
This is a repository copy of Compositional code-level safety verification for automated
driving controllers.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227439/

Version: Published Version

Article:

Nenchev, Vladislav, Imrie, Calum Corrie, Gerasimou, Simos orcid.org/0000-0002-2706-
5272 et al. (1 more author) (2025) Compositional code-level safety verification for
automated driving controllers. Journal of Systems and Software. 112499. ISSN: 0164-1212

https://doi.org/10.1016/j.jss.2025.112499

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.jss.2025.112499
https://eprints.whiterose.ac.uk/id/eprint/227439/
https://eprints.whiterose.ac.uk/

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Compositional code-level safety verification for automated driving
controllers✩

Vladislav Nenchev a ,∗,1, Calum Imrie b , Simos Gerasimou b , Radu Calinescu b

a Department of Electrical and Computer Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
b Department of Computer Science, University of York, York, UK

A R T I C L E I N F O

Keywords:
Formal verification
Compositional reasoning
Deep neural network verification
Model-based software analysis
Adaptive cruise control
Lane-keeping assist
Automated driving

 A B S T R A C T

Ensuring the safety of automated driving vehicles is particularly challenging due to the wide range of their
operating conditions. This paper introduces CoCoSaFe, a Compositional Code-level formal Safety verification
Framework for automated driving controllers. Unlike traditional verification methods, such as model-based
analysis, counterexample detection by guided simulation, or runtime verification through online monitoring,
our approach verifies controller implementations directly at code level in an offline setting. Compositional
contracts and bounded model checking are employed to assess the implementation of subsystem controllers
against invariant sets. For neural network-based controllers, we introduce a scalable three-step decomposition
method that utilizes a neural network verifier. CoCoSaFe is applied to adaptive cruise and lane-keeping
controllers, for which we derive formal specifications and analytical models of the desired longitudinal and
lateral behaviors, amenable for decoupled invariant sets. Various types of traditional and neural network
controllers are verified in the order of minutes, showcasing its broad applicability and effectiveness in ensuring
behavioral safety of software for automated driving and similar cyber–physical systems.

1. Introduction

The engineering of self-driving vehicles is an important research and
development area in both academia and industry, as this technology
has the potential to improve the safety of all traffic participants. In
this context, the Operational Design Domain (ODD) that defines the
set of conditions under which an ADAS is intended to operate has
grown significantly in recent years (Scholtes et al., 2021). Guaranteeing
safe operation of modern automated driving vehicles involves con-
trolling the system through software, often developed by large teams
of developers using advanced architectures and algorithms, diverse
programming languages, and various software frameworks (Staron,
2021). This complexity is one of the main reasons why verifying safety
for all possible driving scenarios in the vehicle’s ODD has proven to be
very challenging. This is often addressed through a decomposition of
requirements into sets corresponding to different subsystems, followed
by the verification of each such subsystem with respect to its sepa-
rate functional requirements (Ma et al., 2022). In ADAS, a common
separation is conducted by considering a longitudinal and a lateral
subsystem (Rajamani, 2011). Longitudinally, ACC has to keep a suitable

✩ Editor: Raffaela Mirandola.
∗ Corresponding author.
E-mail addresses: vladislav.nenchev@unibw.de (V. Nenchev), calum.imrie@york.ac.uk (C. Imrie), simos.gerasimou@york.ac.uk (S. Gerasimou),

radu.calinescu@york.ac.uk (R. Calinescu).
1 V. Nenchev was with BMW Group when this work was conducted.

distance to relevant target objects, such that the automated driving
vehicle maintains a safe distance even in the presence of uncertainties.
Laterally, a LKA must keep the vehicle in the lane, again considering
relevant uncertainties associated with this task.

Although the states, control inputs and specifications can be formu-
lated separately for these two subsystems, the longitudinal dynamics
of the vehicle are not independent of its lateral dynamics and vice
versa (Rajamani, 2011). For example, it is not possible for the LKA to
guarantee on its own that the vehicle does not cross the lane boundaries
on a curved road at all possible speeds. Similarly, without assumptions
on the operation of the LKA, the ACC cannot guarantee that a curved
road is traversed with adequate lateral acceleration. Automating the
validation and verification of ADAS software is crucial for certification
and a rapid release cycle. Verifying that each subsystem’s controller
does not violate its respective assumptions and guarantees is often
achieved by a tailored redundant architecture (Behere and Törngren,
2016), as well as exhaustive simulation and testing in practice. Al-
though the last two methods can be performed automatically even
when a controller utilizes a Deep Neural Network (DNN) (Tian et al.,

https://doi.org/10.1016/j.jss.2025.112499
Received 18 September 2024; Received in revised form 26 March 2025; Accepted 7 May 2025

The Journal of Systems and Software 230 (2025) 112499

Available online 2 June 2025
0164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0002-9261-2746
https://orcid.org/0009-0004-3198-9226
https://orcid.org/0000-0002-2706-5272
https://orcid.org/0000-0002-2678-9260
mailto:vladislav.nenchev@unibw.de
mailto:calum.imrie@york.ac.uk
mailto:simos.gerasimou@york.ac.uk
mailto:radu.calinescu@york.ac.uk
https://doi.org/10.1016/j.jss.2025.112499
https://doi.org/10.1016/j.jss.2025.112499
http://creativecommons.org/licenses/by/4.0/

V. Nenchev et al.

Fig. 1. Code-level automated driving verification process in CoCoSaFe.

2018), they are neither sound (i.e., not every bug report corresponds
to a real bug) nor complete (i.e., some bugs may be missed).

To address this limitation of current verification approaches, we
propose a Compositional Code-level Safety verification Framework
(CoCoSaFe) for the development-time safety verification of automated
driving controller implementations. As shown in Fig. 1, CoCoSaFe em-
ploys a three-stage safety analysis process based on the well-established
phases of formalization, decomposition, and verification that we spe-
cialized for automated driving. In the first stage, the overall speci-
fication and the ODD of the system are formalized such that they
capture automated driving requirements, desired behavior, and safety
constraints. Further, a suitable model of the environment for the
vehicle controller is derived. Then, in the second CoCoSaFe stage, we
define suitable compositional contracts to decompose the analytical
specification and the ODD into subsystems. This allows synthesizing
a separate Control Invariant Set (CIS) for each subsystem, allowing
the computation of a corresponding safe operation set. In the final
CoCoSaFe stage, the safe sets are used to verify (or falsify) the closed-
loop operation individually at code-level. For traditional controllers,
Bounded Model Checking (BMC) is utilized to prove safety. For DNN-
based controllers, we propose a new hybrid verification approach
based on decomposition: we verify the deployment code (loading the
DNN, DNN-based inference, etc.) using a BMC, and the actual DNN
with a dedicated neural network verification tool (e.g., Marabou Katz
et al., 2019). Thus, satisfying the general safety requirements of the
entire system is accomplished by assume-guarantee reasoning and
contract-based design and verification of each subsystem (Benvenuti
et al., 2008). Taking the example of ACC and LKA of an automated
driving vehicle, we specify the safety requirements for each of the two
subsystems in terms of their ODD and specification. Using the proposed
framework, the safety of both traditional and DNN-based ACC and LKA
implementations of various types can be verified (or falsified) within
minutes on a standard workstation. The considered controllers are
commonly used in contemporary industrial and research approaches for
ADAS (Garrido and Resende, 2022). Under certain assumptions on the
formal model, the ODD and the employed tools, CoCoSaFe is complete
with respect to the safe set. Additionally, it complements data-based
testing, which generally cannot encompass the entire safe set but is
capable of checking more complex behaviors and certain edge cases
that are not represented in the formal model.

A preliminary variant of CoCoSaFe tailored for a specific ACC
case study was presented in Nenchev et al. (2024). In this paper, we
significantly extend our preliminary work from Nenchev et al. (2024)
by:

1. Introducing a generalized verification framework for automated
driving subsystem controller implementations.

2. Utilizing maximal safe sets instead of more conservative low
complexity safe sets to cover larger parts of the respective ODD’s
of the controllers.

3. Proposing a possible handling of internal controller states.
4. Deriving a tailored compositional verification solution for adap-
tive cruise control and lane keeping assist by explicitly consid-
ering the interdependences in automated driving behavior.

5. Showcasing the verification of implementations of seven distinct
controller types for adaptive cruise control and lane keeping
assist.

The primary goal of our paper is to demonstrate how compositional rea-
soning, pre-computed safe sets, and model checking can be effectively
used for the code-level safety verification of automated driving high
level controllers such as ACC and LKA. We anticipate that CoCoSaFe
can be effectively applied beyond the automated and autonomous driv-
ing domain, since (i) many Cyber-Physical Systems (CPS) incorporate
controllers with analytical specifications that facilitate the computa-
tion of invariants, (ii) an Assume-Guarantee Contract (AGC) naturally
reflects their interconnected component structure consisting, e.g. of
sensors, controllers, and actuators, allowing verification of each com-
ponent independently, and (iii): the Stage 3 in Fig. 1 is completely
application agnostic.

The remainder of the paper is organized as follows. After summa-
rizing related work (Section 2) and preliminaries (Section 3), Section 4
presents CoCoSaFe for ADAS controllers. Experimental results for var-
ious classes of ACC and LKA controllers are provided in Section 5,
followed by a discussion (Section 6) and a conclusion (Section 7).

2. Related work

While formal methods have been widely applied in the context
of aerospace design (Chrszon et al., 2023) and automated driving
(Mehdipour et al., 2023; DeCastro et al., 2020), the main focus so
far has been on the overall behavior of an automated vehicle, rather
than on the actually deployed code in the vehicle. In turn, there is
substantial work of verifying code on the vehicles (Durand et al., 2021),
as strongly advised by ISO 26262, which does not capture the behavior
of the vehicle. Formal verification of traditional control approaches
has been addressed, e.g., by using model checking (Lygeros et al.,
1996), counterexample-guided searching (Stursberg et al., 2004), set
invariance (Kianfar et al., 2013), or reachability analysis (Alam et al.,
2014). Since determining invariant sets is computationally demanding,
runtime verification (Camilli et al., 2023) and online monitoring ap-
proaches have also been proposed as more scalable options (Kojchev
et al., 2020; Pek et al., 2020; Jacumet et al., 2023). Compositional ver-
ification has been used for proving the correctness at an architectural
subsystem level, possibly including learning-based components (Păsăre-
anu et al., 2019). A compositional framework, where tasks were a-priori
decomposed into modes, separate controllers were learned for each
mode, and their joint correctness was verified, was used for an au-
tonomous car (Ivanov et al., 2021). However, none of these methods
is directly applicable for functional safety verification of automated
driving controllers at code-level.

Many methods for input–output robustness certification of DNNs
have also been proposed in recent years, including feed-forward multi-
layer (Huang et al., 2017), deep feed-forward (Katz et al., 2019), and
convolutional neural networks (Gehr et al., 2018). Formal proofs of
closed-loop safety have also been obtained for DNN-based controllers
and various system types, e.g. Calinescu et al. (2024), Dawson et al.
(2023), Lopez et al. (2023), Paterson et al. (2021), Ruoss et al. (2021),
Santa Cruz and Shoukry (2022), Sun et al. (2019). However, these
methods rely on either approximations or abstractions of the to-be-
verified controller or the system, and thus tend to scale poorly with
the growing complexity of the system. Satisfiability Modulo Theory
(SMT) solvers have also been used for the automatic verification of
DNNs with respect to safety properties in CPS by using a dedicated
interval constraint propagation (Grundt et al., 2022) or by translat-
ing the closed-loop system into an SMT formula (Scheibler et al.,
2015). However, also in the context of DNN-based controllers, safety
verification has not been addressed for the deployed code.

Current methods for identifying, correcting, and managing vulner-
abilities in Embedded, Cyber–Physical, and Internet-of-Things systems
and software are primarily concentrated on detecting software vulner-
abilities in low-level software, e.g., by utilizing customized formal real-
time operating system models (Adelt et al., 2024), or applying dynamic
analysis on binary and executable files of the software (Marchetto and

The Journal of Systems & Software 230 (2025) 112499

2

V. Nenchev et al.

Scanniello, 2024). Safety verification at code level has been addressed
for an automated driving supervisor by automatically obtaining a finite
discrete abstraction by black-box simulation (Nenchev, 2021). How-
ever, finite discrete abstraction approaches are not directly applicable
to continuous controllers. Searching for implementation errors in un-
manned aerial vehicles attitude controllers based on finite word-length
effects (e.g., arithmetic overflows and limit cycles) in the code was
presented (Chaves et al., 2018), but functional correctness was not
considered. Using BMC, the execution of ACC implementations with
a simulation model was verified to not exceed speed limits (Zhang
et al., 2013), or to not violate the general safety specification given
as a temporal logic specification embedded as a monitor along finite
traces (Nenchev, 2023). However, the runtime of these methods is
generally exponentially related to the length of the look-ahead horizon
for verification. In contrast, by using a pre-computed invariant set
to evaluate the safety of the controller, our approach requires only
a single step look-ahead in time. Although the computation of the
invariant set itself may exhibit exponential complexity inherent to using
model checking, this process is conducted separately from the code
verification. Furthermore, it can be optimized by reducing complexity
at the price of increased conservatism in the safety guarantees.

Instead of providing arguments for absolute correctness, the test
coverage of automated driving functions, mostly provided by manual
tests and simulation runs in practice, can be extended by searching for
specification counterexamples for implementation utilizing reinforce-
ment learning in simulation (Favrin et al., 2020) or by sampling initial
conditions from the boundary of a controlled invariant set (Chou et al.,
2018). While the latter two approaches are neither sound nor complete,
a sound alternative is to (mostly) automatically extract higher-level
logic models from code (König et al., 2024), thus enabling exhaus-
tive analysis for identifying potential errors prior to deployment. In
a ‘‘hybrid’’ approach for verifying hybrid control systems, a com-
bination of a black-box simulator for trajectories and a white-box
transition graph for mode switches was assumed to trade off sound-
ness and scalability (Fan et al., 2017). Although these methods avoid
human bias inherent to manual testing and can discover corner cases
that may be overlooked otherwise, infinite automated abstraction-
based approaches are not guaranteed to scale well for all systems and
cannot provide completeness guarantees for large parts of the ODD.
Through a compositional approach, a framework for automatic verifica-
tion of system-level properties that combines software model checking
and contract-based analysis was demonstrated in an automotive case
study (Cimatti et al., 2023). Upon formalizing functional requirements
into contracts with assumptions and assertions expressed in Linear
Temporal Logic (LTL), these contracts are assigned to runnable or
composite components, and the source code of a module can be verified
with respect to the specified contracts. Instead of focusing on individual
requirements, CoCoSaFe aims at controller code verification over the
maximal safe set of the formal model within the ODD.

