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Abstract

Vaults are commonly used to form lightweight long-span roof structures, allowing flexible internal spaces with minimal associated

embodied carbon. The precise shape of the vault should be chosen to reduce or eliminate bending effects, so as to promote more-

efficient structures that work in pure compression. Many existing form-finding methods can identify bending-free designs; however,

these are restricted to operate on predefined layouts and therefore cannot generally achieve optimal material-efficiency. This paper

presents a new family of form-finding methods employing the numerical layout optimization method, which uses the ‘ground

structure’ approach to simultaneously optimize a vault’s form and force flow topology. A conic programming problem is formulated,

enabling the attainment of globally-optimal minimum-volume designs for any given nodal discretization. The formulation is newly

presented from an accessible engineering perspective, building upon the standard truss layout optimization method to provide an

explainable and flexible framework for future research within the community. To enhance computational efficiency, an adaptive

‘member adding’ technique is employed, enabling the solution of large-scale problems while also allowing rapid exploration of

smaller-scale scenarios for more practical vault designs. The proposed method is applied to a range of examples, demonstrating the

ability of the proposed procedure to generate more materially efficient vault designs, compared to traditional Force Density Method

(FDM) designs.

Keywords: form-finding, layout optimization, vaults, truss topology optimization, ground structure method

1. Introduction

Vaults are three-dimensional arch structures, typically con-

structed in masonry, and commonly used to form lightweight,

long-spanning roof structures and ceilings. Their structural ef-

ficiency stems from their geometric form that uses building

materials effectively, and is balanced with providing aestheti-

cally pleasing architectural designs. Careful consideration of

the form of a vault, can eliminate bending stresses and pro-

mote a compression only internal stress state, thereby improv-

ing structural efficiency and eliminating the need for tensile

reinforcement in its design. To aid in the design of arched

and vaulted geometries, various physical and numerical form-

finding methods have developed in the past. Early works in

form-finding can date back to the 6th century AD [1] and

gained widespread recognition through physical-based hang-

ing chain (Antonio Gaudı́), soap film (Frei Otto) and hanging

cloth (Heinz Isler) models in designing funicular structures car-

rying only compressive forces. Numerical form-finding meth-

ods were later developed, for which the classical approaches

can be categorized into three main families (Adriaenssens et al.

[2], Veenendaal and Block [3]),

• Stiffness matrix methods (Sive and Eidelman [4]),

• Geometric stiffness methods such as the Force Den-

sity Method (FDM) (Schek and Linkwitz [5][6][7]) and

Thrust Network Analysis (TNA) (Block and Ochsendorf

[8], Block and Lachauer [9], O’Dwyer [10], Fraternali

[11], Marmo and Rosati [12]),

• Dynamic equilibrium methods, including Dynamic Re-

laxation (DR) (Barnes [13], [14], [15]) and particle-

spring systems (Kilian and Ochsendorf [16]).

However, these traditional form-finding methods require the

designer to pre-define the structural layout at the start of the pro-

cess, which in the case of vaults, is an assumption on the com-

pressive load paths or force flow in the structure. This means

that the designs generated are unlikely to constitute minimum

material solutions, based instead on historical best practise or

past experience of “good” solutions. Additionally, perform-

ing form-finding with such a given structural topology, meth-

ods such as the FDM and DR will move the nodes in all spatial

directions to maintain equilibrium with the externally applied

loads, leading to a final form-found shape that does not main-

tain its initial plan projection. This can result in form-found

structures that are inconsistent with their starting assumptions

on self-weight loading and make it difficult to isolate only ver-

tical movements in the form-finding of the vault structure. TNA

resolves this issue by separating the force system’s planar equi-

librium from the elevation form-finding, and can additionally

be augmented with minimizing material volume [17, 18], opti-

mizing stability [19], or assessing structural safety [20], by op-



timizing force densities. If a FDM approach is adopted for op-

timizing force densities for minimum volume, constraints must

be applied to control the plan projected movements with a Con-

strained FDM (CFDM) [21]. However, there are limitations to

these methods of minimizing structural volume with TNA or

FDM, namely the use of slower non-linear optimization solvers

that have difficulty with scaling for larger problems, and still

the inability to optimize the topology of the force system it-

self, relying on a pre-defined layout. These limitations can be

partially addressed by iteratively alternating network connec-

tivities and force densities [22, 23], though this approach relies

on trial and error, and the number of pre-defined layouts still

remains limited, depending on the designer’s experience.

To remove this dependence on predefined layouts and mem-

ber force densities in a compressive only truss network, here

a new family of form-finding methods, capable of identifying

optimal structural layouts in parallel with the form-finding pro-

cesses, is sought. In this contribution the layout optimization

method is employed. Since being developed in the 1960s for

truss structures [24], the layout optimization methods have been

applied to various structural systems, including building brac-

ings [25], long span bridges [26], and floor grillages [27]. Fur-

thermore, an adaptive ‘member adding’ scheme was invented

by Gilbert and Tyas [28], which allowed solutions to be ob-

tained more quickly, and also for extremely large problems

(e.g., over one billion members) to be solved. This permits lay-

out optimization to be used as a numerical means of identifying

theoretical minimum material designs of structures.

However, whereas in a conventional topology optimization

problem the location of the applied loading is known a priori, as

mentioned previously, for form-finding problems this is not the

case, as the structural form and its resulting self-weight loading

has not been defined. To address this, Fuchs and Moses [29]

proposed a ‘transmissible loads’ formulation, in which the ver-

tical position of a given load could be varied (albeit issues with

this formulation were later highlighted [25]). Layout optimiza-

tion has previously been applied to form-finding problems for

arch structures using the aforementioned ‘transmissible loads’

[30]. However, the solutions obtained may comprise of mul-

tiple surfaces or layers in the resulting structure; furthermore,

the use of 3D design spaces significantly increases computa-

tional cost. Jiang [31] introduced a reduced ground structure

with an aim to improving computational efficiency, though the

mathematical rigour is also compromised due to the heuristics

involved in shrinking the 3D design domain and the presence of

tensile regions.

Recently, a theoretical and computational breakthrough in

form-finding was made in Bołbotowski [32]. At the concep-

tual level, the work was inspired by the optimal archgrid theory

put forth by Rozvany [33], see also more recent developments

[34, 35]. Similar to some of the aforementioned methods, the

archgrid approach requires a pre-fixed layout. These restric-

tions were removed in [32], which provides a rigorous theory of

3D vaults that globally minimize the material volume. In gen-

eral, these vaults are mixtures of framed grid-shells and mem-

brane shells, being reminiscent of the renown Michell structures

[36, 37], also hybrid in nature. The key idea behind the contri-

bution [32] consists in rewriting the 3D form-finding to a 2D

convex problem. The latter formulation serves as a springboard

to powerful numerical methods: well posed, due to convexity,

and fast, owing to the reduced dimension of the design space.

