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A Novel Approach to Climate Resilience of

Infrastructure Networks
Qianqian Li, Giuliano Punzo, Craig Robson, Hadi Arbabi, Martin Mayfield

Abstract—With a changing climate, the frequency and intensity
of extreme weather events are likely to increase, posing a
threat to infrastructure systems’ resilience. The response of
infrastructure systems to localised failures depends on whether
assets are affected randomly, in a targeted strategic way, or any
way in between. More than that, infrastructure decisions today,
including new routes or improvements to existing assets, will
underpin the behaviour of the systems over the next century.
It is important to separate and analyse the case of climate-
based disruptions and how they affect systems’ resilience. This
paper presents a probabilistic resilience assessment framework
where failure scenarios and network disruptions are generated
using weather profile data from climate prediction models with
component-level fragility functions. A case study is then carried
out to quantify the resilience of Great Britain’s railway passenger
transport system to high-temperature-related track buckling
under the Representative Concentration Pathway 8.5 (RCP8.5)
climate change scenario. A 95-year horizon on the resilience of
the railway system is drawn. The results also reveal the non-linear
responses of the railway system to the increasing temperature and
show that models considering random asset failures overestimate
the system’s resilience.

I. INTRODUCTION

A. Background

The centrality of infrastructure systems in society, and there-

fore their resilience to disruptions in a complex, fast-evolving

environment, are now universally recognised [1]–[3]. Extreme

weather events such as storms and floods can extensively affect

the functionality and serviceability of infrastructure systems

[4]–[7]. The current climate change trajectory is only likely to

result in an increased frequency and intensity of such events

[8], [9]. Although current infrastructure systems have been

stressed by various types of events from time to time, they are

generally considered to be resilient to specific natural hazards

as they are designed, built and operated in compliance with

design codes and regulations set on historical meteorological

data [10]. Yet, design standards and operational standards, and

therefore the system’s capacity to absorb shocks, are defined

over expected magnitudes of shocks. Such expectations have

been largely surpassed by the scale of extreme weather events

caused by climate change [11], [12]. Therefore, current in-

frastructure systems may not have the ability to withstand

the future climate, characterised by more frequent and intense

weather extremes. What is resilient to the present-day climate
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may be vulnerable to the future climate. An understanding of

how weather hazard impacts infrastructure systems is required.

Since the publication of the Intergovernmental Panel on

Climate Change (IPPC) Fifth Assessment Report [8] and the

open access to climate model output data, there has been

an increasing body of literature on assessing the impacts of

climate change on infrastructure systems. For example, the

Climate Change Risk Assessment 2017 [13] assesses the risk

of future flood risk to Great Britain and generates flood risk

maps under three climate change scenarios. The number of

assets exposed is estimated by overlapping the flood risk

maps with the geographical maps of the assets and identifying

those likely to surpass specific indices or risk thresholds.

Other impact assessments appearing in the literature have

been carried out in a similar manner. They rely on estimating

the likelihood of surpassing certain design or operational

thresholds under several climate change scenarios [14]–[18].

For the classification and determination of the impact of

climate hazards, a two-tier approach is proposed in [19], where

the approach first distinguishes direct and indirect impact.

Direct impacts refer to consequences related to the infras-

tructure system itself, including complete or partial damage

to physical infrastructure assets, deviation of performance

from the fully functional level, and connectivity loss. Indirect

impacts refer to those received by the society that is served

by the infrastructure systems, such as causalities, community

isolation (both physical and in terms of communications), and

economic losses. By this classification, the majority of existing

climate change impact assessments, including [13]–[18], are

on the physical damage level.

Under the scope of climate change impact assessments,

functional damages are rarely analysed, often just viewed as a

consequence. Works related to functional damage and system-

level loss of service, in particular, are comparatively more

limited in number [20], [21]. Limiting impact assessments

to the estimation of physical damages, or even component-

level functional loss overlooks the complex interdependencies

of infrastructure systems [1]. Infrastructure systems are well

acknowledged as complex coupled systems, the behaviour or

response of which is distinct from the combined behaviour

or response of its components [22]. Impact assessments on

physical damage level certainly provide valuable insights into

the magnitude of climate-change-related disruptions. However,

the complex dynamics characterising infrastructure systems’

responses are such that system-level effects cannot be derived

in a straightforward manner from the component level. There-

fore, an understanding of how more extreme weather events,

including those not normally seen in geographic areas in the
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past, may cause a hazard and impact infrastructure systems is

required.

B. State of the Art

Existing works on system-level response to disruptive events

are often cast within research in resilience, as well as the

related areas of vulnerability and robustness. A resilience

assessment often starts with modelling real-world infrastruc-

ture systems as networks. Network models in literature can

be categorised into two groups: topological models and flow

models. In a topological model, e.g., [23], physical infras-

tructure system assets, such as rail stations, transmission

lines, and airports, are modelled as nodes or edges in the

network. These models emphasise the topological structure of

the system but lack the ability to capture the functional aspect

of the infrastructure system: where the demands are, where

the supplies are and how any demand can be met. A flow

model, e.g., [24], has its emphasis on the services and flows

delivered by the infrastructure system more than the network’s

topological structure. Flow models are normally expressed as

OD (origin-destination) matrices. In a flow model, nodes are

entities that either supply, demand, or transit services or goods.

