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Current infrastructure networks must be climate

resilient to continue meeting service demand into the

next decades with climate change rapidly pushing

infrastructure assets towards or beyond their initial

design envelope. At system level, this corresponds

to the ability to deliver services when parts of

the infrastructure become isolated following local

asset failures. Local shielding strategies are typically

formulated using abstract network metrics or global

optimization methods. The former are agnostic to the

specificity of infrastructure systems, while the latter

tend to be hardly scalable for large infrastructure

networks. Here, we develop an optimal limited-

resource allocation strategy to increase network

resilience, combining the input sparsity of abstract

network metrics with transparency of optimization

methods. We focus on transport networks and

maximizing the expected throughput of services.

We consider upgrading costs as proportional to the

desired increase in failure load from climate shocks.

We benchmark our method by applying it to the UK

freight railway considering shocks induced by an end-

of-century RCP8.5 climate change scenario. A closed-

form solution naturally emerges for the ranking of

the network assets that allows for optimal distribution

of limited asset reinforcement investments. We show

that this attains better resilience improvements

compared to existing heuristic global optimization

methods.

2025 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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1. Introduction
As a changing climate poses an increasing challenge for all infrastructure sectors [1], early climate

change adaptation investments have been identified as economically efficient in the long term [2].

The Intergovernmental Panel on Climate Change sixth assessment report defines climate change

adaptation as acts that moderate harm or take advantage of beneficial opportunities. With mitigation

efforts stalling, adaptation is becoming increasingly more crucial in managing the effects of

climate change [3].

Recognizing the importance of high-quality infrastructure in economic growth and the risks

posed by climate change, national governments have started setting out long-term infrastructure

investment plans. As an example, the UK Government has committed to an annualized

investment of 1.1–1.3% of the GDP to deliver such infrastructure development plans over the next

30 years [4,5]. The US Bipartisan infrastructure plan proposes $400bn to repair road and bridge

infrastructures, where it is estimated that one mile in every five is in poor condition. Moreover,

it announced a $50bn investment to increase climate change resilience [6]. However, with limited

resources made available to develop and upgrade infrastructure systems, the challenge shifts

to how interventions should be prioritized and, consequently, resources should be allocated to

minimize future service disruptions [7].

Similar questions of limited resource allocation and resilience have been explored by

disciplinary work in network science and operation research. In the context of network science,

local metrics have been developed to measure the importance of each node or edge to the

structure of the overall system and the effect they may have on altering the dynamics playing

out over the system in terms of their contribution to system resilience and their susceptibility to

faults and failures. Among the various metrics studied in the literature, those related to centrality

and clustering are recognized as the most fundamental and frequently used local network metrics

[8]. Node degree is one of the most intuitive measures for centrality of an asset and its importance

[9]. Nodes with a higher degree, i.e. more connected edges, are structurally more crucial than

nodes with fewer attached edges. Removing a high-degree node could remove a substantial

proportion of edges in the network and is more likely to fragment the original network into

two or more disconnected subnetworks. The betweenness centralities are a broader family of

measures characterizing the importance of nodes or edges in allowing access between other

assets in a network [9]. Nodes and edges are considered in a central position if they fall within

the shortest path connecting many other node pairs [10]. Their betweenness centrality directly

indicates the magnitude of potential disruptions, and if they are to fail. (As both nodes and

edges can fail in infrastructure networks, we shall refer to either as assets, meaning lines,

junctions, etc.) High betweenness centrality of an asset could indicate a bottleneck between two

components or parts of an infrastructure network. Disruptions to such assets are more likely to

increase the distance between the unaffected assets, if not entirely disconnect them. In physical

infrastructure systems, prioritizing and protecting assets of a higher centrality can be used to

avoid failures that could cause larger-scale service disruptions. Clustering, meanwhile, describes

the local connectedness of assets in a wider community of nodes, originating in social network

studies as cliques, where common friends of a person tend to directly know one another as

well [11]. In the context of infrastructure systems, clustering for an asset reflects the likelihood

that its immediate neighbours will remain closely connected in the event of its failure [12].

These metrics are often developed with abstract networks in mind and rely solely on topological

information to quantify the importance of network assets. Isolated use of such metrics, however,

captures insufficient information with respect to a system’s unique dynamics and needs to be

modified with infrastructure-specific information when inferring components’ susceptibility to

failure when exposed to external shocks [13–16].

