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AbstractÐThe quality of an automatic speech recognition
(ASR) system’s output can be measured by comparing it with
a gold standard reference. Evaluating an error rate (ER) is
costly and therefore not always possible. Instead, one can aim
to provide estimates for quality, without explicit reference. Prior
work has concentrated on confidence scoring or word error rate
(WER) estimation. The latter is typically model based, and it was
found that the performance of a WER estimation model degrades
when it is trained on short utterances. To address this issue this
work presents an ER estimation model using character error
rate (CER), called Fe-CER. The ER estimation model for ASR
system’s output employs character-level tokenisation for higher
resolution on relatively short utterances. Fe-CER is compared
with other ER estimation models using phonemes, byte-pair
encoding tokens as well as words. The performance of the models
is measured using normalised root mean square error (nRMSE),
which takes into consideration the different distributions of target
ERs. Fe-CER trained on Chime5 is shown to outperform the
baseline model using word error rate in nRMSE and PCC by
6.00% and 8.79% relative, respectively.

Index TermsÐAutomatic speech recognition, Error rate esti-
mation, Word error rate, Character error rate, Tokenisation

I. INTRODUCTION

Automatic speech recognition (ASR) output is typically

evaluated by measuring an error rate. The errors are deter-

mined by comparing ground-truth transcripts, the so-called

reference, and the ASR output, referred to as (recognition)

hypothesis. This is costly and therefore not available in situa-

tions when one just aims to measure the quality in general. An

estimate of the confidence of the ASR system on utterances

can be used [1]±[5] for this purpose. However, such a method

often requires internal information, such as word confidence

or acoustic model probabilities, of the ASR system. Access to

this information is not always available in commercial systems.

To address this issue, methods for estimating the word error

rate (WER) of ASR systems’ output without reference and

the internal information have been investigated [6]±[8]. For

example, in [6], WER was estimated using features outside

decoding, such as ratio between silences and words. Another

series of studies on WER estimation [9]±[12] followed by

adopting deep neural networks. The WER estimation models

in [11], [12] employed self-supervised representation learning

models for extracting audio and text features, which is ob-

tained without any ASR process.

WER estimation based quality estimation was found to have

several issues of performance degradation in complex settings.

Degradation was observed when the mean and variance of

WER on a training dataset were relatively high, especially

when the dataset comprises relatively short utterances. For

example, when WER is measured of a one word utterance,

the quantisation of WER means that it will be 0%, 100%,

200%, etc. The high quantisation noise in this case leads

to high means and variances. Inspired by this observation,

various tokenisation strategies are employed for error rate

(ER) estimation on short utterances in this study. The tran-

scripts are tokenised into either phoneme, character or byte-

pair encoding (BPE) tokens. With the tokens, Phoneme Error

Rate (PER) [13], [14], Character Error rate (CER) [15]±

[17], Token Error Rate (TER) [18], [19] are used for ER

estimation for ASR. As transcripts are tokenised in a smaller

unit, the denominator of error rate tends to be larger. As a

result, the metric becomes higher resolution. This approach is

shown to affect the performance of an ER estimation model

not only short utterance but also overall ranges. The various

tokenisation strategies are evaluated on several ASR corpora:

TED-LIUM3(TL3) [20], Chime5 (CH5) [21].

The contributions of this work are:

● an ER estimation model using CER (Fe-CER) for ASR

corpus consisting of relatively short utterances

● a comparison of method for ER estimation models using

different tokenisation strategies using by normalised root

mean square error(nRMSE) as an evaluation metric

● experimental results on a range of corpora.

II. RELATED WORKS

Initial work was done by [6] that showed a method using

ASR system agnostic features for reference-free ASR error

rate estimation. For example, a training instance consists of

an utterance, a transcript and WER, while the test instance an

utterance and a transcript. In [11], a WER estimation model for

multilingual data was proposed, using self-supervised learning

representation (SSLR) models. Features for both speech and

text were extracted with SSLR models, such as XLSR-53 [22]

and XLM-R [23], respectively. The model aggregated features

for speech and text by bidirectional long short-term memory

and average pooling, respectively. The performance of WER

estimation has been evaluated in terms of root mean square

errors (RMSE) and Pearson correlation coefficient (PCC).

Following the previous studies, a Fast WER estimator (Fe-

WER) using average pooling over both speech and text fea-



tures has been proposed. The features were extracted using

HuBERT [23] and XLM-R, respectively. The results showed

that the computational efficiency for WER estimation has been

improved without a performance degradation.