The paper capitalizes on that by employing the layout optimiza-

tion via a ground structure. It leads to a second order conic

programming (SOCP) problem as opposed to classical ground

structure formulations [24]-[28] being linear programs. Nev-

ertheless, it facilitates a similar level of efficiency, especially

when boosted with the adaptive member adding scheme, also

implemented and demonstrated in [32]. Eventually, a solution

of the 2D layout optimization problem furnishes a highly pre-

cise grid-shell approximation of the theoretically optimal vault.

Although the underlying optimization formulation was pre-

sented in [32], its engineering interpretation was potentially

overshadowed by the presence of numerous mathematical proofs.

Consequently, researchers without a strong mathematical back-

ground may find it challenging to fully comprehend and adapt

the method in future work. Therefore, the goal of this paper

is to make this new family of form-finding methods signifi-

cantly more accessible to the community by offering a new per-

spective, deriving the optimization problem through accessible

engineering concepts. Firstly, the exposition of the numerical

method will be greatly simplified. In [32] the SOCP formula-

tion was put forth as a way of approximating an auxiliary ab-

stract formulation. In contrast, this paper derives the problem

starting from classical truss layout optimization, with a sim-

ple example to elucidate the engineering characteristics of the

problem.

Secondly, the applicability of the method is demonstrated

through a benchmark-to-practical design workflow. While the

full ‘ground structure’ is employed to obtain benchmark de-

signs, more practical designs are generated by restricting the

connectivity of the initial ground structure. This simple modifi-

cation allows generating more practical designs with only slight

increase of the material volume. The efficacy of the new form-

finding method is then demonstrated through comparative stud-

ies against the FDM, with uniform or optimized force density

distributions, where in the examined examples the herein pre-

sented method will produce designs of significantly lower vol-

ume and with reduced computational cost. Thirdly, the practi-

cality of the method is further improved here through the addi-

tion of various support conditions, such as symmetry and roller

supports, as well as load conditions, including point loads and

patch loads. These simple modifications illustrate that the un-

derlying formulation can be readily adapted for future research.

Finally, the paper comes with a Python script in which the form-

finding method is implemented for the reader to explore.

The paper is organised as follows. In Section 2, the vault

layout optimization procedure is outlined and the adaptive

member adding process explained. In Section 3, various nu-

merical examples are solved to verify the new method, and to

compare it with classical force density methods. Finally, con-

clusions are drawn in Section 4.
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2. Methods

The standard truss layout optimization is introduced first

and then used as a basis for deriving the SOCP formulation for

vaults.

2.1. The standard truss layout optimization

The standard layout optimization process involves four

steps, as shown in Figure 1. Firstly, the design domain, loading

and support conditions are specified, Figure 1(a); secondly, the

design domain is discretized using a general or regular grid of

nodes, Figure 1(b); thirdly, a ‘ground structure’ is created by in-

terconnecting nodes with potential truss members, Figure 1(c);

finally, an optimum layout is identified by solving the following

optimization problem:

min
q,a

V = lTa, (1a)

s.t. Bq = f, (1b)

−σa ≤ q ≤ σa, (1c)

where, V is the structural volume, a = [a1, a2, ..., am]T is a

vector containing member cross-sectional areas, with m denot-

ing the number of members. l = [l1, l2, ..., lm]T is a vector of

member lengths, B is a 2n × m equilibrium matrix comprising

direction cosines, with n denoting the number of nodes and q

is a vector containing the internal member forces. Finally f

is a vector containing the external forces with σ as the limit-

ing material stress. Problem (1) is a linear programming (LP)

problem with respect to state variable q and design variable a.

Note that Problem (1) does not adjust the coordinates of nodes;

thus, the resulting structural form is influenced by the nodal

grid defined in the ‘ground structure’. Nevertheless, due to the

vast number of potential layouts within the ‘ground structure’,

even a coarse nodal grid can lead to highly accurate solutions,

as demonstrated in previous studies (e.g., [38]). When a finer

nodal grid is employed, the solution converges to the theoretical

minimum, as illustrated in works such as [30].

2.2. Adaptation to form-finding

2.2.1. Compression only structure

Having in mind that compression is favoured in vaults, each

compressive force q is desired to be positive. If a structure is in

pure compression, then the cross-section area of each element

can be chosen to ensure that the limiting stress is reached, i.e.

a =
q

σ
. This can be used to eliminate design variable a:

min
q

V =
1

σ
lTq, (2a)

s.t. Bq = f, (2b)

q ≥ 0. (2c)

(a) (b)

(c) (d)

Figure 1: Steps in 2D truss layout optimization.

2.2.2. Node elevation

A vault will be assumed to be a vertically loaded 3D truss

that is erected from a planar horizontal ground structure. The

structure will be supported at the nodes whose position is fixed

within the starting base plane. The remaining free nodes may

be moved vertically, and their elevations are then considered as

extra design variables.

The nodal elevations will be another variable vector z =

[z1, z2, ..., zn]T. The difficulty with respect to the standard

ground structure formulation is that now, with the nodes ver-

tically moving, the length vector l and the equilibrium matrix B

are not constants as they depend on z. The form-finding formu-

lation thus reads:

min
q,z

V =
1

σ
lT(z)q, (3a)

s.t. B(z)q = f, (3b)

q ≥ 0, (3c)

where the load vector has the structure f = [0, 0, f1,z, ..., 0, 0, fn,z]
T.

Formulation (3) is not computationally efficient to solve

with optimization solvers, as the extra variable z renders the

problem non-convex, therefore ruling out employing efficient

solvers that are known to work very well for large-scale stan-

dard ground structure settings. Accordingly, further reformula-

tion is required.

2.3. SOCP reformulation

As shown in Figure 2, member length can be calculated via,

l =

√

l2xy + l2z = lxy

√

1 +
l2z

l2xy

= lxy

√

1 +
q2

z

q2
xy

, (4)

where lxy is the projected member length on xy plane; lz rep-

resents the difference in nodal elevations between the two end

3



(a) (b)

Figure 2: An elevated member and its internal forces

nodes; qxy and qz are the revolved member forces in xy plane

and z direction, respectively. Note that the final representation

in terms of q is possible since the purely axial loading ensures

that the inclination of the axial force must be identical to the

inclination of the bar, i.e.
lz
lxy
=

qz

qxy
.