In the context of operation research, a mathematical or computational formulation abstracts

the infrastructure system under study and its operation to be then considered within objective

functions related to the system’s health, safety, functionality, reliability or resilience. With the

resource input into the system acting as one of the constraints, the optimization process then seeks
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to minimize or maximize the desired function over a feasible set of solutions. These approaches

directly solve an explicit formulation of the problem, i.e. where/how to allocate a finite set of

resources. Objective functions formulated in such cases cover various aspects of infrastructure

operations at different levels and are often formulated as functions of the quality of service

provided [17,18]. The nature of the system under study is a leading factor in choosing which

function to use. Each infrastructure sector has its own performance measures to quantify the

service provided, e.g. minimization of the passenger waiting time for public transport systems

[19–21]. Optimization models are developed to effectively allocate limited budgets and resources

to maintain and improve the overall condition of the network. From the perspective of proactive

or reactive actions, pre-disaster resource allocation strategies for resilience look at allocating

resources to reinforce the infrastructure system so that the onset effect of disruptive events can be

minimized [22–26].

It is clear that topological measures on their own are not universally sufficient for addressing

resource allocation problems across infrastructure systems. Objective functions tailored to specific

infrastructure systems, which combine topological and functional importance of network assets,

are also difficult to generalize. What is needed is a clear mechanism or framework that

explains how local asset-level topological metrics are related to the network-level resilience. In

this work, we present a generalized analytical solution for resource allocation that, inspired

by a linear programming approach, produces a network metric, which naturally ranks both

nodes and edges of a flow-centric network based on their contribution to the resilience of the

whole system. While the method is easily generalizable, we concentrate on transport system

weather resilience and offer a case study on the UK rail network considering the effect of

increasing temperatures, as derived from an end-of-century RCP8.5 climate change scenario.

We show how our method, which can be applied iteratively for greater accuracy, surpasses

the performance of a particle swarm optimization (PSO) while reducing the computational

burden.

The rest of this paper is structured as follows: in §2 we offer the formulation of the limited

resource allocation problem; we then present an exact analytic solution for a toy model network

in §3, leading to the more general formulation. The result, then applied and benchmarked on the

UK rail network, is described in §4, allowing us to discuss our findings and offer our conclusions

in §§5 and 6.

2. A generalized mobility infrastructure network model
We model the infrastructure system as a multilayer network, consisting of a service layer and

one or more asset layers. We consider the ultimate purpose of an infrastructure system to be

the provision of a service or set of services. It follows that resilience is defined as the ability

to maintain the delivery of the services when the system is subject to external shocks [27].

In the context of infrastructure systems/services subject to climate change-related hazards, the

successful delivery of a unit service can sometimes rely on multiple interdependent infrastructure

systems. Components in each of these systems can be affected by different types of climatic

hazards. By separating the service and asset layers, we quantify the scale of disruptions to services

as assets fail. With such a separation, it is also possible to incorporate multiple asset layers, which

are exposed to different climate hazards, into the assessment.

While amenable to multiple asset layers, our formulation is presented with just one such layer

and one service layer, indicated by subscripts α and φ, respectively. Hence, for the asset layer,

assets can be thought of as a graph Gα = {Vα , Eα}, where Vα and Eα indicate the set of nodes and

edges, respectively. The framework does not need to differentiate node assets and edge assets

rigidly; A indicates the set of assets in layer α, with elements Ai, i = 1, 2, . . . , |Vα | + |Eα |, with

| · | indicating the cardinality of a set. The equivalent definitions for the flow layer φ are omitted

for brevity. We consider a multilayer network with an asset layer, Gα = {Vα , Eα}, and an origin–

destination (OD) layer Gφ = {Vφ , Eφ}, as services. The asset layer represents the network of the

physical assets in the infrastructure system, such as stations and railway lines. The flow layer
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Figure 1. A simple network illustration for the bi-layer structure (A) and a schematic resilience curve with loss of service

highlighted (B)—adapted from [28].

represents the service provided by the infrastructure system, such as transporting passengers

and commodities.

The node set of the OD layer is a subset of the asset layer, Vφ ∈ Vα , including the origin and

destination nodes and excluding some intermediate connection nodes. The edge sets of the two

layers are two separate sets, Eφ /∈ Eα . Each OD pair is assumed to have one specific route in the

asset layer in our network model. Moving commodities from an origin node to a destination node

requires all track segments along the route to be in working condition. Hence, an OD pair refers

to an edge in the flow layer and an OD path refers to an ordered list of edges in the asset layer that

the OD pair relies on to deliver the OD flow.

This dependent relationship between the asset layer and the flow layer is captured by a link-

route incidence matrix H. The number of rows in H equals the number of edges in the asset layer

and the number of columns equals the number of OD pairs in the flow layer. Therefore, H is of

size |Eα | × |Eφ | and Hi,j = 1 denotes that edge ei ∈ Eα belongs to the OD path of OD pair ODj ∈ Eφ ;

otherwise Hi,j = 0. In the simple network illustrated in figure 1A, OD flow F1 relies on edges e1,

e2 and e3 in the asset layer, while OD flow F2 relies on edges e3 and e4. This corresponds to a

link-route incidence matrix for the simple network:

H =

F1 F2
⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

e1 1 0

e2 1 0

e3 1 1

e4 0 1

.