Fe-WER, as illustrated in Fig. 1, is based on a dual-

tower architecture [24], [25]. The proposed model comprises

two aggregators, one for representing the speech signal and

one for text. This is combined with neural networks that

output the WER estimation. These aggregators transform the

features extracted using SSLR models into a sequence-level

representation by averaging frame features over time. The

sequence-level representations are combined and taken into

multi-layer perceptrons (MLPs) consisting of fully connected

layers with rectified linear units (ReLU). The resulting output

undergoes a sigmoid function transformation.

Fig. 1: Architecture of Fe-WER

III. ERROR RATE ESTIMATION MODELS

A. Tokenisation

WER is widely used as a target for error rate estimation

for ASR, providing an analysis of word-level tokenisation.

To address its low resolution on short utterances, other to-

kenisation schemes such as CER/PER/TER are introduced

for error rate estimation. CER offers a finer grained analysis

by assessing error rates at the character level instead of

word level. Phonemes are determined by mapping words to

phonemes, which are the distinct units of sound in a language.

Lastly, TER is calculated using byte-pair encoding tokens in

the transcripts. An example of tokenisation is shown in Table

I. A normalised sentence, ºi started reading about alzheimer is

and tried to familiarise myself with the researchº, is assumed

before tokenisation.

The target error rates are calculated by first performing

dynamic programming alignment, and then using the equation

TABLE I: Example of Tokenisation

tokenisation

WER [’i’, ’started’, ’reading’, ’about’, ’alzheimer’, ’is’, ’and’, ’tried’,
’to’, ’familiarize’, ’myself’, ’with’, ’the’, ’research’]

CER [’i’, ’ ’, ’s’, ’t’, ’a’, ’r’, ’t’, ’e’, ’d’, ’ ’, ’r’, ’e’, ’a’, ’d’, ’i’, ’n’,
’g’, ’ ’, ’a’, ’b’, ’o’, ’u’, ’t’, ’ ’, ’a’, ’l’, ’z’, ’h’, ’e’, ’i’, ’m’, ’e’,
’r’, ’ ’, ’i’, ’s’, ’ ’, ’a’, ’n’, ’d’, ’ ’, ’t’, ’r’, ’i’, ’e’, ’d’, ’ ’, ’t’,
’o’, ’ ’, ’f’, ’a’, ’m’, ’i’, ’l’, ’i’, ’a’, ’r’, ’i’, ’z’, ’e’, ’ ’, ’m’, ’y’,
’s’, ’e’, ’l’, ’f’, ’ ’, ’w’, ’i’, ’t’, ’h’, ’ ’, ’t’, ’h’, ’e’, ’ ’, ’r’, ’e’,
’s’, ’e’, ’a’, ’r’, ’c’, ’h’]

PER [’AY’, ’S’, ’T’, ’AA’, ’R’, ’T’, ’AH’, ’D’, ’R’, ’EH’, ’D’, ’IH’,
’NG’, ’AH’, ’B’, ’AW’, ’T’, ’AE’, ’L’, ’Z’, ’HH’, ’AY’, ’M’,
’ER’, ’IH’, ’Z’, ’AH’, ’N’, ’D’, ’T’, ’R’, ’AY’, ’D’, ’T’, ’UW’,
’F’, ’AH’, ’M’, ’IH’, ’L’, ’Y’, ’ER’, ’AY’, ’Z’, ’M’, ’AY’, ’S’,
’EH’, ’L’, ’F’, ’W’, ’IH’, ’DH’, ’DH’, ’AH’, ’R’, ’IY’, ’S’, ’ER’,
’CH’]

TER [b’i’, b’ started’, b’ reading’, b’ about’, b’ al’, b’zheimer’,
b’ is’, b’ and’, b’ tried’, b’ to’, b’ familiar’, b’ize’, b’ myself’,
b’ with’, b’ the’, b’ research’]

ERx =
Sx +Dx + Ix

Nx

(1)

where x is denoted as W(Word), C(Character), P(Phoneme)

and T(Token) and Nx is the number of x in a reference, S,

D, I are the number of substitutions, deletions and insertions,

respectively.

B. Training objective

The objective function for model training employs the mean

squared error (MSE) between target ER and ER estimate,

where ER represents the error rate between references and

hypotheses, and ÊR is the model’s estimation. Here, N

denotes the number of instances in the dataset, and i serves

as an index for each instance.

