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 A B S T R A C T

Ensuring the safety of automated driving vehicles is particularly challenging due to the wide range of their 
operating conditions. This paper introduces CoCoSaFe, a Compositional Code-level formal Safety verification 
Framework for automated driving controllers. Unlike traditional verification methods, such as model-based 
analysis, counterexample detection by guided simulation, or runtime verification through online monitoring, 
our approach verifies controller implementations directly at code level in an offline setting. Compositional 
contracts and bounded model checking are employed to assess the implementation of subsystem controllers 
against invariant sets. For neural network-based controllers, we introduce a scalable three-step decomposition 
method that utilizes a neural network verifier. CoCoSaFe is applied to adaptive cruise and lane-keeping 
controllers, for which we derive formal specifications and analytical models of the desired longitudinal and 
lateral behaviors, amenable for decoupled invariant sets. Various types of traditional and neural network 
controllers are verified in the order of minutes, showcasing its broad applicability and effectiveness in ensuring 
behavioral safety of software for automated driving and similar cyber–physical systems.

1. Introduction

The engineering of self-driving vehicles is an important research and 
development area in both academia and industry, as this technology 
has the potential to improve the safety of all traffic participants. In 
this context, the Operational Design Domain (ODD) that defines the 
set of conditions under which an ADAS is intended to operate has 
grown significantly in recent years (Scholtes et al., 2021). Guaranteeing 
safe operation of modern automated driving vehicles involves con-
trolling the system through software, often developed by large teams 
of developers using advanced architectures and algorithms, diverse 
programming languages, and various software frameworks (Staron, 
2021). This complexity is one of the main reasons why verifying safety 
for all possible driving scenarios in the vehicle’s ODD has proven to be 
very challenging. This is often addressed through a decomposition of 
requirements into sets corresponding to different subsystems, followed 
by the verification of each such subsystem with respect to its sepa-
rate functional requirements (Ma et al., 2022). In ADAS, a common 
separation is conducted by considering a longitudinal and a lateral 
subsystem (Rajamani, 2011). Longitudinally, ACC has to keep a suitable 
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distance to relevant target objects, such that the automated driving 
vehicle maintains a safe distance even in the presence of uncertainties. 
Laterally, a LKA must keep the vehicle in the lane, again considering 
relevant uncertainties associated with this task.

Although the states, control inputs and specifications can be formu-
lated separately for these two subsystems, the longitudinal dynamics 
of the vehicle are not independent of its lateral dynamics and vice 
versa (Rajamani, 2011). For example, it is not possible for the LKA to 
guarantee on its own that the vehicle does not cross the lane boundaries 
on a curved road at all possible speeds. Similarly, without assumptions 
on the operation of the LKA, the ACC cannot guarantee that a curved 
road is traversed with adequate lateral acceleration. Automating the 
validation and verification of ADAS software is crucial for certification 
and a rapid release cycle. Verifying that each subsystem’s controller 
does not violate its respective assumptions and guarantees is often 
achieved by a tailored redundant architecture (Behere and Törngren, 
2016), as well as exhaustive simulation and testing in practice. Al-
though the last two methods can be performed automatically even 
when a controller utilizes a Deep Neural Network (DNN) (Tian et al., 
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Fig. 1. Code-level automated driving verification process in CoCoSaFe.

2018), they are neither sound (i.e., not every bug report corresponds 
to a real bug) nor complete (i.e., some bugs may be missed).

To address this limitation of current verification approaches, we 
propose a Compositional Code-level Safety verification Framework
(CoCoSaFe) for the development-time safety verification of automated 
driving controller implementations. As shown in Fig.  1, CoCoSaFe em-
ploys a three-stage safety analysis process based on the well-established 
phases of formalization, decomposition, and verification that we spe-
cialized for automated driving. In the first stage, the overall speci-
fication and the ODD of the system are formalized such that they 
capture automated driving requirements, desired behavior, and safety 
constraints. Further, a suitable model of the environment for the 
vehicle controller is derived. Then, in the second CoCoSaFe stage, we 
define suitable compositional contracts to decompose the analytical 
specification and the ODD into subsystems. This allows synthesizing 
a separate Control Invariant Set (CIS) for each subsystem, allowing 
the computation of a corresponding safe operation set. In the final 
CoCoSaFe stage, the safe sets are used to verify (or falsify) the closed-
loop operation individually at code-level. For traditional controllers, 
Bounded Model Checking (BMC) is utilized to prove safety. For DNN-
based controllers, we propose a new hybrid verification approach 
based on decomposition: we verify the deployment code (loading the 
DNN, DNN-based inference, etc.) using a BMC, and the actual DNN 
with a dedicated neural network verification tool (e.g., Marabou Katz 
et al., 2019). Thus, satisfying the general safety requirements of the 
entire system is accomplished by assume-guarantee reasoning and 
contract-based design and verification of each subsystem (Benvenuti 
et al., 2008). Taking the example of ACC and LKA of an automated 
driving vehicle, we specify the safety requirements for each of the two 
subsystems in terms of their ODD and specification. Using the proposed 
framework, the safety of both traditional and DNN-based ACC and LKA 
implementations of various types can be verified (or falsified) within 
minutes on a standard workstation. The considered controllers are 
commonly used in contemporary industrial and research approaches for 
ADAS (Garrido and Resende, 2022). Under certain assumptions on the 
formal model, the ODD and the employed tools, CoCoSaFe is complete 
with respect to the safe set. Additionally, it complements data-based 
testing, which generally cannot encompass the entire safe set but is 
capable of checking more complex behaviors and certain edge cases 
that are not represented in the formal model.

A preliminary variant of CoCoSaFe tailored for a specific ACC 
case study was presented in Nenchev et al. (2024). In this paper, we 
significantly extend our preliminary work from Nenchev et al. (2024) 
by:

1. Introducing a generalized verification framework for automated 
driving subsystem controller implementations.

2. Utilizing maximal safe sets instead of more conservative low 
complexity safe sets to cover larger parts of the respective ODD’s 
of the controllers.

3. Proposing a possible handling of internal controller states.
4. Deriving a tailored compositional verification solution for adap-
tive cruise control and lane keeping assist by explicitly consid-
ering the interdependences in automated driving behavior.

5. Showcasing the verification of implementations of seven distinct 
controller types for adaptive cruise control and lane keeping 
assist.

The primary goal of our paper is to demonstrate how compositional rea-
soning, pre-computed safe sets, and model checking can be effectively 
used for the code-level safety verification of automated driving high 
level controllers such as ACC and LKA. We anticipate that CoCoSaFe 
can be effectively applied beyond the automated and autonomous driv-
ing domain, since (i) many Cyber-Physical Systems (CPS) incorporate 
controllers with analytical specifications that facilitate the computa-
tion of invariants, (ii) an Assume-Guarantee Contract (AGC) naturally 
reflects their interconnected component structure consisting, e.g. of 
sensors, controllers, and actuators, allowing verification of each com-
ponent independently, and (iii): the Stage 3 in Fig.  1 is completely 
application agnostic.

The remainder of the paper is organized as follows. After summa-
rizing related work (Section 2) and preliminaries (Section 3), Section 4 
presents CoCoSaFe for ADAS controllers. Experimental results for var-
ious classes of ACC and LKA controllers are provided in Section 5, 
followed by a discussion (Section 6) and a conclusion (Section 7).

2. Related work

While formal methods have been widely applied in the context 
of aerospace design (Chrszon et al., 2023) and automated driving 
(Mehdipour et al., 2023; DeCastro et al., 2020), the main focus so 
far has been on the overall behavior of an automated vehicle, rather 
than on the actually deployed code in the vehicle. In turn, there is 
substantial work of verifying code on the vehicles (Durand et al., 2021), 
as strongly advised by ISO 26262, which does not capture the behavior 
of the vehicle. Formal verification of traditional control approaches 
has been addressed, e.g., by using model checking (Lygeros et al., 
1996), counterexample-guided searching (Stursberg et al., 2004), set 
invariance (Kianfar et al., 2013), or reachability analysis (Alam et al., 
2014). Since determining invariant sets is computationally demanding, 
runtime verification (Camilli et al., 2023) and online monitoring ap-
proaches have also been proposed as more scalable options (Kojchev 
et al., 2020; Pek et al., 2020; Jacumet et al., 2023). Compositional ver-
ification has been used for proving the correctness at an architectural 
subsystem level, possibly including learning-based components (Păsăre-
anu et al., 2019). A compositional framework, where tasks were a-priori 
decomposed into modes, separate controllers were learned for each 
mode, and their joint correctness was verified, was used for an au-
tonomous car (Ivanov et al., 2021). However, none of these methods 
is directly applicable for functional safety verification of automated 
driving controllers at code-level.

Many methods for input–output robustness certification of DNNs 
have also been proposed in recent years, including feed-forward multi-
layer (Huang et al., 2017), deep feed-forward (Katz et al., 2019), and 
convolutional neural networks (Gehr et al., 2018). Formal proofs of 
closed-loop safety have also been obtained for DNN-based controllers 
and various system types, e.g. Calinescu et al. (2024), Dawson et al. 
(2023), Lopez et al. (2023), Paterson et al. (2021), Ruoss et al. (2021), 
Santa Cruz and Shoukry (2022), Sun et al. (2019). However, these 
methods rely on either approximations or abstractions of the to-be-
verified controller or the system, and thus tend to scale poorly with 
the growing complexity of the system. Satisfiability Modulo Theory
(SMT) solvers have also been used for the automatic verification of 
DNNs with respect to safety properties in CPS by using a dedicated 
interval constraint propagation (Grundt et al., 2022) or by translat-
ing the closed-loop system into an SMT formula (Scheibler et al., 
2015). However, also in the context of DNN-based controllers, safety 
verification has not been addressed for the deployed code.