The resilience of infrastructure systems often spans from robustness, the ability to resist and

absorb external shocks, to recoverability, the ability to restore services quickly [29,30]. When

plotted against time, the loss and gradual recovery of services produce a triangular shape in the

time history of the system key performance parameters, against which its resilience is considered

(e.g. [31]). The area of such a triangle, which is also the cumulative loss of service, when the

performance considered, is the overall service provision, and primarily depends on the scale of

the initial disruption (drop in services, measured along the vertical axis) and time taken to restore

full functionality, figure 1B.

Here, we consider minimizing the initial disruption, which ultimately leads to a minimized

cumulative service loss. Therefore, the objective function for the optimization problem can be

minimizing the initial loss of service, Q(t = 0), or maximizing the amount of remaining service, 1 −
Q(t = 0), where t = 0 refers to the time a disruptive event occurs. For a given climatic condition,

ω, each edge asset i is given a local load variable in the set ω = {ωi, . . . ωα}, where i = 1, 2, . . . |Eα |.
A fragility function, here taken in the form of the cumulative density function of the standard

normal distribution, maps the local weather parameter, ωi, to the probability of failure for asset

ei. This captures the non-deterministic relation between an edge exceeding its design load, µi,

and failing. Safety factors, ageing and maintenance activities contribute to the variance of such

a distribution; however, they are difficult to quantify [32]. If the sample size is large enough,

the empirical distribution of the true failure load can be described by a normally distributed
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random variable, Ω ∼N (µi, σi), where σi expresses the average difference between the designed

and actual failure loads. For a given external weather parameter, ωi, the probability of failure for

edge ei equals the probability of edges ei actual failure load being equal or smaller than ωi, or

pi = P(Ω ≤ ωi). Therefore, we take the probability of failure for edge ei under external weather

parameter ωi to be

pi = P(Ω ≤ ωi) =
1

2

[

1 + erf

(

ωi − µi

σi

√
2

)]

, (2.1)

where pi ∈ [0, 1] is the probability of failure for edge ei; ωi could be any weather parameter, e.g.

temperature, wind speed or precipitation, and µi and σi are the shape-control parameters for

the fragility function for asset ei and are also associated with the asset’s condition. This choice

provides weather-dependent failure scenarios based on the RCP8.5 climate models, after the work

in [28]. Note that, intensity, time and spatial extent of extreme heat events are also considered.

To develop the resource allocation strategy, the independent variable ωi is then sampled from

RCP8.5 climate models, considering both average and worst-case day scenarios. This is expanded

on further in the case study. Similarly, the design threshold used in the fragility function is related

directly and taken from existing studies of heat load effects, based on the work of [33].

The probabilities of individual asset failure can be mapped to the probabilities of OD flow

interruption. An OD service path can only be assumed to run successfully when all of its assets

function undisrupted. The probability of a service successfully running for an OD path ODj equals

the combined probability of all of its dependent edges not failing. Therefore, the probability of

success for OD path Fj is

p(Fj) =
∏

i

(1 − Hi,jpi). (2.2)

Subsequently, the expected delivery, Ej, for OD pair ODj, can be obtained by multiplying the

demand along the OD path for flow Fj with the path’s probability of not failing:

Ej = Fj

∏

i

(1 − Hi,jpi). (2.3)

The expected delivery across the whole system is therefore sum of the expected deliveries for all

of the OD pairs:

E =
∑

j

Ej

=
∑

j

Fj

∏

i

(1 − Hi,jpi)

=
∑

j

Fj

∏

i

(

1 − Hi,j
1

2

(

1 + erf

(

ωi − µi

σi

√
2

)))

. (2.4)

(a) The resource allocation problem

We shall now find the optimal resource allocation in terms of upgrading efforts to be distributed

between infrastructure assets to minimize the system’s service disruptions under plausible future

extreme weather events.