MSEx =
∑

N
i=1(ERx,i − ÊRx,i)2

N
(2)

C. Evaluation

The performance of the ER estimation models with WER,

CER, PER and TER is evaluated on test datasets by nRMSE

and PCC. As described in Section II, ER estimation models

have been evaluated in RMSE and PCC. RMSE represents

the average difference between targets and estimates. However,

when the performance of ER estimation models using different

metrics are measured, their performance can not be directly

compared using RMSE due to the different distributions of

the target values. To take this into consideration, RMSE is

normalised by the standard deviation σ of target error rate. The

variance of target ER can be regarded as the MSE of a model

that always predicts the mean of the target. By normalising

RMSE by the standard deviation of the target ER, how much

the performance improvement of the presented model is gained

from the model predicting the mean can be measured. It

would be less than 1 if there is an improvement. The more



performance is improved, the lower nRMSE becomes. The

normalised RMSE (nRMSE) is defined as

nRMSEx =

√
MSEx

σx

(3)

PCC quantifies the degree of the linear association between

two variables. It ranges from -1 to 1, where -1 indicates a

complete negative linear correlation, 0 implies no correlation,

and +1 signifies a full positive correlation.

PCC =
∑

N
i=1(ERx,i − µERx

)(ÊRx,i − µÊRx

)
√
∑

N
i=1(ERx,i − µERx

)2∑N
i=1(ÊRx,i − µÊRx

)2
(4)

where µERx
is the mean of ERx.

IV. EXPERIMENTAL SETUP

A. Data

Two datasets are used in the experiments: TL3 [20] and

CH5 [21]. TL3 is a dataset containing speech from public

talks on various topics, while CH5 is an ASR corpus of

daily conversation in home environments and consists of

relatively short utterances. The statistics of TL3 and CH5

are summarised in Table II. The average duration of CH5

utterances is lower than that for TL3. The ER estimation

models will be evaluated on CH5 to verify whether a model

using a different tokenisation strategy outperforms the Fe-

WER model when it is trained on the dataset consisting of

short utterances. The reference is preprocessed to be lower-

case and to remove punctuation. They are transcribed using the

Whisper large model [26]. The hypotheses are preprocessed in

the same way.

TABLE II: Statistics of Dataset

# of segments total dur.(h) avg. dur.(s)

TL3 train 123255 200.55 5.86
dev 1034 1.70 5.93
eval 842 1.41 6.04

CH5 train 70483 35.86 1.83
dev 6200 4.41 2.56
eval 9918 5.23 1.90

B. ER estimation using CER/PER/TER

The performance of ER estimation models using

CER/PER/TER is compared with Fe-WER, which is

mentioned in section II. The WER/CER/PER/TER estimators

utilise average pooling over either the frame or token

dimension as an aggregation method. It comprises MLPs

with two hidden layers and an output layer, along with

activation functions applied to the concatenated feature layer.

Additionally, batch normalisation is applied to the output of

each layer, and dropout is implemented on the hidden layers.

The hyper-parameters for those are selected through grid

search. The optimiser, activation function for the hidden and

output layers, and hidden layer dimensions are described on

Table III. The estimators are trained using a cosine annealing

scheduler and early stopping after 40 epochs.

Regarding tokenisation strategies, the hypothesis is split by

white space for WER because after text normalisation they

comprise only English letters and spaces without punctuation.

For CER, spaces are treated as a character as their position

affects the pronunciation. The words are mapped on phonemes

using the dictionary provided by TL3 corpus1 for both TL3

and CH5 for PER. While spaces are ignored for tokenisation

at the phoneme level, they are included in BPE tokens. For

TER, tiktoken2 has been adopted. This tokeniser was used for

Whisper [26] and GPT models [27].

TABLE III: Train model setup parameters

Learning Rate Activation Func Layers

WER TL3 0.001 Sigmoid 600, 32
CH5 0.0003 Sigmoid 300, 16

CER TL3 0.007 Sigmoid 600, 16
CH5 0.0007 Sigmoid 300, 16

PER TL3 0.007 Clamp 300, 32
CH5 0.0003 Sigmoid 600, 32

TER TL3 0.003 Sigmoid 600, 32
CH5 0.0007 Sigmoid 300, 16

V. RESULTS

To test whether there is a correlation between WER and

CER/PER/TER, PCC was calculated as shown in Table IV. As

shown, WER is highly correlated with those metrics, which

indicates a strong positive linear relationship between the two

variables.