3. Preliminaries

In this section, we introduce foundational concepts for CoCoSaFe
with a particular focus on automated driving.
Compositional reasoning (Giannakopoulou et al., 2018) is an ap-
proach that allows the analysis of complex systems by breaking them
down into smaller, more manageable components. In the context of
ACC and LKA, compositional reasoning facilitates the verification of
individual subsystem controllers (e.g., speed control, lane-keeping)
while ensuring that their interactions do not lead to unsafe behaviors,
e.g., Cimatti et al. (2023). To decompose the system, suitable AGC have
to be defined that describe the assumptions under which a subsystem
operates and the guarantees it provides for other subsystems. It is
important to note that, rather than employing an AGC to break the
system down into (sequential) components, this work utilizes an AGC

to decouple the system into subsystems that can function independently
or concurrently, similar to Ivanov et al. (2021).

The operational design domain of an ADAS defines the specific
conditions under which that ADAS is intended to operate (Rajamani,
2011). This may encompass factors such as road types (e.g., highways,
urban streets) and traffic scenarios (e.g., presence of other vehicles,
pedestrians). Assuming a formally defined state for an automated driv-
ing controller, we adopt a notion of its ODD 𝑂 given as a polyhedral
region of the state space where the system can function effectively
within their intended operational parameters. However, as the control
signals are bounded, the automated driving function can only operate
safely within a safe subset 𝑆 of the ODD 𝑂.

To obtain the safe set 𝑆, a control invariant set (Blanchini, 1999)
can be used, which is a subset of the ODD 𝑂 of a dynamical system
where, if the system trajectory starts within this set, it can be controlled
to remain within the set for all future time steps. The maximal CIS is
the largest such set within 𝑂 achievable under the given dynamics and
control constraints. A valid under-approximation of the CIS guarantees
that every state in it can be reached by following a feasible control
sequence. Techniques from control theory, such as Lyapunov functions
and reachability analysis (Wongpiromsarn et al., 2012), can be em-
ployed to compute the CIS. For ACC and LKA, obtaining such sets is
crucial for guaranteeing that the vehicle maintains safe distances from
other vehicles and stays within the lane.
Bounded model checking is a verification technique used to de-
termine whether a system satisfies certain properties within a finite
number of steps (Clarke et al., 2004). This is particularly useful for
verifying the correctness of software against safety specifications. For
ACC and LKA, by exploring executions of the controller code, BMC can
identify potential violations of safety properties for initial states in the
safe set, e.g., as used in Zhang et al. (2013) and Nenchev (2023). There
are existing software tools, such as UPPAAL (Behrmann et al., 2006)
and KeYmaera X (Fulton et al., 2015), that can be used for verifying,
runtime monitoring, and synthesizing controllers for CPS. However,
none of the currently existing software tools have been used to provide
comprehensive functional verification at the code level for automated
driving controllers.

4. Code-level verification framework

4.1. Overview of the approach

As outlined in the introduction, CoCoSaFe is structured into the
three key stages shown in Fig. 2.

As a first stage, the overall specification and ODD are formalized.
This includes defining the automated driving requirements, including
the desired behavior and safety constraints, and deriving a suitable
model of the environment in which the to-be-verified vehicle controller
will operate. In common automated driving system architectures, the
driver sets parameters, such as a desired speed and distance to a
front object for ACC to manage the longitudinal motion and LKA to
manage lateral motion. These systems interact dynamically due to
vehicle physics. Their goal is to ensure that acceleration and steer-
ing commands keep the vehicle safe for a defined parameter range.
Safety requirements follow standards like ISO (Anon, 2018) and UN-
ECE (United Nations Economic Commission for Europe (UNECE), 2023)
regulations to ensure target distances, velocities, and vehicle stability
are maintained. In addition to considering relevant safety standards,
Stage 1 typically involves consulting functional safety experts, and
modeling hardware aspects, which might have an impact on safe op-
eration. This is carried out in detail in Section 4.2 for the joint keep
distance and keep lane behavior of an automated driving vehicle.

Once the overall analytical specification 𝛴 and ODD 𝑂 are derived,
the automated driving system is decomposed into multiple interacting
subsystems. For each subsystem denoted by (.), assumptions are made

The Journal of Systems & Software 230 (2025) 112499

3

V. Nenchev et al.

Fig. 2. Detailed overview of the proposed code-level automated driving verification framework. For automated keep distance and lane keeping, for each pair of an operation
set and an analytical specification (𝑂,𝛴) ∈ {(𝑂𝑙𝑜𝑛 , 𝛴𝑙𝑜𝑛), (𝑂𝑙𝑎𝑡 , 𝛴𝑙𝑎𝑡)}, the safe set 𝑆 (.) is computed and used to check the safe closed-loop operation of the corresponding controller
implementation using a verifier.

about the behavior of the environment or other subsystems (e.g., sen-
sors will provide accurate data). In return, each subsystem guarantees
certain behaviors under these assumptions (e.g., the vehicle will safely
follow a path, if sensors provide correct data). Using these AGC, decou-
pled states 𝑥(.), analytical specifications 𝛴(.) and ODDs 𝑂(.) are obtained
for each (sub-)controller of the overall system. This helps in isolating
and specifying the behavior of individual controllers in a modular and
scalable way. Similarly to Stage 1, this involves considering relevant
safety standards as well as consulting functional safety experts, but also
requires discussions with algorithm and engineering experts. For the
keep distance and keep lane behavior of an automated driving vehicle,
in Section 4.3 we utilize a common specification decomposition into
a longitudinal and lateral subsystem, where the former is concerned
with keeping a suitable distance to a front object, and the later with
safely keeping the lane. This allows us to derive two separate analytical
specifications for keep distance and keep lane.

The final stage is to verify the automated driving system compo-
sitionally, i.e., the correctness of the overall system is established by
verifying each subsystem individually. Thus, safe sets 𝑆(.) that represent
the respective set of all states in which a subsystem can safely operate
are obtained. The control signal is provided based on the state 𝑥(.) by
a software module — the to-be-verified controller, implemented in a
general purpose programming language, e.g., C/C++, possibly contain-
ing a neural network. All controllers are assumed to be time-invariant
and deterministic. For traditional controllers, the Verifier is checking
that each controller implementation of a subsystem provides only
control signals 𝑢(.) at any admissible state 𝑥(.), such that its closed-loop
operation remains in the safe set 𝑆(.) for all possible parameters 𝑝(.). For
neural-network-based controllers, the verifier consists of three steps,
where integration, deployment, and neural network verification are
decoupled. If Result (.) is positive for the controllers of all subsystems,
this step ensures that the integrated system meets its overall speci-
fication and performs reliably and safely. As the joint keep distance
and keep lane behavior of an automated driving vehicle is decomposed
into two concurrently operating subsystems with respective analytical
specifications 𝛴(.) and operation sets 𝑂(.), in Section 4.4 we follow the
described process for verifying the two subsystems.

Note that during Stages 2 and 3, discrepancies between the overall
specification, the ODD, and the contracts may come to light. Conse-
quently, either may require an iterative refinement, denoted by the
dashed arrows. For instance, if in Stage 2 the contracts cannot ensure
safe operation for the entire overall specification or ODD, the latter
might need to be scaled down in Stage 1. If Stage 3 yields an empty
safe set for the sub-states and decomposed specifications and ODDs,
then it would be necessary to reassess either the contracts from Stage 2
or the entire specification and ODD from Stage 1.

Remark 1. The framework proposed in this paper focuses on high-
level controllers, such as ACC and LKA. Controller stability with respect
to a formal model is implicitly guaranteed, if the controller keeps the
system within the corresponding invariant set. In addition, it is assumed
that the employed low-level controllers are stable (or their stability has
been proven or verified) and their safety-relevant dynamical behavior
is included in the formal model. Further, perfect perception is assumed,
implying that the controllers have access to complete and accurate
information about their environment at all times. Several aspects of
imperfect sensing and other dynamical effects can be integrated into
a formal model, e.g., as shown in Nenchev (2025).

In the following sections, we describe in detail the key stages of
CoCoSaFe for verifying high-level controllers.

4.2. Stage 1: Formalization

Deriving an analytical specification and ODD suitable for formal
verification is a challenging task for the complete chain of effects from
the sensors to the actuators of an automated keep distance and lane
keeping vehicle. We start by identifying the primary use cases for the
system and analyze environmental factors like other traffic participants
and road representations that affect system performance. In addition,
operational constraints related to vehicle dynamics and sensor capabil-
ities are derived. This includes adhering to existing industry standards
and engaging with stakeholders, including engineers and safety experts,
to validate the derived specification and ODD, and iteratively refine it
based on testing and real-world data.

The Journal of Systems & Software 230 (2025) 112499

4

V. Nenchev et al.

Fig. 3. A common ADAS architecture with typical high-level controllers ACC and LKA.
ACC provides the acceleration 𝑎 and LKA the curvature 𝜅 to the low-level controllers
of the ego vehicle (blue).

Consider a common ADAS architecture shown in Fig. 3, as, for
example, used in Widmann et al. (2000). The driver activates or deac-
tivates the high-level controllers ACC and LKA, and provides a desired
velocity 𝑣𝑑 and a desired time headway 𝑡ℎ𝑑 for the former. The desired
velocity is the target velocity for the automated driving vehicle (also
referred to as the ego vehicle). The distance between the relevant
physical limits of the front object (e.g. the rear bumper of a vehicle)
and the front bumper of the ego vehicle is the headway ℎ. The time
headway 𝑡ℎ is the amount of time after which the target object and
the ego vehicle will collide, given the current headway ℎ, when the
target object suddenly stops and the ego vehicle maintains its current
ego velocity 𝑣, i.e., 𝑡ℎ = ℎ∕𝑣. The desired time headway 𝑡ℎ𝑑 to the target
object corresponds to the relative distance that eventually needs to be
maintained. The goal of lane-keeping is to control the vehicle to follow
the center line of the current lane by providing a suitable curvature
𝜅. The information about the target object and the road is measured
by sensors such as radars, cameras, or a lidar. This information is
utilized in the ACC to produce an acceleration and in the LKA to
obtain a curvature for reaching desired states for the ego vehicle.
The acceleration commands from the ACC are used by the low-level
controllers such as the engine control unit and/or power train, the
transmission controller and the brake controller, the curvature signal
from LKA is used by the low-level controller to produce a steering angle.
In most driving scenarios, the longitudinal motion is controlled by the
throttle and brake inputs, while the lateral motion is determined by
the steering input. Thus, a common assumption for comfort driving
functions is to decouple their effects: ACC controls the longitudinal
subsystem and LKA deals with the lateral subsystem.

To obtain an analytical longitudinal specification, the vehicle’s rel-
evant dynamics (Rajamani, 2011) are obtained by non-linear force-
balance equations, combined with exact feedback linearization to com-
pensate non-linearities for the low-level effect chain and the variable
vehicle mass (Ioannou and Chien, 1993). Inspired by Nilsson et al.
(2016), where correct-by-construction ACCs were synthesized for for-
mal models, the state of the longitudinal dynamics has to contain 𝑣,
𝑣𝑇 , and ℎ. As the slip angle can be assumed to be zero in the rear axle
center when driving slowly and is generally neglected when driving
fast, the direct dependence of the longitudinal dynamics on the lateral
dynamics is neglected.

Consider an automated driving vehicle that has to keep its lane (Fig.
4). Instead of considering a dynamical single-track model for lateral
motion, we opt for linearized relative kinematics to a reference curve
𝛤 (denoted by the dashed curve in Fig. 3 and the solid curve in Fig.
4, respectively), which denotes the center of the lane, as it captures
relevant safety aspects. The vehicle’s rear axle center is used as a
reference point, and the curvature as the model’s control input. For
that, 𝑑 represents the normal signed distance between the reference
curve 𝛤 and the center of the rear axis of the vehicle (also called the

Fig. 4. Lateral vehicle kinematics (Wu et al., 2024).

cross-track error), and 𝜃 is the vehicle orientation. The orientation 𝜃𝑟
is the normal distance between the reference curve 𝛤 and the vehicle’s
rear axle center position, serving as a disturbance input to the model.
The state has to contain 𝜃 and 𝑑 for the lateral dynamics. Thus, the
vehicle movement is described by the dynamical model:
𝛴 ∶ 𝑣̇ = 𝑎, ̇𝑣𝑇 = 𝑎𝑇 , ℎ̇ = 𝑣𝑇 − 𝑣, 𝑑̇ = 𝑣(𝜃 − 𝜃𝑟), 𝜃̇ = 𝑣𝜅. (1)

According to the relevant ISO standard (Anon, 2018), the ACC
computes 𝑎, so that the ego vehicle velocity 𝑣 reaches the desired driver
velocity 𝑣𝑑 , or so that the headway ℎ to the target object driving with
velocity 𝑣𝑇 stays above a specified minimal value ℎ𝑚𝑖𝑛 and the current
time headway stays above a specified minimal time headway 𝑡ℎ𝑚𝑖𝑛 . In
set speed mode, the target object is irrelevant, and the only safety
requirement is the physically limited control. Since control limitations
can be guaranteed by a simple limiter, in this work, we focus on the so-
called time gap or keep distance operation of the ACC. Further, without
loss of generality, the ego acceleration 𝑎, the target object acceleration
𝑎𝑇 are limited by 𝑎 ∈ [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] and 𝑎𝑇 ∈ [𝑎𝑇 ,𝑚𝑖𝑛, 𝑎𝑇 ,𝑚𝑎𝑥], respectively.

