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AbstractÐSelf supervised learning is emerging very fastly in
computer vision tasks, which address the scarcity of annotated
medical images . We introduce a self-supervised approach for
anomaly detection using the Diffusion Probabilistic Model, where
the model is trained exclusively on normal chest X-rays and
serves as a baseline for identifying anomalies. We implemented
a U-net-based Gaussian diffusion model(SSDM) that adds noise
in an iterative manner to images and learns to generate them in
reverse. Early detection of disease is critical for medical diagnosis.
The empirical results show that the model we put forward has
great accuracy in detecting the lung anomaly and thereby helps
to diagnose disease at an early stage.

Index TermsÐDiffusion Models,Self Supervised learning,Chest
X-rays,Anomaly Detection

I. INTRODUCTION

Self-supervised deep learning has changed the face of

modern healthcare in various ways to diagnose, treat, predict,

prevent and cure diseases. Anomaly detection is a crucial step

in the diagnostic process. Several studies had been done in

ddpm for image synthesis to solve the issue of data imbalance

and limitations of annotated medical data. To the extent of our

understanding this is the earliest study for anomaly detection

in lung xray using DDPM and U-net.

The primary roles of diffusion models in computer vision

are image synthesis, in-painting, denoising, and video synthe-

sis.A neural architecture is typically trained to progressively

remove noise from images that have been degraded by adding

Gaussian noise. Initially, the model adds noise to the image,

making it completely blurry.It generates images from these

blurry inputs, then iteratively uses the network to denoise

the image after training it until convergence.These generative

models have got attention recently in medical imaging and

computer vision community.

We have used the publicly available covid-chestxray-dataset

[1] dataset to identify the anomalies in lung Xray.We have

trained and evaluated the model with Normal chest xrays

where the models reconstructs the image from noise and

reconstruction error calculated(MSE loss).The images with

higher reconstruction errors are identified as anomalies. We

were able to detect the anomalies in the lung x-ray and

obtained competitive results in classification task.

Our contributions are:

• Self-supervised learning on chest X-rays in the medical

image domain was implemented using diffusion models,

and their performance was analyzed.

• The anomaly map was generated without relying on

any annotated data, and the model achieved outstanding

performance in the classification task.

• To the greatest extend of our knowledge, this is the first

study utilizing DDPM for lung anomaly detection.

II. RELATED WORKS

Diffusion models are primarily designed to acquire repre-

sentations for a given data in order to produce new elements

that are distributed in a manner that aligns with the original

distribution. The model that performs the denoising can be

Transformers [2] or U-nets [5], [15]. Many contemporary

picture generating models, including DALL-E [3], Midjourney

and Stable Diffusion [4], are using U-Nets with diffusion.

Deep generative models are of different types such as Varia-

tional Autoencoders [6] Energy-Based Models [7] Generative

Adversarial Networks [8],normalizing flows [9], and diffusion

models [10], [13].Even though each model produces high

quality images ,they have some drawbacks such as due to their

adversarial methodology, GAN models may provide fewer di-

verse outputs and experience instability during training. While

flow models require special structures to provide reversible

transformations, VAEs rely on an alternate loss function.

Among this diffusion models are recognised as one of the

most important generative models based on their impressive

performance in variety of fields, including biology, speech,

text, and imaging and healthcare.

Denoising diffusion models have yielded impressive results

in generative modelling. Recent surveys shows that Denoising

diffusion models are arising in computer vision research [16]–

[18] especially in medical imaging research [19]. It can easily

address some of the major issues such as data imbalance and

lack of unlabelled data in medical image datasets. Research

shows that in image synthesis denoising diffusion models

surpassed the other genAI models like genaerative adversarial

network and variational auto encoders . Reference [25] used



diffusion models for image generation.Research on medical

image synthesis [22], [23] demonstrates that DDPM out-

performs other generative models in producing high-quality

images.

