in 2013. He is currently a Professor in Robotics and
AI at the School of Computer Science, University of
Leeds. He was a Visiting Professor at ETH Zurich in
2023 and a post-doctoral researcher at CSAIL, MIT
between 2013-2015. Prof. Dogar is an Associate
Editor for IEEE Transactions on Robotics and also
for the International Journal of Robotics Research.
His research focuses on robotic object manipulation.