For lane keeping, the UNECE Regulation 79 (United Nations Eco-
nomic Commission for Europe (UNECE), 2023) includes requirements
for Automated Commanded Steering Functions (ACSF). While the reg-
ulation deals with all functions related to automated steering, the
nominal operation of LKA we consider is closest to the category B2
system. Category B2 pertains specifically to LKA that provides continu-
ous support to the driver by keeping the vehicle within a lane without
requiring input from the driver for steering for extended periods of
time. As mandated by typical road and car widths, the specification
is that the car should remain within 𝑑𝑚𝑎𝑥 meters of the center of the
lane, i.e. |𝑑| ≤ 𝑑𝑚𝑎𝑥. We also require that 𝜃 remains in its corresponding
admissible bound, as well as the curvature 𝜅, the curvature of the road
𝜃𝑟, i.e., 𝜅 ∈ [𝜅𝑚𝑖𝑛, 𝜅𝑚𝑎𝑥], 𝜃𝑟 ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥].

Collecting all requirements, the overall ODD for joint keep distance
and keep lane operation is denoted by
𝑂 = {ℎ∕𝑣 ≥ 𝑡ℎ𝑚𝑖𝑛

∧ ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥∧

𝑣𝑇 ,𝑚𝑖𝑛 ≤ 𝑣𝑇 ≤ 𝑣𝑇 ,𝑚𝑎𝑥 ∧ 𝑣𝑚𝑖𝑛 ≤ ℎ ≤ 𝑣𝑚𝑎𝑥∧

|𝑑| ≤ 𝑑𝑚𝑎𝑥 ∧ 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥∧

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥 ∧ 𝑎𝑇 ,𝑚𝑖𝑛 ≤ 𝑎𝑇 ≤ 𝑎𝑇 ,𝑚𝑎𝑥∧

𝜅𝑚𝑖𝑛 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛 ≤ 𝜃𝑟 ≤ 𝜃𝑚𝑎𝑥}.

(2)

Note that the longitudinal and lateral motion interact dynamically in
the derived analytical specification (1). The overall system is composed
by an ACC, an LKA, and a formal model (1), such that the composition
should guarantee for the operation to remain in (2).

4.3. Stage 2: Decomposition

System decoupling is often achieved through modular design, where
each subsystem encapsulates specific functionality, and by defining
interfaces that capture responsibilities between modules. To determine
suitable AGC, subsystem interactions are analyzed and the assump-
tions and guarantees for each module are articulated. System safety

The Journal of Systems & Software 230 (2025) 112499

5

V. Nenchev et al.

can then be ensured through compositional reasoning, which involves
demonstrating that the safety of each individual subsystem guarantees
the overall safety of the system. This involves breaking down the
overall system into subsystems, verifying each of them individually,
and then ensuring that their integration preserves the overall system
safety. CoCoSaFe uses the common decomposition of automated driv-
ing, e.g., as assumed in Rajamani (2011) and most relevant safety
standards, given by a longitudinal and a lateral vehicle guidance sub-
system.2 We first derive an AGC, which allows a decomposition of the
overall analytical specification and ODD derived in Section 4.2.

4.3.1. Assume-guarantee contracts and substates
An AGC serves as a means to formally specify and verify the

interactions between different subsystems. By defining assumptions
about the environment in which a subsystem operates and guarantees
about its behavior, these contracts facilitate modular verification. This
modularity is crucial for managing complexity in large software sys-
tems, enabling scalable and more efficient verification processes. In the
domain of automated driving, a common approach is to split the system
into a longitudinal and a lateral subsystem.

Ensuring a proper speed while navigating a curve is crucial for
maintaining vehicle stability and safety. The longitudinal velocity of
the vehicle must be such that the required centripetal force does not
exceed the available friction force. Assuming a coefficient of friction
between the tires and the road 𝜇 and with 𝑔 denoting the gravitation
coefficient, the maximum safe speed in a curve can be guaranteed by

𝑣 ≤

√
𝑔𝜇

𝜅
. (3)

Note that in the absence of a preview for the curvature of the road,
this inequality will generally impose a conservative restriction on the
ODD (2). A potential solution is discussed in Remark 2. As (3) is an
additional system requirement, we augment the previously derived
ODD (2) by (3). Going back to Fig. 2, this corresponds to following
the dashed arrow from Stage 2 back to Stage 1. Since this requirement
augmentation does not require further refinement of the overall formal
ODD or specification, we proceed with defining the AGCs. To that end,
we assume that a non-empty maximal CIS exists for (1) within (2) and
(3).

Considering the model (1), the subsystem states can be defined in
a straight forward manner by 𝑥𝑙𝑜𝑛 = [𝑣, 𝑣𝑇 , ℎ]

𝑇 for the longitudinal and
𝑥𝑙𝑎𝑡 = [𝜃, 𝑑]𝑇 for the lateral subsystem, with respective dynamics.

Now we can derive separate analytical specifications, which capture
the desired behavior of their respective controllers ACC and LKA,
operating side-by-side.

4.3.2. Decoupled analytical specifications
With the formal specification and ODD, and the AGC, we obtain

decoupled analytical specifications for longitudinal and lateral auto-
mated vehicle motion as follows. The continuous differential Eqs. (1)
are transformed into discrete time difference equations by exact dis-
cretization with an equidistant sampling period 𝑡𝑠. A zero-order hold is
used at a time instant 𝑡 for the duration of 𝑡𝑠 for 𝑎 and 𝑎𝑇 , which are
denoted by 𝑎𝑡 and 𝑎𝑇 ,𝑡 in the discrete time domain. Exact discretization
ensures that safety proofs on the discrete time system hold for the
corresponding trajectories of the original continuous time system. The
continuous state variable 𝑥(.) is replaced by the corresponding discrete
time version 𝑥(.)

𝑡
 at a discrete time instant 𝑡. Analogously, the same

2 The approach can easily be used for control systems with additional
subsystems, as discussed later in the paper.

applies for 𝜅 and 𝜃𝑟 with 𝜅𝑡 and 𝜃𝑟,𝑡 in the discrete time domain for
the lateral model. Thus, the assumed longitudinal model is
𝛴𝑙𝑜𝑛 ∶𝑥𝑙𝑜𝑛

𝑡+1
=𝐴𝑙𝑜𝑛𝑥𝑙𝑜𝑛

𝑡
+ 𝐵𝑙𝑜𝑛𝑎𝑡 + 𝐸𝑙𝑜𝑛𝑎𝑇 ,𝑡, with

𝐴𝑙𝑜𝑛 =

⎡⎢⎢⎣

1 0 0

0 1 0

−𝑡𝑠 𝑡𝑠 1

⎤⎥⎥⎦
, 𝐵𝑙𝑜𝑛 =

⎡
⎢⎢⎢⎣

𝑡𝑠

0

−
1

2
𝑡2
𝑠

⎤
⎥⎥⎥⎦
, 𝐸𝑙𝑜𝑛 =

⎡
⎢⎢⎢⎣

0

𝑡𝑠
1

2
𝑡2
𝑠

⎤
⎥⎥⎥⎦
.

(4)

An assumption for ACC is that the current curvature will remain within
feasible limits, guaranteed by LKA. In addition, the inequality (3)
ensures the maintenance of appropriate speed for the current curvature.
Extracting the remaining longitudinally relevant part of the overall
ODD, the longitudinal ODD is
𝑂𝑙𝑜𝑛 = {ℎ∕𝑣 ≥ 𝑡ℎ𝑚𝑖𝑛

∧ ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥∧

𝑣𝑇 ,𝑚𝑖𝑛 ≤ 𝑣𝑇 ≤ 𝑣𝑇 ,𝑚𝑎𝑥 ∧ 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥∧

𝑎𝑚𝑖𝑛 ≤ 𝑎𝑡 ≤ 𝑎𝑚𝑎𝑥 ∧ 𝑎𝑇 ,𝑚𝑖𝑛 ≤ 𝑎𝑇 ,𝑡 ≤ 𝑎𝑇 ,𝑚𝑎𝑥}∧

𝑣 ≤

√
𝑔𝜇∕𝜅 ∧ 𝜅𝑚𝑖𝑛 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥,

(5)

where the inequality 𝑣 ≤
√
𝑔𝜇∕𝜅 comes from (3).

Similarly, the lateral model is
𝛴𝑙𝑎𝑡 ∶𝑥𝑙𝑎𝑡

𝑡+1
= 𝐴𝑙𝑎𝑡𝑥𝑙𝑎𝑡

𝑡
+𝐵𝑙𝑎𝑡𝜅𝑡+𝐸

𝑙𝑎𝑡𝜃𝑟,𝑡, with

𝐴𝑙𝑎𝑡 =

[
1 0

𝑣𝑡𝑡𝑠 1

]
, 𝐵𝑙𝑎𝑡 =

[
𝑣𝑡𝑡𝑠
1

2
𝑣𝑡𝑡

2
𝑠

]
, 𝐸𝑙𝑎𝑡 =

[
0

−𝑣𝑡𝑡𝑠

]
.

(6)

An assumption for LKA is that the velocity controlled by ACC will be
within admissible bounds. Analogously to the longitudinal model, by
extracting the remaining laterally relevant part of the overall ODD, the
lateral ODD is
𝑂𝑙𝑎𝑡 = {|𝑑| ≤ 𝑑𝑚𝑎𝑥 ∧ 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥∧

𝜅𝑚𝑖𝑛 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛 ≤ 𝜃𝑟 ≤ 𝜃𝑚𝑎𝑥}∧

𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥.

(7)

4.3.3. Correctness of compositional reasoning
While the longitudinal model (4) is independent of the lateral

one, the longitudinal ODD 𝑂𝑙𝑜𝑛 (5) depends on the lateral variable 𝜅
through the inequality (3). The following proposition provides an
under-approximation for the longitudinal CIS.

Proposition 1. Assume that for all admissible curvature values 𝜅 ∈ [𝜅min,
𝜅max] there exists a non-empty under-approximation of the maximal CIS
of the longitudinal dynamics (4) within (5), and consider the partitioning
of the curvature range into 𝑁 𝑙𝑜𝑛 equally sized segments [𝜅𝑛, 𝜅𝑛+1), where
𝜅𝑛 = 𝜅𝑚𝑖𝑛 + 𝑛(𝜅𝑚𝑎𝑥 − 𝜅𝑚𝑖𝑛)∕𝑁

𝑙𝑜𝑛 for 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛 − 1}. Let 𝑂̂𝑙𝑜𝑛
𝑛

 denote
the version of (5) obtained for 𝜅𝑚𝑖𝑛 = 𝜅𝑚𝑎𝑥 = 𝜅𝑛. Then, the family of pairs
(𝛴𝑙𝑜𝑛, 𝑂̂𝑙𝑜𝑛

𝑛
), 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛 − 1}, constitutes a valid under-approximation

for the maximal longitudinal CIS.

Proof. As 𝜅𝑛+1 > 𝜅𝑛, we have
√
𝑔𝜇∕𝜅𝑛+1 <

√
𝑔𝜇∕𝜅𝑛. Thus, the maximal

CIS of (4) within 𝑂̂𝑙𝑜𝑛
𝑛+1

 is a subset of the maximal CIS of (4) within
𝑂̂𝑙𝑜𝑛
𝑛
. Thus, with the segmentation by tangent planes 𝑂̂𝑙𝑜𝑛

𝑛
, an under-

approximation of the maximal CIS for every admissible curvature 𝜅 ∈

[𝜅𝑛, 𝜅𝑛+1) is given by the maximal CIS of (4) within 𝑂̂𝑙𝑜𝑛
𝑛+1
. Then, the

conjunction of all corresponding maximal CIS of (4) within the tangent
planes 𝑂̂𝑙𝑜𝑛

𝑛
 is an under-approximation for the maximal longitudinal

CIS. □

In the lateral analytical specification, the state 𝑣𝑡 of the longitudinal
model appears in the system matrix (6). The next proposition provides
an under-approximation for the lateral CIS.

Proposition 2. Assume that for all admissible velocity values 𝑣 ∈

[𝑣min, 𝑣max], 𝑣𝑚𝑖𝑛 > 0 there exists a non-empty under-approximation of
the maximal CIS of the lateral dynamics (6) within (7), and consider the
partitioning of the velocity range into 𝑁 𝑙𝑎𝑡 equally sized segments [𝑣𝑛, 𝑣𝑛+1),

The Journal of Systems & Software 230 (2025) 112499

6

V. Nenchev et al.

where 𝑣𝑛 = 𝑣𝑚𝑖𝑛 + 𝑛(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)∕𝑁
𝑙𝑎𝑡 for 𝑛 ∈ {1,… , 𝑁 𝑙𝑎𝑡 − 1}. Let

𝑂̂𝑙𝑎𝑡
𝑛

 denote the version of (7) obtained for 𝑣𝑚𝑖𝑛 = 𝑣𝑚𝑎𝑥 = 𝑣𝑛. Then,
the family of pairs (𝛴𝑙𝑎𝑡, 𝑂̂𝑙𝑎𝑡

𝑛
), 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛 − 1}, constitutes a valid

under-approximation for the maximal lateral CIS.

Proof. By applying a state transformation

𝑇 (𝑣𝑡) =

[
1 0

0
1

𝑣𝑡𝑡𝑠

]

to the state of (6), the influence of 𝑣𝑡 can be isolated only to the input
matrices in a linear multiplicative manner, and the state transition
matrix 𝐴𝑙𝑎𝑡 becomes constant. Thus, for any two velocities 𝑣𝑛 < 𝑣𝑛+1,
the backward reachable set of the dynamics with 𝑣𝑛+1 is contained
within the corresponding set for 𝑣𝑛. Therefore, the maximal CIS for
𝑣𝑚𝑎𝑥 is an under-approximation of every maximal CIS of a model (6)
for a velocity 𝑣𝑡 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. Following a similar argumentation,
the maximal CIS for 𝑣𝑛+1 is an under-approximation of any maximal
CIS of (6) for a velocity 𝑣𝑡 ∈ [𝑣𝑛, 𝑣𝑛+1). Then, the conjunction of all
corresponding maximal CIS of (6) within the tangent planes 𝑂̂𝑙𝑎𝑡

𝑛
 is an

under-approximation for the maximal lateral CIS. □

Note that while the maximal CIS for 𝑣𝑚𝑎𝑥 could be used for the
whole velocity range, it would be overly conservative. Proposition
2 provides a fine-grained piecewise under-approximation obtained by
computing the CISs of 𝑁 𝑙𝑎𝑡 models. This leads to the following theo-
rem, which ensures that the decoupled verification of the controllers
guarantees the overall system properties.