Since the structure is in pure compression, i.e., qxy ≥ 0, the

internal force of a member can be written as,

q =

√

q2
xy + q2

z = qxy

√

1 +
q2

z

q2
xy

. (5)

Therefore, by substituting equations (4) and (5) into the objec-

tive function (2a), the volume of a single member can be calcu-

lated using,

v =
lq

σ
=

lxyqxy

σ













1 +
q2

z

q2
xy













=
lxy

σ

(

qxy +
q2

z

qxy

)

(6)

where v is the member volume. Introduce now an auxiliary

variable r and let,

r ≥
q2

z

2qxy

, (7)

For an optimal solution, the equality condition in (7) must hold,

then equation (6) can be written as,

v =
lxy

σ

(

qxy + 2r
)

, (8)

which is now a linear expression with respect to variables qxy

and r, and the elevations z are no longer present.

On the other hand, inequality constraint (7) can be reformu-

lated as

2rqxy ≥ q2
z , (9)

which is a rotated quadratic conic constraint that can be solved

efficiently via SOCP.

Just as the elevation vector z was eliminated from the ob-

jective function (2a), utilizing the component vectors qxy,qz

instead of q splits the equilibrium equation (2b) into two lin-

ear equations. Ultimately, it leads to the SOCP formulation for

form-finding via layout optimization, which is significantly less

challenging to solve than the initial problem (3),

min
qxy,qz,r

V =
1

σ
lTxy

(

qxy + 2r
)

, (10a)

s.t. Bxyqxy = 0, (10b)

Bzqz = fz, (10c)

2rqxy ≥ q2
z for all members, (10d)

where, lxy, qxy, qz and r are m × 1 vectors containing the cor-

responding variables of all members. fz is a vector of vertical

point loads applied at nodes. Additional horizontal point loads

may also be applied to the force equilibrium constraint (10b),

but in this context, they are considered in the same load case

as fz, thus limiting their usefulness in practical scenarios. For

uniformly distributed loads (UDL), the equivalent lumped point

loads should be applied. If the UDL is intended to approximate

self-weight, the lumped point loads may not always provide ac-

curate results, and alternative approaches are required, which

are the subject of ongoing research. Bxy is a 2n×m equilibrium

matrix on the xy plane and Bz is a n × m equilibrium matrix in

the z axis. The local equilibrium matrices for a member i can

be written as,

Bxy,i =





























−∆x/lxy

−∆y/lxy

∆x/lxy

∆y/lxy





























, (11)

and

Bz,i =

[

−1

1

]

, (12)

where ∆x and ∆y denote the differences in the x and y coordi-

nates of the end nodes of member i.

It is worth mentioning that the SOCP formulation (10), pri-

marily derived from the plastic minimum volume formulation,

is equivalent to the elastic design of vaults, i.e. to a minimum

compliance problem. This was evidenced in Section 6.2.3 of

[32]. In particular, there exist admissible nodal displacements

that generate a uniform axial strain in all the members, i.e. the

elastic structure is uniformly stressed.

2.4. A very simple example

To provide some intuition on the characteristics of the prob-

lem (10), a simple example will be considered. This example

is as shown in Fig. 3. The ground structure here contains just

2 elements, both of which are aligned to the x-axis. The allow-

able stress σ for this example is 1. Thus, for this case, problem

(10) becomes:

min
qxy,qz,r

V =

[

2

1

]T ([

qxy,1

qxy,2

]

+ 2

[

r1

r2

])

, (13a)

s.t.

[

1 −1

0 0

] [

qxy,1

qxy,2

]

=

[

0

0

]

, (13b)

[

1 −1
]

[

qz,1

qz,2

]

=

[

1
]

, (13c)

2r1qxy,1 ≥ q2
z,1 , (13d)

2r2qxy,2 ≥ q2
z,2 , (13e)

where additional subscripts indicate whether the variable re-

lates to element 1 or 2.

Firstly, note that the equilibrium conditions are written only

for the unsupported degrees of freedom at point B. At points A

4



1 2
A B C

fz = 1

(a)

A C

qxy = 0.5

qz = 0.5

qxy = 0.5

qz = −0.5

Volume = 2.00 + 1.00 = 3.00

(b)

A C

qxy = 0.5

qz = 0.4

qxy = 0.5

qz = −0.6

Volume = 1.64 + 1.22 = 2.86

(c)

A C

qxy = 0.47

qz =
1

3

qxy = 0.47

qz = −

2

3

Volume = 1.41 + 1.41 = 2.83

(d)

Figure 3: Very simple example: (a) problem specification; (b) a non-optimal

but feasible (i.e., satisfying all constraints in (13)) solution; (c) another non-

optimal but feasible solution; (d) the optimal solution. Volumes of each element

and total volume shown.

and C, the freely chosen reaction forces mean that equilibrium

will always be satisfied there, and thus those constraint rows

should be removed from the problem. The in-plane equilibrium

constraint (13b) has two rows, corresponding to the x and y

direction at point B; but as there are no elements in this example

which have a component in the y direction, the second row is

trivially satisfied as 0 = 0.

Suppose now that a feasible solution to (13) is sought. As

an initial guess, it is assumed that element 1 will carry half the

vertical load, qz,1 = 0.5. Vertical equilibrium constraint (13c)

then implies that qz,2 = −0.5, i.e. element 2 carries the other

half of the load, with a downwards slope. The horizontal thrust

is initially guessed to be 0.5, with the in-plane equilibrium con-

straint (13d) ensuring qxy,1 = qxy,2.

However, if we attempt to draw this solution, as has been

done in Figure 3b, it quickly becomes apparent that this does

not form a valid structure. Both elements have vertical and in-

plane forces of equal magnitude, and so to keep these in line

with the elements, they must both have a 1:1 slope (upwards or

downwards respectively). This means that they arrive at point

B at different heights. Conceptually, it should be imagined that

a cost-free, infinitely stiff vertical bar joins the elements here

(shown as dashed in Fig. 3(b)). Clearly this is not a practical

representation of the real-world, however it will be shown that

this issue vanishes as we improve the optimality of the solution.

An intuitive improvement on the initial solution above/in

Fig. 3(b) would be to increase the proportion of loading trans-

mitted to the closer support. Fig. 3(c) shows the structure ob-

tained by setting qz,1 = 0.4. The volume of element 1 has been

reduced by 0.36 while the volume of element 2 increases by

just 0.22, leading to an overall reduction in the objective func-

tion. Furthermore, by drawing the elements aligned to their

respective axial force vectors, it can be seen that the vertical

discontinuity at B has reduced.

The optimal solution to (13) is shown in Fig. 3(d). For the

optimal solution there is no discontinuity at point B, i.e. the val-

ues of qxy and qz represent a true single-layer structure. A key

theoretical breakthrough in [32] was to prove that this is the

case for all problems, also when the ground structure is truly

two dimensional. This is discussed in the next subsection. Fig-

ure 4 shows the main steps in layout optimization of vaults em-

ploying a fully connected ground structure; both the optimum

member layout and the elevations of nodes are obtained.