Current methods for identifying, correcting, and managing vulner-
abilities in Embedded, Cyber–Physical, and Internet-of-Things systems 
and software are primarily concentrated on detecting software vulner-
abilities in low-level software, e.g., by utilizing customized formal real-
time operating system models (Adelt et al., 2024), or applying dynamic 
analysis on binary and executable files of the software (Marchetto and 
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Scanniello, 2024). Safety verification at code level has been addressed 
for an automated driving supervisor by automatically obtaining a finite 
discrete abstraction by black-box simulation (Nenchev, 2021). How-
ever, finite discrete abstraction approaches are not directly applicable 
to continuous controllers. Searching for implementation errors in un-
manned aerial vehicles attitude controllers based on finite word-length 
effects (e.g., arithmetic overflows and limit cycles) in the code was 
presented (Chaves et al., 2018), but functional correctness was not 
considered. Using BMC, the execution of ACC implementations with 
a simulation model was verified to not exceed speed limits (Zhang 
et al., 2013), or to not violate the general safety specification given 
as a temporal logic specification embedded as a monitor along finite 
traces (Nenchev, 2023). However, the runtime of these methods is 
generally exponentially related to the length of the look-ahead horizon 
for verification. In contrast, by using a pre-computed invariant set 
to evaluate the safety of the controller, our approach requires only 
a single step look-ahead in time. Although the computation of the 
invariant set itself may exhibit exponential complexity inherent to using 
model checking, this process is conducted separately from the code 
verification. Furthermore, it can be optimized by reducing complexity 
at the price of increased conservatism in the safety guarantees.

Instead of providing arguments for absolute correctness, the test 
coverage of automated driving functions, mostly provided by manual 
tests and simulation runs in practice, can be extended by searching for 
specification counterexamples for implementation utilizing reinforce-
ment learning in simulation (Favrin et al., 2020) or by sampling initial 
conditions from the boundary of a controlled invariant set (Chou et al., 
2018). While the latter two approaches are neither sound nor complete, 
a sound alternative is to (mostly) automatically extract higher-level 
logic models from code (König et al., 2024), thus enabling exhaus-
tive analysis for identifying potential errors prior to deployment. In 
a ‘‘hybrid’’ approach for verifying hybrid control systems, a com-
bination of a black-box simulator for trajectories and a white-box 
transition graph for mode switches was assumed to trade off sound-
ness and scalability (Fan et al., 2017). Although these methods avoid 
human bias inherent to manual testing and can discover corner cases 
that may be overlooked otherwise, infinite automated abstraction-
based approaches are not guaranteed to scale well for all systems and 
cannot provide completeness guarantees for large parts of the ODD. 
Through a compositional approach, a framework for automatic verifica-
tion of system-level properties that combines software model checking 
and contract-based analysis was demonstrated in an automotive case 
study (Cimatti et al., 2023). Upon formalizing functional requirements 
into contracts with assumptions and assertions expressed in Linear 
Temporal Logic (LTL), these contracts are assigned to runnable or 
composite components, and the source code of a module can be verified 
with respect to the specified contracts. Instead of focusing on individual 
requirements, CoCoSaFe aims at controller code verification over the 
maximal safe set of the formal model within the ODD.

3. Preliminaries

In this section, we introduce foundational concepts for CoCoSaFe 
with a particular focus on automated driving.
Compositional reasoning (Giannakopoulou et al., 2018) is an ap-
proach that allows the analysis of complex systems by breaking them 
down into smaller, more manageable components. In the context of 
ACC and LKA, compositional reasoning facilitates the verification of 
individual subsystem controllers (e.g., speed control, lane-keeping) 
while ensuring that their interactions do not lead to unsafe behaviors, 
e.g., Cimatti et al. (2023). To decompose the system, suitable AGC have 
to be defined that describe the assumptions under which a subsystem 
operates and the guarantees it provides for other subsystems. It is 
important to note that, rather than employing an AGC to break the 
system down into (sequential) components, this work utilizes an AGC 

to decouple the system into subsystems that can function independently 
or concurrently, similar to Ivanov et al. (2021).

The operational design domain of an ADAS defines the specific 
conditions under which that ADAS is intended to operate (Rajamani, 
2011). This may encompass factors such as road types (e.g., highways, 
urban streets) and traffic scenarios (e.g., presence of other vehicles, 
pedestrians). Assuming a formally defined state for an automated driv-
ing controller, we adopt a notion of its ODD 𝑂 given as a polyhedral 
region of the state space where the system can function effectively 
within their intended operational parameters. However, as the control 
signals are bounded, the automated driving function can only operate 
safely within a safe subset 𝑆 of the ODD 𝑂.

To obtain the safe set 𝑆, a control invariant set (Blanchini, 1999) 
can be used, which is a subset of the ODD 𝑂 of a dynamical system 
where, if the system trajectory starts within this set, it can be controlled 
to remain within the set for all future time steps. The maximal CIS is 
the largest such set within 𝑂 achievable under the given dynamics and 
control constraints. A valid under-approximation of the CIS guarantees 
that every state in it can be reached by following a feasible control 
sequence. Techniques from control theory, such as Lyapunov functions 
and reachability analysis (Wongpiromsarn et al., 2012), can be em-
ployed to compute the CIS. For ACC and LKA, obtaining such sets is 
crucial for guaranteeing that the vehicle maintains safe distances from 
other vehicles and stays within the lane.
Bounded model checking is a verification technique used to de-
termine whether a system satisfies certain properties within a finite 
number of steps (Clarke et al., 2004). This is particularly useful for 
verifying the correctness of software against safety specifications. For 
ACC and LKA, by exploring executions of the controller code, BMC can 
identify potential violations of safety properties for initial states in the 
safe set, e.g., as used in Zhang et al. (2013) and Nenchev (2023). There 
are existing software tools, such as UPPAAL (Behrmann et al., 2006) 
and KeYmaera X (Fulton et al., 2015), that can be used for verifying, 
runtime monitoring, and synthesizing controllers for CPS. However, 
none of the currently existing software tools have been used to provide 
comprehensive functional verification at the code level for automated 
driving controllers.

4. Code-level verification framework

4.1. Overview of the approach

As outlined in the introduction, CoCoSaFe is structured into the 
three key stages shown in Fig.  2.

As a first stage, the overall specification and ODD are formalized. 
This includes defining the automated driving requirements, including 
the desired behavior and safety constraints, and deriving a suitable 
model of the environment in which the to-be-verified vehicle controller 
will operate. In common automated driving system architectures, the 
driver sets parameters, such as a desired speed and distance to a 
front object for ACC to manage the longitudinal motion and LKA to 
manage lateral motion. These systems interact dynamically due to 
vehicle physics. Their goal is to ensure that acceleration and steer-
ing commands keep the vehicle safe for a defined parameter range. 
Safety requirements follow standards like ISO (Anon, 2018) and UN-
ECE (United Nations Economic Commission for Europe (UNECE), 2023) 
regulations to ensure target distances, velocities, and vehicle stability 
are maintained. In addition to considering relevant safety standards, 
Stage 1 typically involves consulting functional safety experts, and 
modeling hardware aspects, which might have an impact on safe op-
eration. This is carried out in detail in Section 4.2 for the joint keep 
distance and keep lane behavior of an automated driving vehicle.

Once the overall analytical specification 𝛴 and ODD 𝑂 are derived, 
the automated driving system is decomposed into multiple interacting 
subsystems. For each subsystem denoted by (.), assumptions are made 
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Fig. 2. Detailed overview of the proposed code-level automated driving verification framework. For automated keep distance and lane keeping, for each pair of an operation 
set and an analytical specification (𝑂,𝛴) ∈ {(𝑂𝑙𝑜𝑛 , 𝛴𝑙𝑜𝑛), (𝑂𝑙𝑎𝑡 , 𝛴𝑙𝑎𝑡)}, the safe set 𝑆 (.) is computed and used to check the safe closed-loop operation of the corresponding controller 
implementation using a verifier.

about the behavior of the environment or other subsystems (e.g., sen-
sors will provide accurate data). In return, each subsystem guarantees 
certain behaviors under these assumptions (e.g., the vehicle will safely 
follow a path, if sensors provide correct data). Using these AGC, decou-
pled states 𝑥(.), analytical specifications 𝛴(.) and ODDs 𝑂(.) are obtained 
for each (sub-)controller of the overall system. This helps in isolating 
and specifying the behavior of individual controllers in a modular and 
scalable way. Similarly to Stage 1, this involves considering relevant 
safety standards as well as consulting functional safety experts, but also 
requires discussions with algorithm and engineering experts. For the 
keep distance and keep lane behavior of an automated driving vehicle, 
in Section 4.3 we utilize a common specification decomposition into 
a longitudinal and lateral subsystem, where the former is concerned 
with keeping a suitable distance to a front object, and the later with 
safely keeping the lane. This allows us to derive two separate analytical 
specifications for keep distance and keep lane.

The final stage is to verify the automated driving system compo-
sitionally, i.e., the correctness of the overall system is established by 
verifying each subsystem individually. Thus, safe sets 𝑆(.) that represent 
the respective set of all states in which a subsystem can safely operate 
are obtained. The control signal is provided based on the state 𝑥(.) by 
a software module — the to-be-verified controller, implemented in a 
general purpose programming language, e.g., C/C++, possibly contain-
ing a neural network. All controllers are assumed to be time-invariant 
and deterministic. For traditional controllers, the Verifier is checking 
that each controller implementation of a subsystem provides only 
control signals 𝑢(.) at any admissible state 𝑥(.), such that its closed-loop 
operation remains in the safe set 𝑆(.) for all possible parameters 𝑝(.). For 
neural-network-based controllers, the verifier consists of three steps, 
where integration, deployment, and neural network verification are 
decoupled. If Result (.) is positive for the controllers of all subsystems, 
this step ensures that the integrated system meets its overall speci-
fication and performs reliably and safely. As the joint keep distance 
and keep lane behavior of an automated driving vehicle is decomposed 
into two concurrently operating subsystems with respective analytical 
specifications 𝛴(.) and operation sets 𝑂(.), in Section 4.4 we follow the 
described process for verifying the two subsystems.

Note that during Stages 2 and 3, discrepancies between the overall 
specification, the ODD, and the contracts may come to light. Conse-
quently, either may require an iterative refinement, denoted by the 
dashed arrows. For instance, if in Stage 2 the contracts cannot ensure 
safe operation for the entire overall specification or ODD, the latter 
might need to be scaled down in Stage 1. If Stage 3 yields an empty 
safe set for the sub-states and decomposed specifications and ODDs, 
then it would be necessary to reassess either the contracts from Stage 2 
or the entire specification and ODD from Stage 1.

Remark 1.  The framework proposed in this paper focuses on high-
level controllers, such as ACC and LKA. Controller stability with respect 
to a formal model is implicitly guaranteed, if the controller keeps the 
system within the corresponding invariant set. In addition, it is assumed 
that the employed low-level controllers are stable (or their stability has 
been proven or verified) and their safety-relevant dynamical behavior 
is included in the formal model. Further, perfect perception is assumed, 
implying that the controllers have access to complete and accurate 
information about their environment at all times. Several aspects of 
imperfect sensing and other dynamical effects can be integrated into 
a formal model, e.g., as shown in Nenchev (2025).