Edges capture flows between pairs of nodes. Recent works on

system-of-systems, interdependent, or interconnected networks

adopt a combined topological and flow model (e.g. [25]–[27]).

Such models have separated asset and flow layers representing

the physical infrastructure assets as a graph and the services

provided, respectively. Inter-layer dependencies describe the

physical embedding of a service end-node into the asset layer,

that is, in which asset node a flow between two nodes of the

flow layer is originated or delivered by means of the physical

network of assets.

Disruptions are mostly simulated as strategic removals of

network components [28]–[31]. This type of network com-

ponent removal is often referred to as an attack in abstract

network studies [32]. The most common strategies used for

network attacks are either random, where nodes and edges

are randomly selected and removed from the network, or

targeted, where nodes and edges are selected based on their

structural/topological importance in the network [33]. The

random attack strategy resembles some real-world disruption

events like random equipment failure, operational faults, and

accidents [26]. The targeted attack strategy, to some extent,

aims at capturing events like terrorist attacks [34] or some

theoretic worst case scenarios. While random disruptions and

targeted attacks are useful simplifications, they do not com-

pletely cover the wide variety of possibilities that a real-world

scenario may present. Many disruptive events, particularly

weather-related events, may not fit into either.

Although weather events feature stochasticity, they are not

purely random because the climate has deterministic dynamics

that exhibit chaotic behaviours [35]. However, weather-related

disruptions certainly do not maliciously target any specific

network components, making the targeted attack strategy un-

realistically severe. Those approaches are not capable of cap-

turing the feature of weather-related disruptions. Furthermore,

complex networks behave differently under different attack

scenarios [29]. Even if the infrastructure network of interest

is shown to be resilient to random or targeted network attack

strategies, it is not necessarily resilient to climate, or extreme

weather event-based disruptions. Therefore, the resilience of

infrastructure systems to weather-related events should be

simulated with realistic weather profiles in addition to the

random and targeted strategies.

Several studies have attempted to use weather profiles

to initiate network disruptions. Panteli and Mancarella [4]

propose a conceptual framework to assess the influence of

climate change on weather-related power interruption. In their

work, an explicit reference is made to the use of weather

profile data in both time and space domains to initiate system

component failure and simulate cascading effects. However,

subsequent works appear not to implement such a strategy

fully. The hourly wind profiles can be obtained by sampling

these probability distributions. When assessing power network

resilience, which is done using scaled-up time-series wind

profiles generated from a weather simulator [36]. Works

that account for actual spatial weather patterns, e.g., [37],

do so by reproducing historical wind extremes with spatial

correlation. This implies the assumption that historical or

present-day weather statistics will hold in the future, which

is now widely recognised as a fallacy due to the changing

climate and weather patterns [8], [9]. What is resilient to

the current patterns may easily be fragile to the future ones.

Future weather profiles produced by climate models are the

only viable option to assess the resilience of infrastructure

systems to future extreme weather events, moving beyond the

widespread extremes of random and targeted attacks, unable

to capture the features and threats of climate change.

C. Main Contributions of the Work

This paper proposes a systemic approach for assessing the

resilience of infrastructure systems to climate change. In doing

so, it proposes a novel quantitative framework that returns the

statistical distribution of the system’s response as produced by

weather profile data for the relevant geographical area. These

are obtained from climate model outputs and projected onto

the geographical asset location of an infrastructure system.

Moving beyond the current approaches to quantify infrastruc-

ture network resilience, this work

• proposes a method to initiate network disruption based on

local climate hazards obtained from weather profile/data

with a 95-year horizon;

• assesses system-level functional loss based on the service

level retained, which considers possible reconfiguration,

as opposed to a mere count of the failed nodes or the

identification of a threshold for network fragmentation.

• brings the physical damage and service loss quantification

together to return a measurement of the infrastructure sys-

tems resilience to extreme weather events-based failure

scenarios.

• benchmarks the method through a case study on Great

Britain’s railway network, including disruptions to the

ability to satisfy the travel demand.
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Proceeding sections are organised as follows. Section II de-

scribes key components in the resilience assessment frame-

work, offering a clear account of the formulation proposed,

which can be replicated for further research or adapted to

specific infrastructure systems. In Section III, the proposed

framework is applied to Great Britain’s railway network with

high-temperature-related failures. Discussion and conclusions

are offered in Section IV and Section V.