2.5. Recovering the elevations of the nodes

The nodal elevations z are absent from the SOCP formu-

lation (10). Nonetheless, after finding the solution qxy, qz, r

the elevations must be restored in order that the final 3D design

is generated. From Figure 2 follows that, for every bar in the

ground structure that is of non-zero member force, the ratio
qz

qxy

determines the slope of the bar. More precisely,

lz = lxy

qz

qxy

if qxy > 0. (14)

For each member lz is simply a difference between the end

elevations. It is possible to obtain elevations of nodes by follow-

ing the slope of members, starting from fixed nodes. However,

5



Figure 4: Layout optimization of vaults employing a ground structure method.

note that this equation itself does not guarantee that the out-

come vault is single-layered. It is possible that members meet

at different elevations that a node is split into multiple nodes in

the z direction, for example see Figure 3(b). To address this, it

can be shown that there holds the linear geometric relation,

BT
z z = lz. (15)

Combining (14) and (15) leads to a linear system for the un-

known elevations z. Since m ≫ n for fully connected ground

structure, this system is largely overdetermined. Thus, for the

system to be consistent, the vector of ratios
qz

qxy
must satisfy cer-

tain compatibility conditions, which are not a priori built into

the problem (10). It is important to note that a significant the-

oretical breakthrough in [32] is that the study proves that the

consistency of the linear system is guaranteed whenever qxy, qz

are optimal for (10) (Theorem 6.6 in [32], see also the simple

example in Figure 3). In [32] this was shown via the dual so-

lution (cf. Appendix B) which also automatically delivers the

compatible elevations z. In this paper a direct analysis of the

problem (10) is performed in Appendix A to show the well

posedness of the elevations’ recovery problem.

Since it is proved that a consistent linear system (15) is

guaranteed when the optimum solution of (10) is found, vari-

ous approaches can be developed to identify the elevations of

nodes. For example, it is possible to use the slope of members

in (14) to obtain the elevation of nodes from one to another. Al-

ternatively, the least-square solution of (15) can be used, which

is implemented in the supplemented Python script. Note that

least-square solution only provides a simple means of solving

system (15); as discussed above, since the system is consistent,

the residual error is negligible.

For the very simple example in Sect. 2.4, the system to be

solved can be written as:

[

1

−1

]

[

zB

]

=













2
qz,1

qxy,1

1
qz,2

qxy,2













. (16)

For the optimal solution in Fig. 3d, this system is consistent,

allowing for zB = 1.41:

[

1

−1

]

[

zB

]

=

[

2 0.33
0.47

1−0.67
0.47

]

=

[

1.41

−1.41

]

. (17)

However, for the non-optimal solutions the system cannot be

solved. E.g. for the solution in Fig 3(b) it becomes

[

1

−1

]

[

zB

]

=

[

2 0.5
0.5

1−0.5
0.5

]

=

[

2

−1

]

. (18)

Also note that [32] provides a simpler method that directly

identifies the elevation of nodes without the need of solving

(15), though some more complex derivations are involved. For

sake of simplicity it is not discussed here.

2.6. Adaptive ‘member adding’ scheme

Adaptive ‘member adding’ [28] is a technique used in vari-

ous layout optimization methods to significantly improve com-

putational efficiency without losing optimality (e.g., [27, 30,

38]). Instead of solving a problem with all members in the

‘ground structure’ (e.g., Figure 1 (c)), the member adding

scheme first ‘activates’ only a small subset of members (i.e.,

members used to solve problem (10)). The solution is then im-

proved by iteratively activating new members, which are iden-

tified by examining the dual problem of (10), see Section Ap-

pendix B.2 for details. A flowchart of the ‘member adding’

scheme is illustrated in Figure 5. Here the starting member

subset contains members with a length up to
√

2 times the nodal

spacing, i.e. members parallel or at 45◦ to the x and y directions.

Note that while the choice of the initial subset is nonunique, the

solution process and total computational cost will remain sim-

ilar. It is even possible to start from an infeasible (i.e., force

equilibrium cannot be satisfied) subset, though some extra steps

are required; see Appendix B.3 for details. The iterative pro-

cess terminates when the dual problem cannot identify any new

members to further improve the solution. It is important to note

that, the use of dual problem ensures that the solution obtained

via the ‘member adding’ scheme is equivalent to that derived

via the full problem, and the choice of initial subset has no im-

pact on the final solution. An example is given in the following

section.

3. Numerical examples

To demonstrate the efficacy of the proposed layout opti-

mization method, several numerical examples are solved. The

volume results are normalized using the magnitude p of the

UDL, problem dimension L and limiting stress σ. All quoted

CPU costs are obtained using a workstation equipped with Intel

Xeon E5-2680v2 processors running 64-bit CENTOS Linux.
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Start

Select initial member set

Solve problem (10)

Check violation via (B.2)

Violation? Activate new members

Complete

no

yes

Figure 5: Flowchart of the ‘member adding’ scheme.

3.1. Verification example: square domain with corner supports

To verify the method, a simple example is now considered

for the case of a square domain with four corner supports, see

Figure 6.

Figure 6: Square domain with corner supports, subject to uniformly distributed

loading.

3.1.1. ‘Member adding’ procedure

The adaptive ‘member adding’ procedure is shown in Fig-

ure 7(a): in the first iteration, problem (10) is solved using a

small subset of members (1,056 of 25,456 members in the full

‘ground structure’). This first iteration shows a cross-shaped

crease in the vault spanning to the corner supports with high

forces, and then with secondary parallel spanning arches. Then

inequality condition (B.2) is checked to identify violated mem-

bers that are not present in the subset; and the 244 most violated

members are activated, then problem (10) is solved with the

new subset, improving the objective value (i.e., volume) from

0.9034pL3/σ to 0.8974pL3/σ to give the second iteration re-

sult Figure 7(b). This process repeats until constraint (B.2) is

satisfied for all inactivated members in the ‘ground structure’,

so that no member can be added to further improve the solu-

tion. The final iteration (Figure 7(c)) contains only 1,620 active

members, while the solution is mathematically guaranteed (as

described in Appendix B) to be equivalent to that of solving

the full problem with 25,456 members. Therefore, the ‘mem-

ber adding’ approach significantly improves computational ef-

ficiency, permitting very large scale problems to be solved. The

final result shows a vault with bands of diagonal forces travel-

ling directly to the supports, accompanied again by the parallel

arches spanning the free edges direction. Note that intersecting

members in the 2D ‘ground structure’ may not intersect in 3D.

This limitation may affect the method’s practicality and war-

rants further research, although it is notable that this issue does

not arise in even the lower resolution results shown in this pa-

per. When a dense nodal grid is utilized in the ‘ground struc-

ture,’ the resulting vault will be single-layered, as outlined in

Proposition 6.4 of [32].