In the following sections, we describe in detail the key stages of 
CoCoSaFe for verifying high-level controllers.

4.2. Stage 1: Formalization

Deriving an analytical specification and ODD suitable for formal 
verification is a challenging task for the complete chain of effects from 
the sensors to the actuators of an automated keep distance and lane 
keeping vehicle. We start by identifying the primary use cases for the 
system and analyze environmental factors like other traffic participants 
and road representations that affect system performance. In addition, 
operational constraints related to vehicle dynamics and sensor capabil-
ities are derived. This includes adhering to existing industry standards 
and engaging with stakeholders, including engineers and safety experts, 
to validate the derived specification and ODD, and iteratively refine it 
based on testing and real-world data. 
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Fig. 3. A common ADAS architecture with typical high-level controllers ACC and LKA. 
ACC provides the acceleration 𝑎 and LKA the curvature 𝜅 to the low-level controllers 
of the ego vehicle (blue).

Consider a common ADAS architecture shown in Fig.  3, as, for 
example, used in Widmann et al. (2000). The driver activates or deac-
tivates the high-level controllers ACC and LKA, and provides a desired 
velocity 𝑣𝑑 and a desired time headway 𝑡ℎ𝑑  for the former. The desired 
velocity is the target velocity for the automated driving vehicle (also 
referred to as the ego vehicle). The distance between the relevant 
physical limits of the front object (e.g. the rear bumper of a vehicle) 
and the front bumper of the ego vehicle is the headway ℎ. The time 
headway 𝑡ℎ is the amount of time after which the target object and 
the ego vehicle will collide, given the current headway ℎ, when the 
target object suddenly stops and the ego vehicle maintains its current 
ego velocity 𝑣, i.e., 𝑡ℎ = ℎ∕𝑣. The desired time headway 𝑡ℎ𝑑  to the target 
object corresponds to the relative distance that eventually needs to be 
maintained. The goal of lane-keeping is to control the vehicle to follow 
the center line of the current lane by providing a suitable curvature 
𝜅. The information about the target object and the road is measured 
by sensors such as radars, cameras, or a lidar. This information is 
utilized in the ACC to produce an acceleration and in the LKA to 
obtain a curvature for reaching desired states for the ego vehicle. 
The acceleration commands from the ACC are used by the low-level 
controllers such as the engine control unit and/or power train, the 
transmission controller and the brake controller, the curvature signal 
from LKA is used by the low-level controller to produce a steering angle. 
In most driving scenarios, the longitudinal motion is controlled by the 
throttle and brake inputs, while the lateral motion is determined by 
the steering input. Thus, a common assumption for comfort driving 
functions is to decouple their effects: ACC controls the longitudinal 
subsystem and LKA deals with the lateral subsystem.

To obtain an analytical longitudinal specification, the vehicle’s rel-
evant dynamics (Rajamani, 2011) are obtained by non-linear force-
balance equations, combined with exact feedback linearization to com-
pensate non-linearities for the low-level effect chain and the variable 
vehicle mass (Ioannou and Chien, 1993). Inspired by Nilsson et al. 
(2016), where correct-by-construction ACCs were synthesized for for-
mal models, the state of the longitudinal dynamics has to contain 𝑣, 
𝑣𝑇 , and ℎ. As the slip angle can be assumed to be zero in the rear axle 
center when driving slowly and is generally neglected when driving 
fast, the direct dependence of the longitudinal dynamics on the lateral 
dynamics is neglected.

Consider an automated driving vehicle that has to keep its lane (Fig. 
4). Instead of considering a dynamical single-track model for lateral 
motion, we opt for linearized relative kinematics to a reference curve 
𝛤  (denoted by the dashed curve in Fig.  3 and the solid curve in Fig. 
4, respectively), which denotes the center of the lane, as it captures 
relevant safety aspects. The vehicle’s rear axle center is used as a 
reference point, and the curvature as the model’s control input. For 
that, 𝑑 represents the normal signed distance between the reference 
curve 𝛤  and the center of the rear axis of the vehicle (also called the 

Fig. 4. Lateral vehicle kinematics (Wu et al., 2024).

cross-track error), and 𝜃 is the vehicle orientation. The orientation 𝜃𝑟
is the normal distance between the reference curve 𝛤  and the vehicle’s 
rear axle center position, serving as a disturbance input to the model. 
The state has to contain 𝜃 and 𝑑 for the lateral dynamics. Thus, the 
vehicle movement is described by the dynamical model: 
𝛴 ∶ 𝑣̇ = 𝑎, ̇𝑣𝑇 = 𝑎𝑇 , ℎ̇ = 𝑣𝑇 − 𝑣, 𝑑̇ = 𝑣(𝜃 − 𝜃𝑟), 𝜃̇ = 𝑣𝜅. (1)

According to the relevant ISO standard (Anon, 2018), the ACC 
computes 𝑎, so that the ego vehicle velocity 𝑣 reaches the desired driver 
velocity 𝑣𝑑 , or so that the headway ℎ to the target object driving with 
velocity 𝑣𝑇  stays above a specified minimal value ℎ𝑚𝑖𝑛 and the current 
time headway stays above a specified minimal time headway 𝑡ℎ𝑚𝑖𝑛 . In 
set speed mode, the target object is irrelevant, and the only safety 
requirement is the physically limited control. Since control limitations 
can be guaranteed by a simple limiter, in this work, we focus on the so-
called time gap or keep distance operation of the ACC. Further, without 
loss of generality, the ego acceleration 𝑎, the target object acceleration 
𝑎𝑇  are limited by 𝑎 ∈ [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] and 𝑎𝑇 ∈ [𝑎𝑇 ,𝑚𝑖𝑛, 𝑎𝑇 ,𝑚𝑎𝑥], respectively.

For lane keeping, the UNECE Regulation 79 (United Nations Eco-
nomic Commission for Europe (UNECE), 2023) includes requirements 
for Automated Commanded Steering Functions (ACSF). While the reg-
ulation deals with all functions related to automated steering, the 
nominal operation of LKA we consider is closest to the category B2 
system. Category B2 pertains specifically to LKA that provides continu-
ous support to the driver by keeping the vehicle within a lane without 
requiring input from the driver for steering for extended periods of 
time. As mandated by typical road and car widths, the specification 
is that the car should remain within 𝑑𝑚𝑎𝑥 meters of the center of the 
lane, i.e. |𝑑| ≤ 𝑑𝑚𝑎𝑥. We also require that 𝜃 remains in its corresponding 
admissible bound, as well as the curvature 𝜅, the curvature of the road 
𝜃𝑟, i.e., 𝜅 ∈ [𝜅𝑚𝑖𝑛, 𝜅𝑚𝑎𝑥], 𝜃𝑟 ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥].

Collecting all requirements, the overall ODD for joint keep distance 
and keep lane operation is denoted by 
𝑂 = {ℎ∕𝑣 ≥ 𝑡ℎ𝑚𝑖𝑛

∧ ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥∧

𝑣𝑇 ,𝑚𝑖𝑛 ≤ 𝑣𝑇 ≤ 𝑣𝑇 ,𝑚𝑎𝑥 ∧ 𝑣𝑚𝑖𝑛 ≤ ℎ ≤ 𝑣𝑚𝑎𝑥∧

|𝑑| ≤ 𝑑𝑚𝑎𝑥 ∧ 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥∧

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥 ∧ 𝑎𝑇 ,𝑚𝑖𝑛 ≤ 𝑎𝑇 ≤ 𝑎𝑇 ,𝑚𝑎𝑥∧

𝜅𝑚𝑖𝑛 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛 ≤ 𝜃𝑟 ≤ 𝜃𝑚𝑎𝑥}.

(2)

Note that the longitudinal and lateral motion interact dynamically in 
the derived analytical specification (1). The overall system is composed 
by an ACC, an LKA, and a formal model (1), such that the composition 
should guarantee for the operation to remain in (2).

4.3. Stage 2: Decomposition

System decoupling is often achieved through modular design, where 
each subsystem encapsulates specific functionality, and by defining 
interfaces that capture responsibilities between modules. To determine 
suitable AGC, subsystem interactions are analyzed and the assump-
tions and guarantees for each module are articulated. System safety 
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can then be ensured through compositional reasoning, which involves 
demonstrating that the safety of each individual subsystem guarantees 
the overall safety of the system. This involves breaking down the 
overall system into subsystems, verifying each of them individually, 
and then ensuring that their integration preserves the overall system 
safety. CoCoSaFe uses the common decomposition of automated driv-
ing, e.g., as assumed in Rajamani (2011) and most relevant safety 
standards, given by a longitudinal and a lateral vehicle guidance sub-
system.2 We first derive an AGC, which allows a decomposition of the 
overall analytical specification and ODD derived in Section 4.2.

4.3.1. Assume-guarantee contracts and substates
An AGC serves as a means to formally specify and verify the 

interactions between different subsystems. By defining assumptions 
about the environment in which a subsystem operates and guarantees 
about its behavior, these contracts facilitate modular verification. This 
modularity is crucial for managing complexity in large software sys-
tems, enabling scalable and more efficient verification processes. In the 
domain of automated driving, a common approach is to split the system 
into a longitudinal and a lateral subsystem.

Ensuring a proper speed while navigating a curve is crucial for 
maintaining vehicle stability and safety. The longitudinal velocity of 
the vehicle must be such that the required centripetal force does not 
exceed the available friction force. Assuming a coefficient of friction 
between the tires and the road 𝜇 and with 𝑔 denoting the gravitation 
coefficient, the maximum safe speed in a curve can be guaranteed by 

𝑣 ≤

√
𝑔𝜇

𝜅
. (3)

Note that in the absence of a preview for the curvature of the road, 
this inequality will generally impose a conservative restriction on the 
ODD (2). A potential solution is discussed in Remark  2. As (3) is an 
additional system requirement, we augment the previously derived 
ODD (2) by (3). Going back to Fig.  2, this corresponds to following 
the dashed arrow from Stage 2 back to Stage 1. Since this requirement 
augmentation does not require further refinement of the overall formal 
ODD or specification, we proceed with defining the AGCs. To that end, 
we assume that a non-empty maximal CIS exists for (1) within (2) and 
(3).