II. THE RESILIENCE ASSESSMENT FRAMEWORK

The proposed method uses standard weather profiles ob-

tained from the Earth System Grid Federation, which holds

the most extensive collection of observational, reanalysis, and

simulation data for climate change research. Those weather

profiles are available as individual time series of a weather

parameter, such as wind, precipitation, and humidity, with

different time resolutions and geographical ranges. The key el-

ements of the proposed approach, namely the network model,

the failure scenario generation, and the probabilistic resilience

measure, are described in more detail later in this section. It

is worth mentioning that resilience in this work does consider

the recovery stage, where rerouting and repairing activities are

concerned. However, the recovery algorithm is not presented

in this section as they could be interchangeable depending on

the case study or the infrastructure sector being analysed. The

high-level architecture of the proposed framework is shown in

Figure 1.

A. Network Representation of Infrastructure Systems

In this work, the infrastructure system is modelled as a

bi-layer network, constituting an asset and a flow layer. The

reason for this is twofold. Provided the ultimate purpose of

an infrastructure system is to provide a service or services,

a resilience measurement that relates to the system’s ability

to maintain the delivery of services when exposed to external

shocks would be better than one relating to the extent of dam-

age/change on its topological structure. The second reason is

that such separation makes it possible to incorporate multiple

asset layers and therefore multiple types of climate hazards

into the assessment. The successful delivery of a unit of service

can sometimes rely on multiple interdependent infrastructure

systems with components in each system affected by different

types of climatic hazards. The separation makes it possible

to initiate failures in different asset layers caused by different

climate hazards simultaneously while increasing the flexibility

of the modelling framework to adapt to different infrastructure

systems.

In the following, the asset and flow layers will be indicated

by subscripts α and φ, respectively. Hence, for the asset layer,

assets can be thought as a graph Gα = {Vα, Eα} where Vα

and Eα indicate the set of nodes and edges, respectively. The

framework does not need to differentiate node assets and edge

assets rigidly. For layer α, A indicates the set of assets in

layer α, with elements Ai, i = 1, 2, · · · , .|Vα|+ |Eα|, with | · |
indicating the cardinality of a set. The equivalent definitions

for the flow layer φ are omitted for brevity.

Local weather conditon for all 

network components: 

Remove network components that

Input - a failure scenario: 

Reroute & repair

Calculate quality of service:

The cumulative loss of service

The resilience curve 

Resilience 

assessment

Climate data

(lon, lat, time) 

2006

2100

Fragility function

Probability of failure for all 

network components: 

Random sample    times

sets of failure scenarios: number of 

Raster layer

(weather event)

Projection

Infrastructure network

Slice

No

Yes

Probability distribution of 

measured loss of service 

for weather event 

2006 2100

For a weatehr event       defined by time stamp    : 

A collection 

of events

Fig. 1: Overview of the probabilistic resilience assessment

framework.

B. Failure Scenario Generation

In this work, a failure scenario refers to a set consisting of

the simultaneous failure and removal of network components.

The generation of such failure scenarios follows a systematic

approach using the obtained climate model output. The climate

outputs are three-dimensional (3D) data, where spatial weather

data are combined with the third dimension of time. A weather

event refers to a slice from the 3D data with a desired

geographical range and timescale. For a given weather event,

by projecting the weather data on the asset layer, the local

weather condition for all network components in the asset

layer can be found:

ω = {ωi, ...}, i = 1, 2, ...|Vα|+ |Eα|

where ωi is the local weather condition for asset Ai.

With the local weather condition allocated for each asset

network component, a non-zero asset failure probability arises

as the asset may fail due to local weather conditions. This

probability defines the likelihood that an asset can withstand

an assigned local weather condition and can be derived from
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a fragility function, which returns the probability of failure as

a function of the magnitude of the local weather conditions.

The shape of a fragility curve reflects uncertainty in the asset’s

ability to withstand a shock. If the failure is deterministic (e.g.,

a circuit breaker in an electric circuit triggered by a given

value of the current), the fragility function takes the shape of

a step function with a threshold (Figure 2a), beyond which the

probability of failure passes abruptly from 0 to 1. Examples

used in the literature are air temperature threshold for railway

track buckling [15], depth of flooded water on railway tracks

[16], and significant wave height on port operation [38].

The threshold model, or step function, assumes that asset

failures are deterministic when the assigned shock is above the

threshold. When there are greater uncertainties in the asset’s

capacity to withstand a shock, a more general sigmoid function

can be used. Examples of the latter include [36], [37], [39],

where sigmoidal fragility functions are associated with the

failure of electricity transmission lines and towers to local

wind speed.
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(a) (b)

Fig. 2: Example fragility curves: a) step function form; b)

sigmoid function form

In the most general form, consider the fragility function for

each network components in the asset layer as

p
f
i = ξi(ωi) (1)

where ξi stands for the fragility function for asset Ai and p
f
i

is the calculated probability of failure for asset Ai when the

local weather condition is ωi. The probability of failure for all

network components in the asset layer is then

pf = {pfi , · · · }, i = 1, 2, ...|Vα|+ |Eα|

For the sake of simplicity, and without loss of generality,

all assets are assumed to have binary state. The state of a

single network component, Ai, can therefore be described by

an independent Bernoulli random variable Xi ∼ Ber(pfi ), so

that

P (Xi) =

{

p
f
i , for Xi = 0

1− p
f
i , for Xi = 1.