(a)

(b)

(c)

Figure 7: Vault supported at four corners: full problem has 25,456 potential

members; adaptive solution process: a) iteration 1, V1 = 0.9034 pL3/σ, m =

1,056; b) iteration 2, V2 =0.8974 pL3/σ, m = 1,300; c) final iteration, V =

0.8900 pL3/σ, m = 1,620 (m is the number of ‘activated’ members).

3.1.2. Theoretical minimum material designs

Since problem (10) is convex, global optimum solutions

can be guaranteed. Therefore, the theoretically minimum ma-

terial designs can be ‘obtained’ when the number of nodes in

the ‘ground structure’ tends to infinity. A numerical means of

predicting the theoretical solution is via extrapolation; follow-

ing work in [30, 27], numerical solutions obtained from layout

optimization appear to follow a relation of the form

Vn = V∞ + kn−α, (19)

where Vn is the volume for problem with n nodal divisions, V∞
is the volume for n→ ∞, and k and α are constants.

7



Figure 8: Square domain with corner supports: Optimal volumes obtained at different nodal densities, with extrapolation to estimate the theoretical minimum

material of an infinite resolution problem via convergence study.

Table 1: Square domain with corner supports: effects of varying nodal density on the normalized optimal volume. Percentage differences of the results between the

extrapolated optimal volume shown, alongside CPU analysis times.

ndiv n m active members V∗ (pL3/σ) diff† % iterations CPU‡ (s)

10 121 4,492 873 0.88946 0.30 4 0.9

20 441 59,456 4,593 0.88813 0.15 5 2.4

40 1,681 859,168 31,183 0.88743 0.075 6 22

60 3,721 4,209,056 118,828 0.88720 0.049 8 155

80 6,561 13,088,448 331,598 0.88708 0.036 8 474

100 10,201 31,627,760 754,337 0.88702 0.028 9 1,427

120 14,641 65,169,960 1,528,421 0.88697 0.024 10 3,565

140 19,881 120,159,272 2,777,077 0.88694 0.020 10 7,111

160 25,921 204,238,120 4,691,970 0.88692 0.017 11 14,289

180 32,761 326,238,808 7,373,910 0.88690 0.015 11 24,555

200 40,401 496,179,952 11,084,004 0.88689 0.014 12 45,250

220 48,841 725,132,192 16,084,649 0.88688 0.013 11 64,609

240 58,081 1,025,371,872 22,904,142 0.88687 0.012 14 137,413

∞ ∞ ∞ - 0.8868 0 - -

∗: solved using quarter design domain due to symmetry, though volume of the whole structure is quoted

†: percentage difference compared to the extrapolated solution

‡: total CPU cost in the full ‘member adding’ process , i.e., solving problem (10) via Mosek and checking (B.2)

The extrapolation scheme is applied to the square vault ex-

ample in Figure 6, and the results shown in Figure 8. In this

plot, the normalized optimal volume is plotted against increas-

ing nodal divisions (up until 240), with numerical data results

drawn in red markers, and the extrapolation function plotted in

blue, tending to the (infinite) limit nodal division result plot-

ted by the horizontal green line. It can be observed that the

solutions obtained using high resolution nodal grids resemble

the so-called Michell continua comprising infinitesimally small

members. The mathematical theory of these continual vaults is

a part of the work [32].

Table 1 summarises all solutions for the problem in Fig-

ure 6. It is demonstrated that layout optimization can ob-

tain highly accurate solutions even with relatively coarse nodal

grids. For example, the solution with 10×10 nodal divisions

is only 0.30% above the extrapolated theoretical optimum, ow-

ing to the vast number of potential connectivities provided by

the ‘ground structure. It is therefore possible to utilise the

method to generate more practical designs while maintaining

structural efficiency, as demonstrated in the examples presented

in the following sections. On the other hand, the method

is capable of solving enormously large problems containing

> 1, 000, 000, 000 potential members. The efficacy and robust-

ness of the method are hereby demonstrated.

3.2. Square domain with edge supports

Since layout optimization is capable of generating (near-

)optimum solutions, they can be used as benchmarks to evaluate

the optimality status of designs generated via classical form-

finding methods. For sake of simplicity, the FDM is considered

here as a comparative method.

The first comparison example considers a square domain

with edge supports. Using layout optimization (LO), a bench-

mark design is obtained using the aforementioned extrap-

olation approach and the optimum volume is found to be

0.435806pL3/σ, see Figure 9. Then the example is solved us-

ing the FDM with a predefined orthogonal grid connectivity,

see Figure 10. To identify the optimum constant force den-

sity across all members, the following linear search problem is

solved,

min
γ

V(γfd), (20)

where fd is a vector containing the initial force density set to all

members. Scalar γ is a multiplier to be optimized for minimum

volume. In this paper, the initial force density is set to 1.0pL,

and γ varies within the range from 0.0001 to 10000.

The minimum material design via FDM is shown in Fig-

ure 10, which is 18.2% above the benchmark, i.e., the extrap-

olated theoretical minimum material design in Figure 9. In

addition, three further different predefined connectivities are

considered, see Figure 11. These additional connectivities for

study are: #2 orthogonal plus central emanating diagonals, #3
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Figure 9: Square domain with edge supports: Optimal volumes obtained at different nodal densities, with extrapolation to estimate the theoretical minimum material

of an infinite resolution problem via convergence study.

Connectivity18.2

Force density

D
iff

 (
%

)

Figure 10: Force Density Method: identifying the optimum uniform force den-

sity for the edge supported square vault, by solving a single variable linear-

search problem (20)

orthogonal plus concentric diamond diagonals, and #4 orthog-

onal plus superimposed cross diagonals. It can be observed

that, for the FDM results, although the resulting vault geometric

forms for the different connectivities are similar to each other,

the volumes exhibit significant variations, even when the uni-

form force densities are optimized. Specifically, connectivity

#2 leads to a large increase in volume (31%), while connec-

tivity #3 shows the least (13.8%) increase over the benchmark

case. Note that different connectivities or topological mappings

[22] may be proposed, each with varying differences in volume

compared to the benchmark.

To compare the solutions to those obtained via layout opti-

mization, two cases are considered: first, similar to the FDM,

the four predefined connectivities are used directly; second, the

standard layout optimization problem (i.e., no predefined con-

nectivity) is solved. In the first case (see again Figure 11), it

is found that connectivity #1 leads to the largest volume in-

crease (4.99%), since it has the least design freedom (i.e., the

least amount of design variables). It is worth noting that with

this basic connectivity the generated structure coincides with

the archgrid solution [34], see Proposition 8.6 in [32] for the

proof. Similar to the FDM, connectivity #3 gives the best de-

sign (1.30% increase). Nevertheless, these results are signifi-

cantly lower than those generated via the FDM with constant

force densities, as each member can have an optimized force

value in the LO method, rather than constant force (density)

values across all members. In the second case, the solution ob-

tained with full connectivity is shown in Figure 11. Due to the

increased design freedom, this leads to the most efficient de-

sign, albeit with increased complexity.