Considering the model (1), the subsystem states can be defined in 
a straight forward manner by 𝑥𝑙𝑜𝑛 = [𝑣, 𝑣𝑇 , ℎ]

𝑇  for the longitudinal and 
𝑥𝑙𝑎𝑡 = [𝜃, 𝑑]𝑇  for the lateral subsystem, with respective dynamics.

Now we can derive separate analytical specifications, which capture 
the desired behavior of their respective controllers ACC and LKA, 
operating side-by-side.

4.3.2. Decoupled analytical specifications
With the formal specification and ODD, and the AGC, we obtain 

decoupled analytical specifications for longitudinal and lateral auto-
mated vehicle motion as follows. The continuous differential Eqs. (1) 
are transformed into discrete time difference equations by exact dis-
cretization with an equidistant sampling period 𝑡𝑠. A zero-order hold is 
used at a time instant 𝑡 for the duration of 𝑡𝑠 for 𝑎 and 𝑎𝑇 , which are 
denoted by 𝑎𝑡 and 𝑎𝑇 ,𝑡 in the discrete time domain. Exact discretization 
ensures that safety proofs on the discrete time system hold for the 
corresponding trajectories of the original continuous time system. The 
continuous state variable 𝑥(.) is replaced by the corresponding discrete 
time version 𝑥(.)

𝑡
 at a discrete time instant 𝑡. Analogously, the same 

2 The approach can easily be used for control systems with additional 
subsystems, as discussed later in the paper.

applies for 𝜅 and 𝜃𝑟 with 𝜅𝑡 and 𝜃𝑟,𝑡 in the discrete time domain for 
the lateral model. Thus, the assumed longitudinal model is 
𝛴𝑙𝑜𝑛 ∶𝑥𝑙𝑜𝑛

𝑡+1
=𝐴𝑙𝑜𝑛𝑥𝑙𝑜𝑛

𝑡
+ 𝐵𝑙𝑜𝑛𝑎𝑡 + 𝐸𝑙𝑜𝑛𝑎𝑇 ,𝑡,  with 

𝐴𝑙𝑜𝑛 =

⎡⎢⎢⎣

1 0 0

0 1 0

−𝑡𝑠 𝑡𝑠 1

⎤⎥⎥⎦
, 𝐵𝑙𝑜𝑛 =

⎡
⎢⎢⎢⎣

𝑡𝑠

0

−
1

2
𝑡2
𝑠

⎤
⎥⎥⎥⎦
, 𝐸𝑙𝑜𝑛 =

⎡
⎢⎢⎢⎣

0

𝑡𝑠
1

2
𝑡2
𝑠

⎤
⎥⎥⎥⎦
.

(4)

An assumption for ACC is that the current curvature will remain within 
feasible limits, guaranteed by LKA. In addition, the inequality (3) 
ensures the maintenance of appropriate speed for the current curvature. 
Extracting the remaining longitudinally relevant part of the overall 
ODD, the longitudinal ODD is 
𝑂𝑙𝑜𝑛 = {ℎ∕𝑣 ≥ 𝑡ℎ𝑚𝑖𝑛

∧ ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥∧

𝑣𝑇 ,𝑚𝑖𝑛 ≤ 𝑣𝑇 ≤ 𝑣𝑇 ,𝑚𝑎𝑥 ∧ 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥∧

𝑎𝑚𝑖𝑛 ≤ 𝑎𝑡 ≤ 𝑎𝑚𝑎𝑥 ∧ 𝑎𝑇 ,𝑚𝑖𝑛 ≤ 𝑎𝑇 ,𝑡 ≤ 𝑎𝑇 ,𝑚𝑎𝑥}∧

𝑣 ≤

√
𝑔𝜇∕𝜅 ∧ 𝜅𝑚𝑖𝑛 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥,

(5)

where the inequality 𝑣 ≤
√
𝑔𝜇∕𝜅 comes from (3).

Similarly, the lateral model is 
𝛴𝑙𝑎𝑡 ∶𝑥𝑙𝑎𝑡

𝑡+1
= 𝐴𝑙𝑎𝑡𝑥𝑙𝑎𝑡

𝑡
+𝐵𝑙𝑎𝑡𝜅𝑡+𝐸

𝑙𝑎𝑡𝜃𝑟,𝑡,  with 

𝐴𝑙𝑎𝑡 =

[
1 0

𝑣𝑡𝑡𝑠 1

]
, 𝐵𝑙𝑎𝑡 =

[
𝑣𝑡𝑡𝑠
1

2
𝑣𝑡𝑡

2
𝑠

]
, 𝐸𝑙𝑎𝑡 =

[
0

−𝑣𝑡𝑡𝑠

]
.

(6)

An assumption for LKA is that the velocity controlled by ACC will be 
within admissible bounds. Analogously to the longitudinal model, by 
extracting the remaining laterally relevant part of the overall ODD, the 
lateral ODD is 
𝑂𝑙𝑎𝑡 = {|𝑑| ≤ 𝑑𝑚𝑎𝑥 ∧ 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥∧

𝜅𝑚𝑖𝑛 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛 ≤ 𝜃𝑟 ≤ 𝜃𝑚𝑎𝑥}∧

𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥.

(7)

4.3.3. Correctness of compositional reasoning
While the longitudinal model (4) is independent of the lateral 

one, the longitudinal ODD 𝑂𝑙𝑜𝑛 (5) depends on the lateral variable 𝜅
through the inequality (3). The following proposition provides an 
under-approximation for the longitudinal CIS.

Proposition 1.  Assume that for all admissible curvature values 𝜅 ∈ [𝜅min, 
𝜅max] there exists a non-empty under-approximation of the maximal CIS 
of the longitudinal dynamics (4) within (5), and consider the partitioning 
of the curvature range into 𝑁 𝑙𝑜𝑛 equally sized segments [𝜅𝑛, 𝜅𝑛+1), where 
𝜅𝑛 = 𝜅𝑚𝑖𝑛 + 𝑛(𝜅𝑚𝑎𝑥 − 𝜅𝑚𝑖𝑛)∕𝑁

𝑙𝑜𝑛 for 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛 − 1}. Let 𝑂̂𝑙𝑜𝑛
𝑛

 denote 
the version of (5) obtained for 𝜅𝑚𝑖𝑛 = 𝜅𝑚𝑎𝑥 = 𝜅𝑛. Then, the family of pairs 
(𝛴𝑙𝑜𝑛, 𝑂̂𝑙𝑜𝑛

𝑛
), 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛 − 1}, constitutes a valid under-approximation 

for the maximal longitudinal CIS.

Proof.  As 𝜅𝑛+1 > 𝜅𝑛, we have 
√
𝑔𝜇∕𝜅𝑛+1 <

√
𝑔𝜇∕𝜅𝑛. Thus, the maximal 

CIS of (4) within 𝑂̂𝑙𝑜𝑛
𝑛+1

 is a subset of the maximal CIS of (4) within 
𝑂̂𝑙𝑜𝑛
𝑛
. Thus, with the segmentation by tangent planes 𝑂̂𝑙𝑜𝑛

𝑛
, an under-

approximation of the maximal CIS for every admissible curvature 𝜅 ∈

[𝜅𝑛, 𝜅𝑛+1) is given by the maximal CIS of (4) within 𝑂̂𝑙𝑜𝑛
𝑛+1
. Then, the 

conjunction of all corresponding maximal CIS of (4) within the tangent 
planes 𝑂̂𝑙𝑜𝑛

𝑛
 is an under-approximation for the maximal longitudinal 

CIS. □

In the lateral analytical specification, the state 𝑣𝑡 of the longitudinal 
model appears in the system matrix (6). The next proposition provides 
an under-approximation for the lateral CIS.

Proposition 2.  Assume that for all admissible velocity values 𝑣 ∈

[𝑣min, 𝑣max], 𝑣𝑚𝑖𝑛 > 0 there exists a non-empty under-approximation of 
the maximal CIS of the lateral dynamics (6) within (7), and consider the 
partitioning of the velocity range into 𝑁 𝑙𝑎𝑡 equally sized segments [𝑣𝑛, 𝑣𝑛+1), 
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where 𝑣𝑛 = 𝑣𝑚𝑖𝑛 + 𝑛(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)∕𝑁
𝑙𝑎𝑡 for 𝑛 ∈ {1,… , 𝑁 𝑙𝑎𝑡 − 1}. Let 

𝑂̂𝑙𝑎𝑡
𝑛

 denote the version of (7) obtained for 𝑣𝑚𝑖𝑛 = 𝑣𝑚𝑎𝑥 = 𝑣𝑛. Then, 
the family of pairs (𝛴𝑙𝑎𝑡, 𝑂̂𝑙𝑎𝑡

𝑛
), 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛 − 1}, constitutes a valid 

under-approximation for the maximal lateral CIS.

Proof.  By applying a state transformation

𝑇 (𝑣𝑡) =

[
1 0

0
1

𝑣𝑡𝑡𝑠

]

to the state of (6), the influence of 𝑣𝑡 can be isolated only to the input 
matrices in a linear multiplicative manner, and the state transition 
matrix 𝐴𝑙𝑎𝑡 becomes constant. Thus, for any two velocities 𝑣𝑛 < 𝑣𝑛+1, 
the backward reachable set of the dynamics with 𝑣𝑛+1 is contained 
within the corresponding set for 𝑣𝑛. Therefore, the maximal CIS for 
𝑣𝑚𝑎𝑥 is an under-approximation of every maximal CIS of a model (6) 
for a velocity 𝑣𝑡 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. Following a similar argumentation, 
the maximal CIS for 𝑣𝑛+1 is an under-approximation of any maximal 
CIS of (6) for a velocity 𝑣𝑡 ∈ [𝑣𝑛, 𝑣𝑛+1). Then, the conjunction of all 
corresponding maximal CIS of (6) within the tangent planes 𝑂̂𝑙𝑎𝑡

𝑛
 is an 

under-approximation for the maximal lateral CIS. □

Note that while the maximal CIS for 𝑣𝑚𝑎𝑥 could be used for the 
whole velocity range, it would be overly conservative. Proposition 
2 provides a fine-grained piecewise under-approximation obtained by 
computing the CISs of 𝑁 𝑙𝑎𝑡 models. This leads to the following theo-
rem, which ensures that the decoupled verification of the controllers 
guarantees the overall system properties.

Theorem 1.  Assume that there exists a non-empty under-approximation 
of the CIS of the exactly discretized:

• longitudinal model (4) within the ODD (5) for all admissible curvature 
values 𝜅 ∈ [𝜅min, 𝜅max];

• lateral model (6) within the ODD (7) for all admissible velocity values 
𝑣 ∈ [𝑣min, 𝑣max].