We assume that edges in the asset layer can be upgraded to a higher design load µ∗
i from its

original design load µi by �µi:

µ∗
i = µi + �µi, (2.5)

so that failure probability will be reduced when exposed to the same weather parameter:

p∗
i =

1

2

(

1 + erf

(

ωi − µ∗
i

σi

√
2

))

. (2.6)

The vector �µ contains the amount of upgrade �µi for all of the asset:

�µ = {�µi, . . .}, i = 1, 2, . . . |Eα |. (2.7)
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Upon such an upgrade, when the system is subject to the same external weather parameters ω,

the expected delivery should now be increased from E to E∗. This yields an optimization for an

initial loss of services (iLOS) that can be expressed as

min
�µ

iLOS = min
�µ

∑

j

Fj − E∗

= min
�µ

∑

j

Fj

(

1 −
∏

i

(

1 − Hi,j
1

2

(

1 + erf

(

ωi − (µi + �µi)

σi

√
2

)))

)

, (2.8)

subject to

∑

i=1

ci�µi = C, (2.9)

�µi ≥ 0, for all i (2.10)

and �µi ≤ �µub
i , for all i. (2.11)

Here, the sum of all OD flows,
∑

j Fj, is the amount of flows delivered in the network without

any asset failures and is a constant given the system’s typical overall demand. Such an upgrade

would come at a cost
∑

i=1 ci�µi, where ci denotes the unit cost to increase the design load of

edge ei. The values of ci could differ from edge to edge depending on asset conditions. The cost

of upgrade edge ei by �µi is simply the product of the unit cost and the amount of increase in the

design load, ci�µi.

We consider a finite budget for infrastructure asset upgrades, C, made available to the whole

system, which can be used for any subsets of assets. The increase in design load is also subject

to physical and practical limits [34]. We constrain �µi to an upper bound �µub
i to exclude trivial

solutions which are physically inconsistent, and to a zero lower bound assuming that the assets’

load capacity can only be increased diminished in their load capacity to invest this elsewhere in

the network. Therefore,

3. Low-dimensional approach
We shall now concentrate on a three-node, two-edge network and solve the optimal resource

allocation model explicitly. The toy model used is shown in figure 2A. We aim at an analytic

solution that expresses the optimal resource allocation as a function of the key input variables,

that is, the local weather parameters (ω), the assets condition (µ), the unit cost (c), the pairwise

service demands (F) and the link-route incidence matrix (H).

The asset layer, figure 2A, has nine nodes and two edges. The service layer comprises three OD

pairs. The current design loads are denoted as µ1 and µ2 for edge e1 and e2. The fragility function

for each edge is

pi(ω) =
1

2

(

1 + erf

(

ω − µi

σi

√
2

))

i ∈ {1, 2}. (3.1)

The flow of services between OD pairs in the service layer is denoted as F1, F2 and F3. The

delivery of F1 from n1 to n2 depends solely on the functioning of e1, and therefore the first column

of the route-link incidence matrix, H, is [1, 0]⊤. The delivery of F2 from n1 to n3 depends on the

functioning of e1 and e2 and therefore the second column of H is [1, 1]⊤. Similarly, the third column

is [0, 1]⊤. The route-link incidence matrix is therefore

H =

[

1 1 0

0 1 1

]

.

In this simple test model, j ∈ {1, 2, 3} as there are three OD flows and i ∈ {1, 2}, as there are two

edges in the asset layer. The total expected delivery can be calculated as the sum of the OD flows

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

4
 J

u
ly

 2
0
2
5
 



7

royalsocietypublishing.org/journal/rspa
P
ro
c.
R
.So

c.
A
481:20250084

..........................................................

Figure 2. The network structure of the test model. The flow layer has three OD pairs. The asset layer is a network of three nodes

and three edges.

F1, F2 and F3 multiplied by their corresponding OD path’s probability of succeeding. Therefore,

expanding equation (2.4), we get

E =
∑

j

Fj

∏

i

(1 − Hi,jpi) (3.2)

= F1(1 − H1,1 p1)(1 − H2,1 p2) + F2(1 − H1,2 p1)(1 − H2,2 p2) + F3(1 − H1,3 p1)(1 − H2,3 p2).

(3.3)

Considering the actual elements of H for this network, this becomes

E = F1(1 − p1) + F2(1 − p1)(1 − p2) + F3(1 − p2)

= (F1 + F2 + F3) − p1(F1 + F2) − p2(F2 + F3) + p1p2F2. (3.4)

We assume that the edges in the asset layer can be upgraded to higher design loads by an

increment of �µ = {�µ1, �µ2}, resulting in reduced probabilities of failure, p∗
i as defined in

equation (2.6) for i = {1, 2}. The expected delivery with the upgrade, E∗, is then

E∗ = (F1 + F2 + F3) − p∗
1(F1 + F2) − p∗

2(F2 + F3) + p∗
1p∗

2F2. (3.5)

The expected initial loss of service (iLOS), figure 1B, at the onset of the disruption without any

re-routing or repairing efforts, is

iLOS = (F1 + F2 + F3) − E∗

= p∗
1(F1 + F2) + p∗

2(F2 + F3) − p∗
1p∗

2F2. (3.6)

In this case, the minimization problem in equation (2.8) can be expressed as

min
�µ

iLOS, (3.7)

subject to

c1�µ1 + c2�µ2 = C, �µ1 ≤ �µub
1 , �µ2 ≤ �µub

2 , �µ1 ≥ 0, �µ2 ≥ 0. (3.8)