3.3. Six-sided domain supported at corners

The second comparison example considers a six-sided do-

main with corner supports, as shown in Figure 12(a) with two

layouts of the predefined connectivity, Figure 12(b) is used in

the the FDM and Figure 12(c) for LO. To consider alternative

designs with different force density distributions beyond just

using constant values throughout, two special cases are intro-

duced by reinforcing the edges and ribs, by adjusting the rel-

ative force densities of the corresponding members to 10.0pL

(thicker lines), while maintaining the remaining members at a

force density of 1.0pL (thinner lines), see Figure 13. The results

of the FDM analyses are shown in Figure 14(a-c), where it can

be observed that the FDM pulls the edge members inwards by

adjusting positions of free nodes in plane; and that such effect

is reduced when the edges are reinforced with the higher force

densities, effectively pulling the structure back out. Since the

loaded area of the UDL (i.e., the projected vault area on the xy

plane) is altered, the magnitude of equivalent point loads should

be updated accordingly. This therefore results in an iterative

process, where the FDM is solved sequentially with updated

equivalent point loads, until the change in volume between two

successive iterations is sufficiently small.

In the layout optimization approach, three cases are consid-

ered by varying the potential members in the ‘ground structure’.

The least material design is obtained first in Figure 14(d), where

a fully connected ‘ground structure’ is employed. The reported

volume is then used as the benchmark to assess the efficiency

of all other designs. Next, Figure 14(e) shows the solution ob-

tained with the adjacent connectivity in Figure 12(c), where the

solution is only 0.2% above the benchmark case. While, in Fig-

ure 14(f), the same connectivity in Figure 12(b) is used, leading

to a slight increase in volume (2.5%). Also note that, in lay-

out optimization, the boundaries of the design domain remain

preserved, eliminating the necessity for an iterative process to

update the equivalent point loads employed in FDM.

Since the plane area of vaults is altered in the FDM, the

volume per area, V̄ , is used to compare the results in Figure 14.

Regarding the FDM solutions, using a uniform force density

in Figure 14(a), leads to the most inefficient design, where a

volume increase of 34.9% is reported. Strengthening the edges
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Figure 11: Comparative study by varying initial connectivities in FDM and

layout optimization (OPT). Note that for clarity, a 10×10 nodal grid is used

to illustrate the connectivities, though the problems are solved using a 20×20

nodal grid.

(a) (b) (c)

Figure 12: Six-sided problem: (a) problem specification; (b) minimum connec-

tivity for FDM; (c) adjacent connectivity for layout optimization.

(a) (b)

Figure 13: Six-sided problem, special cases in FDM: (a) edges have force den-

sities of fd = 10.0pL; (b) similar to (a), but with ribs additionally reinforced.

and ribs will improve its structural efficiency, see Figure 14(b)

and (c). Further improvements can be achieved by introduc-

ing additional variations or optimizations of the force densities,

albeit it necessitates further exploration and approaches. On

the contrary, solutions obtained via layout optimization exhibit

only minor increases in volume over the benchmark value, even

though the member layouts may vary significantly (e.g., com-

pare Figure 14(e) to (f)).

3.4. Eight-sided problem under UDL and a central point load

The last comparison example considers an eight-sided do-

main with edge supports around the perimeter. The vault is

subject to a UDL and a centrally loaded point load with a mag-

nitude of F = λpL2, where p is the magnitude of the UDL,

λ is a predefined multiplier, and L is the distance from centre

to perimeter vertices (i.e., radius of the circumcircle), see Fig-

ure 15(a).

For the FDM, the connectivity in Figure 15(b) is used, with

a special case in Figure 15(c), where the ribs are reinforced

by setting the force densities to 10.0pL, similar to the previous

example in Figure 13. For layout optimization, two cases are

considered: one with a fully connected ‘ground structure’ and

the other using the connectivity shown in Figure 15(b). To study

the influence of the point load, three scenarios are considered,

• λ = 0: only the UDL is present,

• λ = 0.1: both the UDL and point load are present to-

gether,

• λ = 1: a relatively large point load is used.
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V̄ = 1.349V̄ref V̄ = 1.256V̄ref V̄ = 1.175V̄ref

(a) (b) (c)

V̄ref V̄ = 1.002V̄ref V̄ = 1.025V̄ref

(d) (e) (f)

Figure 14: Six-sided domain supported at corners: (a) FDM, V̄ = 1.349V̄ref; (b)

FDM with reinforced edges, V̄ = 1.256V̄ref; (c) FDM with reinforced edges and

ribs, V̄ = 1.175V̄ref; (d) LO with full connectivity, V̄ref; (e) LO with adjacent

connectivity, V̄ = 1.002V̄ref; (f) LO with minimum connectivity, V̄ = 1.025V̄ref

(V̄ represents the material volume per area on plane)

(a) (b) (c)

Figure 15: Eight-sided problem: (a) problem specification; (b) connectivity in

FDM; (c) with reinforced ribs.

The results are shown in Figure 16, for the two FDM cases

(a) and (b), the two LO cases (c) and (d), and for the three

λ loadcases. The solutions in (c), which are obtained with a

fully connected ‘ground structure’, are used as the benchmarks

volumes under each scenario (λ = 0, 0.1, 1) to compare to.

The standard FDM with uniform force densities in (a) leads to

the largest volume increase compared with the benchmark vol-

umes, followed then by designs (b) and (d). As the magnitude

of the point load increases, the solutions derived from the FDM

and layout optimization methods evolve differently. The stan-

dard FDM in Figure 16(a) develops a localized spike at the tip

of the vault under the point load, while the optimized solutions

in (c) and (d) evolve towards more pyramid-shaped vaults with

more defined creases. Reinforcing the ribs with the FDM effec-

tively transforms the shape, also showing an evolution towards

pyramid shapes; and effectively reducing the structural volume.

λ = 0 λ = 0.1 λ = 1

(a)

V ′ = 1.109V ′
ref

V ′′ = 1.124V ′′
ref

V ′′′ = 1.309V ′′′
ref

(b)

V ′ = 1.096V ′
ref

V ′′ = 1.095V ′′
ref

V ′′′ = 1.114V ′′′
ref

(c)

V ′
ref

V ′′
ref

V ′′′
ref

(d)

V ′ = 1.010V ′
ref

V ′′ = 1.011V ′′
ref

V ′′′ = 1.029V ′′′
ref

Figure 16: Eight-sided vault with centroid point load: (a) FDM; (b) FDM with

reinforced ribs; (c) LO with a full ‘ground structure’; (d) LO with minimum

connectivity

3.5. Summary of comparison examples

To further demonstrate the efficacy of the layout optimiza-

tion form-finding approach, the CFDM from [21] , which al-

lows for variable force densities to obtain optimum (minimum

volume) designs, was also applied for comparison. Table 2

summarises all results and CPU costs associated with the differ-

ent methods, FDM, CFDM and LO. It can be observed that al-

though the CFDM obtains the same results, the associated CPU

costs are relatively higher, due to the use of slower non-linear

optimization solvers. This also makes it challenging to solve
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larger problems such as that in Figure 12(c), which led to an

error during to optimization process. Similar to LO, CFDM

can effectively restrict the horizontal movement of boundary

nodes in the example shown in Figure 12, thereby preserving

the plane area of the vaults. This contrasts with the result ob-

tained via FDM, where the distribution of UDL is altered, re-

sulting in higher volume per unit area, as observed in Figure 14.