Theorem 1. Assume that there exists a non-empty under-approximation
of the CIS of the exactly discretized:

• longitudinal model (4) within the ODD (5) for all admissible curvature
values 𝜅 ∈ [𝜅min, 𝜅max];

• lateral model (6) within the ODD (7) for all admissible velocity values
𝑣 ∈ [𝑣min, 𝑣max].

Then, the decoupled verification of the longitudinal and lateral controllers –
each with its respective under-approximated CIS – ensures that the overall
continuous model (1) exactly discretized with sampling period 𝑡𝑠 satisfies
(2) and (3).

Proof. The inequalities (2) and (3) represent the conjunction of (5) and
(7). The conjunction of the dynamical models (4) and (6) represents the
exactly discretized version of the continuous model (1) with sampling
period 𝑡𝑠. Propositions 1 and 2 establish sound under-approximations
of the CIS for the longitudinal dynamics and the CIS for the lateral
dynamics, respectively. Consequently, the conjunction of these two
invariant sets forms a subset of the maximal CIS of (1) within (2)
and (3). Since both verification processes are based on independent
conditions, and given that (5) and (7) only partially overlap in terms
of the admissible sets for 𝜅 and 𝑣, there is no feedback loop that
could lead to circular reasoning. Therefore, the decoupled verification
of the longitudinal and lateral controllers, each with their respective
CIS, ensures the overall system properties described by (1)–(3). □

In the following section, we compute the proposed separate safe sets
for compositional verification.

4.4. Stage 3: Verification

For verifying the safe operation of each subsystem (.), where (.) ∈
{𝑙𝑜𝑛, 𝑙𝑎𝑡}, with respect to its analytical specification and ODD, CoCoSaFe
uses set invariance. For control systems, this means finding a control
signal that is able to render a set invariant, i.e., a controlled invariant
set. If all control signals produced by the controller yield following
states within the safe set 𝑆(.), the controller can be certified as safe with
respect to the analytical specification and the operation set. Thus, once

Fig. 5. Maximal longitudinal safe sets for 𝜅1 = 0.006, 𝜅2 = 0.06, and 𝜅3 = 0.15 in 3D (a)
and their 2D slices for 𝑣𝑇 = 0.

such a safe set is obtained, checking safety over (in)finite simulation
traces over time is effectively transformed into a set containment
problem (denoted by the dashed area of Stage 3 in Fig. 2). Practically,
set containment at code level is accomplished by a state-of-the-art BMC
for traditional controllers, or a three-step procedure employing a BMC
and a DNN checker for neural-network-based controllers. We first turn
to obtaining the safe sets.

4.4.1. Computing safe sets
To obtain the safe set, we employ invariance properties, where

the goal is to avoid unsafe states in 𝑂(.) at all times. For that, we
utilize the maximal robust CIS, i.e., the set of all states inside of 𝑂(.)

for which there exists a controller that can guarantee that the future
trajectory remains safe under admissible worst-case values of 𝑎𝑇 . We
compute the CIS (or an under-approximation thereof) for a subsystem
as a polytope 𝑆(.) represented by a finite number of inequalities 𝑁𝑆

with corresponding matrices 𝐴𝑐
𝑥
 and 𝐵𝑐

𝑥
, i.e.,

𝑆(.) = {𝑥|𝐴𝑐
𝑥
𝑥 ≤ 𝐵𝑐

𝑥
}, 𝐴𝑐

𝑥
∈ R

𝑁𝑆×3, 𝐵𝑐
𝑥
∈ R

𝑁𝑆 . (8)

For any state 𝑥(.)
𝑡

∈ 𝑆(.) at time 𝑡, there exists at least one admissible
control action with 𝑢(.)

𝑡
, such that the following state 𝑥(.)

𝑡+1
 according

to the analytical specification remains within 𝑆(.). CoCoSaFe is com-
patible with any off-the-shelf CIS computation method which provides
an under-approximation of the actual robust CIS of the analytical
specifications.

Longitudinally, (4) is a discrete-time linear system with input vector
𝑎𝑡 and disturbance 𝑎𝑇 ,𝑡, and the maximal robust CIS is computed

The Journal of Systems & Software 230 (2025) 112499

7

V. Nenchev et al.

Fig. 6. Lateral CIS’ for 𝑣𝑚𝑖𝑛 + 𝑣𝑠 , 𝑣𝑚𝑖𝑑 = 0.5(𝑣𝑚𝑖𝑛 + 𝑣𝑚𝑎𝑥), and 𝑣𝑚𝑎𝑥.

for each of the 𝑁 𝑙𝑜𝑛 ODDs using the fixed-point algorithm proposed
in Herceg et al. (2013). Fig. 5 illustrates the maximal longitudinal safe
sets for different values of 𝜅 and its 2-dimensional slices for 𝑣𝑇 = 0

using the parameters of the case study (Section 5.2.3). Note that the
volume of the sets decreases significantly with a growing curvature.
This approximation of the maximal robust CIS with the analytical
specification (4) for the ODD (5) is used for verification.

Analogously, the robust maximal CIS for the lateral discrete-time
linear system (6) with disturbance 𝜃𝑟,𝑡 is computed using the methods
from Herceg et al. (2013). Fig. 6 shows approximate lateral sets for
three admissible longitudinal velocity values and parameters as intro-
duced in Section 5.2.3. Note that the volume of the sets decreases
significantly with increasing velocity. With the safe sets now computed,
the next step is to verify the controller implementations for each
subsystem.

Remark 2. For simplicity, we assumed only a single step ‘‘pre-
view’’ for the target vehicle acceleration and the lane orientation in
this paper. However, most state-of-the-art automated driving solutions
employ previews for these signals over multiple steps ahead in time
obtained by sensors to decrease conservatism in computing the fol-
lowing control action and prevent excessively cautious behavior. For
example, the longitudinal control signal 𝑎𝑡 can be picked depending
on 𝑎𝑇 ,𝑡, 𝑎𝑇 ,𝑡+1,… , 𝑎𝑇 ,𝑡+𝑘. Note that a system with such a multi-step
preview can be converted to a standard linear system by augmenting
the state space with additional states corresponding to the preview
of the external signal 𝑎𝑇 ,𝑡, 𝑎𝑇 ,𝑡+1,… , 𝑎𝑇 ,𝑡+𝑘𝑙𝑜𝑛 . Similarly, an extended
system can also be obtained for the lateral subsystem with a preview
of the external signal 𝜃𝑟,𝑡, 𝜃𝑟,𝑡+1,… , 𝜃𝑟,𝑡+𝑘𝑙𝑎𝑡 .

4.4.2. Verifying a controller implementation
The decoupled analytical specifications for ACC and LKA do not

interfere with each other except for the effect of the longitudinal
velocity on the lateral behavior and the curvature on the longitudinal
behavior. These interactions were considered when computing the safe
sets, which ensures that subsystems’ interactions do not violate their
respective assumptions and guarantees. Consequently, all admissible
values of the lateral variable 𝜅𝑡 are considered while verifying the
longitudinal controller. Note that a variable 𝜅𝑡 implies a variable cor-
responding safe set for verification (Fig. 5). Analogously, all admissible
values of the longitudinal velocity 𝑣𝑡 are considered during lateral
controller verification (implying a variable corresponding lateral safe
set). As shown in Section 4.3.3, if both the longitudinal and the lateral
controllers pass verification with respect to the corresponding safe sets
individually, their compositional behavior is also safe.

Fig. 7. Verification harness for the function Control using a BMC.

An individual controller implementation can be deemed safe when
it operates only within the bounded domain of the CIS for the analytical
specification. For any possible state 𝑥(.) in the safe set 𝑆(.), the control
output 𝑢(.) of the to-be-verified controller is checked if it produces a
following state, which is also inside of 𝑆(.). As (4) and (6) are linear
dynamical systems and 𝑆(.) is a polytope, the following state is within
the CIS if

𝐴𝑐
𝑥

[
𝐴(.) 𝐵(.)

] [𝑥(.)

𝑢(.)

]
≤ 𝐵𝑐

𝑥
(9)

holds. A bounded model checker is utilized for this. By using a BMC the
code is also implicitly checked for common programming and security
errors like integer overflows, out of bound array access, illegal pointer
de-references, occurrence and treatment of exceptions, the presence
of undefined behavior etc., in addition to checking safety. By using
an invariant set to evaluate the safety of the controller, our approach
requires only a single step look-ahead in time. Thus, the bounded roll-
out by the BMC is primarily related to loops in the code. Thus, the BMC
bound needs to be sufficiently large for the specific implementation to
ensure that all safety-relevant behaviors are captured. As we use an
underestimation of the actual CIS, the proposed verification procedure
is sound, as discussed in Section 4.3.2. If the computed CIS is exact, the
procedure is also complete.

An exemplary verification harness for verifying the function Con-
trol with respect to a safe set with state dimension n and a parameter
vector of size m using a BMC is shown in Fig. 7. A state x and
parameters p are checked if they are contained in the safe set according
to (8) in function IsInSafeSet, or in the following state given a
control input u according to (9) in the function IsInNextSafeSet,
respectively. Note that the dependence of the check functions on pa-
rameters p results from the employed approximations of the maximal
CIS depending on 𝜅𝑡 and 𝑣𝑡 for the longitudinal and the lateral sub-
system, respectively, as described in Section 4.4.1. The state variables
x and parameters p are chosen randomly by the BMC in the function
Generate and constrained to their feasible bounds p_min p_max and
the safe set using assume statements and IsInSafeSet. Based on
these variables, the controller produces an output u. Then, the safety

The Journal of Systems & Software 230 (2025) 112499

8

V. Nenchev et al.

properties for the following state are checked by IsInNextSafeSet
using an assert statement.

Remark 3. If the to-be-verified controller contains internal states,
these have to be made accessible for modification by the BMC within
the admissible bounds. A possible way to achieve this is to augment
the state of the analytical specification and to consider them already
in the safe set computation. This comes at the price of an increased
CIS computation complexity, but is beneficial for verification with the
BMC. The approach is showcased in Section 5, where the proportional
integral controller has an internal state for error integration.

4.4.3. Verification decomposition for large DNN controllers
As BMC enumerates possible branches during program state-space

exploration, it is not guaranteed that verifying a neural network will
terminate in a reasonable amount of time. A verification timeout is
likely even for moderately sized neural networks, as shown in the case
study. To mitigate this limitation, we propose a three-step decomposi-
tion approach. First, the DNN integration is checked for a representative
set of states within the safe set. Second, the original DNN is replaced by
a simpler DNN with the same inputs and outputs, and BMC is used to
check that all code required for operational deployment (DNN model
loading, DNN inference, etc.) works as expected. Finally, the safety of
the actual DNN is checked using an off-the-shelf DNN verifier. The
overall process is complete with respect to the maximal safe set of
the formal model and ODD under the assumption that the BMC can
discover all deployment code-related flaws for the chosen states (Step
1 & 2), and that the safety check of the DNN by the DNN verifier itself
is complete (Step 3).

In the first step, a finite set of individual states 𝑥(.)
𝑡
 in 𝑆(.) is chosen

to evaluate the DNN controller, focusing specifically on its deployment
code. Heuristic criteria for achieving complete test coverage are par-
ticularly effective for selecting these states, as they aim to execute a
significant portion of the code at least once, including error handling
paths and exceptional cases. Then, the controller’s output is checked
to yield a following state that remains in 𝑆(.) using a BMC for each of
the selected states. This assures that the input–output behavior of the
overall controller, including the supporting code, performs as expected
before performing the DNN verification.

In the second step, we take inspiration from Elboher et al. (2023)
that proposes to verify a large DNN by initially reducing it to a simpler,
smaller DNN for verification (abstraction), and iteratively making it
more complex as needed (refinement). Therefore, we replace the orig-
inal DNN with a simpler DNN with the same inputs and outputs, and
use BMC to check that all code required for operational deployment
(DNN model loading, DNN inference, etc.) works as expected. For our
purposes, we assume that an abstraction approach was used to obtain
the smaller DNN, and that the supporting code needed for the original
DNN is being fully executed for the deployment of the smaller DNN.
This ensures that the supporting code is checked for implementation
flaws. In this step, the controller operation is not required to satisfy (9),
since the smaller DNN model might not fulfill the safety specification.

As a final third step, we use an off-the-shelf DNN verifier to check
the safety of the actual DNN. In addition to a neural network, a verifica-
tion query to the verifier includes the property to be checked — for any
point in 𝑆(.), the DNN has to produce a controller output that satisfies
(9). The property has to be given in the form of linear or nonlinear
constraints on the network’s inputs and outputs, which is readily the
case for (8) and (9). The verification problem thus reduces to finding
an assignment of DNN input values that satisfies all the constraints
simultaneously, or confirming that no such assignment exists. Only if
the verification is successful in all three steps, the safety specification
is considered as satisfied.