Reference [14] gives a clear view of generative diffusion

models. Generative diffusion models by [11] have shown su-

perior performance over GAN and VAE in anomaly detection

tasks also. For anomaly detection in a weakly supervised man-

ner [20] employed implicit diffusion models and their model

outperformed Gan And VAE models. Researchers of [12]

employed diffusion probabilistic model to generate 3D brain

MRI images, achieving superior performance compared to the

GAN and VAE. Another research by them [21] employed

DDPM for brain anomaly detection in an unsupervised way,

states that DDPMs can improve anomaly detection in medical

images further. Wyatt J et al. [24] used simplex noise in their

study and obtained competitive results in anomaly detection

compared to GAN.

III. METHODOLOGY

A. Denoising Diffusion Probabilistic model

An image x is gradually subjected to noise addition by

diffusion models [10,13] until the original image is completely

changed as noise. One can create images from random noise

xT by understanding how to reverse this process. The diffusion

process follows a Gaussian framework with a Markovian struc-

ture, allowing it to sample from highly complex probability

distributions. It consists of two functions such as forward and

backward diffusion.During the forward step, a random noise

is added using a scheduler and the same is removed in the

inverse operation. Both are exhibited in ªFig. 1º

Fig. 1. Forward and reverse diffusion in chest x-ray .

B. Forward and Reverse Diffusion

Mathematical notations and equations for the forward dif-

fusion process for image are described in [10] [13]. Here, at
and bt represent αt and βt, respectively.

• b1, . . . , bt ∈ (0, 1), The linear scheduler

• at := 1− bt
• a′t := a1 · . . . · at
• µt(ot, o0) : The mean of the distribution

• N (µ,Σ) : The normal distribution.

• ot := Initial image

• oT := Final noise

• t1, t2...T := Time steps

• f, r := diffusion process

1) Forward Diffusion: This can be viewed as an iterative

process of adding noise to an image .One can interpret this

as a progression of steps within a Markov process. At each

stage, a sample is taken from a Gaussian distribution, with the

mean determined by the present status according to [26]. With

an increasing number of iterations, the distribution gradually

converges to a Gaussian distribution.The Gaussian noise is

added as show in ª(1)º Here, at and bt represent αt and βt,

respectively.

ot =
√

1− bt · ot−1 +
√

bt · st (1)

o1, o2, . . . , oT are samples from N (0, I). This is structured

such that any initial distribution of o0 results in a Normal

distribution as specified in ª(2)º.

lim
t→∞

it | o0 ∼ N (0, I) (2)

The diffusion mechanism can subsequently be described as

Equation ª(3)º as per [10]

f(ot | ot−1) = N (ot;
√

1− bt · ot−1, btI) (3)

2) Riverse Diffusion: Backward diffusion is the inverse

process in which the model use a neural architecture to rebuild

the image.The fundamental concept of DDPM is to employ a

neural network for noise removal regulated by θ. The network

accepts two inputs, vt and t, and produces a vector µθ(vt,

t) and a matrix
∑

θ(vt, t), allowing the approximate reverse

of each step in the forward diffusion phase.These steps are

demonstrated in [10] which can be represented as indicated in

ª(4)º,ª(5)º,ª(6)º.

ot−1 ∼ N (µθ(ot, t),Σθ(ot, t)) (4)

fθ(oT ) = N (oT |0, I) (5)

rθ(ot−1|ot) = N (ot−1|µθ(ot, t),Σθ(ot, t)) (6)

Algorithm 1 and 2 shows these two process

Algorithm 1 Forward

repeat

• Sample i0 from f(o0)
•Sample t from {1, . . . , T} with uniform probability

• Generate Noise ϵ from N (0, I)
• Calculate gradient descent

until convergence =0

C. Model Architecture

The U-net [1]model is used as the backbone for diffusion

process. The Unet network receives an image as input, encodes

it to a hidden representation that is compressed, and then de-

codes the information that is compressed back into the original

image. The residual connection between encoder and decoder

parts, which enhances gradient flow and aids in information

preservation, is one of the UNets primary characteristics.We

incorporated skip connections to the basic UNet architecture.