TABLE IV: PCC between WER and CER/PER/TER

WER/CER WER/PER WER/TER

TL3 0.9429 0.9383 0.9704

CH5 0.9598 0.9565 0.9846

The performance of ER estimation models using different

metrics were measured by RMSE and PCC. While Fe-WER

outperformed the others on TL3 in PCC, the RMSE of Fe-

CER was lowest. On CH5, the performance of Fe-CER was

the best in both RMSE and PCC. The results are in Table V.

TABLE V: RMSE and PCC of ER estimation models

Fe-WER Fe-CER Fe-PER Fe-TER

TL3 RMSE 0.0877 0.0803 0.0808 0.0986
PCC 0.8995 0.8989 0.8994 0.8796

CH5 RMSE 0.3202 0.2821 0.2956 0.3258
PCC 0.6154 0.6695 0.6505 0.6059

The higher RMSE of Fe-WER on TL3 than that of Fe-CER

could have been caused by the different distributions of target

1https://www.openslr.org/51
2https://github.com/openai/tiktoken



ERs. For example, the average and the standard deviation of

target WER were 0.1429 and 0.1997 on TL3, while those

of target CER were 0.1061 and 0.1816. The average and the

standard deviation of target ERs are summarised in Table VI.

TABLE VI: Average and standard deviation of target ERs

WER CER PER TER

TL3 average 0.1429 0.1061 0.1066 0.1579
std.dev. 0.1997 0.1816 0.1839 0.2063

CH5 average 0.3665 0.3174 0.3246 0.3789
std.dev. 0.4036 0.3783 0.3867 0.4067

To compare the ER estimation models using different met-

rics, the RMSE was normalised by standard deviation as

described in Section III-C. In terms of nRMSE, Fe-WER

outperformed the other models in contrast to the result on

TL3 in Table V. The nRMSEs of the models are exhibited as

Table VII.

TABLE VII: nRMSE of ER estimation models

Fe-WER Fe-CER Fe-PER Fe-TER

TL3 nRMSE 0.4391 0.4421 0.4394 0.4779
CH5 nRMSE 0.7933 0.7457 0.7644 0.8010

The nRMSE of Fe-CER was found to be lower by relative

6% compared to Fe-WER and the PCC of Fe-CER was higher

than that of Fe-WER on CH5 by relative 8.79%. On TL3,

Fe-WER outperformed the other models in both nRMSE and

PCC. Therefore, Fe-CER performed best when it was trained

on the relatively short utterances, such as CH5.

VI. ANALYSIS

The reason different models were used was to see per-

formance improvement on short utterances. For analysis, ut-

terances were sorted by duration in ascending order. Then,

they were split into 10 groups. Fig. 2 and 3 display the

nRMSE and PCC values for 10 bins of utterances on TL3/CH5

evaluation datasets. While there are relatively small differences

between WER and other metrics on the 1st bin of TL3, there

are considerable gaps among the metrics on CH5. The ER

(a) nRMSE (b) PCC

Fig. 2: nRMSE and PCC of ER estimates on TL3. The ordered

utterances are grouped into 10 bins.

estimation model using CER showed better performance on

CH5. The nRMSE of Fe-CER is lower than that of Fe-WER by

relative 8.72%. The PCC of the model is higher than that of Fe-

WER by relative 5.96%. Fe-CER outperformed especially in

the 4th bin on CH5 in nRMSE and PCC, which are better than

those of Fe-WER by relative 9.97% and 19.75%, respectively.

The performance of Fe-CER in terms of nRMSE and PCC

was better when the model was trained on relatively short

utterances such as CH5.

(a) nRMSE (b) PCC

Fig. 3: nRMSE and PCC of ER estimates on CH5. The ordered

utterances are grouped into 10 bins.

VII. CONCLUSION

For evaluation of ASR output on short utterances, an ER

estimation model using character error rate is proposed. The

performance of ER estimation models with various tokeni-

sation strategies are evaluated using nRMSE and PCC. The

result demonstrates that the Fe-CER outperforms the Fe-WER

on the CH5 dataset consisting of relatively short utterances by

6.00% and 8.79% relative in both metrics, respectively. In the

analysis of performance of the ER estimation models along

the utterance duration, Fe-CER consistently outperforms the

others on CH5.
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