Table 1
Overview of controllers for empirical evaluation.
 Controller type Abbr. Func. Code lines Parameters
 Switching Proportional SPC ACC 10 𝑘𝑝 = 3
 Non-Linear NLC ACC 15 𝑎𝑐𝑜𝑚 = 1.5 m/s2
 Model-predictive MPC ACC 5521 𝑁 = 5
 Neural-network NNC ACC 1672 151 parameters
 Proportional-integral LPC LKA 8 poles 0.3, 0.4, 0.5
 Non-linear Geometric LGC LKA 12 𝑙 = 2.8 m, 𝑘 = 2
 Model-predictive LMC LKA 1521 𝑁 = 3, 𝑤𝑟 = 0.1

5. Empirical evaluation

5.1. Evaluation methodology

We carried out extensive experiments to evaluate the safety and
correctness of ADAS controller implementations with respect to formal
specifications within common real-world ODDs. Following Fig. 2, the
formalization step of the overall specification and ODD for automated
driving in a lane with front targets was carried out in Section 4.2.
Then, the detailed decomposition process into separate specifications
and ODDs for the keep distance and keep lane behaviors was described
in Section 4.3. Finally, the verification process for the two subsystems
operating concurrently was detailed in Section 4.4, where we described
how the compositional approach ensures the integrated system’s safety
based on separate safe sets and model checking.

To this end, and to evaluate the generalizability of our approach, we
performed case studies involving the application of CoCoSaFe to two
qualitatively different classes of ADAS controllers (adaptive cruise and
lane keeping), and for each class we considered controllers that employ
significantly different control techniques which are widely used in the
automotive domain. The key features of the controllers examined in the
two categories are summarized in Table 1. This includes four different
adaptive cruise, one of which was neural-network-based, and three
lane-keeping assist controllers, one of which had an internal state. The
details of these controllers, all of which are taken from literature, are
presented in Section 5.2.3. Each of these controllers was implemented
in C++. All verification experiments used:

• a sampling time of 𝑡𝑠 = 0.2 𝑠 for the analytical specifications;
• CBMC 5.95.1 (Clarke et al., 2004) as a bounded model checker
with a timeout of 1 h and a loop unwinding limit of 1000. Accord-
ingly, __VERIFIER_assume is replaced by
__CPROVER_assume and __VERIFIER_assign_random by
nondet_double, respectively, in the verification harness
(Fig. 7);

• a standard workstation with an Intel Core i7-11850H CPU with
64 GB DDR4 RAM.

Regarding the decomposition approach for neural network controllers:
we first check the actual DNN for two individual states, the supporting
code is checked using the BMC with a simplified neural network
with the same input and output interface, but only 3 neurons with
random parameters in the hidden layer. Furthermore, Marabou (Katz
et al., 2019) was used as a DNN verifier to check the actual DNN
implementing the neural-network-based controller.

5.2. Experimental results

In this section, CoCoSaFe as presented in Section 4 is evaluated in
case studies with different automated driving controllers for adaptive
cruise control and lane keeping.

The Journal of Systems & Software 230 (2025) 112499

9

V. Nenchev et al.

Table 2
Parameters used in the case study.
 Parameter Value Description
 𝑎𝑚𝑎𝑥 2 m/s2 Maximum ego acceleration
 𝑎𝑚𝑖𝑛 −4 m/s2 Minimum ego acceleration
 𝑎𝑇 ,𝑚𝑎𝑥 1 m/s2 Maximum target acceleration
 𝑎𝑇 ,𝑚𝑖𝑛 −2 m/s2 Minimum target acceleration
 𝑣𝑡 , 𝑣𝑇 ,𝑡 [1, 130] km/h Range of velocities
 ℎ𝑚𝑎𝑥 200 m Maximum headway
 ℎ𝑚𝑖𝑛 5 m Minimum headway
 𝑡ℎ𝑚𝑖𝑛

0.8 s Minimum time headway
 𝑑𝑚𝑖𝑛 −2 m Minimum lateral distance
 𝑑𝑚𝑎𝑥 2 m Maximum lateral distance
 𝜃𝑚𝑎𝑥 𝜋∕2 rad Maximum angle
 𝜃𝑚𝑖𝑛 −𝜋∕2 rad Minimum angle
 𝜅𝑚𝑖𝑛 −0.15 m−1 Minimum curvature
 𝜅𝑚𝑎𝑥 0.15 m−1 Maximum curvature
 𝜃𝑟,𝑚𝑎𝑥 0.1 rad Maximum road angle
 𝜃𝑟,𝑚𝑖𝑛 −0.1 rad Minimum road angle

5.2.1. Stage 1: Formalization
The first stage of CoCoSaFe requires defining the parameters neces-

sary for the overall formal specification, shown in Table 2. Since driver
parameters 𝑣𝑑 and 𝑡ℎ𝑑 can take integer values in their respective ranges,
the longitudinal controller verification can be performed individually
for each of the possible combinations in parallel. For simplicity, we
consider a fixed pair of a desired ego velocity 𝑣𝑑 = 130 km∕h and a
desired time headway 𝑡ℎ𝑑 = 1.8 s in the following.

5.2.2. Stage 2: Decomposition
Using the AGC corresponding to (3) with the coefficient of friction

𝜇 = 0.8 and the gravitational constant 𝑔 = 9.81 m∕s2, we obtained
separate analytical specifications for the longitudinal and the lateral
subsystem. The analytical specification (4) and (5) of ACC can be
easily encoded by means of the velocity of the ego vehicle 𝑣, the
velocity of the target object 𝑣𝑇 and the headway ℎ, all contained in the
longitudinal state 𝑥𝑙𝑜𝑛. Similarly, the analytical specification (6) and (7)
can be readily encoded by means of the ego vehicle lateral deviation 𝑑
and the steering angle 𝜃, both contained in the lateral state 𝑥𝑙𝑎𝑡.

5.2.3. Stage 3: Verification
Finally, in the third stage of CoCoSaFe, we compute the safe sets

to perform verification. As described in Section 4.4.1, we computed
𝑁 𝑙𝑜𝑛 = 10 longitudinal safe sets 𝑆𝑙𝑜𝑛

𝑛
, where 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛}, for

the longitudinal analytical specification over the relevant range of the
curvature 𝜅 ∈ [𝜅𝑚𝑖𝑛, 𝜅𝑚𝑎𝑥]. The safe sets are captured by an overall
number of inequalities ranging from 79 for 𝜅𝑚𝑖𝑛 to 546 for 𝜅𝑚𝑎𝑥.
Computing a safe set took between 0.2 min for 𝜅𝑚𝑖𝑛 and 6 min for 𝜅𝑚𝑎𝑥.
This procedure is required to be executed only once and the resulting
safe sets are reused for evaluating the safety of all ACC controllers.
The target acceleration 𝑎𝑇 ,𝑡 and the curvature 𝜅𝑡 are chosen freely
within their respective bounds for the longitudinal verification by the
BMC using assume statements. The individual states to check the
integration of the DNN are 𝑥𝑡 ∈ {[0, 0, 0], [15, 5, 5]}.

Similarly, we computed 𝑁 𝑙𝑎𝑡 = 13 lateral safe sets 𝑆𝑙𝑎𝑡
𝑛
, where 𝑛 ∈

{1,… , 𝑁 𝑙𝑎𝑡}, for the analytical lateral specification with longitudinal
velocities 𝑣𝑡 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], as described in Section 4.4.1. The safe sets
are captured by an overall number of inequalities ranging from 8 for
𝑣𝑚𝑎𝑥 to 74 for 𝑣𝑚𝑖𝑛. The calculation of a single safe set for the analytical
specification using the nominal state 𝑥𝑙𝑎𝑡 required roughly 30 s. For the
augmented state 𝑥̃𝑙𝑎𝑡 with an integrator, the computation of a single
safe set took approximately 1 min. This procedure is required to be
executed only once and the resulting safe sets are reused for evaluating
the safety of all lateral controllers. Both the longitudinal velocity 𝑣𝑡 and
the orientation of the road 𝜃𝑟,𝑡 are freely chosen within their limits for
lateral verification by the BMC using assume statements.

Adaptive cruise control results. The following four common classes of
adaptive cruise controllers, which are widely used for automated driv-
ing, are considered for verification:

1. A Switching Proportional Controller (SPC) with the gain 𝑘𝑃 = 3

and

𝑎𝑡 = 𝑘𝑃 (𝑣𝑡 −min(𝑣𝑑 , ℎ𝑡∕𝑡ℎ𝑑)),

where the min-expression takes care of the time gap and adapt
speed modes.

2. A NonLinear Controller (NLC) known as the Intelligent Driver
Model (Treiber et al., 2000):

𝑎𝑡 = 𝑎𝑚𝑎𝑥

⎛
⎜⎜⎝
1 −

(
𝑣𝑡

𝑣𝑑

)𝛿

−

(
𝑑(𝑥𝑙𝑜𝑛

𝑡
)

𝑑𝑇 ,𝑡

)2⎞
⎟⎟⎠
,

𝑑(𝑥𝑙𝑜𝑛
𝑡

) = ℎ𝑡 + 𝑣𝑡𝑡ℎ𝑑
+

𝑣𝑡(𝑣𝑡 − 𝑣𝑇 ,𝑡)

2
√
𝑎𝑚𝑎𝑥𝑎𝑐𝑜𝑚

,

where 𝑑𝑇 ,𝑡 = 1.8𝑣𝑡 is the desired distance between the two ve-
hicles, which is around half of the current ego vehicle’s velocity
𝑣𝑡 in 𝑘𝑚∕ℎ (the recommended minimum distance according to
German traffic rules) and 𝑎𝑐𝑜𝑚 = 1.5 m∕s2 is the absolute value
of the comfortable acceleration.

3. A Model Predictive Controller (MPC) (Naus et al., 2010) using
the model (4) with an optimization horizon of 𝑁 = 5 steps. Let 𝑡
denote the current time step and ̃𝑡 the optimization horizon time.
The acceleration of the target object is initially 𝑎𝑇 ,𝑡=0 = 𝑎𝑇 ,𝑡 and
is assumed to be 𝑎𝑇 ,𝑡 = 0 for the remaining optimization horizon
with 𝑡 > 0. Note that a preview of the acceleration of the target
object over the whole planning horizon can be considered using
the approach outlined in Remark 2. With the initial state 𝑥𝑙𝑜𝑛

𝑡
, the

following quadratic program is solved at each state in a receding
horizon manner:

min𝑎𝑡

𝑁∑
𝑡=0

(‖𝑣𝑡 −min(𝑣𝑑 , ℎ𝑡∕𝑡ℎ𝑑)‖ + ‖𝑎𝑡‖),

s.t. ∀𝑡 ∈ [0, 𝑁], (4), 𝑥𝑡 ∈ 𝑂𝑙𝑜𝑛
𝑥

; 𝑎𝑡 ∈ 𝑂𝑙𝑜𝑛
𝑢

;

∀𝑡 ∈ [1, 𝑁], 𝑎𝑇 ,𝑡 = 0;

𝑥𝑙𝑜𝑛
𝑡

= 𝑥𝑙𝑜𝑛
𝑡

, 𝑎𝑇 ,0 = 𝑎𝑇 ,𝑡.

The controller is implemented using the Multi-Parametric Tool-
box (Herceg et al., 2013). An explicit solution of the optimal
control problem comprising 348 state feedback controllers over
the relevant ODD is exported to C.

4. A Neural Network Controller (NNC) (Zhu et al., 2020), which
combines imitation learning of recorded demonstrations and
optimizing a reward function incorporating safety, efficiency,
and comfort metrics to maximize cumulative rewards through
simulation trials. Deep Deterministic Policy Gradient (DDPG) is
utilized to learn an actor network together with a critic network.
We focus on verifying the actor with an input 𝑥𝑡 and an output 𝑎𝑡.
The actor has one hidden layer with 30 neurons. For all layers,
the Rectified Linear Unit (ReLU) activation function was used.

Table 3 shows results from the development-time verification of the
longitudinal controllers. The MPC was the only one with a successfully
verified safety, while the SPC and the NLC were falsified. This is largely
due to the fact that the SPC only considers the current headway ℎ𝑡 and
the velocity of the ego vehicle 𝑣𝑡, the NLC additionally the velocity of
the target vehicle 𝑣𝑇 ,𝑡, and only the MPC the full state information of
the model including the acceleration of the target 𝑎𝑇 ,𝑡 as well as the
analytical specification and the ODD explicitly.

Simply using BMC on the NNC timed out for all safe sets. A sim-
ilar result was reported in Scheibler et al. (2015) for small DNNs
controlling a cart pole system, presumably caused by the nonlinearity

The Journal of Systems & Software 230 (2025) 112499

10

V. Nenchev et al.

Table 3
Longitudinal controller code lines and falsification/verification times.
 Controller type Code lines Falsification

time [min]
Verification
time [min]

 SPC 10 3.0 –
 NLC 15 5.1 –
 MPC 5521 – 6.1
 NNC 1672 timeout timeout
 NNC* 1672 21.4 –
NNC: times using BMC only for verification
NNC*: cumulative time for decomposition-based verification.

and noninvertability of the DNN. However, using the decomposition
proposed in Section 4.4.3, we falsified the NNC by a counterexample.
The bounded model checking of the supporting code with the auxiliary
neural network was carried out in 10.4min, and 5min for the two
selected individual states for the actual DNN. The verification of the
actual DNN using Marabou took only 1 min.