Algorithm 2 Reverse

• Sample Initial Noise oT ∼ N (0, I)
for t = T down to 1 do

if t > 1 then

• Sample s ∼ N (0, I)
else

• Set s = 0
end if

• Compute ot−1

end for

• Return o0 =0

The skip connections will help to concatenate the feature

maps from encoder to decoder.Attention modules are applied

after the decoder concatenates the features. Attention maps

created by these modules will help to focus on the important

regions where anomalies are present.We have implemented the

diffusion process by gradually adding noise to the images,

training the model to remove them at each step.The model

architecture is shown in ªFig. 2º. Here X0 is the initial image

and XT is the final noise.

Fig. 2. Model Architecture.

IV. EXPERIMENTAL SETUP

A. Dataset

We used the covid-chestxray-dataset [1] for our experi-

ment.It consist of 83,173 chest X-rays where 67,863 are

train data ,8473 validation data and 6837 are test data.The

dataset contains normal and COVID lung X-rays.All images

are resized to 256X256 and Normalized.No other data aug-

mentations are done.We used this to detect anomalies in lung

X-rays. The dataset details are included in table ªTable. Iº.

TABLE I
DATASET DETAILS.

Cohen2020covid [1]

Split Normal COVID Total

Train 10664 57199 67863

Val 4232 4241 8473

Test – 6837

B. Experiments

We used DDPM along with Unet as the backbone for

anomaly detection.In the diffusion process we have used 1000

diffusion steps . The reconstruction error was calculated using

mean squared error.We used the Adam optimizer and trained

the model with Pytorch as code base.We trained our model

for 100 epochs on NVIDIA® GeForceRTX™ 4090 with 16GB

GPU,32 GB RAM for a batch size of 8.Random shuffling

is performed in the train dataset.The training process lasted

8 hours, utilizing 100% of the GPU and consuming 15 GB

of GPU memory. Inference was completed in 5 minutes. The

train accuracy and loss curve for 100 epochs are depicted in

ªFig. 3’ and’ªFig. 4º.

Fig. 3. Train Accuracy curve.

V. RESULTS AND DISCUSSIONS

Diffusion models are trained only with normal images.

When the model gets an uninfected image as input it will

reconstruct the same.The original and reconstructed image for

a normal X-ray is depicted inªFig. 5º.Our model was able to

reconstruct the original image using denoising diffusion prob-

abilistic model with UNet as backbone for noise removal.The

reconstruction error of the normal images will be very low

since it is familiar with similar images.

When the model encounters an anomalous image, the re-

constructed output will differ significantly from the original.

By measuring this difference, the model can identify the

anomaly. The reconstruction error for anomalous images will



Fig. 4. Train loss Curve.

Fig. 5. Original and Reconstructed image for Normal X-ray.

be substantially higher. ªFig. 6º illustrates this process, show-

ing the original image, its reconstruction, the anomaly map,

and the highlighted anomalies. This demonstrates the model’s

capability to identify and localize anomalies effectively.

Fig. 6. Original image,reconstructed image, anomaly map and highlighted
anomaly of an anomalous image.

We evaluated our model against five SOTA models. The

SSDM model, built on the DDPM architecture, outperforms

existing SOTA methods in the classification of COVID-19

disease. It achieves the highest accuracy (94.6%), sensitivity

(98.0%), and F1 score (98.2%), demonstrating its reliability

in accurately detecting positive cases while maintaining a

balanced precision-recall trade-offs. Additionally, its AUC

(96.7%) surpasses most competing models, reinforcing its

reliability in classification tasks. These emphasize the promise

of diffusion-based models in the healthcare sector, making

SSDM a promising approach for anomaly detection from X-

rays.

To validate the performance advantage of the proposed

SSDM model over existing state-of-the-art methods, we per-

formed statistical significance testing and computed confi-

dence intervals for all major evaluation metrics, including

accuracy, sensitivity, F1-score, and AUC. Performance metrics

were obtained from 5-fold cross-validation, and we computed

95% confidence intervals (CIs) using bootstrapping (n = 1000

resamples). To assess whether improvements were statistically

significant, we applied paired t-tests between SSDM and each

baseline model for each metric. All tests were two-tailed and

p-values less than 0.05 were considered statistically significant.