We can write the marginal increments of iLOS in response to a change of design threshold from

equation (3.6) as

A�µ1 + B�µ2 + D�µ1�µ2, (3.9)

where

A = p′
1(F1 + F2) − p2p′

1F2, (3.10)

B = p′
2(F2 + F3) − p1p′

2F2 (3.11)

and D = −F2p′
1p′

2, (3.12)
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with, p′
1, p′

2 as the derivatives of the probabilities of failure for assets 1 and 2 with respect to

the design loads µ1 and µ2, respectively, to upgrade. Note that, the problem of minimizing

initial loss can equivalently be formulated as maximizing the return of the infrastructure upgrade

investment through maximizing the expected additional delivery, subject to the same constraints,

see electronic supplementary material, section S1. Rearranging equation (3.10) as A = p′
1(F1 + (1 −

p2)F2) provides a more tangible interpretation as it can now be seen as the rate of change of the

probability of failure, p′
1, multiplied by the amount of flow that is dependent on the success of

edge e1.

(a) Linear programming approach

The Lagrangian for the optimization problem equation (3.7) is defined as

L(�µ1, �µ2, λ, θ1, θ2, ϕ1, ϕ2) = A�µ1 + B�µ2 + D�µ1�µ2 − λ(c1�µ1 + c2�µ2 − m(c1 + c2))

− θ1(�µ1 − �µub
1 + t2

1) − θ2(�µ2 − �µub
2 + t2

2)

− ϕ1(�µ1 − s2
1) − ϕ2(�µ2 − s2

2), (3.13)

where λ, θ1, θ2, ϕ1 and ϕ2 are the Lagrange multipliers and t2
1, t2

2, s2
1 and s2

2 are slack variables

that are introduced to convert the inequality constrains into equalities. The four inequality

constraints mean 24 = 16 cases to discuss. The solution, obtained by taking the gradient of

the Lagrangian with respect to each variable is found in each case and is and detailed in the

electronic supplementary material, section S2, while here only the solution of unconstrained case

is considered as the others present either unrealistic or trivial outcomes.

(i) Solution of the unconstrained optimization (none of the inequality constrains is active)

We consider (θ1 = 0, t2
1 > 0), (θ2 = 0, t2

2 > 0), (ϕ1 = 0, s2
1 > 0) and (ϕ2 = 0, s2

2 > 0). The solution can be

found by solving

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A + D�µ2 − λc1 = 0,

B + D�µ1 − λc2 = 0,

C − c1�µ1 − c2�µ2 = 0,

(3.14)

which returns

�µ1 =
CD + Ac2 − Bc1

2Dc1
and �µ2 =

CD − Ac2 + Bc1

2Dc2
. (3.15)

Feasibility of the above solution need to be checked with if there exist t2
1 > 0, t2

2 > 0, s2
1 > 0 and

s2
2 > 0 that satisfy

∂L

∂θ1
=

∂L

∂θ2
=

∂L

∂ϕ1
=

∂L

∂ϕ2
= 0. (3.16)

If any of the gradients can not find a slack variable such that the gradient can be zero, the solution

from this case will be ruled unfeasible. This situation happens when the solution found in this

case turns out to be outside the feasible region defined by the constraints. When there are no

constraints considered, the solution calculated with equation (3.15) is the optimal solution. With

the presence of the equality and inequality constraints, it could turn out to be an unfeasible

solution.
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(b) Generalized approach

The understanding achieved through the low-dimensional approach can now be used to consider

the more general case. Rearranging equation (3.15) yields:

c1�µ1 −
C

2
=

c1c2

D

(

A

c1
−

1

2

(

A

c1
+

B

c2

))

and c2�µ2 −
C

2
=

c1c2

D

(

B

c2
−

1

2

(

A

c1
+

B

c2

))

.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3.17)

It is easy to show that for a constant unit cost c1 = c2 = c, the optimal level of upgrade is related

to the relative value of A and B, �µ ∝ |A − B|. Consider the generic edge ei and, without loss of

generality, assume i = 1 so to link the toy example to the following. From equation (3.17), in the

optimized resource allocation solution, the amount of more-than-average resource allocated to

edge e1 is a linear function of the difference between A/c1 and the average of (A/c1, B/c2). The

(F1 + (1 − p2)F2) in A and the (F3 + (1 − p1)F2) in B need to be generalized so that they can be

applied to problems with more than two edges. Consider the first edge ei=1, the direct sum of the

OD flows that use edge e1 is F1 =
∑

j H1,jFj.

Each of the Fj flows has to be scaled by the probability of failure to calculate the true proportion

of Fj that is expected to use edge ei=1 through

∏

k,k �=1

(1 − Hk,jpk).