All falsifying counterexamples denote an insufficient ego vehicle
deceleration, while the target object decelerates with 𝑎𝑚𝑖𝑛 and the time
headway is not large enough. While the PC decelerates slightly in this
case, the NC and the NNC decelerate with nearly 𝑎𝑚𝑖𝑛.
Lane keeping assist results. We investigated three classes of controllers
for meeting the lane keeping requirements:

(1) A Lateral Proportional-integral Controller (LPC), given as
𝜅𝑡 = 𝐾𝑇 𝑥̃𝑙𝑎𝑡

𝑡

where 𝑥̃𝑙𝑎𝑡 denotes the state extended by the accumulated dis-
tance error 𝑒, i.e., 𝑥̃𝑙𝑎𝑡 = [𝑥𝑇 , 𝑒]𝑇 and assuming that the dy-
namics (6) augmented by an integrator for the lateral deviation,
i.e., 𝑒𝑡+1 = 𝑒𝑡 + 𝑑𝑡. The controller is designed by placing the
poles of the closed-loop system in 0.3, 0.4, and 0.5 using the
method from J. Kautsky and Dooren (1985). The control signal
is saturated additionally to account for the actuation limits (7);

(2) A Lateral Geometric Controller (LGC), also known as Stanley
controller (Hoffmann et al., 2007), which focuses on minimizing
the lateral distance and the heading errors between the vehicle
and a desired path. An adapted version of the controller in terms
of the vehicle’s curvature is given as:

𝜅𝑡 = −
1

𝑙
tan

[
𝜃𝑡 − 𝜃𝑟,𝑡 + tan−1

(
𝑘𝑑𝑡

𝑣𝑡

)]
,

where 𝑙 = 2.8𝑚 is the wheelbase of the vehicle and 𝑘 = 2 is
a tuning parameter. Similarly, the control signal is saturated to
account for the actuation limits (7);

(3) A Lateral Model-predictive Controller (LMC) for the model (6)
and the optimization horizon with 𝑁 = 3 samples. Let 𝑡 de-
note the current time step and 𝑡 the optimization horizon time.
The orientation of the road and the longitudinal velocity are
assumed to be given as preview vectors over the optimization
horizon, i.e., 𝜃𝑟,𝑡|[𝑡,𝑡+𝑁−1] and 𝑣𝑡|[𝑡,𝑡+𝑁−1], respectively. To de-
crease the complexity of controller computation, we assume that
both preview vectors are constant over the optimization horizon,
i.e., ∀𝑡 ∈ [0, 𝑁 −1], 𝜃𝑟,𝑡 = 𝜃𝑟,𝑡, 𝑣𝑡 = 𝑣𝑡. Note that a preview of both
vectors over the whole planning horizon can be considered using
the approach outlined in Remark 2. With the initial state 𝑥𝑙𝑎𝑡

𝑡
 and

the weight 𝑤𝑟 = 0.1, the following quadratic program is solved
at each state in a receding horizon manner:

min𝜅𝑡

𝑁−1∑
𝑡=0

((𝑥𝑙𝑎𝑡
𝑡
)𝑇 𝑥𝑙𝑎𝑡

𝑡
+𝑤𝑟𝜅

2
𝑡
),

s.t. ∀𝑡 ∈ [0, 𝑁], 𝑣𝑡 = 𝑣𝑡, (6), 𝑥
𝑙𝑎𝑡

𝑡
∈ 𝑂𝑙𝑎𝑡

𝑥
, 𝜅𝑡 ∈ 𝑂𝑙𝑎𝑡

𝑢
;

∀𝑡 ∈ [0, 𝑁 − 1], 𝜃𝑟,𝑡 = 𝜃𝑟,𝑡, 𝜃𝑟,𝑡 ∈ 𝑂𝑙𝑎𝑡
𝑢
;

𝑥𝑙𝑎𝑡
𝑡

= 𝑥𝑙𝑎𝑡
𝑡
.

Table 4
Lateral controller code lines and falsification/verification times.
 Controller type Code lines Falsification

time [min]
Verification
time [min]

 LPC 8 2.5 –
 LGC 12 4.9 –
 LMC 1521 – 7.8

The controller for the Linear Parameter Varying (LPV) system
(6) is implemented using the method proposed in Besselmann
and Löfberg (2012). The explicit solution of the optimal con-
trol problem comprises 144 state feedback controllers over the
relevant ODD and is exported to C.

Table 4 summarizes the verification/falsification results for the
above three lateral controllers. Similar to the longitudinal case, the
model-predictive LMC is the only one to pass the verification, while
the LPC and the LGC were falsified. This is largely due to the fact that
the LPC and the LGC only consider the current state 𝑥𝑙𝑎𝑡

𝑡
, and only the

LMC additionally the orientation of the road 𝜃𝑟,𝑡 as well as the analytical
specification and the ODD explicitly. The LGC with an increased tuning
parameter 𝑘 = 4 also passes the verification. Note that the LPC was
falsified using safe sets with the augmented state 𝑥̃𝑙𝑎𝑡

𝑡
, as outlined in

Remark 3.
All falsifying counterexamples denote an insufficient ego vehicle

curvature provided by the controller, while driving at relatively high
speed and with a relatively high initial orientation difference to the
reference orientation.

5.3. Threats to validity

The following potential validity threats highlight areas where the
CoCoSaFe study’s results might be vulnerable to misinterpretation or
might not fully capture the intended safety guarantees across diverse
driving scenarios and controller types.
Internal validity threats may be due to the conditional nature of the
evidence obtained from CoCoSaFe, which only demonstrates that safety
is maintained within the invariant set of the analytical specification.
This raises concerns about the validity of the conclusions regarding the
controller’s behavior in the field. To mitigate this threat, the analytical
specifications were taken from literature (Rajamani, 2011) and they
were validated against real-world data in Hoffmann et al. (2007),
Menzel et al. (2018) to ensure that they capture relevant dynamics for
ACC and LKA.

The specific implementation of the controllers also play a crucial
role in influencing verification. Features such as templates, loops,
and recursive functions can introduce additional challenges that may
compromise the termination of the verification process in reasonable
time. To alleviate this, the MISRA (Motor Industry Software Reliability
Association) coding standard (Anon, 2023) was used to enhance code
safety and quality.

Further, BMCs analyze the software’s behavior only up to a pre-
defined bound. Errors that occur beyond this loop unrolling limit might
be missed. To address this, only finite loops were used in the code and
the bound for the BMC was set to the maximum size of the for-loops
present in the controllers.
Construct validity threats may occur in defining the ODD and pa-
rameter set for model checking. A trade-off between precision and
complexity may lead to an inadequate representation of the system
being verified. To reduce these threats, the ODD was chosen to encom-
pass the maximal view range of common ADAS sensors and maximal
velocity, acceleration, orientation and curvature operation ranges for
ACC and LKA.

Tool limitations present another challenge, as the assumptions nec-
essary for verification may not be feasible to incorporate into the

The Journal of Systems & Software 230 (2025) 112499

11

V. Nenchev et al.

deployed code. To mitigate this issue, CoCoSaFe operates at the input–
output boundaries of the controllers being verified, ensuring that these
are accessible for specifying assumptions and assertions. Addition-
ally, many verifiers are not robust against all possible flaws. For in-
stance, floating-point errors have shown to be particularly difficult
when it comes to ensuring the overall safety of DNNs (Jia and Rinard,
2021). To tackle this challenge, we combined tools with a proven track
record in verifying code level including floating-point errors, such as
CBMC (Clarke et al., 2004), as well as a dedicated neural network
verifier, like Marabou (Katz et al., 2019).

Furthermore, depending on an analytical specification restricts the
generalization of the verification outcomes. We emphasize that
CoCoSaFe, like most formal verification methods, should be supple-
mented with data-driven testing to improve its applicability to complex
behaviors that arise solely in real-world scenarios.
External validity threats may arise if our approach is not applicable
to other ADAS controllers. To mitigate this threat, we evaluated the
approach for two qualitatively different classes of ADAS controllers
(cruise control and lane keeping), and for each class we considered
controllers that use several distinct methods commonly employed in the
automotive domain. Nevertheless, further case studies, for instance the
application to other controller types or varied operational settings (such
as urban driving or adverse weather conditions), are required to ensure
that these threats are fully addressed. The particular assumptions and
models applied might not be transferable to other areas, which could
limit the framework’s broader usability. Nevertheless, since similar
subsystem decompositions used in this study are prevalent in fields such
as aerospace (McRuer et al., 2014), we anticipate that CoCoSaFe can
also be applied in that context.

6. Discussion

Using the CoCoSaFe framework presented in Section 4, we could
achieve more realistic and, most importantly, a safe closed-loop behav-
ior for many initially falsified controllers. The considered automated
driving controllers were used to control traffic agents in an in-house
simulation environment for automated driving development. The ex-
perimental results presented in the previous sections suggest that our
approach offers several benefits beyond this application.
Independent Subsystem Analysis. Our compositional verification ap-
proach allows the analysis of each subsystem independently, which
improves the scalability and feasibility of verification for large systems
with multiple concurrently operating subsystems. The longitudinal and
lateral subsystems can be verified in parallel, which reduces the overall
verification time. Assuming that the analytical specification is valid,
verified subsystems can be reused in different products without the
need to re-verify them. This also enables incremental verification,
where changes or updates to one subsystem do not necessitate re-
verifying the entire system. This is particularly relevant for over-the-air
updates in large and diverse vehicle fleets — if only the ACC is updated,
only its verification and interaction with LKA needs re-evaluation, not
the entire system. Verifying subsystems individually also supports iso-
lating and debugging safety violations and might reduce maintenance
efforts by focusing on specific subsystems.
Identifying Code-Level Safety Flaws. We were able to find safety
flaws at code level for all controllers except for the model-predictive-
based ones (Tables 3 and 4). These safety deficits may have remained
uncovered with testing alone.
Explainable Falsifying Samples. The acquired falsifying samples cor-
respond to driving scenarios that provide feedback to improve the
controllers considered, either by deriving additional automated tests or
by revisiting algorithmic solutions.
Enhancing System-Level Analysis. Applying formal verification even
only to some software modules greatly supports the overall system-
level analysis and design, e.g., by providing hints where a dedicated

supervisor component might be required as a safety assurance measure.
Note that in practice, the computed safe sets can be used as a supervisor
(runtime monitor) to ensure the safe operation of a controller.
Identifying Gaps in Training Data. For neural network controllers,
our approach allows falsifying examples to be used to indicate possible
gaps in the collected training data or undesirable biases in the current
training stage.
Feasible Pipeline integration. Our framework can be integrated to
support verification within the ADAS development process. As the only
manual modeling step is related to deriving the analytical specification
and verifying controller implementations are possible in an automated
manner within minutes, our solution can be included in Continuous
Integration (CI) pipelines, where it is connected to consecutive versions
of the to-be-deployed controller software.
Broad Applicability for ADAS. As falsification or verification was
possible for all seven considered controller classes, the proposed frame-
work is expected to be suitable for a broad range of controllers. The
method is not limited to the analytical specifications (4) and (6).
Although this paper uses a linear system for which computing a CIS
is known to have polynomial complexity (Raković et al., 2007), the
verification approach presented can be easily used for analytical spec-
ifications and operation sets, which allow computing a CIS. Obtaining
the CIS is possible for many nonlinear systems, e.g., (Fiacchini et al.,
2010). Even though our work focuses on safe keep distance and lane
keeping of automated driving vehicles, its key ideas can be transferred
to other CPS.

While the presented scheme has great potential for automated
safety verification of many safety-critical controllers, several aspects
of CoCoSaFe can be extended in future work.
Extension to Additional ADAS elements. While our current focus
has been on the verification of controller code, by integrating other
ADAS components we can evaluate how the controllers interact for
various ADAS functionalities. This holistic approach not only strength-
ens the verification process but also addresses potential edge cases and
interactions that may arise in real-world scenarios. Recent empirical
studies have indicated that an ensemble failure predictor outperforms
individual simulators in forecasting the failures of a digital twin Bi-
agiola et al. (2024). Thus, a possible way to enhance generalization
could be using an alternative, potentially non-analytical specification.
Another alternative is to extend the approach to consider uncertainties
in the system model, e.g., by using probabilistic (Calinescu et al., 2018;
Gerasimou et al., 2021) and/or statistical model checking.
Specification complexity. Achieving a suitable analytical specification
for controller verification requires balancing precision and complexity,
with hybrid system formulations being a promising option (Wong-
piromsarn et al., 2012). If the resulting safe set is highly complex, char-
acterized by many defining inequalities, the verification process may
take considerable time. One potential solution is to under-approximate
this complex invariant set using simpler invariants, as suggested in
Anevlavis et al. (2023), or by employing a lower-complexity parametric
shape.

Using more complex dynamical system models as analytical spec-
ifications can render the computation of the CIS infeasible or make
bounded model checking intractable. Even with linear models, the
complexity of the analytical specification impacts computational effort
and the size of the operational domain for verification. For nonlinear
systems, some studies use convex approximations to reduce complex-
ity (Fiacchini et al., 2010), while others leverage structural properties
of polynomial systems to compute exact sets (Ben Sassi and Girard,
2012). However, since the maximal controlled invariant set of a nonlin-
ear system is often non-convex, the resulting CIS can be conservative.
Future work could explore whether other desired properties of closed-
loop controller operation can be captured by invariants and verified
using our approach, such as minimizing unnecessary fluctuations in
control signals in camera-based systems when images are stable.

The Journal of Systems & Software 230 (2025) 112499

12

V. Nenchev et al.

7. Conclusion

We introduced CoCoSaFe, a Compositional Code-level formal Safety
verification Framework for automated driving controller implementa-
tions. CoCoSaFe relies on computing controlled invariant sets for ana-
lytical specifications of the closed-loop operation within the operational
design domain. This enables a modular and parallelizable verifica-
tion of concurrently operating subsystem controller implementations
by utilizing a bounded model checker. Furthermore, by proposing a
three-stage verification decomposition, we verify neural network-based
controllers, for which off-the-shelf bounded model checkers have timed
out.

We demonstrated the effectiveness of our method by an exten-
sive case study with various types of traditional and neural-network-
based controllers. The experimental results confirm that adaptive cruise
and lane keeping controllers can be verified offline within a time
frame of minutes on a regular computer, thus emphasizing the low
computational overhead of the framework for cyber–physical systems.

In future work, we plan to apply CoCoSaFe to additional types
of automotive controllers, e.g. those responsible for lane changing or
interactive urban driving, as well as other application domains, such as
mobile robotic platforms and manipulators. Furthermore, specification
complexity and additional ADAS elements will be considered in our
future work, as outlined in Section 6.