It can also be observed from Table 2 that neither FDM nor

CFDM can deal with the full problem, thus a predefined con-

nectivity is always required. This limitation is now addressed

in LO.

Table 2: Comparing outcome volumes and CPU costs associated with the FDM,

CFDM and LO method.

FDM CFDM LO

Problem V (pL3/σ) CPU† (s) V CPU‡ V CPU⋆

Fig. 11∗, #1 0.51472 0.5 0.45732 280.3 0.45732 0.1

Fig. 11∗, #2 0.57468 0.5 0.45320 566.6 0.45320 0.1

Fig. 11∗, #3 0.49568 0.5 0.44127 582.6 0.44127 0.1

Fig. 11∗, #4 0.52336 0.5 0.44506 559.0 0.44506 0.1

Fig. 11∗, full - - - - 0.43730 0.3

Fig. 12(b) 1.1603 2.5 2.9943 621.0 2.9943 0.3

Fig. 12(c) - - - - 2.9270 0.3

Fig. 12, full - - - - 2.9206 1.3

Fig. 15, λ = 0 2.6081 2.5 2.3741 997.1 2.3741 0.3

Fig. 15, λ = 1 5.2027 2.5 4.0876 1266 4.0876 0.3

∗: solved using quarter design domain due to symmetry, though volume of the whole

structure is quoted

†: total CPU cost in linear search problem (20)

‡: total CPU cost for non-linear solver IPOPT

⋆: total CPU cost in the full ‘member adding’ process , i.e., solving problem (10) via

Mosek and checking (B.2)

3.6. Irregular domain

To further demonstrate the layout optimization method, a

problem with an irregular domain is considered here. The

‘ground structure’ approach eliminates the need of an initial

guess of the mesh pattern or member connectivities. The bench-

mark solution is obtained by employing a fine ‘ground struc-

ture’ containing > 10, 000 nodes and > 30, 000, 000 potential

members, see Figure 17. Similar to the solutions in Figure 8, the

outcome resemble the Michell continua comprising infinitesi-

mally small members. To obtain more rational results, different

connectivies shown in Figure 18 are used; and the differences

to the benchmark solution remain relatively low.

(a) (b)

Figure 17: Irregular domain: benchmark solution obtained with >10,000 nodes

and >30,000,000 potential members: (a) problem dimension; (b) optimum de-

sign, V = V0

(a) (b) (c)

Figure 18: Irregular domain, various designs obtained using different connec-

tivies: (a) fine triangulation, V = 1.044V0; (b) relatively coarse triangulation,

V = 1.069V0; (c) structured quad mesh, V = 1.093V0

3.7. Domain with hole under patch loads

The final example involves a domain with a hole subjected

to patch loads of magnitudes p and 2p, as illustrated in Fig-

ure 19(a). Three design scenarios for the hole are considered:

• free, where the hole is unsupported;

• roller-supported, where the hole is supported by four

rollers positioned as shown in Figure 19(a);

• fixed-supported, where the hole is fixed supported at four

anchor points.

(a) (b) (c)

Figure 19: Domain with hole under patch loads and internal supports: (a) prob-

lem specification, where all light and dark gray areas are under UDL with mag-

nitudes of p and 2p, respectively; circular symbol represents internal support

with three design scenarios: free, roller-supported, or fixed-supported; (b) min-

imum connectivity; (c) adjacent connectivity.

The results for the three design scenarios and different types

of connectivity are shown in Figure 20. When comparing

the different types of supports, it is evident that the structural

volume decreases as stronger support conditions are applied.

When comparing the different types of connectivity, it is inter-

esting to observe that the extent of volume reduction achieved

by using adjacent connectivity instead of minimum connectiv-

ity varies depending on the support type. In Figure 20(a), the

volume reduction is relatively small, indicating that the design

obtained using minimum connectivity remains an efficient solu-

tion. However, in Figure 20(b) and (c), the reduction becomes
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Minimum connectivity Adjacent connectivity Full connectivity

(a)

V = 2.926
pL3

σ
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σ
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σ

(b)
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pL3

σ
V = 1.843

pL3
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σ

(c)

V = 2.169
pL3

σ
V = 1.789

pL3

σ
V = 1.715

pL3

σ

Figure 20: Domain with hole under patch loads, considering three scenarios for the internal supports in Figure 19: a) free; b) roller-supported; c) fixed-supported

significantly larger, as the additional members introduced by

the adjacent connectivity enable the formation of more effi-

cient structural configurations for transferring the load to the

point supports. This highlights the advantages of employing the

method in more complex design scenarios, particularly when

defining a predefined connectivity based on the designer’s ex-

perience is challenging. In addition to identifying the optimum

structural volume, the method’s ability to automatically gener-

ate the optimum force and form can also inspire designers to

develop more practical designs or connectivity patterns for use

in other form-finding approaches.

4. Conclusions

Although many form-finding methods have been developed

in recent decades to identify bending-free designs of vaults,

their reliance on predefined layouts of the underlying force flow,

or of simplified distributions of these forces, can result in de-

signs that are materially inefficient. These methods can also

have disadvantages such as drifting nodes in plan and long op-

timization times for non-trivial internal force distributions. In

this contribution, a numerical layout optimization procedure

tailored for vault form-finding problems has been described,

building on the work by Bołbotowski [32]. Although the un-

derlying optimization problem remains the same as in [32], an

engineering perspective is employed here to offer an alternative

approach that is significantly more accessible to the community.

The method uses the ‘ground structure’ approach, formulating

the form-finding problem as a two-dimensional problem solv-

able via conic programming. Since the optimization problem

is convex, globally optimal solutions can be obtained, which

means that the resulting vaults are guaranteed minimum mate-

rial designs. In addition, an adaptive ‘member adding’ tech-

nique has been used to significantly improve computational ef-

ficiency, enabling medium-sized problems to be solved in sec-

onds and also allowing very high-precision solutions to be ob-

tained for benchmarking purposes (e.g., problems comprising

over 1,000,000,000 design variables can be solved on a desk-

top PC). The proposed procedure has been applied to a range

of example problems previously solved using traditional form-

finding methods, namely using the FDM, demonstrating the

ability of the proposed procedure to generate designs that are

significantly more materially efficient in every case. It is shown

that simple modifications, such as restricting connectivies in

the ‘ground structure’, can generate more practical designs with

only slight increase of material volume. The presented method

can be used to design the guaranteed most materially efficient

vaults with general plan domain and supports, and with fixed

projection of the nodes consistent with the applied loading.