Similarly, A = p′
1(F1 + (1 − p2)F2) and B = p′

2(F3 + (1 − p1)F2) are, hence, generalized to

p′
i

∑

j

Hi,jFj

∏

k,k �=i

(1 − Hk,jpk). (3.18)

Generalized A/c1 and B/c2 are therefore

p′
i

ci

∑

j

Hi,jFj

∏

k,k �=i

(1 − Hk,jpk). (3.19)

If instead we consider the term for edge ei from equation (2.3) and extend it to all expected OD

flows Ej, the total expected delivery across the network E cab be obtained as

E =
∑

j

Ej =
∑

j

⎡

⎣(1 − Hi,jpi)Fj

∏

k,k �=i

(1 − Hk,jpk)

⎤

⎦

=
∑

j

⎡

⎣Fj

∏

k,k �=i

(1 − Hk,jpk) − pi

∑

j

Hi,jFj

∏

k,k �=i

(1 − Hk,jpk)

⎤

⎦ . (3.20)

Differentiating with respect to µi gives the ‘gradient’, i.e. the change rate of the total expected

flow for investing in edge ei:

∂E

∂µi
= −

∂pi

∂µi

∑

j

Hi,jFj

∏

k,k �=i

(1 − Hk,jpk). (3.21)

Note that the right-hand side of equation (3.21) matches the generalized analytical solution

obtained in equation (3.19) except for the multiplicative term 1/ci. This means that the derivative

of the expected flow on an edge with respect to the upgrade that the edge receives is proportional

to the optimal amount of resources the edge can be allocated.
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The term ∂E/∂µi indicates the gradient of investing in edge ei. Assuming there is a sufficiently

small portion, �µi allocated to edge ei, the resulted change in the objective function �E can be

approximated as

�E = �µi
∂E

∂µi
. (3.22)

With the associated cost of upgrading edge ei by �µi being �µici, the true gradient of investing

in edge ei is

�E

�µici
=

�µi
∂E
∂µi

�µici
= −

p′
i

ci

∑

j

Hi,jFj

∏

k,k �=i

(1 − Hk,jpk). (3.23)

A ranking of the assets can then be obtained based on the ability of the asset to contribute to

the expected network flow delivery for every unit of resources allocated to their upgrade.

(c) Ranking strategies

Network resource allocations can often be seen as ranking problems. The underlying assumption

is that components of high topological or functional importance, e.g. a vertex with many edges,

or an edge that is part of the shortest path of many node pairs, should be prioritized. Node

ranking metrics exist that are able to provide measures of individual node and edge importance,

offering good computational advantages. Network components of relatively high importance

enjoy proportionally large amounts of resources. In a ranking-based resource allocation the

amount of upgrade �µi for any edge ei is proportional to its calculated ranking score γi. Defining

χ as the proportionality constant, for any edge ei we get

�µi = χγi. (3.24)

To satisfy the first boundary condition equation (2.9), the total cost of upgrade for all edges needs

to equal the given budget, C:
∑

i

ci�µi =
∑

i

ciχγi = C. (3.25)

Rearranging equation (3.25) and substituting into equation (3.24), the resource allocation solution

can be found by calculating each �µi as

�µi = γi
C

∑

i ciγi
. (3.26)

The resource allocation generated this way naturally satisfies the boundary conditions
∑

ci�µi = C and �µi ≥ 0. The upper boundary constraint can be handled by resetting �µi to

�µub
i if �µi > �µub

i . This resetting leaves ci ∗ (�µi − �µub
i ) amount of resources unused, which

can be allocated by running the ranking-based resource allocation again, as in algorithm 1.

However, the ranking metrics available have not been engineered to improve resilience of

infrastructure network through local upgrading. Taking the gradient of the expected network

flow delivery with respect to the upgrades of the single assets allows us to overcome the

generality of the existing ranking metrics. In this way, assets will be ranked based on the

cost/benefit balance of investing in them. This is achieved by applying equation (3.21) to all edges.

We define this local gradient as the new ranking metric:

γi =
∂E

∂µi
for all i ∈ Eα , (3.27)

and we show next how this applies iteratively to a transport network upgrade problem. We define

this as the iterative resilience metric-based approach or algorithm (IRMA).