(2)

The state of the whole network is therefore effectively con-

trolled by a set of independent Bernoulli random variables

X = {Xi, · · · }, i = 1, 2, ...|Vα|+ |Eα|

each corresponding to some failure probability.

One sample of each random variable returns a failure

scenario for the system, where network component failures

are initiated by removing assets with Xi = 0. Each failure

scenario represents one possible outcome from the weather

event. The complete sample space for X is of size 2|Vα|+|Eα|.

To reduce the complexity of simulating the system’s response

to all 2|Vα|+|Eα| combinations, a Monte Carlo approach is used

to estimate the possible outcomes. Through repeated sampling,

N set of possible failure scenarios can be obtained:

S = {Sj , · · · }, j = 0, · · · , N
where j denotes a single Monte Carlo run. Each subset, Sj ,

contains a combination of states for all network components

and is regarded as a single failure scenario.

Sj = {sji , · · · }, i = 1, 2, ...|Vα|+ |Eα|

C. Probabilistic resilience measure

This paper considers resilience as the ability of a system to

maintain or return to its normal operations after a disruption

occurs. This derives from an ecological perspective and is first

introduced by Holling [40]. However, various definitions and

measures of resilience have been proposed in applications to

systems of different natures [41]. Here the resilience metric

proposed by Bruneau et al. [42] is adopted for its general

applicability. It measures resilience as cumulative service

degradation from the time of earthquake, or any disruptive

events, happening, t0, to the time of full recovery, t1, as shown

in the equation 3. Q(t) denotes the quality of infrastructure at

time t.

R =

∫ t1

t0

[100−Q(t)] dt (3)

In this work, the resilience metric from [42] is modified in two

aspects. First, instead of the quality of the infrastructure assets,

Q(t) here measures the quality of service provided. Moreover,

such a measure of the quality of services may take different

meanings depending on the nature of the infrastructure system

under study. As a general case, it is expressed as the percentage

of satisfied demand:

Q(t) =

∑

φ F
t

∑

φ D
t

(4)

where F t and Dt denote the delivery and demand at time

t respectively. The resilience metric is then calculated as

cumulative loss of service, LOS:

LOS =

∫

t1

t0

1−
(

∑

φ F
t

∑

φ D
t

)

dt (5)

Second, to take the uncertainty of the system behaviour

into account, resilience to a given weather event is associated

with the averaged LOS from all sampled failure scenarios.

For a given weather event, a set of N failure scenarios,

S = {Sj , · · · }, j = 0, · · · , N , are randomly sampled. For

each failure scenario, Sj , component failures are initiated in

the asset layer accordingly and disruptions in the service layer

are then computed. Depending on the system’s dynamics, re-

configuration and repair activities can then be performed. Q(t),
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is calculated at every time step until full service is recovered.

The cumulative loss of service, LOSj , from the j-th sampled

failure scenario, Sj , is then calculated with Equation 5. The

statistical distribution of set, LOS = {LOSj}, j = 0, · · · , N ,

describes the system’s resilience to the given weather event.

III. CASE STUDY - GREAT BRITAIN’S RAILWAY SYSTEM

This section presents a case study on Great Britain’s railway

passenger transport system, which is modeled as a flow

network dependent on a single asset layer of train tracks

subjected to high-temperature related track buckling. A set of

temperature projections covering the years 2006-2100 from the

European Domain of Coordinated Downscaling Experiment

(EURO-CORDEX) on a 0.11°spatial resolution under the

Representative Concentration Pathway 8.5 (RCP8.5) climate

change scenario is used to generate plausible climate-based

failure scenarios. Those failure scenarios are then used to

initiate failures in the network, followed by assessments of

the resilience to these scenarios.

A. Model Inputs and Assumptions

In this case study, a few simplifications and assumptions

are made for the balance of generality and specificity. In

the absence of reliable information and empirical data, those

choices are the most general and possible form.

1) The network: The railway network model developed by

Pant et al. [26] is used in this case study. It has separated flow

and asset layers (Figure 3). The asset layer is an undirected

weighted network that consists of 4024 stations, modeled as

nodes; and 4524 railway track segments, modeled as edges.

The flow layer is in the form of OD trips, representing the

services provided. There are 2,282,270 OD pairs between 2484

origin and destination nodes out of the 4524 nodes in the asst

layer. Each OD pair has an original edge path assigned, P0
od,

detailing which edges in the asset layer are utilized. Average

daily traffic over the year is used as both a measure of the

traffic volume on edges in the asset layer and OD demand.

The system is assumed to be in a steady state with this daily

traffic with the same amount of services demanded every day,

regardless of the state of the asset layer. Any daily, weekly,

or seasonal variations are not considered in this case study. A

time resolution of one day is used.