CRediT authorship contribution statement

Vladislav Nenchev: Writing – review & editing, Writing – origi-
nal draft, Validation, Software, Resources, Methodology, Investigation,
Formal analysis, Conceptualization. Calum Imrie: Writing – review
& editing, Writing – original draft, Visualization, Conceptualization.
Simos Gerasimou: Writing – review & editing, Writing – original
draft, Visualization, Methodology, Conceptualization. Radu Calinescu:
Writing – review & editing, Writing – original draft, Visualization,
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Vladislav Nenchev reports travel was provided by Lloyd’s Register
Foundation. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgments

This work was partly supported by the Assuring Autonomy Inter-
national Programme, a partnership between Lloyd’s Register Founda-
tion and the University of York, UK. Radu Calinescu’s work was also
funded by the EPSRC project EP/V026747/1 ‘UKRI Trustworthy Au-
tonomous Systems Node in Resilience’, and by the QUALIFICA project
of the Institute for Software Engineering and Software Technology ‘Jose
María Troya Linero’ at the University of Málaga (QUAL21-010 UMA).
Vladislav Nenchev’s work was also supported by the University of the
Bundeswehr Munich, Germany. We thank the anonymous reviewers for
their valuable feedback, which has contributed to the improvement of
the paper.

Data availability

The authors do not have permission to share data.

References

Adelt, J., Gebker, J., Herber, P., 2024. Reusable formal models for concurrency and
communication in custom real-time operating systems. Int. J. Softw. Tools Technol.
Transf. 26, 229–245. http://dx.doi.org/10.1007/s10009-024-00743-4.

Alam, A., Gattami, A., Johansson, K.H., Tomlin, C.J., 2014. Guaranteeing safety for
heavy duty vehicle platooning: Safe set computations and experimental evaluations.
Control Eng. Pract. 24, 33–41.

Anevlavis, T., Liu, Z., Ozay, N., Tabuada, P., 2023. Controlled invariant sets: Implicit
closed-form representations and applications. IEEE Trans. Autom. Control 1–16.

Anon, 2018. Intelligent transport systems - adaptive cruise control systems -
performance requirements and test procedures. ISO Standard 15622:2018.

Anon, 2023. MISRA C++:2023 Guidelines for the Use of C++ in Critical Systems. Motor
Industry Software Reliability Association (MISRA), Warwickshire, UK.

Behere, S., Törngren, M., 2016. A functional reference architecture for autonomous
driving. Inf. Softw. Technol. 73, 136–150. http://dx.doi.org/10.1016/j.infsof.2015.
12.008.

Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W., Hen-
driks, M., 2006. UPPAAL 4.0. In: Proceedings of the 3rd International Conference
on the Quantitative Evaluation of Systems. QEST ’06, IEEE Computer Society, USA,
pp. 125–126. http://dx.doi.org/10.1109/QEST.2006.59.

Ben Sassi, M.A., Girard, A., 2012. Computation of polytopic invariants for polynomial
dynamical systems using linear programming. Automatica 48 (12), 3114–3121.
http://dx.doi.org/10.1016/j.automatica.2012.08.014.

Benvenuti, L., Ferrari, A., Mazzi, E., Vincentelli, A.L., 2008. Contract-based design for
computation and verification of a closed-loop hybrid system. In: Proc, of 11th Int.
Workshop on Hybrid Systems: Computation and Control. HSCC, pp. 58–71.

Besselmann, T., Löfberg, J., 2012. Explicit MPC for LPV systems: stability and
optimality. IEEE Trans. Autom. Control.

Biagiola, M., Stocco, A., Riccio, V., Tonella, P., 2024. Two is better than one: digital
siblings to improve autonomous driving testing. Empir. Softw. Eng. 29 (4), 72.

Blanchini, F., 1999. Set invariance in control. Automatica 35 (11), 1747–1767.
Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N., 2018. Efficient

synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158.
Calinescu, R., Imrie, C., Mangal, R., Rodrigues, G.N., Pasareanu, C.S., Santana, M.A.,

Vázquez, G., 2024. Controller synthesis for autonomous systems with deep-learning
perception components. IEEE Trans. Softw. Eng. 50 (6), 1374–1395. http://dx.doi.
org/10.1109/TSE.2024.3385378.

Camilli, M., Mirandola, R., Scandurra, P., 2023. Enforcing resilience in cyber-physical
systems via equilibrium verification at runtime. ACM Trans. Auton. Adapt. Syst. 18
(3).

Chaves, L., Bessa, I.V., Ismail, H., dos Santos Frutuoso, A.B., Cordeiro, L., de Lima
Filho, E.B., 2018. Dsverifier-aided verification applied to attitude control software
in unmanned aerial vehicles. IEEE Trans. Reliab. 67 (4), 1420–1441.

Chou, G., Sahin, Y.E., Yang, L., Rutledge, K.J., Nilsson, P., Ozay, N., 2018. Using
control synthesis to generate corner cases: A case study on autonomous driving.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37 (11), 2906–2917. http:
//dx.doi.org/10.1109/TCAD.2018.2858464.

Chrszon, P., Maurer, P., Saleip, G., Müller, S., Fischer, P.M., Gerndt, A., Felderer, M.,
2023. Applicability of model checking for verifying spacecraft operational designs.
In: ACM/IEEE 26th Int. Conf. on Model Driven Engineering Languages and Systems.
MODELS, pp. 206–216.

Cimatti, A., Cristoforetti, L., Griggio, A., Tonetta, S., Corfini, S., Di Natale, M.,
Barrau, F., 2023. EVA: a tool for the compositional verification of AUTOSAR
models. In: Sankaranarayanan, S., Sharygina, N. (Eds.), Tools and Algorithms for
the Construction and Analysis of Systems. Springer Nature Switzerland, Cham, pp.
3–10.

Clarke, E., Kroening, D., Lerda, F., 2004. A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems. TACAS 2004, In: Lecture Notes in Computer Science, vol.
2988, Springer, pp. 168–176.

Dawson, C., Gao, S., Fan, C., 2023. Safe control with learned certificates: A survey of
neural Lyapunov, barrier, and contraction methods for robotics and control. IEEE
Trans. Robot. 39 (3), 1749–1767. http://dx.doi.org/10.1109/TRO.2022.3232542.

DeCastro, J., Liebenwein, L., Vasile, C.-I., Tedrake, R., Karaman, S., Rus, D., 2020.
Counterexample-guided safety contracts for autonomous driving. In: Algorithmic
Foundations of Robotics XIII: Proceedings of the 13th Workshop on the Algorithmic
Foundations of Robotics 13. Springer, pp. 939–955.

Durand, T., Fazekas, K., Weissenbacher, G., Zwirchmayr, J., 2021. Model checking
AUTOSAR components with CBMC. In: 2021 Formal Methods in Computer Aided
Design. FMCAD, IEEE, pp. 96–101.

Elboher, Y.Y., Cohen, E., Katz, G., 2023. On applying residual reasoning within neural
network verification. Softw. Syst. Model. 1–16. http://dx.doi.org/10.1007/s10270-
023-01138-w.

Fan, C., Qi, B., Mitra, S., Viswanathan, M., 2017. DryVR: Data-driven verification and
compositional reasoning for automotive systems. In: Majumdar, R., Kunˇ cak, V.
(Eds.), Computer Aided Verification. pp. 441–461.

Favrin, A., Nenchev, V., Cenedese, A., 2020. Learning to falsify automated driving
vehicles with prior knowledge. IFAC-PapersOnLine http://dx.doi.org/10.1016/j.
ifacol.2020.12.664, IFAC World Congress 2020 (IFAC’2020), Berlin.

The Journal of Systems & Software 230 (2025) 112499

13

http://dx.doi.org/10.1007/s10009-024-00743-4
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb2
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb2
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb2
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb2
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb2
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb3
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb3
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb3
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb4
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb4
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb4
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb5
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb5
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb5
http://dx.doi.org/10.1016/j.infsof.2015.12.008
http://dx.doi.org/10.1016/j.infsof.2015.12.008
http://dx.doi.org/10.1016/j.infsof.2015.12.008
http://dx.doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.1016/j.automatica.2012.08.014
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb9
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb9
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb9
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb9
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb9
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb10
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb10
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb10
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb11
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb11
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb11
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb12
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb13
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb13
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb13
http://dx.doi.org/10.1109/TSE.2024.3385378
http://dx.doi.org/10.1109/TSE.2024.3385378
http://dx.doi.org/10.1109/TSE.2024.3385378
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb15
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb15
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb15
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb15
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb15
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb16
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb16
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb16
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb16
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb16
http://dx.doi.org/10.1109/TCAD.2018.2858464
http://dx.doi.org/10.1109/TCAD.2018.2858464
http://dx.doi.org/10.1109/TCAD.2018.2858464
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb18
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb18
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb18
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb18
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb18
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb18
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb18
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb19
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb20
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb20
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb20
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb20
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb20
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb20
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb20
http://dx.doi.org/10.1109/TRO.2022.3232542
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb22
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb22
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb22
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb22
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb22
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb22
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb22
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb23
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb23
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb23
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb23
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb23
http://dx.doi.org/10.1007/s10270-023-01138-w
http://dx.doi.org/10.1007/s10270-023-01138-w
http://dx.doi.org/10.1007/s10270-023-01138-w
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb25
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb25
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb25
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb25
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb25
http://dx.doi.org/10.1016/j.ifacol.2020.12.664
http://dx.doi.org/10.1016/j.ifacol.2020.12.664
http://dx.doi.org/10.1016/j.ifacol.2020.12.664

V. Nenchev et al.

Fiacchini, M., Alamo, T., Camacho, E., 2010. On the computation of convex robust
control invariant sets for nonlinear systems. Automatica 46 (8), 1334–1338. http:
//dx.doi.org/10.1016/j.automatica.2010.05.007.

Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A., 2015. KeYmaera X: An
axiomatic tactical theorem prover for hybrid systems. In: Automated Deduction-
CADE-25: 25th International Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25. Springer, pp. 527–538.

Garrido, F., Resende, P., 2022. Review of decision-making and planning approaches in
automated driving. IEEE Access 10, 100348–100366. http://dx.doi.org/10.1109/
ACCESS.2022.3207759.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.,
2018. AI2: Safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy. SP, pp. 3–18.
http://dx.doi.org/10.1109/SP.2018.00058.

Gerasimou, S., Cámara, J., Calinescu, R., Alasmari, N., Alhwikem, F., Fang, X., 2021.
Evolutionary-guided synthesis of verified pareto-optimal MDP policies. In: 36th
IEEE/ACM International Conference on Automated Software Engineering. ASE,
IEEE, pp. 842–853.

Giannakopoulou, D., Namjoshi, K.S., Păsăreanu, C.S., 2018. Compositional reasoning.
In: Handbook of Model Checking. Springer International Publishing, Cham, pp.
345–383.

Grundt, D., Jurj, S.L., Hagemann, W., Kröger, P., Fränzle, M., 2022. Verification of
sigmoidal artificial neural networks using iSAT. In: International Workshop on
Symbolic-Numeric Methods for Reasoning About CPS and IoT. pp. 45–60. http:
//dx.doi.org/10.4204/EPTCS.361.6.

Herceg, M., Kvasnica, M., Jones, C.N., Morari, M., 2013. Multi-parametric toolbox 3.0.
In: European Control Conference. ECC, pp. 502–510. http://dx.doi.org/10.23919/
ECC.2013.6669862.

Hoffmann, G.M., Tomlin, C.J., Montemerlo, M., Thrun, S., 2007. Autonomous auto-
mobile trajectory tracking for off-road driving: Controller design, experimental
validation and racing. In: Proc. of American Control Conference. ACC, pp.
2296–2301. http://dx.doi.org/10.1109/ACC.2007.4282788.

Huang, X., Kwiatkowska, M., Wang, S., Wu, M., 2017. Safety verification of deep
neural networks. In: Majumdar, R., Kunčak, V. (Eds.), Computer Aided Verification.
Springer Int. Publishing, Cham, pp. 3–29.

Ioannou, P., Chien, C., 1993. Autonomous intelligent cruise control. IEEE Trans. Veh.
Technol. 42 (4), 657–672. http://dx.doi.org/10.1109/25.260745.

Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R., Bastani, O., 2021.
Compositional learning and verification of neural network controllers. ACM Trans.
Embed. Comput. Syst. 20 (5s), http://dx.doi.org/10.1145/3477023.

J. Kautsky, N.K.N., Dooren, P.V., 1985. Robust pole assignment in linear state feedback.
Internat. J. Control 41 (5), 1129–1155.

Jacumet, R., Rathgeber, C., Nenchev, V., 2023. Analytical safety bounds for trajectory
following controllers in autonomous vehicles. In: Proc. of Int. Conf. on Control,
Decision and Information Technologies. CoDIT, pp. 730–735.

Jia, K., Rinard, M., 2021. Exploiting verified neural networks via floating point
numerical error. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (Eds.), Int. Static
Analysis Symposium. Springer International Publishing, Cham, pp. 191–205.

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
Wu, H., Zeljić, A., Dill, D.L., Kochenderfer, M.J., Barrett, C., 2019. The marabou
framework for verification and analysis of deep neural networks. In: Dillig, I.,
Tasiran, S. (Eds.), Computer Aided Verification. Springer International Publishing,
Cham, pp. 443–452.

Kianfar, R., Falcone, P., Fredriksson, J., 2013. Safety verification of automated driving
systems. IEEE Intell. Transp. Syst. Mag. 5 (4), 73–86.

Kojchev, S., Klintberg, E., Fredriksson, J., 2020. A safety monitoring concept for fully
automated driving. In: 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems. ITSC, pp. 1–7. http://dx.doi.org/10.1109/ITSC45102.2020.
9294307.

König, L., Heinzemann, C., Griggio, A., Klauck, M., Cimatti, A., Henze, F., Tonetta, S.,
Küperkoch, S., Fassbender, D., Hanselmann, M., 2024. Towards safe autonomous
driving: Model checking a behavior planner during development. In: Finkbeiner, B.,
Kovács, L. (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems. Springer Nature Switzerland, Cham, pp. 44–65.

Lopez, D.M., Choi, S.W., Tran, H.-D., Johnson, T.T., 2023. NNV 2.0: The neural network
verification tool. In: Enea, C., Lal, A. (Eds.), Computer Aided Verification. Springer
Nature Switzerland, Cham, pp. 397–412.