Then, the decoupled verification of the longitudinal and lateral controllers – 
each with its respective under-approximated CIS – ensures that the overall 
continuous model (1) exactly discretized with sampling period 𝑡𝑠 satisfies 
(2) and (3).

Proof.  The inequalities (2) and (3) represent the conjunction of (5) and 
(7). The conjunction of the dynamical models (4) and (6) represents the 
exactly discretized version of the continuous model (1) with sampling 
period 𝑡𝑠. Propositions  1 and 2 establish sound under-approximations 
of the CIS for the longitudinal dynamics and the CIS for the lateral 
dynamics, respectively. Consequently, the conjunction of these two 
invariant sets forms a subset of the maximal CIS of (1) within (2) 
and (3). Since both verification processes are based on independent 
conditions, and given that (5) and (7) only partially overlap in terms 
of the admissible sets for 𝜅 and 𝑣, there is no feedback loop that 
could lead to circular reasoning. Therefore, the decoupled verification 
of the longitudinal and lateral controllers, each with their respective 
CIS, ensures the overall system properties described by (1)–(3). □

In the following section, we compute the proposed separate safe sets 
for compositional verification.

4.4. Stage 3: Verification

For verifying the safe operation of each subsystem (.), where (.) ∈
{𝑙𝑜𝑛, 𝑙𝑎𝑡}, with respect to its analytical specification and ODD, CoCoSaFe 
uses set invariance. For control systems, this means finding a control 
signal that is able to render a set invariant, i.e., a controlled invariant 
set. If all control signals produced by the controller yield following 
states within the safe set 𝑆(.), the controller can be certified as safe with 
respect to the analytical specification and the operation set. Thus, once 

Fig. 5. Maximal longitudinal safe sets for 𝜅1 = 0.006, 𝜅2 = 0.06, and 𝜅3 = 0.15 in 3D (a) 
and their 2D slices for 𝑣𝑇 = 0.

such a safe set is obtained, checking safety over (in)finite simulation 
traces over time is effectively transformed into a set containment 
problem (denoted by the dashed area of Stage 3 in Fig.  2). Practically, 
set containment at code level is accomplished by a state-of-the-art BMC 
for traditional controllers, or a three-step procedure employing a BMC 
and a DNN checker for neural-network-based controllers. We first turn 
to obtaining the safe sets.

4.4.1. Computing safe sets
To obtain the safe set, we employ invariance properties, where 

the goal is to avoid unsafe states in 𝑂(.) at all times. For that, we 
utilize the maximal robust CIS, i.e., the set of all states inside of 𝑂(.)

for which there exists a controller that can guarantee that the future 
trajectory remains safe under admissible worst-case values of 𝑎𝑇 . We 
compute the CIS (or an under-approximation thereof) for a subsystem 
as a polytope 𝑆(.) represented by a finite number of inequalities 𝑁𝑆

with corresponding matrices 𝐴𝑐
𝑥
 and 𝐵𝑐

𝑥
, i.e., 

𝑆(.) = {𝑥|𝐴𝑐
𝑥
𝑥 ≤ 𝐵𝑐

𝑥
}, 𝐴𝑐

𝑥
∈ R

𝑁𝑆×3, 𝐵𝑐
𝑥
∈ R

𝑁𝑆 . (8)

For any state 𝑥(.)
𝑡

∈ 𝑆(.) at time 𝑡, there exists at least one admissible 
control action with 𝑢(.)

𝑡
, such that the following state 𝑥(.)

𝑡+1
 according 

to the analytical specification remains within 𝑆(.). CoCoSaFe is com-
patible with any off-the-shelf CIS computation method which provides 
an under-approximation of the actual robust CIS of the analytical 
specifications.

Longitudinally, (4) is a discrete-time linear system with input vector 
𝑎𝑡 and disturbance 𝑎𝑇 ,𝑡, and the maximal robust CIS is computed 
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Fig. 6. Lateral CIS’ for 𝑣𝑚𝑖𝑛 + 𝑣𝑠 , 𝑣𝑚𝑖𝑑 = 0.5(𝑣𝑚𝑖𝑛 + 𝑣𝑚𝑎𝑥), and 𝑣𝑚𝑎𝑥.

for each of the 𝑁 𝑙𝑜𝑛 ODDs using the fixed-point algorithm proposed 
in Herceg et al. (2013). Fig.  5 illustrates the maximal longitudinal safe 
sets for different values of 𝜅 and its 2-dimensional slices for 𝑣𝑇 = 0

using the parameters of the case study (Section 5.2.3). Note that the 
volume of the sets decreases significantly with a growing curvature. 
This approximation of the maximal robust CIS with the analytical 
specification (4) for the ODD (5) is used for verification.

Analogously, the robust maximal CIS for the lateral discrete-time 
linear system (6) with disturbance 𝜃𝑟,𝑡 is computed using the methods 
from Herceg et al. (2013). Fig.  6 shows approximate lateral sets for 
three admissible longitudinal velocity values and parameters as intro-
duced in Section 5.2.3. Note that the volume of the sets decreases 
significantly with increasing velocity. With the safe sets now computed, 
the next step is to verify the controller implementations for each 
subsystem.

Remark 2.  For simplicity, we assumed only a single step ‘‘pre-
view’’ for the target vehicle acceleration and the lane orientation in 
this paper. However, most state-of-the-art automated driving solutions 
employ previews for these signals over multiple steps ahead in time 
obtained by sensors to decrease conservatism in computing the fol-
lowing control action and prevent excessively cautious behavior. For 
example, the longitudinal control signal 𝑎𝑡 can be picked depending 
on 𝑎𝑇 ,𝑡, 𝑎𝑇 ,𝑡+1,… , 𝑎𝑇 ,𝑡+𝑘. Note that a system with such a multi-step 
preview can be converted to a standard linear system by augmenting 
the state space with additional states corresponding to the preview 
of the external signal 𝑎𝑇 ,𝑡, 𝑎𝑇 ,𝑡+1,… , 𝑎𝑇 ,𝑡+𝑘𝑙𝑜𝑛 . Similarly, an extended 
system can also be obtained for the lateral subsystem with a preview 
of the external signal 𝜃𝑟,𝑡, 𝜃𝑟,𝑡+1,… , 𝜃𝑟,𝑡+𝑘𝑙𝑎𝑡 .

4.4.2. Verifying a controller implementation
The decoupled analytical specifications for ACC and LKA do not 

interfere with each other except for the effect of the longitudinal 
velocity on the lateral behavior and the curvature on the longitudinal 
behavior. These interactions were considered when computing the safe 
sets, which ensures that subsystems’ interactions do not violate their 
respective assumptions and guarantees. Consequently, all admissible 
values of the lateral variable 𝜅𝑡 are considered while verifying the 
longitudinal controller. Note that a variable 𝜅𝑡 implies a variable cor-
responding safe set for verification (Fig.  5). Analogously, all admissible 
values of the longitudinal velocity 𝑣𝑡 are considered during lateral 
controller verification (implying a variable corresponding lateral safe 
set). As shown in Section 4.3.3, if both the longitudinal and the lateral 
controllers pass verification with respect to the corresponding safe sets 
individually, their compositional behavior is also safe.

Fig. 7. Verification harness for the function Control using a BMC.

An individual controller implementation can be deemed safe when 
it operates only within the bounded domain of the CIS for the analytical 
specification. For any possible state 𝑥(.) in the safe set 𝑆(.), the control 
output 𝑢(.) of the to-be-verified controller is checked if it produces a 
following state, which is also inside of 𝑆(.). As (4) and (6) are linear 
dynamical systems and 𝑆(.) is a polytope, the following state is within 
the CIS if 

𝐴𝑐
𝑥

[
𝐴(.) 𝐵(.)

] [ 𝑥(.)

𝑢(.)

]
≤ 𝐵𝑐

𝑥
(9)

holds. A bounded model checker is utilized for this. By using a BMC the 
code is also implicitly checked for common programming and security 
errors like integer overflows, out of bound array access, illegal pointer 
de-references, occurrence and treatment of exceptions, the presence 
of undefined behavior etc., in addition to checking safety. By using 
an invariant set to evaluate the safety of the controller, our approach 
requires only a single step look-ahead in time. Thus, the bounded roll-
out by the BMC is primarily related to loops in the code. Thus, the BMC 
bound needs to be sufficiently large for the specific implementation to 
ensure that all safety-relevant behaviors are captured. As we use an 
underestimation of the actual CIS, the proposed verification procedure 
is sound, as discussed in Section 4.3.2. If the computed CIS is exact, the 
procedure is also complete.

An exemplary verification harness for verifying the function Con-
trol with respect to a safe set with state dimension n and a parameter 
vector of size m using a BMC is shown in Fig.  7. A state x and 
parameters p are checked if they are contained in the safe set according 
to (8) in function IsInSafeSet, or in the following state given a 
control input u according to (9) in the function IsInNextSafeSet, 
respectively. Note that the dependence of the check functions on pa-
rameters p results from the employed approximations of the maximal 
CIS depending on 𝜅𝑡 and 𝑣𝑡 for the longitudinal and the lateral sub-
system, respectively, as described in Section 4.4.1. The state variables
x and parameters p are chosen randomly by the BMC in the function
Generate and constrained to their feasible bounds p_min p_max and 
the safe set using assume statements and IsInSafeSet. Based on 
these variables, the controller produces an output u. Then, the safety 
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properties for the following state are checked by IsInNextSafeSet
using an assert statement.

Remark 3.  If the to-be-verified controller contains internal states, 
these have to be made accessible for modification by the BMC within 
the admissible bounds. A possible way to achieve this is to augment 
the state of the analytical specification and to consider them already 
in the safe set computation. This comes at the price of an increased 
CIS computation complexity, but is beneficial for verification with the 
BMC. The approach is showcased in Section 5, where the proportional 
integral controller has an internal state for error integration.