2) The Hazard: High-temperature-related track buckling is

used as an example hazard to demonstrate how to gener-

ate network failure scenarios using weather profiles. From

[5], [43], track buckling is related to the daily maximum

temperature and the critical air temperature for heat-related

track buckling varies depending on track condition. However,

track conditions are not available from the network model

or network-wide from other sources. For the purpose of this

case study, the dependence of the critical air temperature on

track condition [43] is therefore not considered and all edges

in the network are subjected to the same fragility function

regardless of any variations in condition. To the best of found

knowledge, there is no existing fragility function that expresses

the probability of track buckling as a function of the ambient

temperature. The empirical definition of such a function is

(a) (b)

Fig. 3: (a) Asset layer of the network model with 4024 nodes

and 4524 edges. (b) Flow layer of the network model. This

figure only plots 22,326 out of the total 2,282,270 OD pairs,

which has more than 15 passenger trips and geographical path

length greater than 30km.

beyond the scope of this paper. A Gaussian sigmoid is hence

considered as a fragility function with its shape controlled by

the two parameters µ and σ. Taking the thresholds in [43],

[44] into consideration, the cumulative distribution function

of N (35, 2.5) is used. The value of µ and σ can be tuned

if more information becomes available, e.g., a collection of

historical failure events and corresponding local temperature.

Therefore,

p
f
i = ξ(ωi) =

1

2
[1 + erf(

ωi − µ

σ
√
2

)] (6)

3) The Climate Data: As mentioned above, track buckling

is related to the daily maximum temperature. Therefore the

output variable, daily maximum near-surface air temperature,

(tasmax) ), is used in this case study. EURO-CORDEX pro-

vides climate change data for the European domain, covering a

period of 95 years, from 2006 to 2100. By limiting the results

to

• “domain” = “EUR-11” (0.11°, ∼12km spatial resolution)

• “experiment” = “RCP8.5”

• “time frequency” = “day”

• “variables” = “tasmax”

64 sets of model output are left. They differ in the global

climate model used for downscaling, the climate model

ensemble, and the regional climate model used.1

4) Rerouting Algorithm: Railways usually are not deliver-

ing at their maximum capacity [45]. When the network is par-

tially damaged with some OD pairs losing their original path,

the spare capacity allows rerouting to utilise the remaining

assets to attempt to deliver those interrupted OD flows. When

the original path, P0
od = {eij , · · · } is interrupted due to one or

more edge failures, passengers are assumed to stay at node vo
and no passenger is waiting at any intermediate nodes on the

original path. Any edge, if undamaged, is assumed to have a

1The most recently updated one, EUR-11 CNRM-CERFACS-CNRM-
CM5 rcp85 r1i1p1 MOHC-HadREM3-GA7-05 v2, is used in this case
study.
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spare capacity of 50% of its regular traffic for the rerouting.

A modified minimum-cost maximum-flow algorithm based

on the Edmonds-Karp algorithm [46] is used for the flow

assignment here. Considering the size of the OD matrix and

the time taken to search for a path in a network of great size,

the algorithm is only set to search for the first five2 shortest

paths instead of until no path exists. Further, the ’cost’ here

is the geographical length of the path instead of the number

of steps (edges traversed). The algorithm searches for paths in

the order of the shortest path that, 1) has available capacity;

and 2) is within twice2 the geographical length of the original

path, until no such path can be found. More details about the

rerouting strategy are available in the Appendix.

5) Recovery: Asset repairing activities are assumed to take

place at every time step until the asset layer is fully recovered.

For the sake of this example and to bypass the scarcity of

information on the recovery of incidents in the railway sector,

damaged edges are subject to the same recovery probability

of 0.5 at every time step until fully recovered.

B. Simulation

As the temporal resolution for the tasmax is daily, a single

day is regarded as a weather event, which is assumed uncor-

related to conditions of the previous and following days. This

case study does not consider the effects of continuous hot days

or heatwaves. For each weather event, the local conditions for

each edge are first assigned and transferred to the probability

of failure using the fragility function. Then 250 sets of failure

scenarios are generated through random sampling.

For the j-th failure scenario, disruptions are initiated

through the removal of edges for which s
j
i = 0 i =

1, 2, ...|Vα| + |Eα| at time step zero. Interrupted OD pairs,

whose original path P
0
od includes any removed edges, are then

identified. The rerouting algorithm then calculates the amount

of OD flows rerouted. The total amount of delivery at this

time step is the sum of the rerouted and the uninterrupted

OD trips. The quality of service, Q(t), is calculated with

Equation 4. Undelivered OD flows, partially or completely,

at the current time step, plus the steady-state daily demand

(the annual average daily traffic) becomes the demand for the

next time step. Asset repair is carried out between time steps

until all edges are recovered. If the original path of an OD

pair is recovered at a time step, from the next time step,

any accumulated undelivered trips will be delivered via its

original path with the 50% spare capacity fully utilised instead

of rerouting.