4. A case study on the UK railway network
To evaluate the performance of the proposed iterative approach, a system model for this core

freight network is constructed, consisting of two layers. The edges in the asset layer represent the
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Figure 3. The asset layer constructed for this study (purple) as embedded in all railway track lines across the country that

are managed by Network Rail (grey) (A). The original shape file is provided by Network Rail. The rankings of the edges to

upgrade broadly agree between the PSO and the IRMA (B). Greater agreement occurs when the resources are more scarce

while the abundance of resources makes ranking irrelevant. The box plot (C) shows the values attained by the objective

function minimized using the PSO algorithm and the proposed metric-based approach with different levels of investment

(�µeq ∈ [0.5, 1, 2, 4, 8]). The objective function is the expected initial service disruption in percentage of the normal service

level for a given weather profile.�µeq indicates the investment level.�µeq = 2 means the amount of investment equals

to that required to increase the design load for all assets in the network by 2◦C.

railway track lines, figure 3A. The asset layer consists of 65 nodes and 84 edges, which has been

constructed based on the maps and descriptions of the freight corridors in the Freight Network

Study [35].

The service layer is constructed using the freight train schedule data obtained from the open

data feed (openraildata.com, last accessed March 2022) by Network Rail. The constructed service

layer has 1623 OD pairs. Converting the station record to node paths in the asset layer, then to

edge paths, gives the link-route incidence matrix H.

As the downloaded dataset does not include information on the weight or volume of goods

transported, loaded and unloaded at each calling station, a scheduled run on a single day is

treated as a single unit of flow in the service layer. The total number of runs for each schedule

divided by the number of days in the schedule gives the average daily traffic profile. Adding

up the trips of all schedules, the simplified location records of which are identical, gives F, the

amount of flow between the OD pairs. While asset information is not available to inform realistic

costs, c, this is assumed to be proportional to the geographical length of the edges.

When directly applying the method to the freight network, instead of specifying the number

of iterations, k, a step size �µ(k) is specified. In each iteration, the algorithm tries to allocate �µ(k)

amount of resources between edges. The solution obtained will be checked, and where there is a

violation of the upper boundary constraint, the value of �µi will be reset to �µub
i . The unused

resources ci ∗ (�µi − �µub
i ) are recycled back to the reservoir of not-yet-allocated resources and

are allocated in the following iterations. Note that, �µ(k) amount of resources are to be allocated

at each iteration until less than �µ(k) resources are left. As the final iteration, the algorithm will

then allocate the residual until all resources are used. The pseudo-code explaining the iterative

metric-based resource allocation is presented in algorithm 1.
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Algorithm 1: IRMA

input : �µeq – total upgrade budget in ◦C per asset

�µ(k) – incremental budget available in step k

c – upgrade unit cost vector

ub – asset upgrade upper bound vector in ◦C

output: �µ – asset upgrade vector in ◦C

�µ ← 0;

γ ← ∂E
∂µ

;

utilizationRatio ← �µ⊤c
�µeq

;

while utilizationRatio < 1 do

�µremaining ← (1 − utilizationRatio)�µeq;

�µ(k) ← min{�µremaining, �µ(k)};
if �µi + γi

�µ(k)
c⊤γ

< ubi then

�µi ← �µi + γi
�µ(k)
c⊤γ

end

utilizationRatio ← �µ⊤c
�µeq

end

Using the five hottest days each year for the years between 2051 and 2100, the performance

of the PSO algorithm and the iterative metric-based method is compared in terms of the time

taken and the values of the objective function. Sampling five representative days each year for a

50-year period gives 250 weather profiles, following the approach in [28], which provides the

geographically explicit ωi variables determining the failure probability of the network assets

based on their location in the network/country. For each weather profile, five investment

scenarios are considered, �µeq ∈ [0.5, 1, 2, 4, 8]. The amount of investment is formulated as the

resources required to increase the design load for all assets in the network by �µeq. For the

1250 resulting combinations, it took the PSO algorithm 18291 s (approx. 5 h) to complete without

parallelization with 8GB RAM, while the iterative metric-based method only took 855 s (approx.

15 min) to solve without parallelization and the same RAM availability. In addition to the realistic

case study here presented, a comprehensive set of up to six-node synthetic networks is proposed

in the electronic supplementary material, section S3 to evaluate the IRMA method in comparison

with more established numerical techniques.

Figure 3 shows the value attained by the objective function using both methods against the

amount of resource input. The objective function is the expected initial service disruption in the

system when subjected to a given weather profile as a percentage of the service flow amount

with no asset failures. The method concludes that a lower objective function value is considered

optimum. From figure 3C, except �µeq = 0 with zero investment and �µeq = 8 with excessive

investment, the proposed iterative metric-based method consistently gives an objective function

that is smaller than the PSO algorithm when given the same amount of resources to distribute

between assets.

The simulation suggests that the proposed iterative metric-based method can conclude better

solutions in shorter computational time. We can compare how differently the two methods rank

the assets to upgrade, figure 3B, where the correlation is expressed in terms of Kendall’s τ − b

coefficient.