4.4.3. Verification decomposition for large DNN controllers
As BMC enumerates possible branches during program state-space 

exploration, it is not guaranteed that verifying a neural network will 
terminate in a reasonable amount of time. A verification timeout is 
likely even for moderately sized neural networks, as shown in the case 
study. To mitigate this limitation, we propose a three-step decomposi-
tion approach. First, the DNN integration is checked for a representative 
set of states within the safe set. Second, the original DNN is replaced by 
a simpler DNN with the same inputs and outputs, and BMC is used to 
check that all code required for operational deployment (DNN model 
loading, DNN inference, etc.) works as expected. Finally, the safety of 
the actual DNN is checked using an off-the-shelf DNN verifier. The 
overall process is complete with respect to the maximal safe set of 
the formal model and ODD under the assumption that the BMC can 
discover all deployment code-related flaws for the chosen states (Step 
1 & 2), and that the safety check of the DNN by the DNN verifier itself 
is complete (Step 3).

In the first step, a finite set of individual states 𝑥(.)
𝑡
 in 𝑆(.) is chosen 

to evaluate the DNN controller, focusing specifically on its deployment 
code. Heuristic criteria for achieving complete test coverage are par-
ticularly effective for selecting these states, as they aim to execute a 
significant portion of the code at least once, including error handling 
paths and exceptional cases. Then, the controller’s output is checked 
to yield a following state that remains in 𝑆(.) using a BMC for each of 
the selected states. This assures that the input–output behavior of the 
overall controller, including the supporting code, performs as expected 
before performing the DNN verification.

In the second step, we take inspiration from Elboher et al. (2023) 
that proposes to verify a large DNN by initially reducing it to a simpler, 
smaller DNN for verification (abstraction), and iteratively making it 
more complex as needed (refinement). Therefore, we replace the orig-
inal DNN with a simpler DNN with the same inputs and outputs, and 
use BMC to check that all code required for operational deployment 
(DNN model loading, DNN inference, etc.) works as expected. For our 
purposes, we assume that an abstraction approach was used to obtain 
the smaller DNN, and that the supporting code needed for the original 
DNN is being fully executed for the deployment of the smaller DNN. 
This ensures that the supporting code is checked for implementation 
flaws. In this step, the controller operation is not required to satisfy (9), 
since the smaller DNN model might not fulfill the safety specification.

As a final third step, we use an off-the-shelf DNN verifier to check 
the safety of the actual DNN. In addition to a neural network, a verifica-
tion query to the verifier includes the property to be checked — for any 
point in 𝑆(.), the DNN has to produce a controller output that satisfies 
(9). The property has to be given in the form of linear or nonlinear 
constraints on the network’s inputs and outputs, which is readily the 
case for (8) and (9). The verification problem thus reduces to finding 
an assignment of DNN input values that satisfies all the constraints 
simultaneously, or confirming that no such assignment exists. Only if 
the verification is successful in all three steps, the safety specification 
is considered as satisfied.

Table 1
Overview of controllers for empirical evaluation.
 Controller type Abbr. Func. Code lines Parameters  
 Switching Proportional SPC ACC 10 𝑘𝑝 = 3  
 Non-Linear NLC ACC 15 𝑎𝑐𝑜𝑚 = 1.5 m/s2  
 Model-predictive MPC ACC 5521 𝑁 = 5  
 Neural-network NNC ACC 1672 151 parameters  
 Proportional-integral LPC LKA 8 poles 0.3, 0.4, 0.5 
 Non-linear Geometric LGC LKA 12 𝑙 = 2.8 m, 𝑘 = 2  
 Model-predictive LMC LKA 1521 𝑁 = 3, 𝑤𝑟 = 0.1  

5. Empirical evaluation

5.1. Evaluation methodology

We carried out extensive experiments to evaluate the safety and 
correctness of ADAS controller implementations with respect to formal 
specifications within common real-world ODDs. Following Fig.  2, the 
formalization step of the overall specification and ODD for automated 
driving in a lane with front targets was carried out in Section 4.2. 
Then, the detailed decomposition process into separate specifications 
and ODDs for the keep distance and keep lane behaviors was described 
in Section 4.3. Finally, the verification process for the two subsystems 
operating concurrently was detailed in Section 4.4, where we described 
how the compositional approach ensures the integrated system’s safety 
based on separate safe sets and model checking.

To this end, and to evaluate the generalizability of our approach, we 
performed case studies involving the application of CoCoSaFe to two 
qualitatively different classes of ADAS controllers (adaptive cruise and 
lane keeping), and for each class we considered controllers that employ 
significantly different control techniques which are widely used in the 
automotive domain. The key features of the controllers examined in the 
two categories are summarized in Table  1. This includes four different 
adaptive cruise, one of which was neural-network-based, and three 
lane-keeping assist controllers, one of which had an internal state. The 
details of these controllers, all of which are taken from literature, are 
presented in Section 5.2.3. Each of these controllers was implemented 
in C++. All verification experiments used:

• a sampling time of 𝑡𝑠 = 0.2 𝑠 for the analytical specifications;
• CBMC 5.95.1 (Clarke et al., 2004) as a bounded model checker 
with a timeout of 1 h and a loop unwinding limit of 1000. Accord-
ingly, __VERIFIER_assume is replaced by
__CPROVER_assume and __VERIFIER_assign_random by
nondet_double, respectively, in the verification harness
(Fig.  7);

• a standard workstation with an Intel Core i7-11850H CPU with 
64 GB DDR4 RAM.

Regarding the decomposition approach for neural network controllers: 
we first check the actual DNN for two individual states, the supporting 
code is checked using the BMC with a simplified neural network 
with the same input and output interface, but only 3 neurons with 
random parameters in the hidden layer. Furthermore, Marabou (Katz 
et al., 2019) was used as a DNN verifier to check the actual DNN 
implementing the neural-network-based controller.

5.2. Experimental results

In this section, CoCoSaFe as presented in Section 4 is evaluated in 
case studies with different automated driving controllers for adaptive 
cruise control and lane keeping.

The Journal of Systems & Software 230 (2025) 112499 

9 



V. Nenchev et al.

Table 2
Parameters used in the case study.
 Parameter Value Description  
 𝑎𝑚𝑎𝑥 2 m/s2 Maximum ego acceleration  
 𝑎𝑚𝑖𝑛 −4 m/s2 Minimum ego acceleration  
 𝑎𝑇 ,𝑚𝑎𝑥 1 m/s2 Maximum target acceleration 
 𝑎𝑇 ,𝑚𝑖𝑛 −2 m/s2 Minimum target acceleration 
 𝑣𝑡 , 𝑣𝑇 ,𝑡 [1, 130] km/h Range of velocities  
 ℎ𝑚𝑎𝑥 200 m Maximum headway  
 ℎ𝑚𝑖𝑛 5 m Minimum headway  
 𝑡ℎ𝑚𝑖𝑛

0.8 s Minimum time headway  
 𝑑𝑚𝑖𝑛 −2 m Minimum lateral distance  
 𝑑𝑚𝑎𝑥 2 m Maximum lateral distance  
 𝜃𝑚𝑎𝑥 𝜋∕2 rad Maximum angle  
 𝜃𝑚𝑖𝑛 −𝜋∕2 rad Minimum angle  
 𝜅𝑚𝑖𝑛 −0.15 m−1 Minimum curvature  
 𝜅𝑚𝑎𝑥 0.15 m−1 Maximum curvature  
 𝜃𝑟,𝑚𝑎𝑥 0.1 rad Maximum road angle  
 𝜃𝑟,𝑚𝑖𝑛 −0.1 rad Minimum road angle  

5.2.1. Stage 1: Formalization
The first stage of CoCoSaFe requires defining the parameters neces-

sary for the overall formal specification, shown in Table  2. Since driver 
parameters 𝑣𝑑 and 𝑡ℎ𝑑  can take integer values in their respective ranges, 
the longitudinal controller verification can be performed individually 
for each of the possible combinations in parallel. For simplicity, we 
consider a fixed pair of a desired ego velocity 𝑣𝑑 = 130 km∕h and a 
desired time headway 𝑡ℎ𝑑 = 1.8 s in the following.

5.2.2. Stage 2: Decomposition
Using the AGC corresponding to (3) with the coefficient of friction 

𝜇 = 0.8 and the gravitational constant 𝑔 = 9.81 m∕s2, we obtained 
separate analytical specifications for the longitudinal and the lateral 
subsystem. The analytical specification (4) and (5) of ACC can be 
easily encoded by means of the velocity of the ego vehicle 𝑣, the 
velocity of the target object 𝑣𝑇  and the headway ℎ, all contained in the 
longitudinal state 𝑥𝑙𝑜𝑛. Similarly, the analytical specification (6) and (7) 
can be readily encoded by means of the ego vehicle lateral deviation 𝑑
and the steering angle 𝜃, both contained in the lateral state 𝑥𝑙𝑎𝑡.

5.2.3. Stage 3: Verification
Finally, in the third stage of CoCoSaFe, we compute the safe sets 

to perform verification. As described in Section 4.4.1, we computed 
𝑁 𝑙𝑜𝑛 = 10 longitudinal safe sets 𝑆𝑙𝑜𝑛

𝑛
, where 𝑛 ∈ {1,… , 𝑁 𝑙𝑜𝑛}, for 

the longitudinal analytical specification over the relevant range of the 
curvature 𝜅 ∈ [𝜅𝑚𝑖𝑛, 𝜅𝑚𝑎𝑥]. The safe sets are captured by an overall 
number of inequalities ranging from 79 for 𝜅𝑚𝑖𝑛 to 546 for 𝜅𝑚𝑎𝑥. 
Computing a safe set took between 0.2 min for 𝜅𝑚𝑖𝑛 and 6 min for 𝜅𝑚𝑎𝑥. 
This procedure is required to be executed only once and the resulting 
safe sets are reused for evaluating the safety of all ACC controllers. 
The target acceleration 𝑎𝑇 ,𝑡 and the curvature 𝜅𝑡 are chosen freely 
within their respective bounds for the longitudinal verification by the 
BMC using assume statements. The individual states to check the 
integration of the DNN are 𝑥𝑡 ∈ {[0, 0, 0], [15, 5, 5]}.

Similarly, we computed 𝑁 𝑙𝑎𝑡 = 13 lateral safe sets 𝑆𝑙𝑎𝑡
𝑛
, where 𝑛 ∈

{1,… , 𝑁 𝑙𝑎𝑡}, for the analytical lateral specification with longitudinal 
velocities 𝑣𝑡 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], as described in Section 4.4.1. The safe sets 
are captured by an overall number of inequalities ranging from 8 for 
𝑣𝑚𝑎𝑥 to 74 for 𝑣𝑚𝑖𝑛. The calculation of a single safe set for the analytical 
specification using the nominal state 𝑥𝑙𝑎𝑡 required roughly 30 s. For the 
augmented state 𝑥̃𝑙𝑎𝑡 with an integrator, the computation of a single 
safe set took approximately 1 min. This procedure is required to be 
executed only once and the resulting safe sets are reused for evaluating 
the safety of all lateral controllers. Both the longitudinal velocity 𝑣𝑡 and 
the orientation of the road 𝜃𝑟,𝑡 are freely chosen within their limits for 
lateral verification by the BMC using assume statements.