A day-by-day resilience assessment for the 95-year would

hardly meet practical considerations and require substantial

computational power. A clustering analysis is therefore carried

out using a K-means method to categorise each five year’s of

summer days, which are most likely to exceed temperature

thresholds, into 10 clusters (Figure 4). Euclidean distance is

considered and the day closest to the synthetic centroid of each

cluster is chosen as the representative day. By doing so, 190

example days are selected, representing 190 typical weather

events and thus 190 unique distributions of climate hazards

2This is an arbitrary value set on the absence of relevant information.

over the railway network. This approach makes the dataset

computationally tractable with the method presented without

losing significant information.

Fig. 4: Clustering of the summer days (01 May to 30

September) from 2006 to 2100 based on the tasmax of

CORDEX output data EUR-11 CNRM-CERFACS-CNRM-

CM5 rcp85 r1i1p1 MOHC-HadREM3-GA7-05 v2. 10 clus-

ters are produced for each 5-year group through a K-means

algorithm. The height of each bar is controlled by the number

of days that fall into the cluster. The colour of the bar is

controlled by the average temperature of the synthetic centroid

of the cluster.

To compare the climate-based failure scenarios to random

and targeted, shocks of the same intensity should be applied

to the network in two separate settings with either a random

or targeted strategy. This ’intensity’ is taken as the number

of edges removed in this work. For a given day, the expected

number of failed edges can be calculated as:

Ψ = E(X ) =

|Eα|
∑

i=1

E(Xi) =

|Eα|
∑

i=1

p
f
i . (7)

This implies that, if a weather event was set as a random

attack on the network assets, on average, Ψ edges would be

randomly selected and removed in each Monte Carlo run. For

the targeted strategy, edges with the most traffic are removed

first. In both cases, the same resilience assessment procedure

as in the climate-based failure scenarios is followed.

C. The 95-year trend

For any given failure scenario, with the resilience defined

as in Section III, the quality of service drops immediately

upon removal of edges. With rerouting and repairing efforts,

the quality of service gradually bounces back to one. This

forms a system response curve. The area between the curve

and the normal performance line (Q(t) = 1) forms a triangle,

the area of which, effectively is the cumulative loss of service

and indicates how resilient the system is (see Figure 5. For

a given day, 250 failure scenarios are sampled. Therefore,

each failure scenario corresponds to a resilience curve and

a LOS. The distribution of the 250 LOS shows the likelihood

of the outcomes (loss of service) and indicates the system’s
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resilience. A high LOS value means a high degree of service

loss overall and is therefore associated with low resilience.

= 3.6        High resilience level

= 15.9       Low resilience level

Fig. 5: Resilience curve with calculated LOS

To visualise the trend over the 2006-2100 period, these

probability density distributions are plotted vertically as violin

plots (Figure 6). As mentioned above, clustering analyses are

carried out to select 10 example days from the summer days

of every 5-year period and 190 example days are selected in

total. Figure 6 shows the simulation results of 105 days out of

the 190 days as it only includes days whose expected number

of failure, Ψ, is greater than 1. The colours of the violin plots

indicate the number of days in the cluster that the example

day belongs to. The darker the plot, the more frequent this

day is in the 5-year period it belongs to. From Figure 6, the

dominant clusters (clusters with the biggest number of days),

tends to be associated with a higher degree of LOS towards

the end of the century.

Fig. 6: Distribution of the measured cumulative service loss,

LOS, of the centroid day of each cluster. Each violin plot

shows the distribution of 250 measured LOS from failure

scenarios sampled from a single day. This figure only plots

days whose expectation of the number of failed edges is

greater than 1. The line plot with diamond markers shows

the mean of the distribution of the largest cluster.

In addition, a time series of annual total LOS is constructed

using the simulation results of the example days and the

clustering analyses. This is done by duplicating the simulation

results for each example day and assigning them to all days

in the same cluster. The days are then grouped by year and

the convolution of all non-zero distribution is computed to

give the estimation of the annual total LOS. From Figure 7,

the constructed time series data shows an overall upward trend

regarding the estimated annual total LOS. Moreover, the spikes

suggest that, in the climate model output used, there exist some

extreme hot years with significantly more and hotter days.

The overall upward trend suggests that the railway system’s

resilience to high-temperature-induced disruptions could be

compromised under future climate scenarios.
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Fig. 7: Time series of the estimated annual total LOS for the

2006-2100 period. The solid black line shows the expectations

of the aggregated distributions. The shaded area shows the 5%

to 95% range across the aggregated distribution. The solid

red line is obtained by smoothing the solid black line with a

Savitzky–Golay filter [47].

D. Shock-disruption relationship

In this case study, the external weather condition is regarded

as a form of external shock imposed on the railway system.

The direct effect of such shock is the failure and removal of

edges from the asset layer. Service disruption occurs when the

railway system fails to deliver part of its service. Infrastructure

systems are believed to be complex systems that often exhibit

non-linearity. The railway system in this case study is no

exception, as a non-linear relationship is observed between

the intensity of external shock received and the severity of

service disruption caused.