In addition, we IRMA to two distinct collections of days. The first collection comprises the five

hottest days each year for the year 2051–2100, extreme days. The second collection comprises 251

days selected using a clustering method, typical days [28]. For each day in a collection, we generate

a solution using IRMA, which is averaged along each edge to give a combined solution, figure 4.

From �µeq = 0.5 to �µeq = 8, with an increasing level of resource input, the amount of increase
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Figure4. Maps showing the resource allocation solutions obtained fromoptimizing for extremedays (A) and for typical days (B)

for different resource investment�µeq.Width of the lines indicates the increment of allocated resource in increasing an asset’s

design load�µi . The insets show the distribution of�µi against latitude for easier comparison of allocation homogeneity

with increased resource availability.

in design load between edges gradually levels out, resulting in a decrease in the inequality in

resource allocation. When resources are limited, concentrating them on fewer but more critical

assets could be more beneficial rather than distributing the resources more widely.

5. Discussion
The requirement to adapt infrastructures to a changing climate stems from the lack of anticipation

at the point of design on the conditions in which the assets would operate in a 50–100-year

horizon [28]. This involves both the design features of single assets (e.g. the design capacity of

drainage channels or, as in this case, the rail assembly to minimize thermal expansion) and the

network design (e.g. the availability of alternative paths). Our results are limited to asset-wise

interventions only, yet the outcome improves the overall network performance due to the use

of system-wide metrics. In other words, the objective function, identified as a measure of the

network throughput, is maximized through local interventions, to which resources are allocated

in an optimal way. This is a centralized allocation, as one decided by a single decision-maker for

the whole network. While this is the case for some infrastructure, it certainly is not universal.

Large infrastructure systems are usually governed at regional level and are likely to be under

multiple ownership [36,37]. For the railway network in Great Britain, the single owner and single

decision maker scenario are quite realistic representations. This is also due to the insular nature

of the land which is served by the infrastructure.

When multiple stakeholders are present, the optimal allocation problem is one of leveraging

the competition or co-operation in the network in the strategic decisions about interventions.

In this case, a spectral approach has been proposed where incentives are weighted according

to the Perron vector associated to the network, hence highlighting the role of eigenvector

centrality when competition dynamics [38], consensus dynamics [39] and possibly others, are

considered.
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In our static setting, the local marginal benefit constitutes a natural network ranking for

resilience intervention. Assets can be easily ranked by the derivative of the benefit from the

upgrade with respect to its cost. This recalls established results from linear programming as well

as the literature just cited about the network spectral characteristics, considering the geometric

interpretation of an eigenvector as the direction of maximum change. Noteworthy contributions

to that are the extension to a network setting and the asset interdependence in ensuring

the OD connectivity, hence the maximization of the expected throughput. Note also that, the

results resonate with the fundamental works in resilience of complex systems [40], as resilience

characteristics are mapped to a uni-dimensional variable, function of the local connectivity

structure of the network, through a linearization of the network dynamics. In the same way, we

connected a local metric to a global outcome, reducing the problem to a one-dimensional ranking.

The method is hence transparent in its formulation and yields results with immediate physical

interpretation. As for its application to the Great Britain rail network, in addition to what has

already been discussed about the suitability of the method, we shall note that the proposed

resource allocation appears to prioritize highly connected and used parts of the network to then

become more uniform as larger amounts of resources are available; see figure 4. Moreover, as

more resources are available, their strategic allocation becomes less critical, with many possible

allocations returning the minimization of the objective function. This is visible in figure 3, where

the correlation between the PSO (heuristic) method and our proposed approach reduces when

large upgrading resources become available (panels B and C). For limited available resources in

figure 3C, the proposed method clearly outperforms the PSO algorithm, which is chosen as a

benchmark in this case for its ability to mitigate the convergence to local minima via a multi-start

procedure.

6. Conclusion
The upgrading of the infrastructure against threats of climate change can be tackled through

investments in the network or in its operations. In this paper, we concentrated on the former,

producing a resource allocation strategy that optimizes the expected network throughput. As

different from many works in the literature on the subject, our network modelling included the

flows, which entered directly in the objective function. This surpasses the resilience evaluation

(and enhancement) based on the asset failures, focussing instead on the consequences for

the service of the asset being unavailable. This results in an approach that, through local

interventions, maximizes the traffic throughput as opposed to simply looking at the integrity

of the paths. The proposed method uses original intuitions from linear programming mixed

with an approach centred on the ranking of network elements, popular in the network science

literature. The method surpasses numerical optimizers in terms of computational speed and

flexibility, while retaining explanatory power due to its transparent formulation. This was verified

through a case study on the Great Britain freight railway network, where the loss of service

following an upgrade of the infrastructure is reduced by approximately 10% with respect to

upgrading resources allocated using numerical optimization, while also significantly reducing

the computational time.
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