Adaptive cruise control results. The following four common classes of 
adaptive cruise controllers, which are widely used for automated driv-
ing, are considered for verification:

1. A Switching Proportional Controller (SPC) with the gain 𝑘𝑃 = 3

and

𝑎𝑡 = 𝑘𝑃 (𝑣𝑡 −min(𝑣𝑑 , ℎ𝑡∕𝑡ℎ𝑑 )),

where the min-expression takes care of the time gap and adapt 
speed modes.

2. A NonLinear Controller (NLC) known as the Intelligent Driver 
Model (Treiber et al., 2000):

𝑎𝑡 = 𝑎𝑚𝑎𝑥

⎛
⎜⎜⎝
1 −

(
𝑣𝑡

𝑣𝑑

)𝛿

−

(
𝑑(𝑥𝑙𝑜𝑛

𝑡
)

𝑑𝑇 ,𝑡

)2⎞
⎟⎟⎠
,

𝑑(𝑥𝑙𝑜𝑛
𝑡

) = ℎ𝑡 + 𝑣𝑡𝑡ℎ𝑑
+

𝑣𝑡(𝑣𝑡 − 𝑣𝑇 ,𝑡)

2
√
𝑎𝑚𝑎𝑥𝑎𝑐𝑜𝑚

,

where 𝑑𝑇 ,𝑡 = 1.8𝑣𝑡 is the desired distance between the two ve-
hicles, which is around half of the current ego vehicle’s velocity 
𝑣𝑡 in 𝑘𝑚∕ℎ (the recommended minimum distance according to 
German traffic rules) and 𝑎𝑐𝑜𝑚 = 1.5 m∕s2 is the absolute value 
of the comfortable acceleration.

3. A Model Predictive Controller (MPC) (Naus et al., 2010) using 
the model (4) with an optimization horizon of 𝑁 = 5 steps. Let 𝑡
denote the current time step and ̃𝑡 the optimization horizon time. 
The acceleration of the target object is initially 𝑎𝑇 ,𝑡=0 = 𝑎𝑇 ,𝑡 and 
is assumed to be 𝑎𝑇 ,𝑡 = 0 for the remaining optimization horizon 
with 𝑡 > 0. Note that a preview of the acceleration of the target 
object over the whole planning horizon can be considered using 
the approach outlined in Remark  2. With the initial state 𝑥𝑙𝑜𝑛

𝑡
, the 

following quadratic program is solved at each state in a receding 
horizon manner:

min𝑎𝑡

𝑁∑
𝑡=0

(‖𝑣𝑡 −min(𝑣𝑑 , ℎ𝑡∕𝑡ℎ𝑑 )‖ + ‖𝑎𝑡‖),

s.t. ∀𝑡 ∈ [0, 𝑁], (4), 𝑥𝑡 ∈ 𝑂𝑙𝑜𝑛
𝑥

; 𝑎𝑡 ∈ 𝑂𝑙𝑜𝑛
𝑢

;

∀𝑡 ∈ [1, 𝑁], 𝑎𝑇 ,𝑡 = 0;

𝑥𝑙𝑜𝑛
𝑡

= 𝑥𝑙𝑜𝑛
𝑡

, 𝑎𝑇 ,0 = 𝑎𝑇 ,𝑡.

The controller is implemented using the Multi-Parametric Tool-
box (Herceg et al., 2013). An explicit solution of the optimal 
control problem comprising 348 state feedback controllers over 
the relevant ODD is exported to C.

4. A Neural Network Controller (NNC) (Zhu et al., 2020), which 
combines imitation learning of recorded demonstrations and 
optimizing a reward function incorporating safety, efficiency, 
and comfort metrics to maximize cumulative rewards through 
simulation trials. Deep Deterministic Policy Gradient (DDPG) is 
utilized to learn an actor network together with a critic network. 
We focus on verifying the actor with an input 𝑥𝑡 and an output 𝑎𝑡. 
The actor has one hidden layer with 30 neurons. For all layers, 
the Rectified Linear Unit (ReLU) activation function was used.

Table  3 shows results from the development-time verification of the 
longitudinal controllers. The MPC was the only one with a successfully 
verified safety, while the SPC and the NLC were falsified. This is largely 
due to the fact that the SPC only considers the current headway ℎ𝑡 and 
the velocity of the ego vehicle 𝑣𝑡, the NLC additionally the velocity of 
the target vehicle 𝑣𝑇 ,𝑡, and only the MPC the full state information of 
the model including the acceleration of the target 𝑎𝑇 ,𝑡 as well as the 
analytical specification and the ODD explicitly.

Simply using BMC on the NNC timed out for all safe sets. A sim-
ilar result was reported in Scheibler et al. (2015) for small DNNs 
controlling a cart pole system, presumably caused by the nonlinearity 
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Table 3
Longitudinal controller code lines and falsification/verification times. 
 Controller type Code lines Falsification 

time [min]
Verification 
time [min]

 

 SPC 10 3.0 –  
 NLC 15 5.1 –  
 MPC 5521 – 6.1  
 NNC 1672 timeout timeout  
 NNC* 1672 21.4 –  
NNC: times using BMC only for verification
NNC*: cumulative time for decomposition-based verification.

and noninvertability of the DNN. However, using the decomposition 
proposed in Section 4.4.3, we falsified the NNC by a counterexample. 
The bounded model checking of the supporting code with the auxiliary 
neural network was carried out in 10.4min, and 5min for the two 
selected individual states for the actual DNN. The verification of the 
actual DNN using Marabou took only 1 min.

All falsifying counterexamples denote an insufficient ego vehicle 
deceleration, while the target object decelerates with 𝑎𝑚𝑖𝑛 and the time 
headway is not large enough. While the PC decelerates slightly in this 
case, the NC and the NNC decelerate with nearly 𝑎𝑚𝑖𝑛.
Lane keeping assist results. We investigated three classes of controllers 
for meeting the lane keeping requirements:

(1) A Lateral Proportional-integral Controller (LPC), given as
𝜅𝑡 = 𝐾𝑇 𝑥̃𝑙𝑎𝑡

𝑡

where 𝑥̃𝑙𝑎𝑡 denotes the state extended by the accumulated dis-
tance error 𝑒, i.e., 𝑥̃𝑙𝑎𝑡 = [𝑥𝑇 , 𝑒]𝑇  and assuming that the dy-
namics (6) augmented by an integrator for the lateral deviation, 
i.e., 𝑒𝑡+1 = 𝑒𝑡 + 𝑑𝑡. The controller is designed by placing the 
poles of the closed-loop system in 0.3, 0.4, and 0.5 using the 
method from J. Kautsky and Dooren (1985). The control signal 
is saturated additionally to account for the actuation limits (7);

(2) A Lateral Geometric Controller (LGC), also known as Stanley 
controller (Hoffmann et al., 2007), which focuses on minimizing 
the lateral distance and the heading errors between the vehicle 
and a desired path. An adapted version of the controller in terms 
of the vehicle’s curvature is given as:

𝜅𝑡 = −
1

𝑙
tan

[
𝜃𝑡 − 𝜃𝑟,𝑡 + tan−1

(
𝑘𝑑𝑡

𝑣𝑡

)]
,

where 𝑙 = 2.8𝑚 is the wheelbase of the vehicle and 𝑘 = 2 is 
a tuning parameter. Similarly, the control signal is saturated to 
account for the actuation limits (7);

(3) A Lateral Model-predictive Controller (LMC) for the model (6) 
and the optimization horizon with 𝑁 = 3 samples. Let 𝑡 de-
note the current time step and 𝑡 the optimization horizon time. 
The orientation of the road and the longitudinal velocity are 
assumed to be given as preview vectors over the optimization 
horizon, i.e., 𝜃𝑟,𝑡|[𝑡,𝑡+𝑁−1] and 𝑣𝑡|[𝑡,𝑡+𝑁−1], respectively. To de-
crease the complexity of controller computation, we assume that 
both preview vectors are constant over the optimization horizon, 
i.e., ∀𝑡 ∈ [0, 𝑁 −1], 𝜃𝑟,𝑡 = 𝜃𝑟,𝑡, 𝑣𝑡 = 𝑣𝑡. Note that a preview of both 
vectors over the whole planning horizon can be considered using 
the approach outlined in Remark  2. With the initial state 𝑥𝑙𝑎𝑡

𝑡
 and 

the weight 𝑤𝑟 = 0.1, the following quadratic program is solved 
at each state in a receding horizon manner:

min𝜅𝑡

𝑁−1∑
𝑡=0

((𝑥𝑙𝑎𝑡
𝑡
)𝑇 𝑥𝑙𝑎𝑡

𝑡
+𝑤𝑟𝜅

2
𝑡
),

s.t. ∀𝑡 ∈ [0, 𝑁], 𝑣𝑡 = 𝑣𝑡, (6), 𝑥
𝑙𝑎𝑡

𝑡
∈ 𝑂𝑙𝑎𝑡

𝑥
, 𝜅𝑡 ∈ 𝑂𝑙𝑎𝑡

𝑢
;

∀𝑡 ∈ [0, 𝑁 − 1], 𝜃𝑟,𝑡 = 𝜃𝑟,𝑡, 𝜃𝑟,𝑡 ∈ 𝑂𝑙𝑎𝑡
𝑢
;

𝑥𝑙𝑎𝑡
𝑡

= 𝑥𝑙𝑎𝑡
𝑡
.

Table 4
Lateral controller code lines and falsification/verification times.
 Controller type Code lines Falsification 

time [min]
Verification 
time [min]

 

 LPC 8 2.5 –  
 LGC 12 4.9 –  
 LMC 1521 – 7.8  

The controller for the Linear Parameter Varying (LPV) system 
(6) is implemented using the method proposed in Besselmann 
and Löfberg (2012). The explicit solution of the optimal con-
trol problem comprises 144 state feedback controllers over the 
relevant ODD and is exported to C.