Figure 8a shows this shock-disruption relation, with the

intensity of the shock measured by the national average of

tasmax and the severity of the disruption indicated by the

simulated LOS. The plot uses the simulation results of the

105 example days, whose expected number of failure, Ψ, is

greater than 1. For each day, the national average of tasmax is

plotted against the simulated cumulative loss of service. As the

temperature increases, the increase of the consequential loss

of services presents a threshold behaviour with an apparent

surge as the temperature increase above 25 °C. Following the

surge, there is a steady increase with the increasing tempera-

ture, which then shows a trend to plateau. This suggests the

possibility that changes in the climate system can lead to some

disproportional disruptions to the infrastructure systems.

This shock-disruption relationship is then further broken

into a shock-damage-disruption relation. The shock-disruption

relationship in Figure 8a is in fact a combined effects of

the shock-damage relationship in Figure 8b and the damage-

disruption relationship in Figure 8c. Figure 8b shows the
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Fig. 8: Relationship between: (a) The average of measured cumulative loss of service, LOS and the average tasmax; (b) the

expectation of the number of edge failures Ψ and the average tasmax; (c) The average of measured cumulative loss of service,

LOS and expectation of the number of edge failures, Ψ. The average tasmax is the average of the tasmax relevant to the asset

layer.

relationship between the intensity of the shock and the ex-

tent of damage caused, where a surge happens at a 25 °C

national average of tasmax followed by a steady increase

with increasing temperature. Figure 8c shows the relationship

between the extent of damaged caused and the severity of

service disruption. The plot has a sharp increase as few edges

are removed and then keeps on growing at a slower rate.

E. Climate-based, random and targeted failures

As mentioned in Section I, neither the random failure

scenarios, where failures happen randomly across the network,

nor the targeted attack strategy, where network component

failures are targeted to simulate the most extensive possible

disruption, may be able to capture the feature of weather-

related disruptions. Therefore, two separate sets of simulations,

one implementing the random failure scenarios and the other

implementing the targeted attack strategy, are carried out to

compare the effects of the these against climate-based disrup-

tion. For a given day, the expected number of edge failures, Ψ,

is calculated using Equation 7. Then, for the random strategy,

in each Monte Carlo run, Ψ number of edges are randomly

selected and removed from the network, followed by the same

rerouting and repairing efforts with LOS calculated using the

same approach. For the targeted strategy, the first Ψ edges

with the most traffic are removed from the network, followed

by the same assessment procedure.

Firstly, the percentage of OD flows interrupted at the onset

of component failure without any rerouting or repair attempts

is compared between the three strategies (Figure 9). When

the same number of edges are removed from the network, the

strategy that results in a higher percentage of OD disruption is

believed to be more disruptive. The results show that climate-

based strategy tends to sit between random and targeted. In

particular, for the extent of the failed portion of the network

edges intermediate between a sparse and a total number of

failures, the climate-based strategy is more disruptive than

random and less than targeted. For an extremely high number

of edges involved, the disruption of a random strategy would

exceed the one generated by the climate-based though there is

only a slight difference between the three strategies. A Mann-

Whitney U test [48] is carried out between samples from the

climatic-based and random failure scenarios. The results of

this statistical test highlight how different climatic disruptions

are from random disruptions.

Fig. 9: upper): Percentage of OD journey interrupted at the

onset of disruption without any rerouting or repairing effort

against the number of the nodes removed. The sample size

is 1000. The shaded area shows the 2.5% to 97.5% range.

Markers are the means of each sample. lower): P-value of

the Mann-Whitney U test between samples from climatic and

random failure scenarios vs. the number of nodes removed.

Any p-value smaller than 0.0001 is replaced with 0.0001.

Figure 10 shows the distribution of the measured cumulative

loss of service against the number of edges removed for

the three strategies. The results show that the climate-based

failure scenarios cause more cumulative service loss than

random in most cases. The Mann-Whitney U test shows a few
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cases where LOS sampled from the random and the climate-

based strategies return no statistical difference. In contrast,

the targeted strategy sits distinctly above both the random

and the climate-based for all extents of edge failure. Overall,

the system suffers a higher level of loss of service under the

climate-based failure scenarios than the random one when the

same number of edges are removed from the network. It means

the system has a higher level of resilience toward random

failure scenarios than climate-based.

L
O
S

Fig. 10: upper)The measured LOS against the number of edges

removed. The sample size is 250. The shaded area shows the

2.5% to 97.5% range. Markers are the means of each sample.

lower) P-value of the Mann-Whitney U test between samples

from climate-based and random failure scenarios against the

number of nodes removed. Any p-value smaller than 0.0001

is replaced with 0.0001 for visualisation purposes.

IV. DISCUSSION

The case study points to three key findings: 1) There is an

overall increasing trend in the estimated annual total LOS over

the 95-year-period, where increased frequency and intensity of

extreme events drive the average LOS upwards. 2) The severity

of the disruptions caused, measured with the cumulative LOS,

increases non-linearly with the increasing intensity of the

external shock applied. 3) Random failure models tend to

overestimate the network’s resilience compared to climate-

based failure scenarios. When climate-based disruptions are

considered, the network function degradation is more severe

than in the random failure scenarios. Nevertheless, it is statisti-

cally different from a network disrupted by malicious attacks.