Lygeros, J., Godbole, D.N., Sastry, S., 1996. A verified hybrid controller for automated
vehicles. In: Proceedings of 35th IEEE Conference on Decision and Control, vol. 2,
pp. 2289–2294.

Ma, Y., Sun, C., Chen, J., Cao, D., Xiong, L., 2022. Verification and validation methods
for decision-making and planning of automated vehicles: A review. IEEE Trans.
Intell. Veh. 7 (3), 480–498.

Marchetto, A., Scanniello, G., 2024. A rapid review on software vulnerabilities and em-
bedded, cyber-physical, and IoT systems. In: Kadgien, R., Jedlitschka, A., Janes, A.,
Lenarduzzi, V., Li, X. (Eds.), Product-Focused Software Process Improvement.
Springer Nature Switzerland, Cham, pp. 468–477.

McRuer, D.T., Graham, D., Ashkenas, I., 2014. Aircraft Dynamics and Automatic
Control. Princeton University Press, Princeton.

Mehdipour, N., Althoff, M., Tebbens, R.D., Belta, C., 2023. Formal methods to comply
with rules of the road in autonomous driving: State of the art and grand challenges.
Automatica 152, 110692. http://dx.doi.org/10.1016/j.automatica.2022.110692.

Menzel, T., Bagschik, G., Maurer, M., 2018. Scenarios for development, test and
validation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium.
IV, pp. 1821–1827.

Naus, G., Ploeg, J., Van de Molengraft, M., Heemels, W., Steinbuch, M., 2010. Design
and implementation of parameterized adaptive cruise control: An explicit model
predictive control approach. Control Eng. Pract. 18 (8), 882–892. http://dx.doi.
org/10.1016/j.conengprac.2010.03.012.

Nenchev, V., 2021. Automated behavior modeling for verifying safety-relevant modules.
In: Proc. of IEEE Int. Conf. on Robotic Computing. IRC, pp. 92–95.

Nenchev, V., 2023. Model checking embedded adaptive cruise controllers. Robot. Auton.
Syst. 167, 104488.

Nenchev, V., 2025. One stack, diverse vehicles: Checking safe portability of auto-
mated driving software. In: 2025 IEEE/SICE International Symposium on System
Integration. SII, pp. 764–769. http://dx.doi.org/10.1109/SII59315.2025.10870905.

Nenchev, V., Imrie, C., Gerasimou, S., Calinescu, R., 2024. Code-level safety verification
for automated driving: A case study. In: Formal Methods. FM’24, In: Lecture Notes
in Computer Science (LNCS), vol. 14934, Springer, pp. 356–372.

Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames, A.D., Grizzle, J.W., Ozay, N.,
Peng, H., Tabuada, P., 2016. Correct-by-construction adaptive cruise control: Two
approaches. IEEE Trans. Control Syst. Technol. 24 (4), 1294–1307.

Păsăreanu, C.S., Gopinath, D., Yu, H., 2019. Compositional verification for autonomous
systems with deep learning components. In: Safe, Autonomous and Intelligent
Vehicles. Springer, pp. 187–197.

Paterson, C., Wu, H., Grese, J., Calinescu, R., Pasareanu, C.S., Barrett, C.W., 2021.
DeepCert: Verification of Contextually Relevant Robustness for Neural Network
Image Classifiers. In: Habli, I., Sujan, M., Bitsch, F. (Eds.), Computer Safety,
Reliability, and Security - 40th International Conference, SAFECOMP 2021, York,
UK, September 8-10, 2021, Proceedings. In: Lecture Notes in Computer Science,
vol. 12852, Springer, pp. 3–17. http://dx.doi.org/10.1007/978-3-030-83903-1_5.

Pek, C., Manzinger, S., Koschi, M., Althoff, M., 2020. Using online verification to
prevent autonomous vehicles from causing accidents. Nat. Mach. Intell. 2 (9),
http://dx.doi.org/10.1038/s42256-020-0225-y.

Rajamani, R., 2011. Vehicle dynamics and control. In: Mechanical Engineering Series,
Springer US.

Raković, S., Kerrigan, E., Mayne, D., Kouramas, K., 2007. Optimized robust control
invariance for linear discrete-time systems: Theoretical foundations. Automatica 43
(5), 831–841. http://dx.doi.org/10.1016/j.automatica.2006.11.006.

Ruoss, A., Baader, M., Balunović, M., Vechev, M., 2021. Efficient certification of
spatial robustness. In: Thirty-Fifth AAAI Conference on Artificial Intelligence. pp.
2504–2513.

Santa Cruz, U., Shoukry, Y., 2022. NNLander-VeriF: A neural network formal verifica-
tion framework for vision-based autonomous aircraft landing. In: Deshmukh, J.V.,
Havelund, K., Perez, I. (Eds.), NASA Formal Methods. Springer International
Publishing, Cham, pp. 213–230.

Scheibler, K., Winterer, L., Wimmer, R., Becker, B., 2015. Towards verification of arti-
ficial neural networks. In: Heinkel, U., Rößler, M., Kriesten, D. (Eds.), Proceedings
of the 18th Workshop ‘‘Methoden Und Beschreibungssprachen Zur Modellierung
Und Verifikation Von Schaltungen Und Systemen’’. MBMV, Technische Universität
Chemnitz, Germany, Chemnitz, Germany, pp. 30–40.

Scholtes, M., Westhofen, L., Turner, L.R., Lotto, K., Schuldes, M., Weber, H., Wa-
gener, N., Neurohr, C., Bollmann, M.H., Körtke, F., Hiller, J., Hoss, M., Bock, J.,
Eckstein, L., 2021. 6-layer model for a structured description and categorization of
urban traffic and environment. IEEE Access 9, 59131–59147.

Staron, M., 2021. Automotive Software Architectures: An Introduction. Springer Cham.
Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H., 2004. Verification of a cruise control

system using counterexample-guided search. Control Eng. Pract. 12, 1269–1278.
Sun, X., Khedr, H., Shoukry, Y., 2019. Formal verification of neural network con-

trolled autonomous systems. In: Proc. 22nd ACM Int. Conf. on Hybrid Systems:
Computation and Control. HSCC ’19, ACM, New York, NY, USA, pp. 147–156.

Tian, Y., Pei, K., Jana, S., Ray, B., 2018. DeepTest: Automated testing of deep-
neural-network-driven autonomous cars. In: Proceedings of the 40th International
Conference on Software Engineering. ICSE ’18, Association for Computing Ma-
chinery, New York, NY, USA, pp. 303–314. http://dx.doi.org/10.1145/3180155.
3180220.

Treiber, M., Hennecke, A., Helbing, D., 2000. Congested traffic states in empirical
observations and microscopic simulations. Phys. Rev. E 62, 1805–1824.

United Nations Economic Commission for Europe (UNECE), 2023. UN Regulation No.
79: Uniform provisions concerning the approval of vehicles with regard to steering
equipment.

Widmann, G.R., Daniels, M.K., Hamilton, L., Humm, L., Riley, B., Schiffmann, J.K.,
Schnelker, D.E., Wishon, W.H., 2000. Comparison of lidar-based and radar-based
adaptive cruise control systems. SAE Trans. 109, 126–139.

Wongpiromsarn, T., Mitra, S., Lamperski, A., Murray, R.M., 2012. Verification of
periodically controlled hybrid systems: Application to an autonomous vehicle.
ACM Trans. Embed. Comput. Syst. 11 (S2), http://dx.doi.org/10.1145/2331147.
2331163.

The Journal of Systems & Software 230 (2025) 112499

14

http://dx.doi.org/10.1016/j.automatica.2010.05.007
http://dx.doi.org/10.1016/j.automatica.2010.05.007
http://dx.doi.org/10.1016/j.automatica.2010.05.007
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb28
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb28
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb28
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb28
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb28
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb28
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb28
http://dx.doi.org/10.1109/ACCESS.2022.3207759
http://dx.doi.org/10.1109/ACCESS.2022.3207759
http://dx.doi.org/10.1109/ACCESS.2022.3207759
http://dx.doi.org/10.1109/SP.2018.00058
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb31
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb31
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb31
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb31
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb31
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb31
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb31
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb32
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb32
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb32
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb32
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb32
http://dx.doi.org/10.4204/EPTCS.361.6
http://dx.doi.org/10.4204/EPTCS.361.6
http://dx.doi.org/10.4204/EPTCS.361.6
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.1109/ACC.2007.4282788
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb36
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb36
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb36
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb36
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb36
http://dx.doi.org/10.1109/25.260745
http://dx.doi.org/10.1145/3477023
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb39
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb39
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb39
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb40
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb40
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb40
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb40
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb40
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb41
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb41
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb41
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb41
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb41
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb42
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb43
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb43
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb43
http://dx.doi.org/10.1109/ITSC45102.2020.9294307
http://dx.doi.org/10.1109/ITSC45102.2020.9294307
http://dx.doi.org/10.1109/ITSC45102.2020.9294307
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb45
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb46
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb46
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb46
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb46
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb46
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb47
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb47
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb47
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb47
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb47
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb48
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb48
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb48
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb48
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb48
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb49
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb49
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb49
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb49
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb49
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb49
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb49
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb50
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb50
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb50
http://dx.doi.org/10.1016/j.automatica.2022.110692
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb52
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb52
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb52
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb52
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb52
http://dx.doi.org/10.1016/j.conengprac.2010.03.012
http://dx.doi.org/10.1016/j.conengprac.2010.03.012
http://dx.doi.org/10.1016/j.conengprac.2010.03.012
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb54
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb54
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb54
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb55
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb55
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb55
http://dx.doi.org/10.1109/SII59315.2025.10870905
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb57
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb57
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb57
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb57
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb57
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb58
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb58
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb58
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb58
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb58
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb59
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb59
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb59
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb59
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb59
http://dx.doi.org/10.1007/978-3-030-83903-1_5
http://dx.doi.org/10.1038/s42256-020-0225-y
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb62
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb62
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb62
http://dx.doi.org/10.1016/j.automatica.2006.11.006
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb64
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb64
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb64
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb64
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb64
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb65
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb65
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb65
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb65
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb65
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb65
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb65
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb66
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb67
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb67
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb67
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb67
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb67
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb67
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb67
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb68
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb69
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb69
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb69
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb70
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb70
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb70
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb70
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb70
http://dx.doi.org/10.1145/3180155.3180220
http://dx.doi.org/10.1145/3180155.3180220
http://dx.doi.org/10.1145/3180155.3180220
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb72
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb72
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb72
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb73
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb73
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb73
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb73
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb73
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb74
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb74
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb74
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb74
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb74
http://dx.doi.org/10.1145/2331147.2331163
http://dx.doi.org/10.1145/2331147.2331163
http://dx.doi.org/10.1145/2331147.2331163

V. Nenchev et al.

Wu, H.-J., Nenchev, V., Rathgeber, C., 2024. Automatic parameter tuning of self-driving
vehicles. In: 2024 IEEE Conference on Control Technology and Applications. CCTA,
pp. 555–560. http://dx.doi.org/10.1109/CCTA60707.2024.10666632.

Zhang, Y., Xie, F., Dong, Y., Zhou, X., Ma, C., 2013. Cyber/physical co-verification for
developing reliable cyber-physical systems. In: 2013 IEEE 37th Annual Computer
Software and Applications Conference. pp. 539–548.

Zhu, M., Wang, Y., Pu, Z., Hu, J., Wang, X., Ke, R., 2020. Safe, efficient, and
comfortable velocity control based on reinforcement learning for autonomous
driving. Transp. Res. Part C: Emerg. Technol. 117, 102662. http://dx.doi.org/10.
1016/j.trc.2020.102662.

Vladislav Nenchev is Professor of Embedded Systems at the University of the Bun-
deswehr Munich, Germany. Prior to this, he was with the Automated and Autonomous
Driving Division of BMW Group in Munich, Germany. His research interests include
motion planning, optimal control and formal verification for automated driving and
robotics. He develops both classical and AI-based methods to enhance the safety and
reliability of cyber-physical systems.

Calum Imrie is a Researcher with the Centre for Assuring Autonomy, the University of
York, UK. He investigates robotics and autonomous systems with a particular focus on
the safety and assurance of deploying these systems. This includes both the learning
phases, such as reinforcement learning, and at runtime particularly for AI components,
and self-adaptive mechanisms. He has a special interest in robotics and autonomous
systems being utilized for managing and protecting the environment.

Simos Gerasimou is Associate Professor of Computer Science at the University of
York, UK. His research focuses on developing rigorous tool-supported approaches using
model-based analysis, simulation and formal verification to support the engineering of
trustworthy software for autonomous systems. His areas of expertise include safe AI,
software engineering for AI and AI for software engineering, model-driven adaptive
and autonomous systems, and assurances for autonomous systems.

Radu Calinescu is Professor of Computer Science at the University of York, UK. His
research interests include formal methods for self-adaptive, autonomous, secure and
dependable software, cyber–physical and AI systems, and in performance and reliability
software engineering. He is an active promoter of formal methods at runtime as a way
to improve the integrity and predictability of self-adaptive, autonomous and AI systems
and processes.

The Journal of Systems & Software 230 (2025) 112499

15

http://dx.doi.org/10.1109/CCTA60707.2024.10666632
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb77
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb77
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb77
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb77
http://refhub.elsevier.com/S0164-1212(25)00167-0/sb77
http://dx.doi.org/10.1016/j.trc.2020.102662
http://dx.doi.org/10.1016/j.trc.2020.102662
http://dx.doi.org/10.1016/j.trc.2020.102662

	Compositional code-level safety verification for automated driving controllers
	Introduction
	Related work
	Preliminaries
	Code-level verification framework
	Overview of the approach
	Stage 1: Formalization
	Stage 2: Decomposition
	Assume-guarantee contracts and substates
	Decoupled analytical specifications
	Correctness of compositional reasoning

	Stage 3: Verification
	Computing safe sets
	Verifying a controller implementation
	Verification decomposition for large DNN controllers

	Empirical evaluation
	Evaluation methodology
	Experimental results
	Stage 1: Formalization
	Stage 2: Decomposition
	Stage 3: Verification

	Threats to Validity

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