Table  4 summarizes the verification/falsification results for the 
above three lateral controllers. Similar to the longitudinal case, the 
model-predictive LMC is the only one to pass the verification, while 
the LPC and the LGC were falsified. This is largely due to the fact that 
the LPC and the LGC only consider the current state 𝑥𝑙𝑎𝑡

𝑡
, and only the 

LMC additionally the orientation of the road 𝜃𝑟,𝑡 as well as the analytical 
specification and the ODD explicitly. The LGC with an increased tuning 
parameter 𝑘 = 4 also passes the verification. Note that the LPC was 
falsified using safe sets with the augmented state 𝑥̃𝑙𝑎𝑡

𝑡
, as outlined in 

Remark  3.
All falsifying counterexamples denote an insufficient ego vehicle 

curvature provided by the controller, while driving at relatively high 
speed and with a relatively high initial orientation difference to the 
reference orientation.

5.3. Threats to validity

The following potential validity threats highlight areas where the 
CoCoSaFe study’s results might be vulnerable to misinterpretation or 
might not fully capture the intended safety guarantees across diverse 
driving scenarios and controller types.
Internal validity threats may be due to the conditional nature of the 
evidence obtained from CoCoSaFe, which only demonstrates that safety 
is maintained within the invariant set of the analytical specification. 
This raises concerns about the validity of the conclusions regarding the 
controller’s behavior in the field. To mitigate this threat, the analytical 
specifications were taken from literature (Rajamani, 2011) and they 
were validated against real-world data in Hoffmann et al. (2007), 
Menzel et al. (2018) to ensure that they capture relevant dynamics for 
ACC and LKA.

The specific implementation of the controllers also play a crucial 
role in influencing verification. Features such as templates, loops, 
and recursive functions can introduce additional challenges that may 
compromise the termination of the verification process in reasonable 
time. To alleviate this, the MISRA (Motor Industry Software Reliability 
Association) coding standard (Anon, 2023) was used to enhance code 
safety and quality.

Further, BMCs analyze the software’s behavior only up to a pre-
defined bound. Errors that occur beyond this loop unrolling limit might 
be missed. To address this, only finite loops were used in the code and 
the bound for the BMC was set to the maximum size of the for-loops 
present in the controllers.
Construct validity threats may occur in defining the ODD and pa-
rameter set for model checking. A trade-off between precision and 
complexity may lead to an inadequate representation of the system 
being verified. To reduce these threats, the ODD was chosen to encom-
pass the maximal view range of common ADAS sensors and maximal 
velocity, acceleration, orientation and curvature operation ranges for 
ACC and LKA.

Tool limitations present another challenge, as the assumptions nec-
essary for verification may not be feasible to incorporate into the 
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deployed code. To mitigate this issue, CoCoSaFe operates at the input–
output boundaries of the controllers being verified, ensuring that these 
are accessible for specifying assumptions and assertions. Addition-
ally, many verifiers are not robust against all possible flaws. For in-
stance, floating-point errors have shown to be particularly difficult 
when it comes to ensuring the overall safety of DNNs (Jia and Rinard, 
2021). To tackle this challenge, we combined tools with a proven track 
record in verifying code level including floating-point errors, such as 
CBMC (Clarke et al., 2004), as well as a dedicated neural network 
verifier, like Marabou (Katz et al., 2019).

Furthermore, depending on an analytical specification restricts the 
generalization of the verification outcomes. We emphasize that
CoCoSaFe, like most formal verification methods, should be supple-
mented with data-driven testing to improve its applicability to complex 
behaviors that arise solely in real-world scenarios.
External validity threats may arise if our approach is not applicable 
to other ADAS controllers. To mitigate this threat, we evaluated the 
approach for two qualitatively different classes of ADAS controllers 
(cruise control and lane keeping), and for each class we considered 
controllers that use several distinct methods commonly employed in the 
automotive domain. Nevertheless, further case studies, for instance the 
application to other controller types or varied operational settings (such 
as urban driving or adverse weather conditions), are required to ensure 
that these threats are fully addressed. The particular assumptions and 
models applied might not be transferable to other areas, which could 
limit the framework’s broader usability. Nevertheless, since similar 
subsystem decompositions used in this study are prevalent in fields such 
as aerospace (McRuer et al., 2014), we anticipate that CoCoSaFe can 
also be applied in that context.

6. Discussion

Using the CoCoSaFe framework presented in Section 4, we could 
achieve more realistic and, most importantly, a safe closed-loop behav-
ior for many initially falsified controllers. The considered automated 
driving controllers were used to control traffic agents in an in-house 
simulation environment for automated driving development. The ex-
perimental results presented in the previous sections suggest that our 
approach offers several benefits beyond this application.
Independent Subsystem Analysis. Our compositional verification ap-
proach allows the analysis of each subsystem independently, which 
improves the scalability and feasibility of verification for large systems 
with multiple concurrently operating subsystems. The longitudinal and 
lateral subsystems can be verified in parallel, which reduces the overall 
verification time. Assuming that the analytical specification is valid, 
verified subsystems can be reused in different products without the 
need to re-verify them. This also enables incremental verification, 
where changes or updates to one subsystem do not necessitate re-
verifying the entire system. This is particularly relevant for over-the-air 
updates in large and diverse vehicle fleets — if only the ACC is updated, 
only its verification and interaction with LKA needs re-evaluation, not 
the entire system. Verifying subsystems individually also supports iso-
lating and debugging safety violations and might reduce maintenance 
efforts by focusing on specific subsystems.
Identifying Code-Level Safety Flaws. We were able to find safety 
flaws at code level for all controllers except for the model-predictive-
based ones (Tables  3 and 4). These safety deficits may have remained 
uncovered with testing alone.
Explainable Falsifying Samples. The acquired falsifying samples cor-
respond to driving scenarios that provide feedback to improve the 
controllers considered, either by deriving additional automated tests or 
by revisiting algorithmic solutions.
Enhancing System-Level Analysis. Applying formal verification even 
only to some software modules greatly supports the overall system-
level analysis and design, e.g., by providing hints where a dedicated 

supervisor component might be required as a safety assurance measure. 
Note that in practice, the computed safe sets can be used as a supervisor 
(runtime monitor) to ensure the safe operation of a controller.
Identifying Gaps in Training Data. For neural network controllers, 
our approach allows falsifying examples to be used to indicate possible 
gaps in the collected training data or undesirable biases in the current 
training stage.
Feasible Pipeline integration. Our framework can be integrated to 
support verification within the ADAS development process. As the only 
manual modeling step is related to deriving the analytical specification 
and verifying controller implementations are possible in an automated 
manner within minutes, our solution can be included in Continuous 
Integration (CI) pipelines, where it is connected to consecutive versions 
of the to-be-deployed controller software.
Broad Applicability for ADAS. As falsification or verification was 
possible for all seven considered controller classes, the proposed frame-
work is expected to be suitable for a broad range of controllers. The 
method is not limited to the analytical specifications (4) and (6). 
Although this paper uses a linear system for which computing a CIS 
is known to have polynomial complexity (Raković et al., 2007), the 
verification approach presented can be easily used for analytical spec-
ifications and operation sets, which allow computing a CIS. Obtaining 
the CIS is possible for many nonlinear systems, e.g., (Fiacchini et al., 
2010). Even though our work focuses on safe keep distance and lane 
keeping of automated driving vehicles, its key ideas can be transferred 
to other CPS.

While the presented scheme has great potential for automated 
safety verification of many safety-critical controllers, several aspects 
of CoCoSaFe can be extended in future work.
Extension to Additional ADAS elements. While our current focus 
has been on the verification of controller code, by integrating other 
ADAS components we can evaluate how the controllers interact for 
various ADAS functionalities. This holistic approach not only strength-
ens the verification process but also addresses potential edge cases and 
interactions that may arise in real-world scenarios.  Recent empirical 
studies have indicated that an ensemble failure predictor outperforms 
individual simulators in forecasting the failures of a digital twin Bi-
agiola et al. (2024). Thus, a possible way to enhance generalization 
could be using an alternative, potentially non-analytical specification. 
Another alternative is to extend the approach to consider uncertainties 
in the system model, e.g., by using probabilistic (Calinescu et al., 2018; 
Gerasimou et al., 2021) and/or statistical model checking.
Specification complexity. Achieving a suitable analytical specification 
for controller verification requires balancing precision and complexity, 
with hybrid system formulations being a promising option (Wong-
piromsarn et al., 2012). If the resulting safe set is highly complex, char-
acterized by many defining inequalities, the verification process may 
take considerable time. One potential solution is to under-approximate 
this complex invariant set using simpler invariants, as suggested in 
Anevlavis et al. (2023), or by employing a lower-complexity parametric 
shape.

Using more complex dynamical system models as analytical spec-
ifications can render the computation of the CIS infeasible or make 
bounded model checking intractable. Even with linear models, the 
complexity of the analytical specification impacts computational effort 
and the size of the operational domain for verification. For nonlinear 
systems, some studies use convex approximations to reduce complex-
ity (Fiacchini et al., 2010), while others leverage structural properties 
of polynomial systems to compute exact sets (Ben Sassi and Girard, 
2012). However, since the maximal controlled invariant set of a nonlin-
ear system is often non-convex, the resulting CIS can be conservative. 
Future work could explore whether other desired properties of closed-
loop controller operation can be captured by invariants and verified 
using our approach, such as minimizing unnecessary fluctuations in 
control signals in camera-based systems when images are stable.
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7. Conclusion

We introduced CoCoSaFe, a Compositional Code-level formal Safety 
verification Framework for automated driving controller implementa-
tions. CoCoSaFe relies on computing controlled invariant sets for ana-
lytical specifications of the closed-loop operation within the operational 
design domain. This enables a modular and parallelizable verifica-
tion of concurrently operating subsystem controller implementations 
by utilizing a bounded model checker. Furthermore, by proposing a 
three-stage verification decomposition, we verify neural network-based 
controllers, for which off-the-shelf bounded model checkers have timed 
out.

We demonstrated the effectiveness of our method by an exten-
sive case study with various types of traditional and neural-network-
based controllers. The experimental results confirm that adaptive cruise 
and lane keeping controllers can be verified offline within a time 
frame of minutes on a regular computer, thus emphasizing the low 
computational overhead of the framework for cyber–physical systems.

In future work, we plan to apply CoCoSaFe to additional types 
of automotive controllers, e.g. those responsible for lane changing or 
interactive urban driving, as well as other application domains, such as 
mobile robotic platforms and manipulators. Furthermore, specification 
complexity and additional ADAS elements will be considered in our 
future work, as outlined in Section 6.
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