The direct use of climate model outputs also provide the

possibility to assess the resilience of the infrastructure systems

to different climate change scenarios and provides a more

comprehensive assessment of the threat of climate change.

This is achieved through two aspects. First, the introduction

of the Monte Carlo simulation in the assessment framework

provides a density distribution of the possible extent of service

loss in the future instead of a single numerical value. It

provides a sense of how broad the outcomes would fall and

the associated likelihood of those outcomes. Second, it can

exploit the tremendous number of dataset climate change

research provides for future climate projections. One climate

model output dataset can only provide one possible view

into the future, and only a sufficient collection of outputs

from different climate model simulation runs can give a more

reliable prediction with the degree of uncertainty and error

range addressed. Likewise, a more informative and reliable

conclusion regarding the impact of climate change would be

one that is drawn through the evaluation of assessed resilience

to adequate sets of climate model outputs from different

global and regional models with different model ensembles

and initiation.

The proposed approach initiates disruptive events in infras-

tructure systems using the output data from climate change

research. Such an approach offers advances compared to the

weather generation methods used in literature [4], [36], [37].

Those methods mostly involve some form of manipulation of

present-day weather statistics and presume that future weather

patterns remain the same as the current day. The proposed

method overcomes such presumptions and can generate be-

haviourally realistic and physically viable climate hazards

under future climate change scenarios. However, the proposed

approach is limited by the spatial and temporal resolution

of the climate change data. For example, the highest spatial

resolution offered by EURO-CORDEX is ∼12km and the

majority of the outputs are with a daily temporal resolution. In

contrast, those weather simulators can offer up to half-hourly

weather profiles. Although the case study here only requires

daily weather profiles, future application of the method may

requires weather profile of higher temporal resolution.

The proposed failure initiation approach is applicable to

any infrastructure system with most types of climate haz-

ards, provided the fragility functions become available. By

introducing multiple inter-dependent asset layers subjected

to multiple climate hazards, the proposed approach has the

potential to simulate cascading failures in an interconnected

infrastructure network and assess the resilience of the system.

Future applications of the approach should see case studies on

interdependent infrastructure systems with compound climate

hazards.

The case study also highlights two main challenges in

implementing the proposed approach. First, a huge amount of

computational power is required to carry out the Monte Carlo

simulations in the proposed probabilistic resilience assessment.

In the case study, a clustering analysis is carried out to limit the

number of days input into the assessment framework. Doing so

brings the amount of calculation within computational power

available and provides important insights into the 95-year

trend. The second challenge is the lack of empirical data

and information on industrial practice for the specification

of fragility functions and railway system dynamics. For ex-

ample, the industrial practice of rerouting, the prioritisation

of repairing, and the estimation of spare capacity. A few

assumptions are made in the case study to the most general

form. Provided such information become available, a more

rigorous quantification of infrastructure resilience to future
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climate can be addressed.

V. CONCLUSION

This work presented a method to generate network fail-

ure scenarios and system disruptions using climate change

research data for the assessment of the infrastructure system’s

climate resilience. The case study attempts to quantify the

resilience of Great Britain’s railway passenger transport system

to high-temperature-related track buckling under the RCP8.5

climate change scenario. Findings from the case study support

the two arguments that motivate this framework’s proposal:

1) Random failure models tend to overestimate the network’s

resilience; 2) The system quality of services degrades non-

linearly with the magnitude of the disruption. Together, they

prove the need for linking climate change resilience assess-

ment to system-level functional loss as opposed to a mere

count of the failed nodes or the identification of a threshold

for network fragmentation.

APPENDIX

THE REROUTING ALGORITHM

The modified minimum-cost maximum-flow algorithm

based on the Edmonds-Karp algorithm [46] used for the

rerouting in the case study is shown in Figure 11. The code

involves a large amount of path search as there are 2,282,270

OD pairs in the system model with an asset layer constituting

2484 nodes and 4524 edges. The search for alternative paths is

time-consuming and memory-intensive. To meet the limitation

in computational power available, the algorithm is set to

eliminate the alternative path search for any OD pair with

fewer than 15 passenger trips or geographical path length

less than 30km. Those trips can be regarded as trips that

are likely to be aborted due to their relatively small demand

figures or met by using alternative transportation services

due to their short geographical distance. These include OD

pairs with potentially no passengers in the days considered,

which, together, contribute to 99% toward OD pair count.

By eliminating those OD pairs from the path search, the

computational time can be reduced by 96%. In fact, the sum of

those OD pairs contributes 71% toward total passenger trips.

The non-rerouted demand is assumed to resume travel as the

service is re-established on the original path. Up to that time, it

counts as unsatisfied demand. A small-scale trial computation

was carried out to assess the suitability of this approach. The

difference in the absolute amount of flow delivered between

a full rerouting and the reduced rerouting strategy chosen is

less than 5% in the vast majority of the cases (Figure 12).
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