Data availability

Downloadable Python script and example files are avail-

able from: https://doi.org/10.15131/shef.data.27187602. Note

that only free libraries are included in the script, therefore,

although the Mosek solver is used in the paper, it is not

included in the script. Interested readers can use vol =

prob.solve(solver = cvx.MOSEK) to activate the solver,
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provided that Mosek is installed and licensed.

Appendix A. Existence of compatible nodal elevations

With qxy, qz being solutions of (10), the question of ex-

istence of compatible nodal elevations z posed in Section 2.5

boils down to the solvability of the system:

BT
z z = LxyQ−1

xy qz, (A.1)

where Lxy = diag(lxy), Qxy = diag(qxy). All forces qxy are

assumed to be positive, otherwise the rows corresponding to

zero forces can be removed from the system (A.1).

Recall the form (6) of the objective function in the problem

(10), where no variable r is present. Since the double mini-

mization in qxy, qz can be iterated, qz must solve the problem,

min
qz

qT
z LxyQ−1

xy qz (A.2a)

s.t. Bzqz = fz. (A.2b)

It is a problem of minimizing the square of a norm on an affine

subspace determined by the linear system (A.2b). The norm

comes from the scalar product x · y = xT(LxyQ−1
xy )y. By the

orthogonal projection theorem the solution qz is orthogonal to

the null space of the matrix Bz with respect to this very scalar

product. By a standard result in linear algebra this means that

qz lies in the image of the adjoint of Bz. With the chosen scalar

product this adjoint equals QxyL−1
xy BT

z . Therefore, the equation

QxyL−1
xy BT

z z = qz has a solution, and so does (A.1).

Appendix B. Dual formulation and ‘member adding’

Appendix B.1. Dual Formulation

According to duality theory ([39]), the dual problem of (10)

can be written as:

max
uxy,uz,t1,t2,t3

W = fT
z uz (B.1a)

s.t. t2 + BT
xyuxy =

1

σ
lxy (B.1b)

t3 + BT
z uz = 0 (B.1c)

t1 = 2
1

σ
lxy (B.1d)

2t1t2 ≥ t2
3, for all members (B.1e)

where uz and uxy are the virtual displacement variables of each

node in vertical and horizontal directions, respectively. t1, t2

and t3 are auxiliary variables used to express the problem in

standard form. Also, without going into details, it can be proven

that constraint (9) satisfied the so-called constraint qualifica-

tions, more specifically, Slater’s condition. Interested readers

may refer to [39] for details. This ensures ‘strong duality’,

which means that the solution of (B.1) is also that of (10).

Appendix B.2. Adaptive ‘member adding’

Constraints in (B.1) can be reformulated by eliminating

variables t1, t2 and t3 in the equalities:

2

(

2
1

σ
lxy

) (

1

σ
lxy −

[

BT
xyuxy

]

i

)

≥
([

BT
z uz

]

i

)2
, (B.2)

where the notation [ ]i indicates that once the vector inside the

brackets has been calculated, the i’th element (i.e. correspond-

ing to the current element i) should be extracted.

Note that modern convex optimization solvers provide the

solutions to both (10) and (B.1) whenever either is solved, and

therefore the displacement variables uxy and uz can be easily

obtained when (10) is solved. Since uxy and uz are virtual dis-

placements of nodes, they are available without requiring all

members in (10). The critical observation which allows the

adaptive ‘member adding’ method to be understood, is that con-

straint (B.2) can be calculated for any member, regardless of

whether it was activated or not. While constraint (B.2) is al-

ways satisfied for activated members, violations may occur for

those inactivated. This therefore provides a means of identify-

ing new members to be activated in the next iteration in order

to satisfy (B.2). It is observed that a large number of inacti-

vated members may violate constraint (B.2) initially; to im-

prove computational efficiency, only the most violated mem-

bers are activated in each iteration. Interested readers may refer

to [38] for details. If constraint (B.2) is satisfied for all mem-

bers, (B.1) is solved for the full problem; therefore, according

to the aforementioned ‘strong duality’, the solution of (10) for

the full problem is found.

Appendix B.3. Infeasible sub-problems

In the ‘member-adding’ procedure, the initial connectivity

may not always satisfy force equilibrium conditions, potentially

resulting in infeasible optimization problems. To address this,

additional members from the full ‘ground structure’ can be ac-

tivated until feasibility is restored. As explained in Appendix

B.1 and Appendix B.2, since the ‘member-adding’ procedure

is guaranteed to obtain the same solution as the full problem,

various heuristic methods can be developed without compro-

mising the rigour of the layout optimization method.

Here, a simple approach similar to that discussed in [40]

is adopted. When the primal problem (10) is infeasible, the

dual problem (B.1) becomes unbounded, indicating that at least

one node exhibits infinite virtual displacement (i.e., |uz| → ∞).

In addition to reporting the infeasibility status, solvers such

as Mosek will still provide dual variables for diagnostic pur-

poses. This allows constraint (B.2) to be utilized for identifying

members to be added to restore feasibility. Potential members

connected to a node with near-infinite virtual displacement will

lead to significant constraint violations and are therefore prior-

itized for addition.

Figure B.21 shows the solutions for the vault problem in

Figure 6 using different initial connectivities. Although varying

starting connectivity results in different intermediate results, the

final solutions remain identical.
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First iteration Intermediate iteration Final iteration, V = 0.8900pL3/σ

(a)

⇒ ⇒

m = 1,056 m=1,300 m=1,620 (max iter. 5)

(b)

⇒ ⇒

m = 800 m=1,047 m=1,513 (max iter. 6)

(c)

⇒ ⇒

m = 800, infeasible m=1,047 m=1,960 (max iter. 12)

(d)

⇒ ⇒

m = 800, infeasible m=1,047 m=1,562 (max iter. 5)

(e)

⇒ ⇒

m = 544, infeasible m=1,838 m=2,666 (max iter. 13)

Figure B.21: Vault supported at four corners: varying starting connectivities in the ‘member adding’ procedure: a) adjacent connectivity; b) adjacent connectivity

without crossing members; c) - e) alternative connectivites leading to infeasible starting sub-problems. Note that although the member subsets in the ground structure

of the final iteration are different, the resulting layouts and the reported structural volume remain identical (full ‘ground structure’ contains 25,456 members)
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