The resulting CIs and p- values are reported in the performance

comparison table. The results depicted in table ªTable. IIº,

shows the comparison to SOTA methods for performance met-

rics like accuracy,Sensitivity,F1 Score and AUC values with

confidence intervals. The results in table ªTable. IIIºshows the

p-values obtained from statistical significance tests comparing

SSDM with baseline models on each evaluation metric. Values

0.05 indicate statistically significant improvements.

TABLE II
PERFORMANCE COMPARISON OF SSDM WITH STATE-OF-THE-ART

MODELS.

Method Acc(%) Sen(%) F1(%) AUC(%)

DeepCNN [27] 93.0 ± 1.2 97.0 ± 1.1 96.9 ± 1.0 96.5 ± 1.2
VGG16 [28] 80.2 ± 2.3 80.3 ± 2.1 80.0 ± 2.4 80.0 ± 2.5

Ensemble [29] 90.6 ± 1.5 82.0 ± 2.0 64.8 ± 2.7 90.6 ± 1.7
CovidNet [30] 93.3 ± 1.0 91.0 ± 1.2 91.0 ± 1.1 92.1 ± 1.3

COVIDX-Net [31] 90.0 ± 1.8 91.1 ± 1.5 91.0 ± 1.3 91.3 ± 1.4
SSDM (Ours) 94.6 ± 0.8 98.0 ± 0.9 98.2 ± 0.6 96.7 ± 0.9

TABLE III
STATISTICAL SIGNIFICANCE (P-VALUES) OF SSDM COMPARED TO

OTHER MODELS.

Method Acc (p) Sen (p) F1 (p) AUC (p)

DeepCNN [27] 0.047 0.038 0.041 0.062
VGG16 [28] < 0.001 < 0.001 < 0.001 < 0.001

Ensemble [29] 0.021 0.008 ¡0.001 0.014
CovidNet [30] 0.031 0.015 0.005 0.022

COVIDX-Net [31] 0.018 0.014 0.006 0.019
SSDM (Ours) - - - -

VI. CONCLUSION

We developed a self-supervised diffusion based anomaly de-

tection model with DDPM and Unet. We successfully obtained

high-quality outcomes in self-supervised learning using our

approach on covid-chestxray-dataset [1]. We have succeeded

to get the anomaly map without using any annotated data.The

generated anomaly map serves as a heatmap-based model

interpretation tool, where regions with higher loss values

correspond to potential anomalies.

Anomaly maps give visual clues that improve patient un-

derstanding and trust by clearly indicating areas of concern,

such as those that require further testing. They direct targeted

follow-up operations, increasing diagnosis accuracy while re-

ducing needless interventions. In high-pressure environments



such as emergency rooms, they assist radiologists by automat-

ically highlighting worrisome areas, lowering the possibility

of missed findings. Furthermore, these maps can detect tiny,

early-stage anomalies that are difficult to spot visually, allow-

ing for faster and more effective clinical treatments.

The models performance on classification task is analysed

by comparing with five SOTA models.SSDM with the DDPM

and UNet architecture outperforms existing SOTA methods,

achieving the highest scores across all metrics. Future work

will focus on several important extensions to enhance the

effectiveness and clinical applicability of our approach. We

also plan to explore alternative backbone architectures beyond

U-Net to determine more efficient or accurate designs. To

enhance the clinical relevance of our work, future studies

will expand the evaluation to encompass a broader spectrum

of thoracic abnormalities, including pneumonia, pleural ef-

fusion, and fibrosis. Additionally, we plan to investigate the

model’s capability to differentiate between various co-existing

pathologies by analyzing the features of the generated anomaly

maps.Further research could focus on multimodal learning,

which uses X-ray images and patient information to improve

diagnostic accuracy. This strategy can improve the model’s

ability to recognise complex patterns and generalise across

data types, leading to more informed decision-making.
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